1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2011 STRATO.  All rights reserved.
4   */
5  
6  #include <linux/mm.h>
7  #include <linux/rbtree.h>
8  #include <trace/events/btrfs.h>
9  #include "ctree.h"
10  #include "disk-io.h"
11  #include "backref.h"
12  #include "ulist.h"
13  #include "transaction.h"
14  #include "delayed-ref.h"
15  #include "locking.h"
16  #include "misc.h"
17  #include "tree-mod-log.h"
18  #include "fs.h"
19  #include "accessors.h"
20  #include "extent-tree.h"
21  #include "relocation.h"
22  #include "tree-checker.h"
23  
24  /* Just arbitrary numbers so we can be sure one of these happened. */
25  #define BACKREF_FOUND_SHARED     6
26  #define BACKREF_FOUND_NOT_SHARED 7
27  
28  struct extent_inode_elem {
29  	u64 inum;
30  	u64 offset;
31  	u64 num_bytes;
32  	struct extent_inode_elem *next;
33  };
34  
check_extent_in_eb(struct btrfs_backref_walk_ctx * ctx,const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,struct extent_inode_elem ** eie)35  static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36  			      const struct btrfs_key *key,
37  			      const struct extent_buffer *eb,
38  			      const struct btrfs_file_extent_item *fi,
39  			      struct extent_inode_elem **eie)
40  {
41  	const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42  	u64 offset = key->offset;
43  	struct extent_inode_elem *e;
44  	const u64 *root_ids;
45  	int root_count;
46  	bool cached;
47  
48  	if (!ctx->ignore_extent_item_pos &&
49  	    !btrfs_file_extent_compression(eb, fi) &&
50  	    !btrfs_file_extent_encryption(eb, fi) &&
51  	    !btrfs_file_extent_other_encoding(eb, fi)) {
52  		u64 data_offset;
53  
54  		data_offset = btrfs_file_extent_offset(eb, fi);
55  
56  		if (ctx->extent_item_pos < data_offset ||
57  		    ctx->extent_item_pos >= data_offset + data_len)
58  			return 1;
59  		offset += ctx->extent_item_pos - data_offset;
60  	}
61  
62  	if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63  		goto add_inode_elem;
64  
65  	cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66  				   &root_count);
67  	if (!cached)
68  		goto add_inode_elem;
69  
70  	for (int i = 0; i < root_count; i++) {
71  		int ret;
72  
73  		ret = ctx->indirect_ref_iterator(key->objectid, offset,
74  						 data_len, root_ids[i],
75  						 ctx->user_ctx);
76  		if (ret)
77  			return ret;
78  	}
79  
80  add_inode_elem:
81  	e = kmalloc(sizeof(*e), GFP_NOFS);
82  	if (!e)
83  		return -ENOMEM;
84  
85  	e->next = *eie;
86  	e->inum = key->objectid;
87  	e->offset = offset;
88  	e->num_bytes = data_len;
89  	*eie = e;
90  
91  	return 0;
92  }
93  
free_inode_elem_list(struct extent_inode_elem * eie)94  static void free_inode_elem_list(struct extent_inode_elem *eie)
95  {
96  	struct extent_inode_elem *eie_next;
97  
98  	for (; eie; eie = eie_next) {
99  		eie_next = eie->next;
100  		kfree(eie);
101  	}
102  }
103  
find_extent_in_eb(struct btrfs_backref_walk_ctx * ctx,const struct extent_buffer * eb,struct extent_inode_elem ** eie)104  static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105  			     const struct extent_buffer *eb,
106  			     struct extent_inode_elem **eie)
107  {
108  	u64 disk_byte;
109  	struct btrfs_key key;
110  	struct btrfs_file_extent_item *fi;
111  	int slot;
112  	int nritems;
113  	int extent_type;
114  	int ret;
115  
116  	/*
117  	 * from the shared data ref, we only have the leaf but we need
118  	 * the key. thus, we must look into all items and see that we
119  	 * find one (some) with a reference to our extent item.
120  	 */
121  	nritems = btrfs_header_nritems(eb);
122  	for (slot = 0; slot < nritems; ++slot) {
123  		btrfs_item_key_to_cpu(eb, &key, slot);
124  		if (key.type != BTRFS_EXTENT_DATA_KEY)
125  			continue;
126  		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127  		extent_type = btrfs_file_extent_type(eb, fi);
128  		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129  			continue;
130  		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131  		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132  		if (disk_byte != ctx->bytenr)
133  			continue;
134  
135  		ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136  		if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137  			return ret;
138  	}
139  
140  	return 0;
141  }
142  
143  struct preftree {
144  	struct rb_root_cached root;
145  	unsigned int count;
146  };
147  
148  #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
149  
150  struct preftrees {
151  	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152  	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153  	struct preftree indirect_missing_keys;
154  };
155  
156  /*
157   * Checks for a shared extent during backref search.
158   *
159   * The share_count tracks prelim_refs (direct and indirect) having a
160   * ref->count >0:
161   *  - incremented when a ref->count transitions to >0
162   *  - decremented when a ref->count transitions to <1
163   */
164  struct share_check {
165  	struct btrfs_backref_share_check_ctx *ctx;
166  	struct btrfs_root *root;
167  	u64 inum;
168  	u64 data_bytenr;
169  	u64 data_extent_gen;
170  	/*
171  	 * Counts number of inodes that refer to an extent (different inodes in
172  	 * the same root or different roots) that we could find. The sharedness
173  	 * check typically stops once this counter gets greater than 1, so it
174  	 * may not reflect the total number of inodes.
175  	 */
176  	int share_count;
177  	/*
178  	 * The number of times we found our inode refers to the data extent we
179  	 * are determining the sharedness. In other words, how many file extent
180  	 * items we could find for our inode that point to our target data
181  	 * extent. The value we get here after finishing the extent sharedness
182  	 * check may be smaller than reality, but if it ends up being greater
183  	 * than 1, then we know for sure the inode has multiple file extent
184  	 * items that point to our inode, and we can safely assume it's useful
185  	 * to cache the sharedness check result.
186  	 */
187  	int self_ref_count;
188  	bool have_delayed_delete_refs;
189  };
190  
extent_is_shared(struct share_check * sc)191  static inline int extent_is_shared(struct share_check *sc)
192  {
193  	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194  }
195  
196  static struct kmem_cache *btrfs_prelim_ref_cache;
197  
btrfs_prelim_ref_init(void)198  int __init btrfs_prelim_ref_init(void)
199  {
200  	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201  					sizeof(struct prelim_ref), 0, 0, NULL);
202  	if (!btrfs_prelim_ref_cache)
203  		return -ENOMEM;
204  	return 0;
205  }
206  
btrfs_prelim_ref_exit(void)207  void __cold btrfs_prelim_ref_exit(void)
208  {
209  	kmem_cache_destroy(btrfs_prelim_ref_cache);
210  }
211  
free_pref(struct prelim_ref * ref)212  static void free_pref(struct prelim_ref *ref)
213  {
214  	kmem_cache_free(btrfs_prelim_ref_cache, ref);
215  }
216  
217  /*
218   * Return 0 when both refs are for the same block (and can be merged).
219   * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220   * indicates a 'higher' block.
221   */
prelim_ref_compare(const struct prelim_ref * ref1,const struct prelim_ref * ref2)222  static int prelim_ref_compare(const struct prelim_ref *ref1,
223  			      const struct prelim_ref *ref2)
224  {
225  	if (ref1->level < ref2->level)
226  		return -1;
227  	if (ref1->level > ref2->level)
228  		return 1;
229  	if (ref1->root_id < ref2->root_id)
230  		return -1;
231  	if (ref1->root_id > ref2->root_id)
232  		return 1;
233  	if (ref1->key_for_search.type < ref2->key_for_search.type)
234  		return -1;
235  	if (ref1->key_for_search.type > ref2->key_for_search.type)
236  		return 1;
237  	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238  		return -1;
239  	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240  		return 1;
241  	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242  		return -1;
243  	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244  		return 1;
245  	if (ref1->parent < ref2->parent)
246  		return -1;
247  	if (ref1->parent > ref2->parent)
248  		return 1;
249  
250  	return 0;
251  }
252  
update_share_count(struct share_check * sc,int oldcount,int newcount,const struct prelim_ref * newref)253  static void update_share_count(struct share_check *sc, int oldcount,
254  			       int newcount, const struct prelim_ref *newref)
255  {
256  	if ((!sc) || (oldcount == 0 && newcount < 1))
257  		return;
258  
259  	if (oldcount > 0 && newcount < 1)
260  		sc->share_count--;
261  	else if (oldcount < 1 && newcount > 0)
262  		sc->share_count++;
263  
264  	if (newref->root_id == btrfs_root_id(sc->root) &&
265  	    newref->wanted_disk_byte == sc->data_bytenr &&
266  	    newref->key_for_search.objectid == sc->inum)
267  		sc->self_ref_count += newref->count;
268  }
269  
270  /*
271   * Add @newref to the @root rbtree, merging identical refs.
272   *
273   * Callers should assume that newref has been freed after calling.
274   */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)275  static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
276  			      struct preftree *preftree,
277  			      struct prelim_ref *newref,
278  			      struct share_check *sc)
279  {
280  	struct rb_root_cached *root;
281  	struct rb_node **p;
282  	struct rb_node *parent = NULL;
283  	struct prelim_ref *ref;
284  	int result;
285  	bool leftmost = true;
286  
287  	root = &preftree->root;
288  	p = &root->rb_root.rb_node;
289  
290  	while (*p) {
291  		parent = *p;
292  		ref = rb_entry(parent, struct prelim_ref, rbnode);
293  		result = prelim_ref_compare(ref, newref);
294  		if (result < 0) {
295  			p = &(*p)->rb_left;
296  		} else if (result > 0) {
297  			p = &(*p)->rb_right;
298  			leftmost = false;
299  		} else {
300  			/* Identical refs, merge them and free @newref */
301  			struct extent_inode_elem *eie = ref->inode_list;
302  
303  			while (eie && eie->next)
304  				eie = eie->next;
305  
306  			if (!eie)
307  				ref->inode_list = newref->inode_list;
308  			else
309  				eie->next = newref->inode_list;
310  			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
311  						     preftree->count);
312  			/*
313  			 * A delayed ref can have newref->count < 0.
314  			 * The ref->count is updated to follow any
315  			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
316  			 */
317  			update_share_count(sc, ref->count,
318  					   ref->count + newref->count, newref);
319  			ref->count += newref->count;
320  			free_pref(newref);
321  			return;
322  		}
323  	}
324  
325  	update_share_count(sc, 0, newref->count, newref);
326  	preftree->count++;
327  	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
328  	rb_link_node(&newref->rbnode, parent, p);
329  	rb_insert_color_cached(&newref->rbnode, root, leftmost);
330  }
331  
332  /*
333   * Release the entire tree.  We don't care about internal consistency so
334   * just free everything and then reset the tree root.
335   */
prelim_release(struct preftree * preftree)336  static void prelim_release(struct preftree *preftree)
337  {
338  	struct prelim_ref *ref, *next_ref;
339  
340  	rbtree_postorder_for_each_entry_safe(ref, next_ref,
341  					     &preftree->root.rb_root, rbnode) {
342  		free_inode_elem_list(ref->inode_list);
343  		free_pref(ref);
344  	}
345  
346  	preftree->root = RB_ROOT_CACHED;
347  	preftree->count = 0;
348  }
349  
350  /*
351   * the rules for all callers of this function are:
352   * - obtaining the parent is the goal
353   * - if you add a key, you must know that it is a correct key
354   * - if you cannot add the parent or a correct key, then we will look into the
355   *   block later to set a correct key
356   *
357   * delayed refs
358   * ============
359   *        backref type | shared | indirect | shared | indirect
360   * information         |   tree |     tree |   data |     data
361   * --------------------+--------+----------+--------+----------
362   *      parent logical |    y   |     -    |    -   |     -
363   *      key to resolve |    -   |     y    |    y   |     y
364   *  tree block logical |    -   |     -    |    -   |     -
365   *  root for resolving |    y   |     y    |    y   |     y
366   *
367   * - column 1:       we've the parent -> done
368   * - column 2, 3, 4: we use the key to find the parent
369   *
370   * on disk refs (inline or keyed)
371   * ==============================
372   *        backref type | shared | indirect | shared | indirect
373   * information         |   tree |     tree |   data |     data
374   * --------------------+--------+----------+--------+----------
375   *      parent logical |    y   |     -    |    y   |     -
376   *      key to resolve |    -   |     -    |    -   |     y
377   *  tree block logical |    y   |     y    |    y   |     y
378   *  root for resolving |    -   |     y    |    y   |     y
379   *
380   * - column 1, 3: we've the parent -> done
381   * - column 2:    we take the first key from the block to find the parent
382   *                (see add_missing_keys)
383   * - column 4:    we use the key to find the parent
384   *
385   * additional information that's available but not required to find the parent
386   * block might help in merging entries to gain some speed.
387   */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)388  static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
389  			  struct preftree *preftree, u64 root_id,
390  			  const struct btrfs_key *key, int level, u64 parent,
391  			  u64 wanted_disk_byte, int count,
392  			  struct share_check *sc, gfp_t gfp_mask)
393  {
394  	struct prelim_ref *ref;
395  
396  	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
397  		return 0;
398  
399  	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
400  	if (!ref)
401  		return -ENOMEM;
402  
403  	ref->root_id = root_id;
404  	if (key)
405  		ref->key_for_search = *key;
406  	else
407  		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
408  
409  	ref->inode_list = NULL;
410  	ref->level = level;
411  	ref->count = count;
412  	ref->parent = parent;
413  	ref->wanted_disk_byte = wanted_disk_byte;
414  	prelim_ref_insert(fs_info, preftree, ref, sc);
415  	return extent_is_shared(sc);
416  }
417  
418  /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)419  static int add_direct_ref(const struct btrfs_fs_info *fs_info,
420  			  struct preftrees *preftrees, int level, u64 parent,
421  			  u64 wanted_disk_byte, int count,
422  			  struct share_check *sc, gfp_t gfp_mask)
423  {
424  	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
425  			      parent, wanted_disk_byte, count, sc, gfp_mask);
426  }
427  
428  /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)429  static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
430  			    struct preftrees *preftrees, u64 root_id,
431  			    const struct btrfs_key *key, int level,
432  			    u64 wanted_disk_byte, int count,
433  			    struct share_check *sc, gfp_t gfp_mask)
434  {
435  	struct preftree *tree = &preftrees->indirect;
436  
437  	if (!key)
438  		tree = &preftrees->indirect_missing_keys;
439  	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
440  			      wanted_disk_byte, count, sc, gfp_mask);
441  }
442  
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)443  static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
444  {
445  	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
446  	struct rb_node *parent = NULL;
447  	struct prelim_ref *ref = NULL;
448  	struct prelim_ref target = {};
449  	int result;
450  
451  	target.parent = bytenr;
452  
453  	while (*p) {
454  		parent = *p;
455  		ref = rb_entry(parent, struct prelim_ref, rbnode);
456  		result = prelim_ref_compare(ref, &target);
457  
458  		if (result < 0)
459  			p = &(*p)->rb_left;
460  		else if (result > 0)
461  			p = &(*p)->rb_right;
462  		else
463  			return 1;
464  	}
465  	return 0;
466  }
467  
add_all_parents(struct btrfs_backref_walk_ctx * ctx,struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level)468  static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
469  			   struct btrfs_root *root, struct btrfs_path *path,
470  			   struct ulist *parents,
471  			   struct preftrees *preftrees, struct prelim_ref *ref,
472  			   int level)
473  {
474  	int ret = 0;
475  	int slot;
476  	struct extent_buffer *eb;
477  	struct btrfs_key key;
478  	struct btrfs_key *key_for_search = &ref->key_for_search;
479  	struct btrfs_file_extent_item *fi;
480  	struct extent_inode_elem *eie = NULL, *old = NULL;
481  	u64 disk_byte;
482  	u64 wanted_disk_byte = ref->wanted_disk_byte;
483  	u64 count = 0;
484  	u64 data_offset;
485  	u8 type;
486  
487  	if (level != 0) {
488  		eb = path->nodes[level];
489  		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
490  		if (ret < 0)
491  			return ret;
492  		return 0;
493  	}
494  
495  	/*
496  	 * 1. We normally enter this function with the path already pointing to
497  	 *    the first item to check. But sometimes, we may enter it with
498  	 *    slot == nritems.
