1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   * Copyright (C) 2022 Christoph Hellwig.
5   */
6  
7  #include <linux/bio.h>
8  #include "bio.h"
9  #include "ctree.h"
10  #include "volumes.h"
11  #include "raid56.h"
12  #include "async-thread.h"
13  #include "dev-replace.h"
14  #include "zoned.h"
15  #include "file-item.h"
16  #include "raid-stripe-tree.h"
17  
18  static struct bio_set btrfs_bioset;
19  static struct bio_set btrfs_clone_bioset;
20  static struct bio_set btrfs_repair_bioset;
21  static mempool_t btrfs_failed_bio_pool;
22  
23  struct btrfs_failed_bio {
24  	struct btrfs_bio *bbio;
25  	int num_copies;
26  	atomic_t repair_count;
27  };
28  
29  /* Is this a data path I/O that needs storage layer checksum and repair? */
is_data_bbio(struct btrfs_bio * bbio)30  static inline bool is_data_bbio(struct btrfs_bio *bbio)
31  {
32  	return bbio->inode && is_data_inode(bbio->inode);
33  }
34  
bbio_has_ordered_extent(struct btrfs_bio * bbio)35  static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
36  {
37  	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38  }
39  
40  /*
41   * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
42   * is already initialized by the block layer.
43   */
btrfs_bio_init(struct btrfs_bio * bbio,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)44  void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45  		    btrfs_bio_end_io_t end_io, void *private)
46  {
47  	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48  	bbio->fs_info = fs_info;
49  	bbio->end_io = end_io;
50  	bbio->private = private;
51  	atomic_set(&bbio->pending_ios, 1);
52  	WRITE_ONCE(bbio->status, BLK_STS_OK);
53  }
54  
55  /*
56   * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
57   * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
58   *
59   * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60   * a mempool.
61   */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)62  struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63  				  struct btrfs_fs_info *fs_info,
64  				  btrfs_bio_end_io_t end_io, void *private)
65  {
66  	struct btrfs_bio *bbio;
67  	struct bio *bio;
68  
69  	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70  	bbio = btrfs_bio(bio);
71  	btrfs_bio_init(bbio, fs_info, end_io, private);
72  	return bbio;
73  }
74  
btrfs_split_bio(struct btrfs_fs_info * fs_info,struct btrfs_bio * orig_bbio,u64 map_length)75  static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76  					 struct btrfs_bio *orig_bbio,
77  					 u64 map_length)
78  {
79  	struct btrfs_bio *bbio;
80  	struct bio *bio;
81  
82  	bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
83  			&btrfs_clone_bioset);
84  	bbio = btrfs_bio(bio);
85  	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
86  	bbio->inode = orig_bbio->inode;
87  	bbio->file_offset = orig_bbio->file_offset;
88  	orig_bbio->file_offset += map_length;
89  	if (bbio_has_ordered_extent(bbio)) {
90  		refcount_inc(&orig_bbio->ordered->refs);
91  		bbio->ordered = orig_bbio->ordered;
92  	}
93  	atomic_inc(&orig_bbio->pending_ios);
94  	return bbio;
95  }
96  
97  /* Free a bio that was never submitted to the underlying device. */
btrfs_cleanup_bio(struct btrfs_bio * bbio)98  static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
99  {
100  	if (bbio_has_ordered_extent(bbio))
101  		btrfs_put_ordered_extent(bbio->ordered);
102  	bio_put(&bbio->bio);
103  }
104  
__btrfs_bio_end_io(struct btrfs_bio * bbio)105  static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
106  {
107  	if (bbio_has_ordered_extent(bbio)) {
108  		struct btrfs_ordered_extent *ordered = bbio->ordered;
109  
110  		bbio->end_io(bbio);
111  		btrfs_put_ordered_extent(ordered);
112  	} else {
113  		bbio->end_io(bbio);
114  	}
115  }
116  
btrfs_bio_end_io(struct btrfs_bio * bbio,blk_status_t status)117  void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
118  {
119  	bbio->bio.bi_status = status;
120  	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
121  		struct btrfs_bio *orig_bbio = bbio->private;
122  
123  		btrfs_cleanup_bio(bbio);
124  		bbio = orig_bbio;
125  	}
126  
127  	/*
128  	 * At this point, bbio always points to the original btrfs_bio. Save
129  	 * the first error in it.
