1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * (C) Copyright Linus Torvalds 1999
4   * (C) Copyright Johannes Erdfelt 1999-2001
5   * (C) Copyright Andreas Gal 1999
6   * (C) Copyright Gregory P. Smith 1999
7   * (C) Copyright Deti Fliegl 1999
8   * (C) Copyright Randy Dunlap 2000
9   * (C) Copyright David Brownell 2000-2002
10   */
11  
12  #include <linux/bcd.h>
13  #include <linux/module.h>
14  #include <linux/version.h>
15  #include <linux/kernel.h>
16  #include <linux/sched/task_stack.h>
17  #include <linux/slab.h>
18  #include <linux/completion.h>
19  #include <linux/utsname.h>
20  #include <linux/mm.h>
21  #include <asm/io.h>
22  #include <linux/device.h>
23  #include <linux/dma-mapping.h>
24  #include <linux/mutex.h>
25  #include <asm/irq.h>
26  #include <asm/byteorder.h>
27  #include <linux/unaligned.h>
28  #include <linux/platform_device.h>
29  #include <linux/workqueue.h>
30  #include <linux/pm_runtime.h>
31  #include <linux/types.h>
32  #include <linux/genalloc.h>
33  #include <linux/io.h>
34  #include <linux/kcov.h>
35  
36  #include <linux/phy/phy.h>
37  #include <linux/usb.h>
38  #include <linux/usb/hcd.h>
39  #include <linux/usb/otg.h>
40  
41  #include "usb.h"
42  #include "phy.h"
43  
44  
45  /*-------------------------------------------------------------------------*/
46  
47  /*
48   * USB Host Controller Driver framework
49   *
50   * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51   * HCD-specific behaviors/bugs.
52   *
53   * This does error checks, tracks devices and urbs, and delegates to a
54   * "hc_driver" only for code (and data) that really needs to know about
55   * hardware differences.  That includes root hub registers, i/o queues,
56   * and so on ... but as little else as possible.
57   *
58   * Shared code includes most of the "root hub" code (these are emulated,
59   * though each HC's hardware works differently) and PCI glue, plus request
60   * tracking overhead.  The HCD code should only block on spinlocks or on
61   * hardware handshaking; blocking on software events (such as other kernel
62   * threads releasing resources, or completing actions) is all generic.
63   *
64   * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65   * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66   * only by the hub driver ... and that neither should be seen or used by
67   * usb client device drivers.
68   *
69   * Contributors of ideas or unattributed patches include: David Brownell,
70   * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71   *
72   * HISTORY:
73   * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
74   *		associated cleanup.  "usb_hcd" still != "usb_bus".
75   * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
76   */
77  
78  /*-------------------------------------------------------------------------*/
79  
80  /* Keep track of which host controller drivers are loaded */
81  unsigned long usb_hcds_loaded;
82  EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83  
84  /* host controllers we manage */
85  DEFINE_IDR (usb_bus_idr);
86  EXPORT_SYMBOL_GPL (usb_bus_idr);
87  
88  /* used when allocating bus numbers */
89  #define USB_MAXBUS		64
90  
91  /* used when updating list of hcds */
92  DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
93  EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94  
95  /* used for controlling access to virtual root hubs */
96  static DEFINE_SPINLOCK(hcd_root_hub_lock);
97  
98  /* used when updating an endpoint's URB list */
99  static DEFINE_SPINLOCK(hcd_urb_list_lock);
100  
101  /* used to protect against unlinking URBs after the device is gone */
102  static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103  
104  /* wait queue for synchronous unlinks */
105  DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106  
107  /*-------------------------------------------------------------------------*/
108  
109  /*
110   * Sharable chunks of root hub code.