499  	 * 2. We are searching for normal backref but bytenr of this leaf
500  	 *    matches shared data backref
501  	 * 3. The leaf owner is not equal to the root we are searching
502  	 *
503  	 * For these cases, go to the next leaf before we continue.
504  	 */
505  	eb = path->nodes[0];
506  	if (path->slots[0] >= btrfs_header_nritems(eb) ||
507  	    is_shared_data_backref(preftrees, eb->start) ||
508  	    ref->root_id != btrfs_header_owner(eb)) {
509  		if (ctx->time_seq == BTRFS_SEQ_LAST)
510  			ret = btrfs_next_leaf(root, path);
511  		else
512  			ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
513  	}
514  
515  	while (!ret && count < ref->count) {
516  		eb = path->nodes[0];
517  		slot = path->slots[0];
518  
519  		btrfs_item_key_to_cpu(eb, &key, slot);
520  
521  		if (key.objectid != key_for_search->objectid ||
522  		    key.type != BTRFS_EXTENT_DATA_KEY)
523  			break;
524  
525  		/*
526  		 * We are searching for normal backref but bytenr of this leaf
527  		 * matches shared data backref, OR
528  		 * the leaf owner is not equal to the root we are searching for
529  		 */
530  		if (slot == 0 &&
531  		    (is_shared_data_backref(preftrees, eb->start) ||
532  		     ref->root_id != btrfs_header_owner(eb))) {
533  			if (ctx->time_seq == BTRFS_SEQ_LAST)
534  				ret = btrfs_next_leaf(root, path);
535  			else
536  				ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
537  			continue;
538  		}
539  		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
540  		type = btrfs_file_extent_type(eb, fi);
541  		if (type == BTRFS_FILE_EXTENT_INLINE)
542  			goto next;
543  		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
544  		data_offset = btrfs_file_extent_offset(eb, fi);
545  
546  		if (disk_byte == wanted_disk_byte) {
547  			eie = NULL;
548  			old = NULL;
549  			if (ref->key_for_search.offset == key.offset - data_offset)
550  				count++;
551  			else
552  				goto next;
553  			if (!ctx->skip_inode_ref_list) {
554  				ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
555  				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
556  				    ret < 0)
557  					break;
558  			}
559  			if (ret > 0)
560  				goto next;
561  			ret = ulist_add_merge_ptr(parents, eb->start,
562  						  eie, (void **)&old, GFP_NOFS);
563  			if (ret < 0)
564  				break;
565  			if (!ret && !ctx->skip_inode_ref_list) {
566  				while (old->next)
567  					old = old->next;
568  				old->next = eie;
569  			}
570  			eie = NULL;
571  		}
572  next:
573  		if (ctx->time_seq == BTRFS_SEQ_LAST)
574  			ret = btrfs_next_item(root, path);
575  		else
576  			ret = btrfs_next_old_item(root, path, ctx->time_seq);
577  	}
578  
579  	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
580  		free_inode_elem_list(eie);
581  	else if (ret > 0)
582  		ret = 0;
583  
584  	return ret;
585  }
586  
587  /*
588   * resolve an indirect backref in the form (root_id, key, level)
589   * to a logical address
590   */
resolve_indirect_ref(struct btrfs_backref_walk_ctx * ctx,struct btrfs_path * path,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents)591  static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
592  				struct btrfs_path *path,
593  				struct preftrees *preftrees,
594  				struct prelim_ref *ref, struct ulist *parents)
595  {
596  	struct btrfs_root *root;
597  	struct extent_buffer *eb;
598  	int ret = 0;
599  	int root_level;
600  	int level = ref->level;
601  	struct btrfs_key search_key = ref->key_for_search;
602  
603  	/*
604  	 * If we're search_commit_root we could possibly be holding locks on
605  	 * other tree nodes.  This happens when qgroups does backref walks when
606  	 * adding new delayed refs.  To deal with this we need to look in cache
607  	 * for the root, and if we don't find it then we need to search the
608  	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
609  	 * here.
610  	 */
611  	if (path->search_commit_root)
612  		root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
613  	else
614  		root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
615  	if (IS_ERR(root)) {
616  		ret = PTR_ERR(root);
617  		goto out_free;
618  	}
619  
620  	if (!path->search_commit_root &&
621  	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
622  		ret = -ENOENT;
623  		goto out;
624  	}
625  
626  	if (btrfs_is_testing(ctx->fs_info)) {
627  		ret = -ENOENT;
628  		goto out;
629  	}
630  
631  	if (path->search_commit_root)
632  		root_level = btrfs_header_level(root->commit_root);
633  	else if (ctx->time_seq == BTRFS_SEQ_LAST)
634  		root_level = btrfs_header_level(root->node);
635  	else
636  		root_level = btrfs_old_root_level(root, ctx->time_seq);
637  
638  	if (root_level + 1 == level)
639  		goto out;
640  
641  	/*
642  	 * We can often find data backrefs with an offset that is too large
643  	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
644  	 * subtracting a file's offset with the data offset of its
645  	 * corresponding extent data item. This can happen for example in the
646  	 * clone ioctl.
647  	 *
648  	 * So if we detect such case we set the search key's offset to zero to
649  	 * make sure we will find the matching file extent item at
650  	 * add_all_parents(), otherwise we will miss it because the offset
651  	 * taken form the backref is much larger then the offset of the file
652  	 * extent item. This can make us scan a very large number of file
653  	 * extent items, but at least it will not make us miss any.
654  	 *
655  	 * This is an ugly workaround for a behaviour that should have never
656  	 * existed, but it does and a fix for the clone ioctl would touch a lot
657  	 * of places, cause backwards incompatibility and would not fix the
658  	 * problem for extents cloned with older kernels.
659  	 */
660  	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
661  	    search_key.offset >= LLONG_MAX)
662  		search_key.offset = 0;
663  	path->lowest_level = level;
664  	if (ctx->time_seq == BTRFS_SEQ_LAST)
665  		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
666  	else
667  		ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
668  
669  	btrfs_debug(ctx->fs_info,
670  		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
671  		 ref->root_id, level, ref->count, ret,
672  		 ref->key_for_search.objectid, ref->key_for_search.type,
673  		 ref->key_for_search.offset);
674  	if (ret < 0)
675  		goto out;
676  
677  	eb = path->nodes[level];
678  	while (!eb) {
679  		if (WARN_ON(!level)) {
680  			ret = 1;
681  			goto out;
682  		}
683  		level--;
684  		eb = path->nodes[level];
685  	}
686  
687  	ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
688  out:
689  	btrfs_put_root(root);
690  out_free:
691  	path->lowest_level = 0;
692  	btrfs_release_path(path);
693  	return ret;
694  }
695  
696  static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)697  unode_aux_to_inode_list(struct ulist_node *node)
698  {
699  	if (!node)
700  		return NULL;
701  	return (struct extent_inode_elem *)(uintptr_t)node->aux;
702  }
703  
free_leaf_list(struct ulist * ulist)704  static void free_leaf_list(struct ulist *ulist)
705  {
706  	struct ulist_node *node;
707  	struct ulist_iterator uiter;
708  
709  	ULIST_ITER_INIT(&uiter);
710  	while ((node = ulist_next(ulist, &uiter)))
711  		free_inode_elem_list(unode_aux_to_inode_list(node));
712  
713  	ulist_free(ulist);
714  }
715  
716  /*
717   * We maintain three separate rbtrees: one for direct refs, one for
718   * indirect refs which have a key, and one for indirect refs which do not
719   * have a key. Each tree does merge on insertion.
720   *
721   * Once all of the references are located, we iterate over the tree of
722   * indirect refs with missing keys. An appropriate key is located and
723   * the ref is moved onto the tree for indirect refs. After all missing
724   * keys are thus located, we iterate over the indirect ref tree, resolve
725   * each reference, and then insert the resolved reference onto the
726   * direct tree (merging there too).
727   *
728   * New backrefs (i.e., for parent nodes) are added to the appropriate
729   * rbtree as they are encountered. The new backrefs are subsequently
730   * resolved as above.
731   */
resolve_indirect_refs(struct btrfs_backref_walk_ctx * ctx,struct btrfs_path * path,struct preftrees * preftrees,struct share_check * sc)732  static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
733  				 struct btrfs_path *path,
734  				 struct preftrees *preftrees,
735  				 struct share_check *sc)
736  {
737  	int err;
738  	int ret = 0;
739  	struct ulist *parents;
740  	struct ulist_node *node;
741  	struct ulist_iterator uiter;
742  	struct rb_node *rnode;
743  
744  	parents = ulist_alloc(GFP_NOFS);
745  	if (!parents)
746  		return -ENOMEM;
747  
748  	/*
749  	 * We could trade memory usage for performance here by iterating
750  	 * the tree, allocating new refs for each insertion, and then
751  	 * freeing the entire indirect tree when we're done.  In some test
752  	 * cases, the tree can grow quite large (~200k objects).
753  	 */
754  	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
755  		struct prelim_ref *ref;
756  
757  		ref = rb_entry(rnode, struct prelim_ref, rbnode);
758  		if (WARN(ref->parent,
759  			 "BUG: direct ref found in indirect tree")) {
760  			ret = -EINVAL;
761  			goto out;
762  		}
763  
764  		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
765  		preftrees->indirect.count--;
766  
767  		if (ref->count == 0) {
768  			free_pref(ref);
769  			continue;
770  		}
771  
772  		if (sc && ref->root_id != btrfs_root_id(sc->root)) {
773  			free_pref(ref);
774  			ret = BACKREF_FOUND_SHARED;
775  			goto out;
776  		}
777  		err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
778  		/*
779  		 * we can only tolerate ENOENT,otherwise,we should catch error
780  		 * and return directly.
781  		 */
782  		if (err == -ENOENT) {
783  			prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
784  					  NULL);
785  			continue;
786  		} else if (err) {
787  			free_pref(ref);
788  			ret = err;
789  			goto out;
790  		}
791  
792  		/* we put the first parent into the ref at hand */
793  		ULIST_ITER_INIT(&uiter);
794  		node = ulist_next(parents, &uiter);
795  		ref->parent = node ? node->val : 0;
796  		ref->inode_list = unode_aux_to_inode_list(node);
797  
798  		/* Add a prelim_ref(s) for any other parent(s). */
799  		while ((node = ulist_next(parents, &uiter))) {
800  			struct prelim_ref *new_ref;
801  
802  			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
803  						   GFP_NOFS);
804  			if (!new_ref) {
805  				free_pref(ref);
806  				ret = -ENOMEM;
807  				goto out;
808  			}
809  			memcpy(new_ref, ref, sizeof(*ref));
810  			new_ref->parent = node->val;
811  			new_ref->inode_list = unode_aux_to_inode_list(node);
812  			prelim_ref_insert(ctx->fs_info, &preftrees->direct,
813  					  new_ref, NULL);
814  		}
815  
816  		/*
817  		 * Now it's a direct ref, put it in the direct tree. We must
818  		 * do this last because the ref could be merged/freed here.
819  		 */
820  		prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
821  
822  		ulist_reinit(parents);
823  		cond_resched();
824  	}
825  out:
826  	/*
827  	 * We may have inode lists attached to refs in the parents ulist, so we
828  	 * must free them before freeing the ulist and its refs.
829  	 */
830  	free_leaf_list(parents);
831  	return ret;
832  }
833  
834  /*
835   * read tree blocks and add keys where required.
836   */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)837  static int add_missing_keys(struct btrfs_fs_info *fs_info,
838  			    struct preftrees *preftrees, bool lock)
839  {
840  	struct prelim_ref *ref;
841  	struct extent_buffer *eb;
842  	struct preftree *tree = &preftrees->indirect_missing_keys;
843  	struct rb_node *node;
844  
845  	while ((node = rb_first_cached(&tree->root))) {
846  		struct btrfs_tree_parent_check check = { 0 };
847  
848  		ref = rb_entry(node, struct prelim_ref, rbnode);
849  		rb_erase_cached(node, &tree->root);
850  
851  		BUG_ON(ref->parent);	/* should not be a direct ref */
852  		BUG_ON(ref->key_for_search.type);
853  		BUG_ON(!ref->wanted_disk_byte);
854  
855  		check.level = ref->level - 1;
856  		check.owner_root = ref->root_id;
857  
858  		eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
859  		if (IS_ERR(eb)) {
860  			free_pref(ref);
861  			return PTR_ERR(eb);
862  		}
863  		if (!extent_buffer_uptodate(eb)) {
864  			free_pref(ref);
865  			free_extent_buffer(eb);
866  			return -EIO;
867  		}
868  
869  		if (lock)
870  			btrfs_tree_read_lock(eb);
871  		if (btrfs_header_level(eb) == 0)
872  			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
873  		else
874  			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
875  		if (lock)
876  			btrfs_tree_read_unlock(eb);
877  		free_extent_buffer(eb);
878  		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
879  		cond_resched();
880  	}
881  	return 0;
882  }
883  
884  /*
885   * add all currently queued delayed refs from this head whose seq nr is
886   * smaller or equal that seq to the list
887   */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)888  static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
889  			    struct btrfs_delayed_ref_head *head, u64 seq,
890  			    struct preftrees *preftrees, struct share_check *sc)
891  {
892  	struct btrfs_delayed_ref_node *node;
893  	struct btrfs_key key;
894  	struct rb_node *n;
895  	int count;
896  	int ret = 0;
897  
898  	spin_lock(&head->lock);
899  	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
900  		node = rb_entry(n, struct btrfs_delayed_ref_node,
901  				ref_node);
902  		if (node->seq > seq)
903  			continue;
904  
905  		switch (node->action) {
906  		case BTRFS_ADD_DELAYED_EXTENT:
907  		case BTRFS_UPDATE_DELAYED_HEAD:
908  			WARN_ON(1);
909  			continue;
910  		case BTRFS_ADD_DELAYED_REF:
911  			count = node->ref_mod;
912  			break;
913  		case BTRFS_DROP_DELAYED_REF:
914  			count = node->ref_mod * -1;
915  			break;
916  		default:
917  			BUG();
918  		}
919  		switch (node->type) {
920  		case BTRFS_TREE_BLOCK_REF_KEY: {
921  			/* NORMAL INDIRECT METADATA backref */
922  			struct btrfs_key *key_ptr = NULL;
923  			/* The owner of a tree block ref is the level. */
924  			int level = btrfs_delayed_ref_owner(node);
925  
926  			if (head->extent_op && head->extent_op->update_key) {
927  				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
928  				key_ptr = &key;
929  			}
930  
931  			ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
932  					       key_ptr, level + 1, node->bytenr,
933  					       count, sc, GFP_ATOMIC);
934  			break;
935  		}
936  		case BTRFS_SHARED_BLOCK_REF_KEY: {
937  			/*
938  			 * SHARED DIRECT METADATA backref
939  			 *
940  			 * The owner of a tree block ref is the level.
941  			 */
942  			int level = btrfs_delayed_ref_owner(node);
943  
944  			ret = add_direct_ref(fs_info, preftrees, level + 1,
945  					     node->parent, node->bytenr, count,
946  					     sc, GFP_ATOMIC);
947  			break;
948  		}
949  		case BTRFS_EXTENT_DATA_REF_KEY: {
950  			/* NORMAL INDIRECT DATA backref */
951  			key.objectid = btrfs_delayed_ref_owner(node);
952  			key.type = BTRFS_EXTENT_DATA_KEY;
953  			key.offset = btrfs_delayed_ref_offset(node);
954  
955  			/*
956  			 * If we have a share check context and a reference for
957  			 * another inode, we can't exit immediately. This is
958  			 * because even if this is a BTRFS_ADD_DELAYED_REF
959  			 * reference we may find next a BTRFS_DROP_DELAYED_REF
960  			 * which cancels out this ADD reference.
961  			 *
962  			 * If this is a DROP reference and there was no previous
963  			 * ADD reference, then we need to signal that when we
964  			 * process references from the extent tree (through
965  			 * add_inline_refs() and add_keyed_refs()), we should
966  			 * not exit early if we find a reference for another
967  			 * inode, because one of the delayed DROP references
968  			 * may cancel that reference in the extent tree.