130  	 */
131  	if (status != BLK_STS_OK)
132  		cmpxchg(&bbio->status, BLK_STS_OK, status);
133  
134  	if (atomic_dec_and_test(&bbio->pending_ios)) {
135  		/* Load split bio's error which might be set above. */
136  		if (status == BLK_STS_OK)
137  			bbio->bio.bi_status = READ_ONCE(bbio->status);
138  		__btrfs_bio_end_io(bbio);
139  	}
140  }
141  
next_repair_mirror(struct btrfs_failed_bio * fbio,int cur_mirror)142  static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
143  {
144  	if (cur_mirror == fbio->num_copies)
145  		return cur_mirror + 1 - fbio->num_copies;
146  	return cur_mirror + 1;
147  }
148  
prev_repair_mirror(struct btrfs_failed_bio * fbio,int cur_mirror)149  static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
150  {
151  	if (cur_mirror == 1)
152  		return fbio->num_copies;
153  	return cur_mirror - 1;
154  }
155  
btrfs_repair_done(struct btrfs_failed_bio * fbio)156  static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
157  {
158  	if (atomic_dec_and_test(&fbio->repair_count)) {
159  		btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
160  		mempool_free(fbio, &btrfs_failed_bio_pool);
161  	}
162  }
163  
btrfs_end_repair_bio(struct btrfs_bio * repair_bbio,struct btrfs_device * dev)164  static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
165  				 struct btrfs_device *dev)
166  {
167  	struct btrfs_failed_bio *fbio = repair_bbio->private;
168  	struct btrfs_inode *inode = repair_bbio->inode;
169  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
170  	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
171  	int mirror = repair_bbio->mirror_num;
172  
173  	/*
174  	 * We can only trigger this for data bio, which doesn't support larger
175  	 * folios yet.
176  	 */
177  	ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
178  
179  	if (repair_bbio->bio.bi_status ||
180  	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
181  		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
182  		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
183  
184  		mirror = next_repair_mirror(fbio, mirror);
185  		if (mirror == fbio->bbio->mirror_num) {
186  			btrfs_debug(fs_info, "no mirror left");
187  			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
188  			goto done;
189  		}
190  
191  		btrfs_submit_bbio(repair_bbio, mirror);
192  		return;
193  	}
194  
195  	do {
196  		mirror = prev_repair_mirror(fbio, mirror);
197  		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
198  				  repair_bbio->file_offset, fs_info->sectorsize,
199  				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
200  				  page_folio(bv->bv_page), bv->bv_offset, mirror);
201  	} while (mirror != fbio->bbio->mirror_num);
202  
203  done:
204  	btrfs_repair_done(fbio);
205  	bio_put(&repair_bbio->bio);
206  }
207  
208  /*
209   * Try to kick off a repair read to the next available mirror for a bad sector.
210   *
211   * This primarily tries to recover good data to serve the actual read request,
212   * but also tries to write the good data back to the bad mirror(s) when a
213   * read succeeded to restore the redundancy.
214   */
repair_one_sector(struct btrfs_bio * failed_bbio,u32 bio_offset,struct bio_vec * bv,struct btrfs_failed_bio * fbio)215  static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
216  						  u32 bio_offset,
217  						  struct bio_vec *bv,
218  						  struct btrfs_failed_bio *fbio)
219  {
220  	struct btrfs_inode *inode = failed_bbio->inode;
221  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
222  	const u32 sectorsize = fs_info->sectorsize;
223  	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
224  	struct btrfs_bio *repair_bbio;
225  	struct bio *repair_bio;
226  	int num_copies;
227  	int mirror;
228  
229  	btrfs_debug(fs_info, "repair read error: read error at %llu",
230  		    failed_bbio->file_offset + bio_offset);
231  
232  	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
233  	if (num_copies == 1) {
234  		btrfs_debug(fs_info, "no copy to repair from");
235  		failed_bbio->bio.bi_status = BLK_STS_IOERR;
236  		return fbio;
237  	}
238  
239  	if (!fbio) {
240  		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
241  		fbio->bbio = failed_bbio;
242  		fbio->num_copies = num_copies;
243  		atomic_set(&fbio->repair_count, 1);
244  	}
245  
246  	atomic_inc(&fbio->repair_count);
247  
248  	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
249  				      &btrfs_repair_bioset);
250  	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
251  	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
252  
253  	repair_bbio = btrfs_bio(repair_bio);
254  	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
255  	repair_bbio->inode = failed_bbio->inode;
256  	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
257  
258  	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
259  	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
260  	btrfs_submit_bbio(repair_bbio, mirror);
261  	return fbio;
262  }
263  
btrfs_check_read_bio(struct btrfs_bio * bbio,struct btrfs_device * dev)264  static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
265  {
266  	struct btrfs_inode *inode = bbio->inode;
267  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
268  	u32 sectorsize = fs_info->sectorsize;
269  	struct bvec_iter *iter = &bbio->saved_iter;
270  	blk_status_t status = bbio->bio.bi_status;
271  	struct btrfs_failed_bio *fbio = NULL;
272  	u32 offset = 0;
273  
274  	/* Read-repair requires the inode field to be set by the submitter. */
275  	ASSERT(inode);
276  
277  	/*
278  	 * Hand off repair bios to the repair code as there is no upper level
279  	 * submitter for them.