111   */
112  
113  /*-------------------------------------------------------------------------*/
114  #define KERNEL_REL	bin2bcd(LINUX_VERSION_MAJOR)
115  #define KERNEL_VER	bin2bcd(LINUX_VERSION_PATCHLEVEL)
116  
117  /* usb 3.1 root hub device descriptor */
118  static const u8 usb31_rh_dev_descriptor[18] = {
119  	0x12,       /*  __u8  bLength; */
120  	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121  	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
122  
123  	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
124  	0x00,	    /*  __u8  bDeviceSubClass; */
125  	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
126  	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
127  
128  	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
129  	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
130  	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
131  
132  	0x03,       /*  __u8  iManufacturer; */
133  	0x02,       /*  __u8  iProduct; */
134  	0x01,       /*  __u8  iSerialNumber; */
135  	0x01        /*  __u8  bNumConfigurations; */
136  };
137  
138  /* usb 3.0 root hub device descriptor */
139  static const u8 usb3_rh_dev_descriptor[18] = {
140  	0x12,       /*  __u8  bLength; */
141  	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142  	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
143  
144  	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
145  	0x00,	    /*  __u8  bDeviceSubClass; */
146  	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
147  	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
148  
149  	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
150  	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
151  	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
152  
153  	0x03,       /*  __u8  iManufacturer; */
154  	0x02,       /*  __u8  iProduct; */
155  	0x01,       /*  __u8  iSerialNumber; */
156  	0x01        /*  __u8  bNumConfigurations; */
157  };
158  
159  /* usb 2.0 root hub device descriptor */
160  static const u8 usb2_rh_dev_descriptor[18] = {
161  	0x12,       /*  __u8  bLength; */
162  	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163  	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
164  
165  	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
166  	0x00,	    /*  __u8  bDeviceSubClass; */
167  	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
168  	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
169  
170  	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
171  	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
172  	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
173  
174  	0x03,       /*  __u8  iManufacturer; */
175  	0x02,       /*  __u8  iProduct; */
176  	0x01,       /*  __u8  iSerialNumber; */
177  	0x01        /*  __u8  bNumConfigurations; */
178  };
179  
180  /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
181  
182  /* usb 1.1 root hub device descriptor */
183  static const u8 usb11_rh_dev_descriptor[18] = {
184  	0x12,       /*  __u8  bLength; */
185  	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186  	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
187  
188  	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
189  	0x00,	    /*  __u8  bDeviceSubClass; */
190  	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
191  	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
192  
193  	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
194  	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
195  	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
196  
197  	0x03,       /*  __u8  iManufacturer; */
198  	0x02,       /*  __u8  iProduct; */
199  	0x01,       /*  __u8  iSerialNumber; */
200  	0x01        /*  __u8  bNumConfigurations; */
201  };
202  
203  
204  /*-------------------------------------------------------------------------*/
205  
206  /* Configuration descriptors for our root hubs */
207  
208  static const u8 fs_rh_config_descriptor[] = {
209  
210  	/* one configuration */
211  	0x09,       /*  __u8  bLength; */
212  	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
213  	0x19, 0x00, /*  __le16 wTotalLength; */
214  	0x01,       /*  __u8  bNumInterfaces; (1) */
215  	0x01,       /*  __u8  bConfigurationValue; */
216  	0x00,       /*  __u8  iConfiguration; */
217  	0xc0,       /*  __u8  bmAttributes;
218  				 Bit 7: must be set,
219  				     6: Self-powered,
220  				     5: Remote wakeup,
221  				     4..0: resvd */
222  	0x00,       /*  __u8  MaxPower; */
223  
224  	/* USB 1.1:
225  	 * USB 2.0, single TT organization (mandatory):
226  	 *	one interface, protocol 0
227  	 *
228  	 * USB 2.0, multiple TT organization (optional):
229  	 *	two interfaces, protocols 1 (like single TT)
230  	 *	and 2 (multiple TT mode) ... config is
231  	 *	sometimes settable
232  	 *	NOT IMPLEMENTED
233  	 */
234  
235  	/* one interface */
236  	0x09,       /*  __u8  if_bLength; */
237  	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
238  	0x00,       /*  __u8  if_bInterfaceNumber; */
239  	0x00,       /*  __u8  if_bAlternateSetting; */
240  	0x01,       /*  __u8  if_bNumEndpoints; */
241  	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
242  	0x00,       /*  __u8  if_bInterfaceSubClass; */
243  	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
244  	0x00,       /*  __u8  if_iInterface; */
245  
246  	/* one endpoint (status change endpoint) */
247  	0x07,       /*  __u8  ep_bLength; */
248  	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
249  	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
250  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
251  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
252  	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
253  };
254  
255  static const u8 hs_rh_config_descriptor[] = {
256  
257  	/* one configuration */
258  	0x09,       /*  __u8  bLength; */