969  			 */
970  			if (sc && count < 0)
971  				sc->have_delayed_delete_refs = true;
972  
973  			ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
974  					       &key, 0, node->bytenr, count, sc,
975  					       GFP_ATOMIC);
976  			break;
977  		}
978  		case BTRFS_SHARED_DATA_REF_KEY: {
979  			/* SHARED DIRECT FULL backref */
980  			ret = add_direct_ref(fs_info, preftrees, 0, node->parent,
981  					     node->bytenr, count, sc,
982  					     GFP_ATOMIC);
983  			break;
984  		}
985  		default:
986  			WARN_ON(1);
987  		}
988  		/*
989  		 * We must ignore BACKREF_FOUND_SHARED until all delayed
990  		 * refs have been checked.
991  		 */
992  		if (ret && (ret != BACKREF_FOUND_SHARED))
993  			break;
994  	}
995  	if (!ret)
996  		ret = extent_is_shared(sc);
997  
998  	spin_unlock(&head->lock);
999  	return ret;
1000  }
1001  
1002  /*
1003   * add all inline backrefs for bytenr to the list
1004   *
1005   * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1006   */
add_inline_refs(struct btrfs_backref_walk_ctx * ctx,struct btrfs_path * path,int * info_level,struct preftrees * preftrees,struct share_check * sc)1007  static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1008  			   struct btrfs_path *path,
1009  			   int *info_level, struct preftrees *preftrees,
1010  			   struct share_check *sc)
1011  {
1012  	int ret = 0;
1013  	int slot;
1014  	struct extent_buffer *leaf;
1015  	struct btrfs_key key;
1016  	struct btrfs_key found_key;
1017  	unsigned long ptr;
1018  	unsigned long end;
1019  	struct btrfs_extent_item *ei;
1020  	u64 flags;
1021  	u64 item_size;
1022  
1023  	/*
1024  	 * enumerate all inline refs
1025  	 */
1026  	leaf = path->nodes[0];
1027  	slot = path->slots[0];
1028  
1029  	item_size = btrfs_item_size(leaf, slot);
1030  	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1031  
1032  	if (ctx->check_extent_item) {
1033  		ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1034  		if (ret)
1035  			return ret;
1036  	}
1037  
1038  	flags = btrfs_extent_flags(leaf, ei);
1039  	btrfs_item_key_to_cpu(leaf, &found_key, slot);
1040  
1041  	ptr = (unsigned long)(ei + 1);
1042  	end = (unsigned long)ei + item_size;
1043  
1044  	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1045  	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1046  		struct btrfs_tree_block_info *info;
1047  
1048  		info = (struct btrfs_tree_block_info *)ptr;
1049  		*info_level = btrfs_tree_block_level(leaf, info);
1050  		ptr += sizeof(struct btrfs_tree_block_info);
1051  		BUG_ON(ptr > end);
1052  	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1053  		*info_level = found_key.offset;
1054  	} else {
1055  		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1056  	}
1057  
1058  	while (ptr < end) {
1059  		struct btrfs_extent_inline_ref *iref;
1060  		u64 offset;
1061  		int type;
1062  
1063  		iref = (struct btrfs_extent_inline_ref *)ptr;
1064  		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1065  							BTRFS_REF_TYPE_ANY);
1066  		if (type == BTRFS_REF_TYPE_INVALID)
1067  			return -EUCLEAN;
1068  
1069  		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1070  
1071  		switch (type) {
1072  		case BTRFS_SHARED_BLOCK_REF_KEY:
1073  			ret = add_direct_ref(ctx->fs_info, preftrees,
1074  					     *info_level + 1, offset,
1075  					     ctx->bytenr, 1, NULL, GFP_NOFS);
1076  			break;
1077  		case BTRFS_SHARED_DATA_REF_KEY: {
1078  			struct btrfs_shared_data_ref *sdref;
1079  			int count;
1080  
1081  			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1082  			count = btrfs_shared_data_ref_count(leaf, sdref);
1083  
1084  			ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1085  					     ctx->bytenr, count, sc, GFP_NOFS);
1086  			break;
1087  		}
1088  		case BTRFS_TREE_BLOCK_REF_KEY:
1089  			ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1090  					       NULL, *info_level + 1,
1091  					       ctx->bytenr, 1, NULL, GFP_NOFS);
1092  			break;
1093  		case BTRFS_EXTENT_DATA_REF_KEY: {
1094  			struct btrfs_extent_data_ref *dref;
1095  			int count;
1096  			u64 root;
1097  
1098  			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1099  			count = btrfs_extent_data_ref_count(leaf, dref);
1100  			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1101  								      dref);
1102  			key.type = BTRFS_EXTENT_DATA_KEY;
1103  			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1104  
1105  			if (sc && key.objectid != sc->inum &&
1106  			    !sc->have_delayed_delete_refs) {
1107  				ret = BACKREF_FOUND_SHARED;
1108  				break;
1109  			}
1110  
1111  			root = btrfs_extent_data_ref_root(leaf, dref);
1112  
1113  			if (!ctx->skip_data_ref ||
1114  			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1115  						ctx->user_ctx))
1116  				ret = add_indirect_ref(ctx->fs_info, preftrees,
1117  						       root, &key, 0, ctx->bytenr,
1118  						       count, sc, GFP_NOFS);
1119  			break;
1120  		}
1121  		case BTRFS_EXTENT_OWNER_REF_KEY:
1122  			ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1123  			break;
1124  		default:
1125  			WARN_ON(1);
1126  		}
1127  		if (ret)
1128  			return ret;
1129  		ptr += btrfs_extent_inline_ref_size(type);
1130  	}
1131  
1132  	return 0;
1133  }
1134  
1135  /*
1136   * add all non-inline backrefs for bytenr to the list
1137   *
1138   * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1139   */
add_keyed_refs(struct btrfs_backref_walk_ctx * ctx,struct btrfs_root * extent_root,struct btrfs_path * path,int info_level,struct preftrees * preftrees,struct share_check * sc)1140  static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1141  			  struct btrfs_root *extent_root,
1142  			  struct btrfs_path *path,
1143  			  int info_level, struct preftrees *preftrees,
1144  			  struct share_check *sc)
1145  {
1146  	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1147  	int ret;
1148  	int slot;
1149  	struct extent_buffer *leaf;
1150  	struct btrfs_key key;
1151  
1152  	while (1) {
1153  		ret = btrfs_next_item(extent_root, path);
1154  		if (ret < 0)
1155  			break;
1156  		if (ret) {
1157  			ret = 0;
1158  			break;
1159  		}
1160  
1161  		slot = path->slots[0];
1162  		leaf = path->nodes[0];
1163  		btrfs_item_key_to_cpu(leaf, &key, slot);
1164  
1165  		if (key.objectid != ctx->bytenr)
1166  			break;
1167  		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1168  			continue;
1169  		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1170  			break;
1171  
1172  		switch (key.type) {
1173  		case BTRFS_SHARED_BLOCK_REF_KEY:
1174  			/* SHARED DIRECT METADATA backref */
1175  			ret = add_direct_ref(fs_info, preftrees,
1176  					     info_level + 1, key.offset,
1177  					     ctx->bytenr, 1, NULL, GFP_NOFS);
1178  			break;
1179  		case BTRFS_SHARED_DATA_REF_KEY: {
1180  			/* SHARED DIRECT FULL backref */
1181  			struct btrfs_shared_data_ref *sdref;
1182  			int count;
1183  
1184  			sdref = btrfs_item_ptr(leaf, slot,
1185  					      struct btrfs_shared_data_ref);
1186  			count = btrfs_shared_data_ref_count(leaf, sdref);
1187  			ret = add_direct_ref(fs_info, preftrees, 0,
1188  					     key.offset, ctx->bytenr, count,
1189  					     sc, GFP_NOFS);
1190  			break;
1191  		}
1192  		case BTRFS_TREE_BLOCK_REF_KEY:
1193  			/* NORMAL INDIRECT METADATA backref */
1194  			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1195  					       NULL, info_level + 1, ctx->bytenr,
1196  					       1, NULL, GFP_NOFS);
1197  			break;
1198  		case BTRFS_EXTENT_DATA_REF_KEY: {
1199  			/* NORMAL INDIRECT DATA backref */
1200  			struct btrfs_extent_data_ref *dref;
1201  			int count;
1202  			u64 root;
1203  
1204  			dref = btrfs_item_ptr(leaf, slot,
1205  					      struct btrfs_extent_data_ref);
1206  			count = btrfs_extent_data_ref_count(leaf, dref);
1207  			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1208  								      dref);
1209  			key.type = BTRFS_EXTENT_DATA_KEY;
1210  			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1211  
1212  			if (sc && key.objectid != sc->inum &&
1213  			    !sc->have_delayed_delete_refs) {
1214  				ret = BACKREF_FOUND_SHARED;
1215  				break;
1216  			}
1217  
1218  			root = btrfs_extent_data_ref_root(leaf, dref);
1219  
1220  			if (!ctx->skip_data_ref ||
1221  			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1222  						ctx->user_ctx))
1223  				ret = add_indirect_ref(fs_info, preftrees, root,
1224  						       &key, 0, ctx->bytenr,
1225  						       count, sc, GFP_NOFS);
1226  			break;
1227  		}
1228  		default:
1229  			WARN_ON(1);
1230  		}
1231  		if (ret)
1232  			return ret;
1233  
1234  	}
1235  
1236  	return ret;
1237  }
1238  
1239  /*
1240   * The caller has joined a transaction or is holding a read lock on the
1241   * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1242   * snapshot field changing while updating or checking the cache.
1243   */
lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx * ctx,struct btrfs_root * root,u64 bytenr,int level,bool * is_shared)1244  static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1245  					struct btrfs_root *root,
1246  					u64 bytenr, int level, bool *is_shared)
1247  {
1248  	const struct btrfs_fs_info *fs_info = root->fs_info;
1249  	struct btrfs_backref_shared_cache_entry *entry;
1250  
1251  	if (!current->journal_info)
1252  		lockdep_assert_held(&fs_info->commit_root_sem);
1253  
1254  	if (!ctx->use_path_cache)
1255  		return false;
1256  
1257  	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1258  		return false;
1259  
1260  	/*
1261  	 * Level -1 is used for the data extent, which is not reliable to cache
1262  	 * because its reference count can increase or decrease without us
1263  	 * realizing. We cache results only for extent buffers that lead from
1264  	 * the root node down to the leaf with the file extent item.
1265  	 */
1266  	ASSERT(level >= 0);
1267  
1268  	entry = &ctx->path_cache_entries[level];
1269  
1270  	/* Unused cache entry or being used for some other extent buffer. */
1271  	if (entry->bytenr != bytenr)
1272  		return false;
1273  
1274  	/*
1275  	 * We cached a false result, but the last snapshot generation of the
1276  	 * root changed, so we now have a snapshot. Don't trust the result.
1277  	 */
1278  	if (!entry->is_shared &&
1279  	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1280  		return false;
1281  
1282  	/*
1283  	 * If we cached a true result and the last generation used for dropping
1284  	 * a root changed, we can not trust the result, because the dropped root
1285  	 * could be a snapshot sharing this extent buffer.
1286  	 */
1287  	if (entry->is_shared &&
1288  	    entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1289  		return false;
1290  
1291  	*is_shared = entry->is_shared;
1292  	/*
1293  	 * If the node at this level is shared, than all nodes below are also
1294  	 * shared. Currently some of the nodes below may be marked as not shared
1295  	 * because we have just switched from one leaf to another, and switched
1296  	 * also other nodes above the leaf and below the current level, so mark
1297  	 * them as shared.
1298  	 */
1299  	if (*is_shared) {
1300  		for (int i = 0; i < level; i++) {
1301  			ctx->path_cache_entries[i].is_shared = true;
1302  			ctx->path_cache_entries[i].gen = entry->gen;
1303  		}
1304  	}
1305  
1306  	return true;
1307  }
1308  
1309  /*
1310   * The caller has joined a transaction or is holding a read lock on the
1311   * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1312   * snapshot field changing while updating or checking the cache.
1313   */
store_backref_shared_cache(struct btrfs_backref_share_check_ctx * ctx,struct btrfs_root * root,u64 bytenr,int level,bool is_shared)1314  static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1315  				       struct btrfs_root *root,
1316  				       u64 bytenr, int level, bool is_shared)
1317  {
1318  	const struct btrfs_fs_info *fs_info = root->fs_info;
1319  	struct btrfs_backref_shared_cache_entry *entry;
1320  	u64 gen;
1321  
1322  	if (!current->journal_info)
1323  		lockdep_assert_held(&fs_info->commit_root_sem);
1324  
1325  	if (!ctx->use_path_cache)
1326  		return;
1327  
1328  	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1329  		return;
1330  
1331  	/*
1332  	 * Level -1 is used for the data extent, which is not reliable to cache
1333  	 * because its reference count can increase or decrease without us
1334  	 * realizing. We cache results only for extent buffers that lead from
1335  	 * the root node down to the leaf with the file extent item.
1336  	 */
1337  	ASSERT(level >= 0);
1338  
1339  	if (is_shared)
1340  		gen = btrfs_get_last_root_drop_gen(fs_info);
1341  	else
1342  		gen = btrfs_root_last_snapshot(&root->root_item);
1343  
1344  	entry = &ctx->path_cache_entries[level];
1345  	entry->bytenr = bytenr;
1346  	entry->is_shared = is_shared;
1347  	entry->gen = gen;
1348  
1349  	/*
1350  	 * If we found an extent buffer is shared, set the cache result for all
1351  	 * extent buffers below it to true. As nodes in the path are COWed,
1352  	 * their sharedness is moved to their children, and if a leaf is COWed,
1353  	 * then the sharedness of a data extent becomes direct, the refcount of
1354  	 * data extent is increased in the extent item at the extent tree.
1355  	 */
1356  	if (is_shared) {
1357  		for (int i = 0; i < level; i++) {
1358  			entry = &ctx->path_cache_entries[i];
1359  			entry->is_shared = is_shared;
1360  			entry->gen = gen;
1361  		}
1362  	}
1363  }
1364  
1365  /*
1366   * this adds all existing backrefs (inline backrefs, backrefs and delayed
1367   * refs) for the given bytenr to the refs list, merges duplicates and resolves
1368   * indirect refs to their parent bytenr.
1369   * When roots are found, they're added to the roots list
1370   *
1371   * @ctx:     Backref walking context object, must be not NULL.
1372   * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1373   *           shared extent is detected.
1374   *
1375   * Otherwise this returns 0 for success and <0 for an error.
1376   *
1377   * FIXME some caching might speed things up
1378   */
find_parent_nodes(struct btrfs_backref_walk_ctx * ctx,struct share_check * sc)1379  static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1380  			     struct share_check *sc)
1381  {
1382  	struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1383  	struct btrfs_key key;
1384  	struct btrfs_path *path;
1385  	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1386  	struct btrfs_delayed_ref_head *head;
1387  	int info_level = 0;
1388  	int ret;
1389  	struct prelim_ref *ref;
1390  	struct rb_node *node;
1391  	struct extent_inode_elem *eie = NULL;
1392  	struct preftrees preftrees = {
1393  		.direct = PREFTREE_INIT,
1394  		.indirect = PREFTREE_INIT,
1395  		.indirect_missing_keys = PREFTREE_INIT
1396  	};
1397  
1398  	/* Roots ulist is not needed when using a sharedness check context. */
1399  	if (sc)
1400  		ASSERT(ctx->roots == NULL);
1401  
1402  	key.objectid = ctx->bytenr;
1403  	key.offset = (u64)-1;
1404  	if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1405  		key.type = BTRFS_METADATA_ITEM_KEY;
1406  	else
1407  		key.type = BTRFS_EXTENT_ITEM_KEY;
1408  
1409  	path = btrfs_alloc_path();
1410  	if (!path)
1411  		return -ENOMEM;
1412  	if (!ctx->trans) {
1413  		path->search_commit_root = 1;
1414  		path->skip_locking = 1;
1415  	}
1416  
1417  	if (ctx->time_seq == BTRFS_SEQ_LAST)
1418  		path->skip_locking = 1;
1419  
1420  again:
1421  	head = NULL;
1422  
1423  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1424  	if (ret < 0)
1425  		goto out;
1426  	if (ret == 0) {
1427  		/*
1428  		 * Key with offset -1 found, there would have to exist an extent
1429  		 * item with such offset, but this is out of the valid range.