280  	 */
281  	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
282  		btrfs_end_repair_bio(bbio, dev);
283  		return;
284  	}
285  
286  	/* Clear the I/O error. A failed repair will reset it. */
287  	bbio->bio.bi_status = BLK_STS_OK;
288  
289  	while (iter->bi_size) {
290  		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
291  
292  		bv.bv_len = min(bv.bv_len, sectorsize);
293  		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
294  			fbio = repair_one_sector(bbio, offset, &bv, fbio);
295  
296  		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
297  		offset += sectorsize;
298  	}
299  
300  	if (bbio->csum != bbio->csum_inline)
301  		kfree(bbio->csum);
302  
303  	if (fbio)
304  		btrfs_repair_done(fbio);
305  	else
306  		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
307  }
308  
btrfs_log_dev_io_error(struct bio * bio,struct btrfs_device * dev)309  static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
310  {
311  	if (!dev || !dev->bdev)
312  		return;
313  	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
314  		return;
315  
316  	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
317  		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
318  	else if (!(bio->bi_opf & REQ_RAHEAD))
319  		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
320  	if (bio->bi_opf & REQ_PREFLUSH)
321  		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
322  }
323  
btrfs_end_io_wq(struct btrfs_fs_info * fs_info,struct bio * bio)324  static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
325  						struct bio *bio)
326  {
327  	if (bio->bi_opf & REQ_META)
328  		return fs_info->endio_meta_workers;
329  	return fs_info->endio_workers;
330  }
331  
btrfs_end_bio_work(struct work_struct * work)332  static void btrfs_end_bio_work(struct work_struct *work)
333  {
334  	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
335  
336  	/* Metadata reads are checked and repaired by the submitter. */
337  	if (is_data_bbio(bbio))
338  		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
339  	else
340  		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
341  }
342  
btrfs_simple_end_io(struct bio * bio)343  static void btrfs_simple_end_io(struct bio *bio)
344  {
345  	struct btrfs_bio *bbio = btrfs_bio(bio);
346  	struct btrfs_device *dev = bio->bi_private;
347  	struct btrfs_fs_info *fs_info = bbio->fs_info;
348  
349  	btrfs_bio_counter_dec(fs_info);
350  
351  	if (bio->bi_status)
352  		btrfs_log_dev_io_error(bio, dev);
353  
354  	if (bio_op(bio) == REQ_OP_READ) {
355  		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
356  		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
357  	} else {
358  		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
359  			btrfs_record_physical_zoned(bbio);
360  		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
361  	}
362  }
363  
btrfs_raid56_end_io(struct bio * bio)364  static void btrfs_raid56_end_io(struct bio *bio)
365  {
366  	struct btrfs_io_context *bioc = bio->bi_private;
367  	struct btrfs_bio *bbio = btrfs_bio(bio);
368  
369  	btrfs_bio_counter_dec(bioc->fs_info);
370  	bbio->mirror_num = bioc->mirror_num;
371  	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
372  		btrfs_check_read_bio(bbio, NULL);
373  	else
374  		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
375  
376  	btrfs_put_bioc(bioc);
377  }
378  
btrfs_orig_write_end_io(struct bio * bio)379  static void btrfs_orig_write_end_io(struct bio *bio)
380  {
381  	struct btrfs_io_stripe *stripe = bio->bi_private;
382  	struct btrfs_io_context *bioc = stripe->bioc;
383  	struct btrfs_bio *bbio = btrfs_bio(bio);
384  
385  	btrfs_bio_counter_dec(bioc->fs_info);
386  
387  	if (bio->bi_status) {
388  		atomic_inc(&bioc->error);
389  		btrfs_log_dev_io_error(bio, stripe->dev);
390  	}
391  
392  	/*
393  	 * Only send an error to the higher layers if it is beyond the tolerance
394  	 * threshold.