1430  		 */
1431  		ret = -EUCLEAN;
1432  		goto out;
1433  	}
1434  
1435  	if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1436  	    ctx->time_seq != BTRFS_SEQ_LAST) {
1437  		/*
1438  		 * We have a specific time_seq we care about and trans which
1439  		 * means we have the path lock, we need to grab the ref head and
1440  		 * lock it so we have a consistent view of the refs at the given
1441  		 * time.
1442  		 */
1443  		delayed_refs = &ctx->trans->transaction->delayed_refs;
1444  		spin_lock(&delayed_refs->lock);
1445  		head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1446  		if (head) {
1447  			if (!mutex_trylock(&head->mutex)) {
1448  				refcount_inc(&head->refs);
1449  				spin_unlock(&delayed_refs->lock);
1450  
1451  				btrfs_release_path(path);
1452  
1453  				/*
1454  				 * Mutex was contended, block until it's
1455  				 * released and try again
1456  				 */
1457  				mutex_lock(&head->mutex);
1458  				mutex_unlock(&head->mutex);
1459  				btrfs_put_delayed_ref_head(head);
1460  				goto again;
1461  			}
1462  			spin_unlock(&delayed_refs->lock);
1463  			ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1464  					       &preftrees, sc);
1465  			mutex_unlock(&head->mutex);
1466  			if (ret)
1467  				goto out;
1468  		} else {
1469  			spin_unlock(&delayed_refs->lock);
1470  		}
1471  	}
1472  
1473  	if (path->slots[0]) {
1474  		struct extent_buffer *leaf;
1475  		int slot;
1476  
1477  		path->slots[0]--;
1478  		leaf = path->nodes[0];
1479  		slot = path->slots[0];
1480  		btrfs_item_key_to_cpu(leaf, &key, slot);
1481  		if (key.objectid == ctx->bytenr &&
1482  		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1483  		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1484  			ret = add_inline_refs(ctx, path, &info_level,
1485  					      &preftrees, sc);
1486  			if (ret)
1487  				goto out;
1488  			ret = add_keyed_refs(ctx, root, path, info_level,
1489  					     &preftrees, sc);
1490  			if (ret)
1491  				goto out;
1492  		}
1493  	}
1494  
1495  	/*
1496  	 * If we have a share context and we reached here, it means the extent
1497  	 * is not directly shared (no multiple reference items for it),
1498  	 * otherwise we would have exited earlier with a return value of
1499  	 * BACKREF_FOUND_SHARED after processing delayed references or while
1500  	 * processing inline or keyed references from the extent tree.
1501  	 * The extent may however be indirectly shared through shared subtrees
1502  	 * as a result from creating snapshots, so we determine below what is
1503  	 * its parent node, in case we are dealing with a metadata extent, or
1504  	 * what's the leaf (or leaves), from a fs tree, that has a file extent
1505  	 * item pointing to it in case we are dealing with a data extent.
1506  	 */
1507  	ASSERT(extent_is_shared(sc) == 0);
1508  
1509  	/*
1510  	 * If we are here for a data extent and we have a share_check structure
1511  	 * it means the data extent is not directly shared (does not have
1512  	 * multiple reference items), so we have to check if a path in the fs
1513  	 * tree (going from the root node down to the leaf that has the file
1514  	 * extent item pointing to the data extent) is shared, that is, if any
1515  	 * of the extent buffers in the path is referenced by other trees.
1516  	 */
1517  	if (sc && ctx->bytenr == sc->data_bytenr) {
1518  		/*
1519  		 * If our data extent is from a generation more recent than the
1520  		 * last generation used to snapshot the root, then we know that
1521  		 * it can not be shared through subtrees, so we can skip
1522  		 * resolving indirect references, there's no point in
1523  		 * determining the extent buffers for the path from the fs tree
1524  		 * root node down to the leaf that has the file extent item that
1525  		 * points to the data extent.
1526  		 */
1527  		if (sc->data_extent_gen >
1528  		    btrfs_root_last_snapshot(&sc->root->root_item)) {
1529  			ret = BACKREF_FOUND_NOT_SHARED;
1530  			goto out;
1531  		}
1532  
1533  		/*
1534  		 * If we are only determining if a data extent is shared or not
1535  		 * and the corresponding file extent item is located in the same
1536  		 * leaf as the previous file extent item, we can skip resolving
1537  		 * indirect references for a data extent, since the fs tree path
1538  		 * is the same (same leaf, so same path). We skip as long as the
1539  		 * cached result for the leaf is valid and only if there's only
1540  		 * one file extent item pointing to the data extent, because in
1541  		 * the case of multiple file extent items, they may be located
1542  		 * in different leaves and therefore we have multiple paths.
1543  		 */
1544  		if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1545  		    sc->self_ref_count == 1) {
1546  			bool cached;
1547  			bool is_shared;
1548  
1549  			cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1550  						     sc->ctx->curr_leaf_bytenr,
1551  						     0, &is_shared);
1552  			if (cached) {
1553  				if (is_shared)
1554  					ret = BACKREF_FOUND_SHARED;
1555  				else
1556  					ret = BACKREF_FOUND_NOT_SHARED;
1557  				goto out;
1558  			}
1559  		}
1560  	}
1561  
1562  	btrfs_release_path(path);
1563  
1564  	ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1565  	if (ret)
1566  		goto out;
1567  
1568  	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1569  
1570  	ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1571  	if (ret)
1572  		goto out;
1573  
1574  	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1575  
1576  	/*
1577  	 * This walks the tree of merged and resolved refs. Tree blocks are
1578  	 * read in as needed. Unique entries are added to the ulist, and
1579  	 * the list of found roots is updated.
1580  	 *
1581  	 * We release the entire tree in one go before returning.
1582  	 */
1583  	node = rb_first_cached(&preftrees.direct.root);
1584  	while (node) {
1585  		ref = rb_entry(node, struct prelim_ref, rbnode);
1586  		node = rb_next(&ref->rbnode);
1587  		/*
1588  		 * ref->count < 0 can happen here if there are delayed
1589  		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1590  		 * prelim_ref_insert() relies on this when merging
1591  		 * identical refs to keep the overall count correct.
1592  		 * prelim_ref_insert() will merge only those refs
1593  		 * which compare identically.  Any refs having
1594  		 * e.g. different offsets would not be merged,
1595  		 * and would retain their original ref->count < 0.
1596  		 */
1597  		if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1598  			/* no parent == root of tree */
1599  			ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1600  			if (ret < 0)
1601  				goto out;
1602  		}
1603  		if (ref->count && ref->parent) {
1604  			if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1605  			    ref->level == 0) {
1606  				struct btrfs_tree_parent_check check = { 0 };
1607  				struct extent_buffer *eb;
1608  
1609  				check.level = ref->level;
1610  
1611  				eb = read_tree_block(ctx->fs_info, ref->parent,
1612  						     &check);
1613  				if (IS_ERR(eb)) {
1614  					ret = PTR_ERR(eb);
1615  					goto out;
1616  				}
1617  				if (!extent_buffer_uptodate(eb)) {
1618  					free_extent_buffer(eb);
1619  					ret = -EIO;
1620  					goto out;
1621  				}
1622  
1623  				if (!path->skip_locking)
1624  					btrfs_tree_read_lock(eb);
1625  				ret = find_extent_in_eb(ctx, eb, &eie);
1626  				if (!path->skip_locking)
1627  					btrfs_tree_read_unlock(eb);
1628  				free_extent_buffer(eb);
1629  				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1630  				    ret < 0)
1631  					goto out;
1632  				ref->inode_list = eie;
1633  				/*
1634  				 * We transferred the list ownership to the ref,
1635  				 * so set to NULL to avoid a double free in case
1636  				 * an error happens after this.
1637  				 */
1638  				eie = NULL;
1639  			}
1640  			ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1641  						  ref->inode_list,
1642  						  (void **)&eie, GFP_NOFS);
1643  			if (ret < 0)
1644  				goto out;
1645  			if (!ret && !ctx->skip_inode_ref_list) {
1646  				/*
1647  				 * We've recorded that parent, so we must extend
1648  				 * its inode list here.
1649  				 *
1650  				 * However if there was corruption we may not
1651  				 * have found an eie, return an error in this
1652  				 * case.
1653  				 */
1654  				ASSERT(eie);
1655  				if (!eie) {
1656  					ret = -EUCLEAN;
1657  					goto out;
1658  				}
1659  				while (eie->next)
1660  					eie = eie->next;
1661  				eie->next = ref->inode_list;
1662  			}
1663  			eie = NULL;
1664  			/*
1665  			 * We have transferred the inode list ownership from
1666  			 * this ref to the ref we added to the 'refs' ulist.
1667  			 * So set this ref's inode list to NULL to avoid
1668  			 * use-after-free when our caller uses it or double
1669  			 * frees in case an error happens before we return.
1670  			 */
1671  			ref->inode_list = NULL;
1672  		}
1673  		cond_resched();
1674  	}
1675  
1676  out:
1677  	btrfs_free_path(path);
1678  
1679  	prelim_release(&preftrees.direct);
1680  	prelim_release(&preftrees.indirect);
1681  	prelim_release(&preftrees.indirect_missing_keys);
1682  
1683  	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1684  		free_inode_elem_list(eie);
1685  	return ret;
1686  }
1687  
1688  /*
1689   * Finds all leaves with a reference to the specified combination of
1690   * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1691   * added to the ulist at @ctx->refs, and that ulist is allocated by this
1692   * function. The caller should free the ulist with free_leaf_list() if
1693   * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1694   * enough.
1695   *
1696   * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1697   */
btrfs_find_all_leafs(struct btrfs_backref_walk_ctx * ctx)1698  int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1699  {
1700  	int ret;
1701  
1702  	ASSERT(ctx->refs == NULL);
1703  
1704  	ctx->refs = ulist_alloc(GFP_NOFS);
1705  	if (!ctx->refs)
1706  		return -ENOMEM;
1707  
1708  	ret = find_parent_nodes(ctx, NULL);
1709  	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1710  	    (ret < 0 && ret != -ENOENT)) {
1711  		free_leaf_list(ctx->refs);
1712  		ctx->refs = NULL;
1713  		return ret;
1714  	}
1715  
1716  	return 0;
1717  }
1718  
1719  /*
1720   * Walk all backrefs for a given extent to find all roots that reference this
1721   * extent. Walking a backref means finding all extents that reference this
1722   * extent and in turn walk the backrefs of those, too. Naturally this is a
1723   * recursive process, but here it is implemented in an iterative fashion: We
1724   * find all referencing extents for the extent in question and put them on a
1725   * list. In turn, we find all referencing extents for those, further appending
1726   * to the list. The way we iterate the list allows adding more elements after
1727   * the current while iterating. The process stops when we reach the end of the
1728   * list.
1729   *
1730   * Found roots are added to @ctx->roots, which is allocated by this function if
1731   * it points to NULL, in which case the caller is responsible for freeing it
1732   * after it's not needed anymore.
1733   * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1734   * ulist to do temporary work, and frees it before returning.
1735   *
1736   * Returns 0 on success, < 0 on error.
1737   */
btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx * ctx)1738  static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1739  {
1740  	const u64 orig_bytenr = ctx->bytenr;
1741  	const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1742  	bool roots_ulist_allocated = false;
1743  	struct ulist_iterator uiter;
1744  	int ret = 0;
1745  
1746  	ASSERT(ctx->refs == NULL);
1747  
1748  	ctx->refs = ulist_alloc(GFP_NOFS);
1749  	if (!ctx->refs)
1750  		return -ENOMEM;
1751  
1752  	if (!ctx->roots) {
1753  		ctx->roots = ulist_alloc(GFP_NOFS);
1754  		if (!ctx->roots) {
1755  			ulist_free(ctx->refs);
1756  			ctx->refs = NULL;
1757  			return -ENOMEM;
1758  		}
1759  		roots_ulist_allocated = true;
1760  	}
1761  
1762  	ctx->skip_inode_ref_list = true;
1763  
1764  	ULIST_ITER_INIT(&uiter);
1765  	while (1) {
1766  		struct ulist_node *node;
1767  
1768  		ret = find_parent_nodes(ctx, NULL);
1769  		if (ret < 0 && ret != -ENOENT) {
1770  			if (roots_ulist_allocated) {
1771  				ulist_free(ctx->roots);
1772  				ctx->roots = NULL;
1773  			}
1774  			break;
1775  		}
1776  		ret = 0;
1777  		node = ulist_next(ctx->refs, &uiter);
1778  		if (!node)
1779  			break;
1780  		ctx->bytenr = node->val;
1781  		cond_resched();
1782  	}
1783  
1784  	ulist_free(ctx->refs);
1785  	ctx->refs = NULL;
1786  	ctx->bytenr = orig_bytenr;
1787  	ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1788  
1789  	return ret;
1790  }
1791  
btrfs_find_all_roots(struct btrfs_backref_walk_ctx * ctx,bool skip_commit_root_sem)1792  int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1793  			 bool skip_commit_root_sem)
1794  {
1795  	int ret;
1796  
1797  	if (!ctx->trans && !skip_commit_root_sem)
1798  		down_read(&ctx->fs_info->commit_root_sem);
1799  	ret = btrfs_find_all_roots_safe(ctx);
1800  	if (!ctx->trans && !skip_commit_root_sem)
1801  		up_read(&ctx->fs_info->commit_root_sem);
1802  	return ret;
1803  }
1804  
btrfs_alloc_backref_share_check_ctx(void)1805  struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1806  {
1807  	struct btrfs_backref_share_check_ctx *ctx;
1808  
1809  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1810  	if (!ctx)
1811  		return NULL;
1812  
1813  	ulist_init(&ctx->refs);
1814  
1815  	return ctx;
1816  }
1817  
btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx * ctx)1818  void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1819  {
1820  	if (!ctx)
1821  		return;
1822  
1823  	ulist_release(&ctx->refs);
1824  	kfree(ctx);
1825  }
1826  
1827  /*
1828   * Check if a data extent is shared or not.
1829   *
1830   * @inode:       The inode whose extent we are checking.
1831   * @bytenr:      Logical bytenr of the extent we are checking.
1832   * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1833   *               not known.
1834   * @ctx:         A backref sharedness check context.
1835   *
1836   * btrfs_is_data_extent_shared uses the backref walking code but will short
1837   * circuit as soon as it finds a root or inode that doesn't match the
1838   * one passed in. This provides a significant performance benefit for
1839   * callers (such as fiemap) which want to know whether the extent is
1840   * shared but do not need a ref count.
1841   *
1842   * This attempts to attach to the running transaction in order to account for
1843   * delayed refs, but continues on even when no running transaction exists.
1844   *
1845   * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1846   */
btrfs_is_data_extent_shared(struct btrfs_inode * inode,u64 bytenr,u64 extent_gen,struct btrfs_backref_share_check_ctx * ctx)1847  int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1848  				u64 extent_gen,
1849  				struct btrfs_backref_share_check_ctx *ctx)
1850  {
1851  	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1852  	struct btrfs_root *root = inode->root;
1853  	struct btrfs_fs_info *fs_info = root->fs_info;
1854  	struct btrfs_trans_handle *trans;
1855  	struct ulist_iterator uiter;
1856  	struct ulist_node *node;
1857  	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1858  	int ret = 0;
1859  	struct share_check shared = {
1860  		.ctx = ctx,
1861  		.root = root,
1862  		.inum = btrfs_ino(inode),
1863  		.data_bytenr = bytenr,
1864  		.data_extent_gen = extent_gen,
1865  		.share_count = 0,
1866  		.self_ref_count = 0,
1867  		.have_delayed_delete_refs = false,
1868  	};
1869  	int level;
1870  	bool leaf_cached;
1871  	bool leaf_is_shared;
1872  
1873  	for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1874  		if (ctx->prev_extents_cache[i].bytenr == bytenr)
1875  			return ctx->prev_extents_cache[i].is_shared;
1876  	}
1877  
1878  	ulist_init(&ctx->refs);
1879  
1880  	trans = btrfs_join_transaction_nostart(root);
1881  	if (IS_ERR(trans)) {
1882  		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1883  			ret = PTR_ERR(trans);
1884  			goto out;
1885  		}
1886  		trans = NULL;
1887  		down_read(&fs_info->commit_root_sem);
1888  	} else {
1889  		btrfs_get_tree_mod_seq(fs_info, &elem);
1890  		walk_ctx.time_seq = elem.seq;
1891  	}
1892  
1893  	ctx->use_path_cache = true;
1894  
1895  	/*
1896  	 * We may have previously determined that the current leaf is shared.
1897  	 * If it is, then we have a data extent that is shared due to a shared
1898  	 * subtree (caused by snapshotting) and we don't need to check for data
1899  	 * backrefs. If the leaf is not shared, then we must do backref walking
1900  	 * to determine if the data extent is shared through reflinks.
1901  	 */
1902  	leaf_cached = lookup_backref_shared_cache(ctx, root,
1903  						  ctx->curr_leaf_bytenr, 0,
1904  						  &leaf_is_shared);
1905  	if (leaf_cached && leaf_is_shared) {
1906  		ret = 1;
1907  		goto out_trans;
1908  	}
1909  
1910  	walk_ctx.skip_inode_ref_list = true;
1911  	walk_ctx.trans = trans;
1912  	walk_ctx.fs_info = fs_info;
1913  	walk_ctx.refs = &ctx->refs;
1914  
1915  	/* -1 means we are in the bytenr of the data extent. */
1916  	level = -1;
1917  	ULIST_ITER_INIT(&uiter);
1918  	while (1) {
1919  		const unsigned long prev_ref_count = ctx->refs.nnodes;
1920  
1921  		walk_ctx.bytenr = bytenr;
1922  		ret = find_parent_nodes(&walk_ctx, &shared);
1923  		if (ret == BACKREF_FOUND_SHARED ||
1924  		    ret == BACKREF_FOUND_NOT_SHARED) {
1925  			/* If shared must return 1, otherwise return 0. */
1926  			ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1927  			if (level >= 0)
1928  				store_backref_shared_cache(ctx, root, bytenr,
1929  							   level, ret == 1);
1930  			break;
1931  		}
1932  		if (ret < 0 && ret != -ENOENT)
1933  			break;
1934  		ret = 0;
1935  
1936  		/*
1937  		 * More than one extent buffer (bytenr) may have been added to
1938  		 * the ctx->refs ulist, in which case we have to check multiple
1939  		 * tree paths in case the first one is not shared, so we can not
1940  		 * use the path cache which is made for a single path. Multiple
1941  		 * extent buffers at the current level happen when:
1942  		 *
1943  		 * 1) level -1, the data extent: If our data extent was not
1944  		 *    directly shared (without multiple reference items), then
1945  		 *    it might have a single reference item with a count > 1 for
1946  		 *    the same offset, which means there are 2 (or more) file
1947  		 *    extent items that point to the data extent - this happens
1948  		 *    when a file extent item needs to be split and then one
1949  		 *    item gets moved to another leaf due to a b+tree leaf split
1950  		 *    when inserting some item. In this case the file extent
1951  		 *    items may be located in different leaves and therefore
1952  		 *    some of the leaves may be referenced through shared
1953  		 *    subtrees while others are not. Since our extent buffer
1954  		 *    cache only works for a single path (by far the most common
1955  		 *    case and simpler to deal with), we can not use it if we
1956  		 *    have multiple leaves (which implies multiple paths).
1957  		 *
1958  		 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1959  		 *    and indirect references on a b+tree node/leaf, so we have
1960  		 *    to check multiple paths, and the extent buffer (the
1961  		 *    current bytenr) may be shared or not. One example is
1962  		 *    during relocation as we may get a shared tree block ref
1963  		 *    (direct ref) and a non-shared tree block ref (indirect
1964  		 *    ref) for the same node/leaf.
1965  		 */
1966  		if ((ctx->refs.nnodes - prev_ref_count) > 1)
1967  			ctx->use_path_cache = false;
1968  
1969  		if (level >= 0)
1970  			store_backref_shared_cache(ctx, root, bytenr,
1971  						   level, false);
1972  		node = ulist_next(&ctx->refs, &uiter);
1973  		if (!node)
1974  			break;
1975  		bytenr = node->val;
1976  		if (ctx->use_path_cache) {
1977  			bool is_shared;
1978  			bool cached;
1979  
1980  			level++;
1981  			cached = lookup_backref_shared_cache(ctx, root, bytenr,
1982  							     level, &is_shared);
1983  			if (cached) {
1984  				ret = (is_shared ? 1 : 0);
1985  				break;
1986  			}
1987  		}
1988  		shared.share_count = 0;
1989  		shared.have_delayed_delete_refs = false;
1990  		cond_resched();
1991  	}
1992  
1993  	/*
1994  	 * If the path cache is disabled, then it means at some tree level we
1995  	 * got multiple parents due to a mix of direct and indirect backrefs or
1996  	 * multiple leaves with file extent items pointing to the same data
1997  	 * extent. We have to invalidate the cache and cache only the sharedness
1998  	 * result for the levels where we got only one node/reference.
1999  	 */
2000  	if (!ctx->use_path_cache) {
2001  		int i = 0;
2002  
2003  		level--;
2004  		if (ret >= 0 && level >= 0) {
2005  			bytenr = ctx->path_cache_entries[level].bytenr;
2006  			ctx->use_path_cache = true;
2007  			store_backref_shared_cache(ctx, root, bytenr, level, ret);
2008  			i = level + 1;
2009  		}
2010  
2011  		for ( ; i < BTRFS_MAX_LEVEL; i++)
2012  			ctx->path_cache_entries[i].bytenr = 0;
2013  	}
2014  
2015  	/*
2016  	 * Cache the sharedness result for the data extent if we know our inode
2017  	 * has more than 1 file extent item that refers to the data extent.
2018  	 */
2019  	if (ret >= 0 && shared.self_ref_count > 1) {
2020  		int slot = ctx->prev_extents_cache_slot;
2021  
2022  		ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2023  		ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2024  
2025  		slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2026  		ctx->prev_extents_cache_slot = slot;
2027  	}
2028  
2029  out_trans:
2030  	if (trans) {
2031  		btrfs_put_tree_mod_seq(fs_info, &elem);
2032  		btrfs_end_transaction(trans);
2033  	} else {
2034  		up_read(&fs_info->commit_root_sem);
2035  	}
2036  out:
2037  	ulist_release(&ctx->refs);
2038  	ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2039  
2040  	return ret;
2041  }
2042  
btrfs_find_one_extref(struct btrfs_root * root,u64 inode_objectid,u64 start_off,struct btrfs_path * path,struct btrfs_inode_extref ** ret_extref,u64 * found_off)2043  int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2044  			  u64 start_off, struct btrfs_path *path,
2045  			  struct btrfs_inode_extref **ret_extref,
2046  			  u64 *found_off)
2047  {
2048  	int ret, slot;
2049  	struct btrfs_key key;
2050  	struct btrfs_key found_key;
2051  	struct btrfs_inode_extref *extref;
2052  	const struct extent_buffer *leaf;
2053  	unsigned long ptr;
2054  
2055  	key.objectid = inode_objectid;
2056  	key.type = BTRFS_INODE_EXTREF_KEY;
2057  	key.offset = start_off;
2058  
2059  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2060  	if (ret < 0)
2061  		return ret;
2062  
2063  	while (1) {
2064  		leaf = path->nodes[0];
2065  		slot = path->slots[0];
2066  		if (slot >= btrfs_header_nritems(leaf)) {
2067  			/*
2068  			 * If the item at offset is not found,
2069  			 * btrfs_search_slot will point us to the slot
2070  			 * where it should be inserted. In our case
2071  			 * that will be the slot directly before the
2072  			 * next INODE_REF_KEY_V2 item. In the case
2073  			 * that we're pointing to the last slot in a
2074  			 * leaf, we must move one leaf over.
2075  			 */
2076  			ret = btrfs_next_leaf(root, path);
2077  			if (ret) {
2078  				if (ret >= 1)
2079  					ret = -ENOENT;
2080  				break;
2081  			}
2082  			continue;
2083  		}
2084  
2085  		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2086  
2087  		/*
2088  		 * Check that we're still looking at an extended ref key for
2089  		 * this particular objectid. If we have different
2090  		 * objectid or type then there are no more to be found
2091  		 * in the tree and we can exit.
2092  		 */
2093  		ret = -ENOENT;
2094  		if (found_key.objectid != inode_objectid)
2095  			break;
2096  		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2097  			break;
2098  
2099  		ret = 0;
2100  		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2101  		extref = (struct btrfs_inode_extref *)ptr;
2102  		*ret_extref = extref;
2103  		if (found_off)
2104  			*found_off = found_key.offset;
2105  		break;
2106  	}
2107  
2108  	return ret;
2109  }
2110  
2111  /*
2112   * this iterates to turn a name (from iref/extref) into a full filesystem path.
2113   * Elements of the path are separated by '/' and the path is guaranteed to be
2114   * 0-terminated. the path is only given within the current file system.
2115   * Therefore, it never starts with a '/'. the caller is responsible to provide
2116   * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2117   * the start point of the resulting string is returned. this pointer is within
2118   * dest, normally.
2119   * in case the path buffer would overflow, the pointer is decremented further
2120   * as if output was written to the buffer, though no more output is actually
2121   * generated. that way, the caller can determine how much space would be
2122   * required for the path to fit into the buffer. in that case, the returned
2123   * value will be smaller than dest. callers must check this!
2124   */
btrfs_ref_to_path(struct btrfs_root * fs_root,struct btrfs_path * path,u32 name_len,unsigned long name_off,struct extent_buffer * eb_in,u64 parent,char * dest,u32 size)2125  char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2126  			u32 name_len, unsigned long name_off,
2127  			struct extent_buffer *eb_in, u64 parent,
2128  			char *dest, u32 size)
2129  {
2130  	int slot;
2131  	u64 next_inum;
2132  	int ret;
2133  	s64 bytes_left = ((s64)size) - 1;
2134  	struct extent_buffer *eb = eb_in;
2135  	struct btrfs_key found_key;
2136  	struct btrfs_inode_ref *iref;
2137  
2138  	if (bytes_left >= 0)
2139  		dest[bytes_left] = '\0';
2140  
2141  	while (1) {
2142  		bytes_left -= name_len;
2143  		if (bytes_left >= 0)
2144  			read_extent_buffer(eb, dest + bytes_left,
2145  					   name_off, name_len);
2146  		if (eb != eb_in) {
2147  			if (!path->skip_locking)
2148  				btrfs_tree_read_unlock(eb);
2149  			free_extent_buffer(eb);
2150  		}
2151  		ret = btrfs_find_item(fs_root, path, parent, 0,
2152  				BTRFS_INODE_REF_KEY, &found_key);
2153  		if (ret > 0)
2154  			ret = -ENOENT;
2155  		if (ret)
2156  			break;
2157  
2158  		next_inum = found_key.offset;
2159  
2160  		/* regular exit ahead */
2161  		if (parent == next_inum)
2162  			break;
2163  
2164  		slot = path->slots[0];
2165  		eb = path->nodes[0];
2166  		/* make sure we can use eb after releasing the path */
2167  		if (eb != eb_in) {
2168  			path->nodes[0] = NULL;
2169  			path->locks[0] = 0;
2170  		}
2171  		btrfs_release_path(path);
2172  		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2173  
2174  		name_len = btrfs_inode_ref_name_len(eb, iref);
2175  		name_off = (unsigned long)(iref + 1);
2176  
2177  		parent = next_inum;
2178  		--bytes_left;
2179  		if (bytes_left >= 0)
2180  			dest[bytes_left] = '/';
2181  	}
2182  
2183  	btrfs_release_path(path);
2184  
2185  	if (ret)
2186  		return ERR_PTR(ret);
2187  
2188  	return dest + bytes_left;
2189  }
2190  
2191  /*
2192   * this makes the path point to (logical EXTENT_ITEM *)
2193   * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2194   * tree blocks and <0 on error.
2195   */
extent_from_logical(struct btrfs_fs_info * fs_info,u64 logical,struct btrfs_path * path,struct btrfs_key * found_key,u64 * flags_ret)2196  int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2197  			struct btrfs_path *path, struct btrfs_key *found_key,
2198  			u64 *flags_ret)
2199  {
2200  	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2201  	int ret;
2202  	u64 flags;
2203  	u64 size = 0;
2204  	u32 item_size;
2205  	const struct extent_buffer *eb;
2206  	struct btrfs_extent_item *ei;
2207  	struct btrfs_key key;
2208  
2209  	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2210  		key.type = BTRFS_METADATA_ITEM_KEY;
2211  	else
2212  		key.type = BTRFS_EXTENT_ITEM_KEY;
2213  	key.objectid = logical;
2214  	key.offset = (u64)-1;
2215  
2216  	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2217  	if (ret < 0)
2218  		return ret;
2219  	if (ret == 0) {
2220  		/*
2221  		 * Key with offset -1 found, there would have to exist an extent
2222  		 * item with such offset, but this is out of the valid range.
2223  		 */
2224  		return -EUCLEAN;
2225  	}
2226  
2227  	ret = btrfs_previous_extent_item(extent_root, path, 0);
2228  	if (ret) {
2229  		if (ret > 0)
2230  			ret = -ENOENT;
2231  		return ret;
2232  	}
2233  	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2234  	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2235  		size = fs_info->nodesize;
2236  	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2237  		size = found_key->offset;
2238  
2239  	if (found_key->objectid > logical ||
2240  	    found_key->objectid + size <= logical) {
2241  		btrfs_debug(fs_info,
2242  			"logical %llu is not within any extent", logical);
2243  		return -ENOENT;
2244  	}
2245  
2246  	eb = path->nodes[0];
2247  	item_size = btrfs_item_size(eb, path->slots[0]);
2248  
2249  	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2250  	flags = btrfs_extent_flags(eb, ei);
2251  
2252  	btrfs_debug(fs_info,
2253  		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2254  		 logical, logical - found_key->objectid, found_key->objectid,
2255  		 found_key->offset, flags, item_size);
2256  
2257  	WARN_ON(!flags_ret);
2258  	if (flags_ret) {
2259  		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2260  			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2261  		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2262  			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2263  		else
2264  			BUG();
2265  		return 0;
2266  	}
2267  
2268  	return -EIO;
2269  }
2270  
2271  /*
2272   * helper function to iterate extent inline refs. ptr must point to a 0 value
2273   * for the first call and may be modified. it is used to track state.
2274   * if more refs exist, 0 is returned and the next call to
2275   * get_extent_inline_ref must pass the modified ptr parameter to get the
2276   * next ref. after the last ref was processed, 1 is returned.
2277   * returns <0 on error
2278   */
get_extent_inline_ref(unsigned long * ptr,const struct extent_buffer * eb,const struct btrfs_key * key,const struct btrfs_extent_item * ei,u32 item_size,struct btrfs_extent_inline_ref ** out_eiref,int * out_type)2279  static int get_extent_inline_ref(unsigned long *ptr,
2280  				 const struct extent_buffer *eb,
2281  				 const struct btrfs_key *key,
2282  				 const struct btrfs_extent_item *ei,
2283  				 u32 item_size,
2284  				 struct btrfs_extent_inline_ref **out_eiref,
2285  				 int *out_type)
2286  {
2287  	unsigned long end;
2288  	u64 flags;
2289  	struct btrfs_tree_block_info *info;
2290  
2291  	if (!*ptr) {
2292  		/* first call */
2293  		flags = btrfs_extent_flags(eb, ei);
2294  		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2295  			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2296  				/* a skinny metadata extent */
2297  				*out_eiref =
2298  				     (struct btrfs_extent_inline_ref *)(ei + 1);
2299  			} else {
2300  				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2301  				info = (struct btrfs_tree_block_info *)(ei + 1);
2302  				*out_eiref =
2303  				   (struct btrfs_extent_inline_ref *)(info + 1);
2304  			}
2305  		} else {
2306  			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2307  		}
2308  		*ptr = (unsigned long)*out_eiref;
2309  		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2310  			return -ENOENT;
2311  	}
2312  
2313  	end = (unsigned long)ei + item_size;
2314  	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2315  	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2316  						     BTRFS_REF_TYPE_ANY);
2317  	if (*out_type == BTRFS_REF_TYPE_INVALID)
2318  		return -EUCLEAN;
2319  
2320  	*ptr += btrfs_extent_inline_ref_size(*out_type);
2321  	WARN_ON(*ptr > end);
2322  	if (*ptr == end)
2323  		return 1; /* last */
2324  
2325  	return 0;
2326  }
2327  
2328  /*
2329   * reads the tree block backref for an extent. tree level and root are returned
2330   * through out_level and out_root. ptr must point to a 0 value for the first
2331   * call and may be modified (see get_extent_inline_ref comment).