395  	 */
396  	if (atomic_read(&bioc->error) > bioc->max_errors)
397  		bio->bi_status = BLK_STS_IOERR;
398  	else
399  		bio->bi_status = BLK_STS_OK;
400  
401  	if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
402  		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
403  
404  	btrfs_bio_end_io(bbio, bbio->bio.bi_status);
405  	btrfs_put_bioc(bioc);
406  }
407  
btrfs_clone_write_end_io(struct bio * bio)408  static void btrfs_clone_write_end_io(struct bio *bio)
409  {
410  	struct btrfs_io_stripe *stripe = bio->bi_private;
411  
412  	if (bio->bi_status) {
413  		atomic_inc(&stripe->bioc->error);
414  		btrfs_log_dev_io_error(bio, stripe->dev);
415  	} else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
416  		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
417  	}
418  
419  	/* Pass on control to the original bio this one was cloned from */
420  	bio_endio(stripe->bioc->orig_bio);
421  	bio_put(bio);
422  }
423  
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)424  static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
425  {
426  	if (!dev || !dev->bdev ||
427  	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
428  	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
429  	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
430  		bio_io_error(bio);
431  		return;
432  	}
433  
434  	bio_set_dev(bio, dev->bdev);
435  
436  	/*
437  	 * For zone append writing, bi_sector must point the beginning of the
438  	 * zone
439  	 */
440  	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
441  		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
442  		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
443  
444  		ASSERT(btrfs_dev_is_sequential(dev, physical));
445  		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
446  	}
447  	btrfs_debug_in_rcu(dev->fs_info,
448  	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
449  		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
450  		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
451  		dev->devid, bio->bi_iter.bi_size);
452  
453  	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
454  		blkcg_punt_bio_submit(bio);
455  	else
456  		submit_bio(bio);
457  }
458  
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)459  static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
460  {
461  	struct bio *orig_bio = bioc->orig_bio, *bio;
462  
463  	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
464  
465  	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
466  	if (dev_nr == bioc->num_stripes - 1) {
467  		bio = orig_bio;
468  		bio->bi_end_io = btrfs_orig_write_end_io;
469  	} else {
470  		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
471  		bio_inc_remaining(orig_bio);
472  		bio->bi_end_io = btrfs_clone_write_end_io;
473  	}
474  
475  	bio->bi_private = &bioc->stripes[dev_nr];
476  	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
477  	bioc->stripes[dev_nr].bioc = bioc;
478  	bioc->size = bio->bi_iter.bi_size;
479  	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
480  }
481  
btrfs_submit_bio(struct bio * bio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)482  static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
483  			     struct btrfs_io_stripe *smap, int mirror_num)
484  {
485  	if (!bioc) {
486  		/* Single mirror read/write fast path. */
487  		btrfs_bio(bio)->mirror_num = mirror_num;
488  		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
489  		if (bio_op(bio) != REQ_OP_READ)
490  			btrfs_bio(bio)->orig_physical = smap->physical;
491  		bio->bi_private = smap->dev;
492  		bio->bi_end_io = btrfs_simple_end_io;
493  		btrfs_submit_dev_bio(smap->dev, bio);
494  	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
495  		/* Parity RAID write or read recovery. */
496  		bio->bi_private = bioc;
497  		bio->bi_end_io = btrfs_raid56_end_io;
498  		if (bio_op(bio) == REQ_OP_READ)
499  			raid56_parity_recover(bio, bioc, mirror_num);
500  		else
501  			raid56_parity_write(bio, bioc);
502  	} else {
503  		/* Write to multiple mirrors. */
504  		int total_devs = bioc->num_stripes;
505  
506  		bioc->orig_bio = bio;
507  		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
508  			btrfs_submit_mirrored_bio(bioc, dev_nr);
509  	}
510  }
511  
btrfs_bio_csum(struct btrfs_bio * bbio)512  static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
513  {
514  	if (bbio->bio.bi_opf & REQ_META)
515  		return btree_csum_one_bio(bbio);
516  	return btrfs_csum_one_bio(bbio);
517  }
518  
519  /*
520   * Async submit bios are used to offload expensive checksumming onto the worker
521   * threads.