2332   * returns 0 if data was provided, 1 if there was no more data to provide or
2333   * <0 on error.
2334   */
tree_backref_for_extent(unsigned long * ptr,struct extent_buffer * eb,struct btrfs_key * key,struct btrfs_extent_item * ei,u32 item_size,u64 * out_root,u8 * out_level)2335  int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2336  			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2337  			    u32 item_size, u64 *out_root, u8 *out_level)
2338  {
2339  	int ret;
2340  	int type;
2341  	struct btrfs_extent_inline_ref *eiref;
2342  
2343  	if (*ptr == (unsigned long)-1)
2344  		return 1;
2345  
2346  	while (1) {
2347  		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2348  					      &eiref, &type);
2349  		if (ret < 0)
2350  			return ret;
2351  
2352  		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2353  		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2354  			break;
2355  
2356  		if (ret == 1)
2357  			return 1;
2358  	}
2359  
2360  	/* we can treat both ref types equally here */
2361  	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2362  
2363  	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2364  		struct btrfs_tree_block_info *info;
2365  
2366  		info = (struct btrfs_tree_block_info *)(ei + 1);
2367  		*out_level = btrfs_tree_block_level(eb, info);
2368  	} else {
2369  		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2370  		*out_level = (u8)key->offset;
2371  	}
2372  
2373  	if (ret == 1)
2374  		*ptr = (unsigned long)-1;
2375  
2376  	return 0;
2377  }
2378  
iterate_leaf_refs(struct btrfs_fs_info * fs_info,struct extent_inode_elem * inode_list,u64 root,u64 extent_item_objectid,iterate_extent_inodes_t * iterate,void * ctx)2379  static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2380  			     struct extent_inode_elem *inode_list,
2381  			     u64 root, u64 extent_item_objectid,
2382  			     iterate_extent_inodes_t *iterate, void *ctx)
2383  {
2384  	struct extent_inode_elem *eie;
2385  	int ret = 0;
2386  
2387  	for (eie = inode_list; eie; eie = eie->next) {
2388  		btrfs_debug(fs_info,
2389  			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2390  			    extent_item_objectid, eie->inum,
2391  			    eie->offset, root);
2392  		ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2393  		if (ret) {
2394  			btrfs_debug(fs_info,
2395  				    "stopping iteration for %llu due to ret=%d",
2396  				    extent_item_objectid, ret);
2397  			break;
2398  		}
2399  	}
2400  
2401  	return ret;
2402  }
2403  
2404  /*
2405   * calls iterate() for every inode that references the extent identified by
2406   * the given parameters.
2407   * when the iterator function returns a non-zero value, iteration stops.
2408   */
iterate_extent_inodes(struct btrfs_backref_walk_ctx * ctx,bool search_commit_root,iterate_extent_inodes_t * iterate,void * user_ctx)2409  int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2410  			  bool search_commit_root,
2411  			  iterate_extent_inodes_t *iterate, void *user_ctx)
2412  {
2413  	int ret;
2414  	struct ulist *refs;
2415  	struct ulist_node *ref_node;
2416  	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2417  	struct ulist_iterator ref_uiter;
2418  
2419  	btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2420  		    ctx->bytenr);
2421  
2422  	ASSERT(ctx->trans == NULL);
2423  	ASSERT(ctx->roots == NULL);
2424  
2425  	if (!search_commit_root) {
2426  		struct btrfs_trans_handle *trans;
2427  
2428  		trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2429  		if (IS_ERR(trans)) {
2430  			if (PTR_ERR(trans) != -ENOENT &&
2431  			    PTR_ERR(trans) != -EROFS)
2432  				return PTR_ERR(trans);
2433  			trans = NULL;
2434  		}
2435  		ctx->trans = trans;
2436  	}
2437  
2438  	if (ctx->trans) {
2439  		btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2440  		ctx->time_seq = seq_elem.seq;
2441  	} else {
2442  		down_read(&ctx->fs_info->commit_root_sem);
2443  	}
2444  
2445  	ret = btrfs_find_all_leafs(ctx);
2446  	if (ret)
2447  		goto out;
2448  	refs = ctx->refs;
2449  	ctx->refs = NULL;
2450  
2451  	ULIST_ITER_INIT(&ref_uiter);
2452  	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2453  		const u64 leaf_bytenr = ref_node->val;
2454  		struct ulist_node *root_node;
2455  		struct ulist_iterator root_uiter;
2456  		struct extent_inode_elem *inode_list;
2457  
2458  		inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2459  
2460  		if (ctx->cache_lookup) {
2461  			const u64 *root_ids;
2462  			int root_count;
2463  			bool cached;
2464  
2465  			cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2466  						   &root_ids, &root_count);
2467  			if (cached) {
2468  				for (int i = 0; i < root_count; i++) {
2469  					ret = iterate_leaf_refs(ctx->fs_info,
2470  								inode_list,
2471  								root_ids[i],
2472  								leaf_bytenr,
2473  								iterate,
2474  								user_ctx);
2475  					if (ret)
2476  						break;
2477  				}
2478  				continue;
2479  			}
2480  		}
2481  
2482  		if (!ctx->roots) {
2483  			ctx->roots = ulist_alloc(GFP_NOFS);
2484  			if (!ctx->roots) {
2485  				ret = -ENOMEM;
2486  				break;
2487  			}
2488  		}
2489  
2490  		ctx->bytenr = leaf_bytenr;
2491  		ret = btrfs_find_all_roots_safe(ctx);
2492  		if (ret)
2493  			break;
2494  
2495  		if (ctx->cache_store)
2496  			ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2497  
2498  		ULIST_ITER_INIT(&root_uiter);
2499  		while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2500  			btrfs_debug(ctx->fs_info,
2501  				    "root %llu references leaf %llu, data list %#llx",
2502  				    root_node->val, ref_node->val,
2503  				    ref_node->aux);
2504  			ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2505  						root_node->val, ctx->bytenr,
2506  						iterate, user_ctx);
2507  		}
2508  		ulist_reinit(ctx->roots);
2509  	}
2510  
2511  	free_leaf_list(refs);
2512  out:
2513  	if (ctx->trans) {
2514  		btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2515  		btrfs_end_transaction(ctx->trans);
2516  		ctx->trans = NULL;
2517  	} else {
2518  		up_read(&ctx->fs_info->commit_root_sem);
2519  	}
2520  
2521  	ulist_free(ctx->roots);
2522  	ctx->roots = NULL;
2523  
2524  	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2525  		ret = 0;
2526  
2527  	return ret;
2528  }
2529  
build_ino_list(u64 inum,u64 offset,u64 num_bytes,u64 root,void * ctx)2530  static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2531  {
2532  	struct btrfs_data_container *inodes = ctx;
2533  	const size_t c = 3 * sizeof(u64);
2534  
2535  	if (inodes->bytes_left >= c) {
2536  		inodes->bytes_left -= c;
2537  		inodes->val[inodes->elem_cnt] = inum;
2538  		inodes->val[inodes->elem_cnt + 1] = offset;
2539  		inodes->val[inodes->elem_cnt + 2] = root;
2540  		inodes->elem_cnt += 3;
2541  	} else {
2542  		inodes->bytes_missing += c - inodes->bytes_left;
2543  		inodes->bytes_left = 0;
2544  		inodes->elem_missed += 3;
2545  	}
2546  
2547  	return 0;
2548  }
2549  
iterate_inodes_from_logical(u64 logical,struct btrfs_fs_info * fs_info,struct btrfs_path * path,void * ctx,bool ignore_offset)2550  int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2551  				struct btrfs_path *path,
2552  				void *ctx, bool ignore_offset)
2553  {
2554  	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2555  	int ret;
2556  	u64 flags = 0;
2557  	struct btrfs_key found_key;
2558  	int search_commit_root = path->search_commit_root;
2559  
2560  	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2561  	btrfs_release_path(path);
2562  	if (ret < 0)
2563  		return ret;
2564  	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2565  		return -EINVAL;
2566  
2567  	walk_ctx.bytenr = found_key.objectid;
2568  	if (ignore_offset)
2569  		walk_ctx.ignore_extent_item_pos = true;
2570  	else
2571  		walk_ctx.extent_item_pos = logical - found_key.objectid;
2572  	walk_ctx.fs_info = fs_info;
2573  
2574  	return iterate_extent_inodes(&walk_ctx, search_commit_root,
2575  				     build_ino_list, ctx);
2576  }
2577  
2578  static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2579  			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2580  
iterate_inode_refs(u64 inum,struct inode_fs_paths * ipath)2581  static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2582  {
2583  	int ret = 0;
2584  	int slot;
2585  	u32 cur;
2586  	u32 len;
2587  	u32 name_len;
2588  	u64 parent = 0;
2589  	int found = 0;
2590  	struct btrfs_root *fs_root = ipath->fs_root;
2591  	struct btrfs_path *path = ipath->btrfs_path;
2592  	struct extent_buffer *eb;
2593  	struct btrfs_inode_ref *iref;
2594  	struct btrfs_key found_key;
2595  
2596  	while (!ret) {
2597  		ret = btrfs_find_item(fs_root, path, inum,
2598  				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2599  				&found_key);
2600  
2601  		if (ret < 0)
2602  			break;
2603  		if (ret) {
2604  			ret = found ? 0 : -ENOENT;
2605  			break;
2606  		}
2607  		++found;
2608  
2609  		parent = found_key.offset;
2610  		slot = path->slots[0];
2611  		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2612  		if (!eb) {
2613  			ret = -ENOMEM;
2614  			break;
2615  		}
2616  		btrfs_release_path(path);
2617  
2618  		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2619  
2620  		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2621  			name_len = btrfs_inode_ref_name_len(eb, iref);
2622  			/* path must be released before calling iterate()! */
2623  			btrfs_debug(fs_root->fs_info,
2624  				"following ref at offset %u for inode %llu in tree %llu",
2625  				cur, found_key.objectid,
2626  				btrfs_root_id(fs_root));
2627  			ret = inode_to_path(parent, name_len,
2628  				      (unsigned long)(iref + 1), eb, ipath);
2629  			if (ret)
2630  				break;
2631  			len = sizeof(*iref) + name_len;
2632  			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2633  		}
2634  		free_extent_buffer(eb);
2635  	}
2636  
2637  	btrfs_release_path(path);
2638  
2639  	return ret;
2640  }
2641  
iterate_inode_extrefs(u64 inum,struct inode_fs_paths * ipath)2642  static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2643  {
2644  	int ret;
2645  	int slot;
2646  	u64 offset = 0;
2647  	u64 parent;
2648  	int found = 0;
2649  	struct btrfs_root *fs_root = ipath->fs_root;
2650  	struct btrfs_path *path = ipath->btrfs_path;
2651  	struct extent_buffer *eb;
2652  	struct btrfs_inode_extref *extref;
2653  	u32 item_size;
2654  	u32 cur_offset;
2655  	unsigned long ptr;
2656  
2657  	while (1) {
2658  		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2659  					    &offset);
2660  		if (ret < 0)
2661  			break;
2662  		if (ret) {
2663  			ret = found ? 0 : -ENOENT;
2664  			break;
2665  		}
2666  		++found;
2667  
2668  		slot = path->slots[0];
2669  		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2670  		if (!eb) {
2671  			ret = -ENOMEM;
2672  			break;
2673  		}
2674  		btrfs_release_path(path);
2675  
2676  		item_size = btrfs_item_size(eb, slot);
2677  		ptr = btrfs_item_ptr_offset(eb, slot);
2678  		cur_offset = 0;
2679  
2680  		while (cur_offset < item_size) {
2681  			u32 name_len;
2682  
2683  			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2684  			parent = btrfs_inode_extref_parent(eb, extref);
2685  			name_len = btrfs_inode_extref_name_len(eb, extref);
2686  			ret = inode_to_path(parent, name_len,
2687  				      (unsigned long)&extref->name, eb, ipath);
2688  			if (ret)
2689  				break;
2690  
2691  			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2692  			cur_offset += sizeof(*extref);
2693  		}
2694  		free_extent_buffer(eb);
2695  
2696  		offset++;
2697  	}
2698  
2699  	btrfs_release_path(path);
2700  
2701  	return ret;
2702  }
2703  
2704  /*
2705   * returns 0 if the path could be dumped (probably truncated)
2706   * returns <0 in case of an error
2707   */
inode_to_path(u64 inum,u32 name_len,unsigned long name_off,struct extent_buffer * eb,struct inode_fs_paths * ipath)2708  static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2709  			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2710  {
2711  	char *fspath;
2712  	char *fspath_min;
2713  	int i = ipath->fspath->elem_cnt;
2714  	const int s_ptr = sizeof(char *);
2715  	u32 bytes_left;
2716  
2717  	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2718  					ipath->fspath->bytes_left - s_ptr : 0;
2719  
2720  	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2721  	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2722  				   name_off, eb, inum, fspath_min, bytes_left);
2723  	if (IS_ERR(fspath))
2724  		return PTR_ERR(fspath);
2725  
2726  	if (fspath > fspath_min) {
2727  		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2728  		++ipath->fspath->elem_cnt;
2729  		ipath->fspath->bytes_left = fspath - fspath_min;
2730  	} else {
2731  		++ipath->fspath->elem_missed;
2732  		ipath->fspath->bytes_missing += fspath_min - fspath;
2733  		ipath->fspath->bytes_left = 0;
2734  	}
2735  
2736  	return 0;
2737  }
2738  
2739  /*
2740   * this dumps all file system paths to the inode into the ipath struct, provided
2741   * is has been created large enough. each path is zero-terminated and accessed
2742   * from ipath->fspath->val[i].
2743   * when it returns, there are ipath->fspath->elem_cnt number of paths available
2744   * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2745   * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2746   * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2747   * have been needed to return all paths.
2748   */
paths_from_inode(u64 inum,struct inode_fs_paths * ipath)2749  int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2750  {
2751  	int ret;
2752  	int found_refs = 0;
2753  
2754  	ret = iterate_inode_refs(inum, ipath);
2755  	if (!ret)
2756  		++found_refs;
2757  	else if (ret != -ENOENT)
2758  		return ret;
2759  
2760  	ret = iterate_inode_extrefs(inum, ipath);
2761  	if (ret == -ENOENT && found_refs)
2762  		return 0;
2763  
2764  	return ret;
2765  }
2766  
init_data_container(u32 total_bytes)2767  struct btrfs_data_container *init_data_container(u32 total_bytes)
2768  {
2769  	struct btrfs_data_container *data;
2770  	size_t alloc_bytes;
2771  
2772  	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2773  	data = kvzalloc(alloc_bytes, GFP_KERNEL);
2774  	if (!data)
2775  		return ERR_PTR(-ENOMEM);
2776  
2777  	if (total_bytes >= sizeof(*data))
2778  		data->bytes_left = total_bytes - sizeof(*data);
2779  	else
2780  		data->bytes_missing = sizeof(*data) - total_bytes;
2781  
2782  	return data;
2783  }
2784  
2785  /*
2786   * allocates space to return multiple file system paths for an inode.
2787   * total_bytes to allocate are passed, note that space usable for actual path
2788   * information will be total_bytes - sizeof(struct inode_fs_paths).
2789   * the returned pointer must be freed with free_ipath() in the end.
2790   */
init_ipath(s32 total_bytes,struct btrfs_root * fs_root,struct btrfs_path * path)2791  struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2792  					struct btrfs_path *path)
2793  {
2794  	struct inode_fs_paths *ifp;
2795  	struct btrfs_data_container *fspath;
2796  
2797  	fspath = init_data_container(total_bytes);
2798  	if (IS_ERR(fspath))
2799  		return ERR_CAST(fspath);
2800  
2801  	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2802  	if (!ifp) {
2803  		kvfree(fspath);
2804  		return ERR_PTR(-ENOMEM);
2805  	}
2806  
2807  	ifp->btrfs_path = path;
2808  	ifp->fspath = fspath;
2809  	ifp->fs_root = fs_root;
2810  
2811  	return ifp;
2812  }
2813  
free_ipath(struct inode_fs_paths * ipath)2814  void free_ipath(struct inode_fs_paths *ipath)
2815  {
2816  	if (!ipath)
2817  		return;
2818  	kvfree(ipath->fspath);
2819  	kfree(ipath);
2820  }
2821  
btrfs_backref_iter_alloc(struct btrfs_fs_info * fs_info)2822  struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2823  {
2824  	struct btrfs_backref_iter *ret;
2825  
2826  	ret = kzalloc(sizeof(*ret), GFP_NOFS);
2827  	if (!ret)
2828  		return NULL;
2829  
2830  	ret->path = btrfs_alloc_path();
2831  	if (!ret->path) {
2832  		kfree(ret);
2833  		return NULL;
2834  	}
2835  
2836  	/* Current backref iterator only supports iteration in commit root */
2837  	ret->path->search_commit_root = 1;
2838  	ret->path->skip_locking = 1;
2839  	ret->fs_info = fs_info;
2840  
2841  	return ret;
2842  }
2843  
btrfs_backref_iter_release(struct btrfs_backref_iter * iter)2844  static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2845  {
2846  	iter->bytenr = 0;
2847  	iter->item_ptr = 0;
2848  	iter->cur_ptr = 0;
2849  	iter->end_ptr = 0;
2850  	btrfs_release_path(iter->path);
2851  	memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2852  }
2853  
btrfs_backref_iter_start(struct btrfs_backref_iter * iter,u64 bytenr)2854  int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2855  {
2856  	struct btrfs_fs_info *fs_info = iter->fs_info;
2857  	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2858  	struct btrfs_path *path = iter->path;
2859  	struct btrfs_extent_item *ei;
2860  	struct btrfs_key key;
2861  	int ret;
2862  
2863  	key.objectid = bytenr;
2864  	key.type = BTRFS_METADATA_ITEM_KEY;
2865  	key.offset = (u64)-1;
2866  	iter->bytenr = bytenr;
2867  
2868  	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2869  	if (ret < 0)
2870  		return ret;
2871  	if (ret == 0) {
2872  		/*
2873  		 * Key with offset -1 found, there would have to exist an extent
2874  		 * item with such offset, but this is out of the valid range.
2875  		 */
2876  		ret = -EUCLEAN;
2877  		goto release;
2878  	}
2879  	if (path->slots[0] == 0) {
2880  		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2881  		ret = -EUCLEAN;
2882  		goto release;
2883  	}
2884  	path->slots[0]--;
2885  
2886  	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2887  	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2888  	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2889  		ret = -ENOENT;
2890  		goto release;
2891  	}
2892  	memcpy(&iter->cur_key, &key, sizeof(key));
2893  	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2894  						    path->slots[0]);
2895  	iter->end_ptr = (u32)(iter->item_ptr +
2896  			btrfs_item_size(path->nodes[0], path->slots[0]));
2897  	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2898  			    struct btrfs_extent_item);
2899  
2900  	/*
2901  	 * Only support iteration on tree backref yet.
2902  	 *
2903  	 * This is an extra precaution for non skinny-metadata, where
2904  	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2905  	 * extent flags to determine if it's a tree block.
2906  	 */
2907  	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2908  		ret = -ENOTSUPP;
2909  		goto release;
2910  	}
2911  	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2912  
2913  	/* If there is no inline backref, go search for keyed backref */
2914  	if (iter->cur_ptr >= iter->end_ptr) {
2915  		ret = btrfs_next_item(extent_root, path);
2916  
2917  		/* No inline nor keyed ref */
2918  		if (ret > 0) {
2919  			ret = -ENOENT;
2920  			goto release;
2921  		}
2922  		if (ret < 0)
2923  			goto release;
2924  
2925  		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2926  				path->slots[0]);
2927  		if (iter->cur_key.objectid != bytenr ||
2928  		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2929  		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2930  			ret = -ENOENT;
2931  			goto release;
2932  		}
2933  		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2934  							   path->slots[0]);
2935  		iter->item_ptr = iter->cur_ptr;
2936  		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2937  				      path->nodes[0], path->slots[0]));
2938  	}
2939  
2940  	return 0;
2941  release:
2942  	btrfs_backref_iter_release(iter);
2943  	return ret;
2944  }
2945  
btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter * iter)2946  static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2947  {
2948  	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2949  	    iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2950  		return true;
2951  	return false;
2952  }
2953  
2954  /*
2955   * Go to the next backref item of current bytenr, can be either inlined or
2956   * keyed.
2957   *
2958   * Caller needs to check whether it's inline ref or not by iter->cur_key.
2959   *
2960   * Return 0 if we get next backref without problem.
2961   * Return >0 if there is no extra backref for this bytenr.
2962   * Return <0 if there is something wrong happened.
2963   */
btrfs_backref_iter_next(struct btrfs_backref_iter * iter)2964  int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2965  {
2966  	struct extent_buffer *eb = iter->path->nodes[0];
2967  	struct btrfs_root *extent_root;
2968  	struct btrfs_path *path = iter->path;
2969  	struct btrfs_extent_inline_ref *iref;
2970  	int ret;
2971  	u32 size;
2972  
2973  	if (btrfs_backref_iter_is_inline_ref(iter)) {
2974  		/* We're still inside the inline refs */
2975  		ASSERT(iter->cur_ptr < iter->end_ptr);
2976  
2977  		if (btrfs_backref_has_tree_block_info(iter)) {
2978  			/* First tree block info */
2979  			size = sizeof(struct btrfs_tree_block_info);
2980  		} else {
2981  			/* Use inline ref type to determine the size */
2982  			int type;
2983  
2984  			iref = (struct btrfs_extent_inline_ref *)
2985  				((unsigned long)iter->cur_ptr);
2986  			type = btrfs_extent_inline_ref_type(eb, iref);
2987  
2988  			size = btrfs_extent_inline_ref_size(type);
2989  		}
2990  		iter->cur_ptr += size;
2991  		if (iter->cur_ptr < iter->end_ptr)
2992  			return 0;
2993  
2994  		/* All inline items iterated, fall through */
2995  	}
2996  
2997  	/* We're at keyed items, there is no inline item, go to the next one */
2998  	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2999  	ret = btrfs_next_item(extent_root, iter->path);
3000  	if (ret)
3001  		return ret;
3002  
3003  	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
3004  	if (iter->cur_key.objectid != iter->bytenr ||
3005  	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
3006  	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
3007  		return 1;
3008  	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3009  					path->slots[0]);
3010  	iter->cur_ptr = iter->item_ptr;
3011  	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3012  						path->slots[0]);
3013  	return 0;
3014  }
3015  
btrfs_backref_init_cache(struct btrfs_fs_info * fs_info,struct btrfs_backref_cache * cache,bool is_reloc)3016  void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3017  			      struct btrfs_backref_cache *cache, bool is_reloc)
3018  {
3019  	int i;
3020  
3021  	cache->rb_root = RB_ROOT;
3022  	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3023  		INIT_LIST_HEAD(&cache->pending[i]);
3024  	INIT_LIST_HEAD(&cache->changed);
3025  	INIT_LIST_HEAD(&cache->detached);
3026  	INIT_LIST_HEAD(&cache->leaves);
3027  	INIT_LIST_HEAD(&cache->pending_edge);
3028  	INIT_LIST_HEAD(&cache->useless_node);
3029  	cache->fs_info = fs_info;
3030  	cache->is_reloc = is_reloc;
3031  }
3032  
btrfs_backref_alloc_node(struct btrfs_backref_cache * cache,u64 bytenr,int level)3033  struct btrfs_backref_node *btrfs_backref_alloc_node(
3034  		struct btrfs_backref_cache *cache, u64 bytenr, int level)
3035  {
3036  	struct btrfs_backref_node *node;
3037  
3038  	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3039  	node = kzalloc(sizeof(*node), GFP_NOFS);
3040  	if (!node)
3041  		return node;
3042  
3043  	INIT_LIST_HEAD(&node->list);
3044  	INIT_LIST_HEAD(&node->upper);
3045  	INIT_LIST_HEAD(&node->lower);
3046  	RB_CLEAR_NODE(&node->rb_node);
3047  	cache->nr_nodes++;
3048  	node->level = level;
3049  	node->bytenr = bytenr;
3050  
3051  	return node;
3052  }
3053  
btrfs_backref_free_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3054  void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3055  			     struct btrfs_backref_node *node)
3056  {
3057  	if (node) {
3058  		ASSERT(list_empty(&node->list));
3059  		ASSERT(list_empty(&node->lower));
3060  		ASSERT(node->eb == NULL);
3061  		cache->nr_nodes--;
3062  		btrfs_put_root(node->root);
3063  		kfree(node);
3064  	}
3065  }
3066  
btrfs_backref_alloc_edge(struct btrfs_backref_cache * cache)3067  struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3068  		struct btrfs_backref_cache *cache)
3069  {
3070  	struct btrfs_backref_edge *edge;
3071  
3072  	edge = kzalloc(sizeof(*edge), GFP_NOFS);
3073  	if (edge)
3074  		cache->nr_edges++;
3075  	return edge;
3076  }
3077  
btrfs_backref_free_edge(struct btrfs_backref_cache * cache,struct btrfs_backref_edge * edge)3078  void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3079  			     struct btrfs_backref_edge *edge)
3080  {
3081  	if (edge) {
3082  		cache->nr_edges--;
3083  		kfree(edge);
3084  	}
3085  }
3086  
btrfs_backref_unlock_node_buffer(struct btrfs_backref_node * node)3087  void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3088  {
3089  	if (node->locked) {
3090  		btrfs_tree_unlock(node->eb);
3091  		node->locked = 0;
3092  	}
3093  }
3094  
btrfs_backref_drop_node_buffer(struct btrfs_backref_node * node)3095  void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3096  {
3097  	if (node->eb) {
3098  		btrfs_backref_unlock_node_buffer(node);
3099  		free_extent_buffer(node->eb);
3100  		node->eb = NULL;
3101  	}
3102  }
3103  
3104  /*
3105   * Drop the backref node from cache without cleaning up its children
3106   * edges.
3107   *
3108   * This can only be called on node without parent edges.
3109   * The children edges are still kept as is.
3110   */
btrfs_backref_drop_node(struct btrfs_backref_cache * tree,struct btrfs_backref_node * node)3111  void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3112  			     struct btrfs_backref_node *node)
3113  {
3114  	ASSERT(list_empty(&node->upper));
3115  
3116  	btrfs_backref_drop_node_buffer(node);
3117  	list_del_init(&node->list);
3118  	list_del_init(&node->lower);
3119  	if (!RB_EMPTY_NODE(&node->rb_node))
3120  		rb_erase(&node->rb_node, &tree->rb_root);
3121  	btrfs_backref_free_node(tree, node);
3122  }
3123  
3124  /*
3125   * Drop the backref node from cache, also cleaning up all its
3126   * upper edges and any uncached nodes in the path.
3127   *
3128   * This cleanup happens bottom up, thus the node should either
3129   * be the lowest node in the cache or a detached node.
3130   */
btrfs_backref_cleanup_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3131  void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3132  				struct btrfs_backref_node *node)
3133  {
3134  	struct btrfs_backref_node *upper;
3135  	struct btrfs_backref_edge *edge;
3136  
3137  	if (!node)
3138  		return;
3139  
3140  	BUG_ON(!node->lowest && !node->detached);
3141  	while (!list_empty(&node->upper)) {
3142  		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3143  				  list[LOWER]);
3144  		upper = edge->node[UPPER];
3145  		list_del(&edge->list[LOWER]);
3146  		list_del(&edge->list[UPPER]);
3147  		btrfs_backref_free_edge(cache, edge);
3148  
3149  		/*
3150  		 * Add the node to leaf node list if no other child block
3151  		 * cached.
3152  		 */
3153  		if (list_empty(&upper->lower)) {
3154  			list_add_tail(&upper->lower, &cache->leaves);
3155  			upper->lowest = 1;
3156  		}
3157  	}
3158  
3159  	btrfs_backref_drop_node(cache, node);
3160  }
3161  
3162  /*
3163   * Release all nodes/edges from current cache
3164   */
btrfs_backref_release_cache(struct btrfs_backref_cache * cache)3165  void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3166  {
3167  	struct btrfs_backref_node *node;
3168  	int i;
3169  
3170  	while (!list_empty(&cache->detached)) {
3171  		node = list_entry(cache->detached.next,
3172  				  struct btrfs_backref_node, list);
3173  		btrfs_backref_cleanup_node(cache, node);
3174  	}
3175  
3176  	while (!list_empty(&cache->leaves)) {
3177  		node = list_entry(cache->leaves.next,
3178  				  struct btrfs_backref_node, lower);
3179  		btrfs_backref_cleanup_node(cache, node);
3180  	}
3181  
3182  	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3183  		while (!list_empty(&cache->pending[i])) {
3184  			node = list_first_entry(&cache->pending[i],
3185  						struct btrfs_backref_node,
3186  						list);
3187  			btrfs_backref_cleanup_node(cache, node);
3188  		}
3189  	}
3190  	ASSERT(list_empty(&cache->pending_edge));
3191  	ASSERT(list_empty(&cache->useless_node));
3192  	ASSERT(list_empty(&cache->changed));
3193  	ASSERT(list_empty(&cache->detached));
3194  	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3195  	ASSERT(!cache->nr_nodes);
3196  	ASSERT(!cache->nr_edges);
3197  }
3198  
btrfs_backref_link_edge(struct btrfs_backref_edge * edge,struct btrfs_backref_node * lower,struct btrfs_backref_node * upper,int link_which)3199  void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3200  			     struct btrfs_backref_node *lower,
3201  			     struct btrfs_backref_node *upper,
3202  			     int link_which)
3203  {
3204  	ASSERT(upper && lower && upper->level == lower->level + 1);
3205  	edge->node[LOWER] = lower;
3206  	edge->node[UPPER] = upper;
3207  	if (link_which & LINK_LOWER)
3208  		list_add_tail(&edge->list[LOWER], &lower->upper);
3209  	if (link_which & LINK_UPPER)
3210  		list_add_tail(&edge->list[UPPER], &upper->lower);
3211  }
3212  /*
3213   * Handle direct tree backref
3214   *
3215   * Direct tree backref means, the backref item shows its parent bytenr
3216   * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3217   *
3218   * @ref_key:	The converted backref key.
3219   *		For keyed backref, it's the item key.
3220   *		For inlined backref, objectid is the bytenr,
3221   *		type is btrfs_inline_ref_type, offset is
3222   *		btrfs_inline_ref_offset.
3223   */
handle_direct_tree_backref(struct btrfs_backref_cache * cache,struct btrfs_key * ref_key,struct btrfs_backref_node * cur)3224  static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3225  				      struct btrfs_key *ref_key,
3226  				      struct btrfs_backref_node *cur)
3227  {
3228  	struct btrfs_backref_edge *edge;
3229  	struct btrfs_backref_node *upper;
3230  	struct rb_node *rb_node;
3231  
3232  	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3233  
3234  	/* Only reloc root uses backref pointing to itself */
3235  	if (ref_key->objectid == ref_key->offset) {
3236  		struct btrfs_root *root;
3237  
3238  		cur->is_reloc_root = 1;
3239  		/* Only reloc backref cache cares about a specific root */
3240  		if (cache->is_reloc) {
3241  			root = find_reloc_root(cache->fs_info, cur->bytenr);
3242  			if (!root)
3243  				return -ENOENT;
3244  			cur->root = root;
3245  		} else {
3246  			/*
3247  			 * For generic purpose backref cache, reloc root node
3248  			 * is useless.
3249  			 */
3250  			list_add(&cur->list, &cache->useless_node);
3251  		}
3252  		return 0;
3253  	}
3254  
3255  	edge = btrfs_backref_alloc_edge(cache);
3256  	if (!edge)
3257  		return -ENOMEM;
3258  
3259  	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3260  	if (!rb_node) {
3261  		/* Parent node not yet cached */
3262  		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3263  					   cur->level + 1);
3264  		if (!upper) {
3265  			btrfs_backref_free_edge(cache, edge);
3266  			return -ENOMEM;
3267  		}
3268  
3269  		/*
3270  		 *  Backrefs for the upper level block isn't cached, add the
3271  		 *  block to pending list
3272  		 */
3273  		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3274  	} else {
3275  		/* Parent node already cached */
3276  		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3277  		ASSERT(upper->checked);
3278  		INIT_LIST_HEAD(&edge->list[UPPER]);
3279  	}
3280  	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3281  	return 0;
3282  }
3283  
3284  /*
3285   * Handle indirect tree backref
3286   *
3287   * Indirect tree backref means, we only know which tree the node belongs to.
3288   * We still need to do a tree search to find out the parents. This is for
3289   * TREE_BLOCK_REF backref (keyed or inlined).