522   */
523  struct async_submit_bio {
524  	struct btrfs_bio *bbio;
525  	struct btrfs_io_context *bioc;
526  	struct btrfs_io_stripe smap;
527  	int mirror_num;
528  	struct btrfs_work work;
529  };
530  
531  /*
532   * In order to insert checksums into the metadata in large chunks, we wait
533   * until bio submission time.   All the pages in the bio are checksummed and
534   * sums are attached onto the ordered extent record.
535   *
536   * At IO completion time the csums attached on the ordered extent record are
537   * inserted into the btree.
538   */
run_one_async_start(struct btrfs_work * work)539  static void run_one_async_start(struct btrfs_work *work)
540  {
541  	struct async_submit_bio *async =
542  		container_of(work, struct async_submit_bio, work);
543  	blk_status_t ret;
544  
545  	ret = btrfs_bio_csum(async->bbio);
546  	if (ret)
547  		async->bbio->bio.bi_status = ret;
548  }
549  
550  /*
551   * In order to insert checksums into the metadata in large chunks, we wait
552   * until bio submission time.   All the pages in the bio are checksummed and
553   * sums are attached onto the ordered extent record.
554   *
555   * At IO completion time the csums attached on the ordered extent record are
556   * inserted into the tree.
557   *
558   * If called with @do_free == true, then it will free the work struct.
559   */
run_one_async_done(struct btrfs_work * work,bool do_free)560  static void run_one_async_done(struct btrfs_work *work, bool do_free)
561  {
562  	struct async_submit_bio *async =
563  		container_of(work, struct async_submit_bio, work);
564  	struct bio *bio = &async->bbio->bio;
565  
566  	if (do_free) {
567  		kfree(container_of(work, struct async_submit_bio, work));
568  		return;
569  	}
570  
571  	/* If an error occurred we just want to clean up the bio and move on. */
572  	if (bio->bi_status) {
573  		btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status);
574  		return;
575  	}
576  
577  	/*
578  	 * All of the bios that pass through here are from async helpers.
579  	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
580  	 * context.  This changes nothing when cgroups aren't in use.
581  	 */
582  	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
583  	btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
584  }
585  
should_async_write(struct btrfs_bio * bbio)586  static bool should_async_write(struct btrfs_bio *bbio)
587  {
588  	bool auto_csum_mode = true;
589  
590  #ifdef CONFIG_BTRFS_DEBUG
591  	struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
592  	enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
593  
594  	if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
595  		return false;
596  
597  	auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
598  #endif
599  
600  	/* Submit synchronously if the checksum implementation is fast. */
601  	if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
602  		return false;
603  
604  	/*
605  	 * Try to defer the submission to a workqueue to parallelize the
606  	 * checksum calculation unless the I/O is issued synchronously.
607  	 */
608  	if (op_is_sync(bbio->bio.bi_opf))
609  		return false;
610  
611  	/* Zoned devices require I/O to be submitted in order. */
612  	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
613  		return false;
614  
615  	return true;
616  }
617  
618  /*
619   * Submit bio to an async queue.
620   *
621   * Return true if the work has been successfully submitted, else false.