3290   *
3291   * @trans:	Transaction handle.
3292   * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
3293   * @tree_key:	The first key of this tree block.
3294   * @path:	A clean (released) path, to avoid allocating path every time
3295   *		the function get called.
3296   */
handle_indirect_tree_backref(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_key * ref_key,struct btrfs_key * tree_key,struct btrfs_backref_node * cur)3297  static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3298  					struct btrfs_backref_cache *cache,
3299  					struct btrfs_path *path,
3300  					struct btrfs_key *ref_key,
3301  					struct btrfs_key *tree_key,
3302  					struct btrfs_backref_node *cur)
3303  {
3304  	struct btrfs_fs_info *fs_info = cache->fs_info;
3305  	struct btrfs_backref_node *upper;
3306  	struct btrfs_backref_node *lower;
3307  	struct btrfs_backref_edge *edge;
3308  	struct extent_buffer *eb;
3309  	struct btrfs_root *root;
3310  	struct rb_node *rb_node;
3311  	int level;
3312  	bool need_check = true;
3313  	int ret;
3314  
3315  	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3316  	if (IS_ERR(root))
3317  		return PTR_ERR(root);
3318  	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3319  		cur->cowonly = 1;
3320  
3321  	if (btrfs_root_level(&root->root_item) == cur->level) {
3322  		/* Tree root */
3323  		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3324  		/*
3325  		 * For reloc backref cache, we may ignore reloc root.  But for
3326  		 * general purpose backref cache, we can't rely on
3327  		 * btrfs_should_ignore_reloc_root() as it may conflict with
3328  		 * current running relocation and lead to missing root.
3329  		 *
3330  		 * For general purpose backref cache, reloc root detection is
3331  		 * completely relying on direct backref (key->offset is parent
3332  		 * bytenr), thus only do such check for reloc cache.
3333  		 */
3334  		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3335  			btrfs_put_root(root);
3336  			list_add(&cur->list, &cache->useless_node);
3337  		} else {
3338  			cur->root = root;
3339  		}
3340  		return 0;
3341  	}
3342  
3343  	level = cur->level + 1;
3344  
3345  	/* Search the tree to find parent blocks referring to the block */
3346  	path->search_commit_root = 1;
3347  	path->skip_locking = 1;
3348  	path->lowest_level = level;
3349  	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3350  	path->lowest_level = 0;
3351  	if (ret < 0) {
3352  		btrfs_put_root(root);
3353  		return ret;
3354  	}
3355  	if (ret > 0 && path->slots[level] > 0)
3356  		path->slots[level]--;
3357  
3358  	eb = path->nodes[level];
3359  	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3360  		btrfs_err(fs_info,
3361  "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3362  			  cur->bytenr, level - 1, btrfs_root_id(root),
3363  			  tree_key->objectid, tree_key->type, tree_key->offset);
3364  		btrfs_put_root(root);
3365  		ret = -ENOENT;
3366  		goto out;
3367  	}
3368  	lower = cur;
3369  
3370  	/* Add all nodes and edges in the path */
3371  	for (; level < BTRFS_MAX_LEVEL; level++) {
3372  		if (!path->nodes[level]) {
3373  			ASSERT(btrfs_root_bytenr(&root->root_item) ==
3374  			       lower->bytenr);
3375  			/* Same as previous should_ignore_reloc_root() call */
3376  			if (btrfs_should_ignore_reloc_root(root) &&
3377  			    cache->is_reloc) {
3378  				btrfs_put_root(root);
3379  				list_add(&lower->list, &cache->useless_node);
3380  			} else {
3381  				lower->root = root;
3382  			}
3383  			break;
3384  		}
3385  
3386  		edge = btrfs_backref_alloc_edge(cache);
3387  		if (!edge) {
3388  			btrfs_put_root(root);
3389  			ret = -ENOMEM;
3390  			goto out;
3391  		}
3392  
3393  		eb = path->nodes[level];
3394  		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3395  		if (!rb_node) {
3396  			upper = btrfs_backref_alloc_node(cache, eb->start,
3397  							 lower->level + 1);
3398  			if (!upper) {
3399  				btrfs_put_root(root);
3400  				btrfs_backref_free_edge(cache, edge);
3401  				ret = -ENOMEM;
3402  				goto out;
3403  			}
3404  			upper->owner = btrfs_header_owner(eb);
3405  			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3406  				upper->cowonly = 1;
3407  
3408  			/*
3409  			 * If we know the block isn't shared we can avoid
3410  			 * checking its backrefs.
3411  			 */
3412  			if (btrfs_block_can_be_shared(trans, root, eb))
3413  				upper->checked = 0;
3414  			else
3415  				upper->checked = 1;
3416  
3417  			/*
3418  			 * Add the block to pending list if we need to check its
3419  			 * backrefs, we only do this once while walking up a
3420  			 * tree as we will catch anything else later on.
3421  			 */
3422  			if (!upper->checked && need_check) {
3423  				need_check = false;
3424  				list_add_tail(&edge->list[UPPER],
3425  					      &cache->pending_edge);
3426  			} else {
3427  				if (upper->checked)
3428  					need_check = true;
3429  				INIT_LIST_HEAD(&edge->list[UPPER]);
3430  			}
3431  		} else {
3432  			upper = rb_entry(rb_node, struct btrfs_backref_node,
3433  					 rb_node);
3434  			ASSERT(upper->checked);
3435  			INIT_LIST_HEAD(&edge->list[UPPER]);
3436  			if (!upper->owner)
3437  				upper->owner = btrfs_header_owner(eb);
3438  		}
3439  		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3440  
3441  		if (rb_node) {
3442  			btrfs_put_root(root);
3443  			break;
3444  		}
3445  		lower = upper;
3446  		upper = NULL;
3447  	}
3448  out:
3449  	btrfs_release_path(path);
3450  	return ret;
3451  }
3452  
3453  /*
3454   * Add backref node @cur into @cache.
3455   *
3456   * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3457   *	 links aren't yet bi-directional. Needs to finish such links.
3458   *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3459   *
3460   * @trans:	Transaction handle.
3461   * @path:	Released path for indirect tree backref lookup
3462   * @iter:	Released backref iter for extent tree search
3463   * @node_key:	The first key of the tree block
3464   */
btrfs_backref_add_tree_node(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_backref_iter * iter,struct btrfs_key * node_key,struct btrfs_backref_node * cur)3465  int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3466  				struct btrfs_backref_cache *cache,
3467  				struct btrfs_path *path,
3468  				struct btrfs_backref_iter *iter,
3469  				struct btrfs_key *node_key,
3470  				struct btrfs_backref_node *cur)
3471  {
3472  	struct btrfs_backref_edge *edge;
3473  	struct btrfs_backref_node *exist;
3474  	int ret;
3475  
3476  	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3477  	if (ret < 0)
3478  		return ret;
3479  	/*
3480  	 * We skip the first btrfs_tree_block_info, as we don't use the key
3481  	 * stored in it, but fetch it from the tree block
3482  	 */
3483  	if (btrfs_backref_has_tree_block_info(iter)) {
3484  		ret = btrfs_backref_iter_next(iter);
3485  		if (ret < 0)
3486  			goto out;
3487  		/* No extra backref? This means the tree block is corrupted */
3488  		if (ret > 0) {
3489  			ret = -EUCLEAN;
3490  			goto out;
3491  		}
3492  	}
3493  	WARN_ON(cur->checked);
3494  	if (!list_empty(&cur->upper)) {
3495  		/*
3496  		 * The backref was added previously when processing backref of
3497  		 * type BTRFS_TREE_BLOCK_REF_KEY
3498  		 */
3499  		ASSERT(list_is_singular(&cur->upper));
3500  		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3501  				  list[LOWER]);
3502  		ASSERT(list_empty(&edge->list[UPPER]));
3503  		exist = edge->node[UPPER];
3504  		/*
3505  		 * Add the upper level block to pending list if we need check
3506  		 * its backrefs
3507  		 */
3508  		if (!exist->checked)
3509  			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3510  	} else {
3511  		exist = NULL;
3512  	}
3513  
3514  	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3515  		struct extent_buffer *eb;
3516  		struct btrfs_key key;
3517  		int type;
3518  
3519  		cond_resched();
3520  		eb = iter->path->nodes[0];
3521  
3522  		key.objectid = iter->bytenr;
3523  		if (btrfs_backref_iter_is_inline_ref(iter)) {
3524  			struct btrfs_extent_inline_ref *iref;
3525  
3526  			/* Update key for inline backref */
3527  			iref = (struct btrfs_extent_inline_ref *)
3528  				((unsigned long)iter->cur_ptr);
3529  			type = btrfs_get_extent_inline_ref_type(eb, iref,
3530  							BTRFS_REF_TYPE_BLOCK);
3531  			if (type == BTRFS_REF_TYPE_INVALID) {
3532  				ret = -EUCLEAN;
3533  				goto out;
3534  			}
3535  			key.type = type;
3536  			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3537  		} else {
3538  			key.type = iter->cur_key.type;
3539  			key.offset = iter->cur_key.offset;
3540  		}
3541  
3542  		/*
3543  		 * Parent node found and matches current inline ref, no need to
3544  		 * rebuild this node for this inline ref
3545  		 */
3546  		if (exist &&
3547  		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3548  		      exist->owner == key.offset) ||
3549  		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3550  		      exist->bytenr == key.offset))) {
3551  			exist = NULL;
3552  			continue;
3553  		}
3554  
3555  		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3556  		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3557  			ret = handle_direct_tree_backref(cache, &key, cur);
3558  			if (ret < 0)
3559  				goto out;
3560  		} else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3561  			/*
3562  			 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3563  			 * offset means the root objectid. We need to search
3564  			 * the tree to get its parent bytenr.
3565  			 */
3566  			ret = handle_indirect_tree_backref(trans, cache, path,
3567  							   &key, node_key, cur);
3568  			if (ret < 0)
3569  				goto out;
3570  		}
3571  		/*
3572  		 * Unrecognized tree backref items (if it can pass tree-checker)
3573  		 * would be ignored.
3574  		 */
3575  	}
3576  	ret = 0;
3577  	cur->checked = 1;
3578  	WARN_ON(exist);
3579  out:
3580  	btrfs_backref_iter_release(iter);
3581  	return ret;
3582  }
3583  
3584  /*
3585   * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3586   */
btrfs_backref_finish_upper_links(struct btrfs_backref_cache * cache,struct btrfs_backref_node * start)3587  int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3588  				     struct btrfs_backref_node *start)
3589  {
3590  	struct list_head *useless_node = &cache->useless_node;
3591  	struct btrfs_backref_edge *edge;
3592  	struct rb_node *rb_node;
3593  	LIST_HEAD(pending_edge);
3594  
3595  	ASSERT(start->checked);
3596  
3597  	/* Insert this node to cache if it's not COW-only */
3598  	if (!start->cowonly) {
3599  		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3600  					   &start->rb_node);
3601  		if (rb_node)
3602  			btrfs_backref_panic(cache->fs_info, start->bytenr,
3603  					    -EEXIST);
3604  		list_add_tail(&start->lower, &cache->leaves);
3605  	}
3606  
3607  	/*
3608  	 * Use breadth first search to iterate all related edges.
3609  	 *
3610  	 * The starting points are all the edges of this node
3611  	 */
3612  	list_for_each_entry(edge, &start->upper, list[LOWER])
3613  		list_add_tail(&edge->list[UPPER], &pending_edge);
3614  
3615  	while (!list_empty(&pending_edge)) {
3616  		struct btrfs_backref_node *upper;
3617  		struct btrfs_backref_node *lower;
3618  
3619  		edge = list_first_entry(&pending_edge,
3620  				struct btrfs_backref_edge, list[UPPER]);
3621  		list_del_init(&edge->list[UPPER]);
3622  		upper = edge->node[UPPER];
3623  		lower = edge->node[LOWER];
3624  
3625  		/* Parent is detached, no need to keep any edges */
3626  		if (upper->detached) {
3627  			list_del(&edge->list[LOWER]);
3628  			btrfs_backref_free_edge(cache, edge);
3629  
3630  			/* Lower node is orphan, queue for cleanup */
3631  			if (list_empty(&lower->upper))
3632  				list_add(&lower->list, useless_node);
3633  			continue;
3634  		}
3635  
3636  		/*
3637  		 * All new nodes added in current build_backref_tree() haven't
3638  		 * been linked to the cache rb tree.
3639  		 * So if we have upper->rb_node populated, this means a cache
3640  		 * hit. We only need to link the edge, as @upper and all its
3641  		 * parents have already been linked.
3642  		 */
3643  		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3644  			if (upper->lowest) {
3645  				list_del_init(&upper->lower);
3646  				upper->lowest = 0;
3647  			}
3648  
3649  			list_add_tail(&edge->list[UPPER], &upper->lower);
3650  			continue;
3651  		}
3652  
3653  		/* Sanity check, we shouldn't have any unchecked nodes */
3654  		if (!upper->checked) {
3655  			ASSERT(0);
3656  			return -EUCLEAN;
3657  		}
3658  
3659  		/* Sanity check, COW-only node has non-COW-only parent */
3660  		if (start->cowonly != upper->cowonly) {
3661  			ASSERT(0);
3662  			return -EUCLEAN;
3663  		}
3664  
3665  		/* Only cache non-COW-only (subvolume trees) tree blocks */
3666  		if (!upper->cowonly) {
3667  			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3668  						   &upper->rb_node);
3669  			if (rb_node) {
3670  				btrfs_backref_panic(cache->fs_info,
3671  						upper->bytenr, -EEXIST);
3672  				return -EUCLEAN;
3673  			}
3674  		}
3675  
3676  		list_add_tail(&edge->list[UPPER], &upper->lower);
3677  
3678  		/*
3679  		 * Also queue all the parent edges of this uncached node
3680  		 * to finish the upper linkage
3681  		 */
3682  		list_for_each_entry(edge, &upper->upper, list[LOWER])
3683  			list_add_tail(&edge->list[UPPER], &pending_edge);
3684  	}
3685  	return 0;
3686  }
3687  
btrfs_backref_error_cleanup(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3688  void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3689  				 struct btrfs_backref_node *node)
3690  {
3691  	struct btrfs_backref_node *lower;
3692  	struct btrfs_backref_node *upper;
3693  	struct btrfs_backref_edge *edge;
3694  
3695  	while (!list_empty(&cache->useless_node)) {
3696  		lower = list_first_entry(&cache->useless_node,
3697  				   struct btrfs_backref_node, list);
3698  		list_del_init(&lower->list);
3699  	}
3700  	while (!list_empty(&cache->pending_edge)) {
3701  		edge = list_first_entry(&cache->pending_edge,
3702  				struct btrfs_backref_edge, list[UPPER]);
3703  		list_del(&edge->list[UPPER]);
3704  		list_del(&edge->list[LOWER]);
3705  		lower = edge->node[LOWER];
3706  		upper = edge->node[UPPER];
3707  		btrfs_backref_free_edge(cache, edge);
3708  
3709  		/*
3710  		 * Lower is no longer linked to any upper backref nodes and
3711  		 * isn't in the cache, we can free it ourselves.
3712  		 */
3713  		if (list_empty(&lower->upper) &&
3714  		    RB_EMPTY_NODE(&lower->rb_node))
3715  			list_add(&lower->list, &cache->useless_node);
3716  
3717  		if (!RB_EMPTY_NODE(&upper->rb_node))
3718  			continue;
3719  
3720  		/* Add this guy's upper edges to the list to process */
3721  		list_for_each_entry(edge, &upper->upper, list[LOWER])
3722  			list_add_tail(&edge->list[UPPER],
3723  				      &cache->pending_edge);
3724  		if (list_empty(&upper->upper))
3725  			list_add(&upper->list, &cache->useless_node);
3726  	}
3727  
3728  	while (!list_empty(&cache->useless_node)) {
3729  		lower = list_first_entry(&cache->useless_node,
3730  				   struct btrfs_backref_node, list);
3731  		list_del_init(&lower->list);
3732  		if (lower == node)
3733  			node = NULL;
3734  		btrfs_backref_drop_node(cache, lower);
3735  	}
3736  
3737  	btrfs_backref_cleanup_node(cache, node);
3738  	ASSERT(list_empty(&cache->useless_node) &&
3739  	       list_empty(&cache->pending_edge));
3740  }
3741