622   */
btrfs_wq_submit_bio(struct btrfs_bio * bbio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)623  static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
624  				struct btrfs_io_context *bioc,
625  				struct btrfs_io_stripe *smap, int mirror_num)
626  {
627  	struct btrfs_fs_info *fs_info = bbio->fs_info;
628  	struct async_submit_bio *async;
629  
630  	async = kmalloc(sizeof(*async), GFP_NOFS);
631  	if (!async)
632  		return false;
633  
634  	async->bbio = bbio;
635  	async->bioc = bioc;
636  	async->smap = *smap;
637  	async->mirror_num = mirror_num;
638  
639  	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
640  	btrfs_queue_work(fs_info->workers, &async->work);
641  	return true;
642  }
643  
btrfs_append_map_length(struct btrfs_bio * bbio,u64 map_length)644  static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
645  {
646  	unsigned int nr_segs;
647  	int sector_offset;
648  
649  	map_length = min(map_length, bbio->fs_info->max_zone_append_size);
650  	sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
651  					&nr_segs, map_length);
652  	if (sector_offset)
653  		return sector_offset << SECTOR_SHIFT;
654  	return map_length;
655  }
656  
btrfs_submit_chunk(struct btrfs_bio * bbio,int mirror_num)657  static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
658  {
659  	struct btrfs_inode *inode = bbio->inode;
660  	struct btrfs_fs_info *fs_info = bbio->fs_info;
661  	struct bio *bio = &bbio->bio;
662  	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
663  	u64 length = bio->bi_iter.bi_size;
664  	u64 map_length = length;
665  	bool use_append = btrfs_use_zone_append(bbio);
666  	struct btrfs_io_context *bioc = NULL;
667  	struct btrfs_io_stripe smap;
668  	blk_status_t ret;
669  	int error;
670  
671  	if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
672  		smap.rst_search_commit_root = true;
673  	else
674  		smap.rst_search_commit_root = false;
675  
676  	btrfs_bio_counter_inc_blocked(fs_info);
677  	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
678  				&bioc, &smap, &mirror_num);
679  	if (error) {
680  		ret = errno_to_blk_status(error);
681  		goto fail;
682  	}
683  
684  	map_length = min(map_length, length);
685  	if (use_append)
686  		map_length = btrfs_append_map_length(bbio, map_length);
687  
688  	if (map_length < length) {
689  		bbio = btrfs_split_bio(fs_info, bbio, map_length);
690  		bio = &bbio->bio;
691  	}
692  
693  	/*
694  	 * Save the iter for the end_io handler and preload the checksums for
695  	 * data reads.
696  	 */
697  	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
698  		bbio->saved_iter = bio->bi_iter;
699  		ret = btrfs_lookup_bio_sums(bbio);
700  		if (ret)
701  			goto fail;
702  	}
703  
704  	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
705  		if (use_append) {
706  			bio->bi_opf &= ~REQ_OP_WRITE;
707  			bio->bi_opf |= REQ_OP_ZONE_APPEND;
708  		}
709  
710  		if (is_data_bbio(bbio) && bioc &&
711  		    btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
712  			/*
713  			 * No locking for the list update, as we only add to
714  			 * the list in the I/O submission path, and list
715  			 * iteration only happens in the completion path, which
716  			 * can't happen until after the last submission.
717  			 */
718  			btrfs_get_bioc(bioc);
719  			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
720  		}
721  
722  		/*
723  		 * Csum items for reloc roots have already been cloned at this
724  		 * point, so they are handled as part of the no-checksum case.
725  		 */
726  		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
727  		    !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
728  		    !btrfs_is_data_reloc_root(inode->root)) {
729  			if (should_async_write(bbio) &&
730  			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
731  				goto done;
732  
733  			ret = btrfs_bio_csum(bbio);
734  			if (ret)
735  				goto fail;
736  		} else if (use_append ||
737  			   (btrfs_is_zoned(fs_info) && inode &&
738  			    inode->flags & BTRFS_INODE_NODATASUM)) {
739  			ret = btrfs_alloc_dummy_sum(bbio);
740  			if (ret)
741  				goto fail;
742  		}
743  	}
744  
745  	btrfs_submit_bio(bio, bioc, &smap, mirror_num);
746  done:
747  	return map_length == length;
748  
749  fail:
750  	btrfs_bio_counter_dec(fs_info);
751  	/*
752  	 * We have split the original bbio, now we have to end both the current
753  	 * @bbio and remaining one, as the remaining one will never be submitted.
754  	 */
755  	if (map_length < length) {
756  		struct btrfs_bio *remaining = bbio->private;
757  
758  		ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
759  		ASSERT(remaining);
760  
761  		btrfs_bio_end_io(remaining, ret);
762  	}
763  	btrfs_bio_end_io(bbio, ret);
764  	/* Do not submit another chunk */
765  	return true;
766  }
767  
btrfs_submit_bbio(struct btrfs_bio * bbio,int mirror_num)768  void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
769  {
770  	/* If bbio->inode is not populated, its file_offset must be 0. */
771  	ASSERT(bbio->inode || bbio->file_offset == 0);
772  
773  	while (!btrfs_submit_chunk(bbio, mirror_num))
774  		;
775  }
776  
777  /*
778   * Submit a repair write.
779   *
780   * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
781   * RAID setup.  Here we only want to write the one bad copy, so we do the
782   * mapping ourselves and submit the bio directly.
783   *
784   * The I/O is issued synchronously to block the repair read completion from
785   * freeing the bio.
786   */
btrfs_repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct folio * folio,unsigned int folio_offset,int mirror_num)787  int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
788  			    u64 length, u64 logical, struct folio *folio,
789  			    unsigned int folio_offset, int mirror_num)
790  {
791  	struct btrfs_io_stripe smap = { 0 };
792  	struct bio_vec bvec;
793  	struct bio bio;
794  	int ret = 0;
795  
796  	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
797  	BUG_ON(!mirror_num);
798  
799  	if (btrfs_repair_one_zone(fs_info, logical))
800  		return 0;
801  
802  	/*
803  	 * Avoid races with device replace and make sure our bioc has devices
804  	 * associated to its stripes that don't go away while we are doing the
805  	 * read repair operation.
806  	 */
807  	btrfs_bio_counter_inc_blocked(fs_info);
808  	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
809  	if (ret < 0)
810  		goto out_counter_dec;
811  
812  	if (!smap.dev->bdev ||
813  	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
814  		ret = -EIO;
815  		goto out_counter_dec;
816  	}
817  
818  	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
819  	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
820  	ret = bio_add_folio(&bio, folio, length, folio_offset);
821  	ASSERT(ret);
822  	ret = submit_bio_wait(&bio);
823  	if (ret) {
824  		/* try to remap that extent elsewhere? */
825  		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
826  		goto out_bio_uninit;
827  	}
828  
829  	btrfs_info_rl_in_rcu(fs_info,
830  		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
831  			     ino, start, btrfs_dev_name(smap.dev),
832  			     smap.physical >> SECTOR_SHIFT);
833  	ret = 0;
834  
835  out_bio_uninit:
836  	bio_uninit(&bio);
837  out_counter_dec:
838  	btrfs_bio_counter_dec(fs_info);
839  	return ret;
840  }
841  
842  /*
843   * Submit a btrfs_bio based repair write.
844   *
845   * If @dev_replace is true, the write would be submitted to dev-replace target.
846   */
btrfs_submit_repair_write(struct btrfs_bio * bbio,int mirror_num,bool dev_replace)847  void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
848  {
849  	struct btrfs_fs_info *fs_info = bbio->fs_info;
850  	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
851  	u64 length = bbio->bio.bi_iter.bi_size;
852  	struct btrfs_io_stripe smap = { 0 };
853  	int ret;
854  
855  	ASSERT(fs_info);
856  	ASSERT(mirror_num > 0);
857  	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
858  	ASSERT(!bbio->inode);
859  
860  	btrfs_bio_counter_inc_blocked(fs_info);
861  	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
862  	if (ret < 0)
863  		goto fail;
864  
865  	if (dev_replace) {
866  		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
867  		smap.dev = fs_info->dev_replace.tgtdev;
868  	}
869  	btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
870  	return;
871  
872  fail:
873  	btrfs_bio_counter_dec(fs_info);
874  	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
875  }
876  
btrfs_bioset_init(void)877  int __init btrfs_bioset_init(void)
878  {
879  	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
880  			offsetof(struct btrfs_bio, bio),
881  			BIOSET_NEED_BVECS))
882  		return -ENOMEM;
883  	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
884  			offsetof(struct btrfs_bio, bio), 0))
885  		goto out_free_bioset;
886  	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
887  			offsetof(struct btrfs_bio, bio),
888  			BIOSET_NEED_BVECS))
889  		goto out_free_clone_bioset;
890  	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
891  				      sizeof(struct btrfs_failed_bio)))
892  		goto out_free_repair_bioset;
893  	return 0;
894  
895  out_free_repair_bioset:
896  	bioset_exit(&btrfs_repair_bioset);
897  out_free_clone_bioset:
898  	bioset_exit(&btrfs_clone_bioset);
899  out_free_bioset:
900  	bioset_exit(&btrfs_bioset);
901  	return -ENOMEM;
902  }
903  
btrfs_bioset_exit(void)904  void __cold btrfs_bioset_exit(void)
905  {
906  	mempool_exit(&btrfs_failed_bio_pool);
907  	bioset_exit(&btrfs_repair_bioset);
908  	bioset_exit(&btrfs_clone_bioset);
909  	bioset_exit(&btrfs_bioset);
910  }
911