259  	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
260  	0x19, 0x00, /*  __le16 wTotalLength; */
261  	0x01,       /*  __u8  bNumInterfaces; (1) */
262  	0x01,       /*  __u8  bConfigurationValue; */
263  	0x00,       /*  __u8  iConfiguration; */
264  	0xc0,       /*  __u8  bmAttributes;
265  				 Bit 7: must be set,
266  				     6: Self-powered,
267  				     5: Remote wakeup,
268  				     4..0: resvd */
269  	0x00,       /*  __u8  MaxPower; */
270  
271  	/* USB 1.1:
272  	 * USB 2.0, single TT organization (mandatory):
273  	 *	one interface, protocol 0
274  	 *
275  	 * USB 2.0, multiple TT organization (optional):
276  	 *	two interfaces, protocols 1 (like single TT)
277  	 *	and 2 (multiple TT mode) ... config is
278  	 *	sometimes settable
279  	 *	NOT IMPLEMENTED
280  	 */
281  
282  	/* one interface */
283  	0x09,       /*  __u8  if_bLength; */
284  	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
285  	0x00,       /*  __u8  if_bInterfaceNumber; */
286  	0x00,       /*  __u8  if_bAlternateSetting; */
287  	0x01,       /*  __u8  if_bNumEndpoints; */
288  	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
289  	0x00,       /*  __u8  if_bInterfaceSubClass; */
290  	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
291  	0x00,       /*  __u8  if_iInterface; */
292  
293  	/* one endpoint (status change endpoint) */
294  	0x07,       /*  __u8  ep_bLength; */
295  	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
296  	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
297  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
298  		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
299  		     * see hub.c:hub_configure() for details. */
300  	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
301  	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
302  };
303  
304  static const u8 ss_rh_config_descriptor[] = {
305  	/* one configuration */
306  	0x09,       /*  __u8  bLength; */
307  	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
308  	0x1f, 0x00, /*  __le16 wTotalLength; */
309  	0x01,       /*  __u8  bNumInterfaces; (1) */
310  	0x01,       /*  __u8  bConfigurationValue; */
311  	0x00,       /*  __u8  iConfiguration; */
312  	0xc0,       /*  __u8  bmAttributes;
313  				 Bit 7: must be set,
314  				     6: Self-powered,
315  				     5: Remote wakeup,
316  				     4..0: resvd */
317  	0x00,       /*  __u8  MaxPower; */
318  
319  	/* one interface */
320  	0x09,       /*  __u8  if_bLength; */
321  	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
322  	0x00,       /*  __u8  if_bInterfaceNumber; */
323  	0x00,       /*  __u8  if_bAlternateSetting; */
324  	0x01,       /*  __u8  if_bNumEndpoints; */
325  	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
326  	0x00,       /*  __u8  if_bInterfaceSubClass; */
327  	0x00,       /*  __u8  if_bInterfaceProtocol; */
328  	0x00,       /*  __u8  if_iInterface; */
329  
330  	/* one endpoint (status change endpoint) */
331  	0x07,       /*  __u8  ep_bLength; */
332  	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
333  	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
334  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
335  		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
336  		     * see hub.c:hub_configure() for details. */
337  	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
338  	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
339  
340  	/* one SuperSpeed endpoint companion descriptor */
341  	0x06,        /* __u8 ss_bLength */
342  	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
343  		     /* Companion */
344  	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
345  	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
346  	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
347  };
348  
349  /* authorized_default behaviour:
350   * -1 is authorized for all devices (leftover from wireless USB)
351   * 0 is unauthorized for all devices
352   * 1 is authorized for all devices
353   * 2 is authorized for internal devices
354   */
355  #define USB_AUTHORIZE_WIRED	-1
356  #define USB_AUTHORIZE_NONE	0
357  #define USB_AUTHORIZE_ALL	1
358  #define USB_AUTHORIZE_INTERNAL	2
359  
360  static int authorized_default = CONFIG_USB_DEFAULT_AUTHORIZATION_MODE;
361  module_param(authorized_default, int, S_IRUGO|S_IWUSR);
362  MODULE_PARM_DESC(authorized_default,
363  		"Default USB device authorization: 0 is not authorized, 1 is authorized (default), 2 is authorized for internal devices, -1 is authorized (same as 1)");
364  /*-------------------------------------------------------------------------*/
365  
366  /**
367   * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
368   * @s: Null-terminated ASCII (actually ISO-8859-1) string
369   * @buf: Buffer for USB string descriptor (header + UTF-16LE)
370   * @len: Length (in bytes; may be odd) of descriptor buffer.
371   *
372   * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
373   * whichever is less.
374   *
375   * Note:
376   * USB String descriptors can contain at most 126 characters; input
377   * strings longer than that are truncated.
378   */
379  static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)380  ascii2desc(char const *s, u8 *buf, unsigned len)
381  {
382  	unsigned n, t = 2 + 2*strlen(s);
383  
384  	if (t > 254)
385  		t = 254;	/* Longest possible UTF string descriptor */
386  	if (len > t)
387  		len = t;
388  
389  	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
390  
391  	n = len;
392  	while (n--) {
393  		*buf++ = t;
394  		if (!n--)
395  			break;
396  		*buf++ = t >> 8;
397  		t = (unsigned char)*s++;
398  	}
399  	return len;
400  }
401  
402  /**
403   * rh_string() - provides string descriptors for root hub
404   * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
405   * @hcd: the host controller for this root hub
406   * @data: buffer for output packet
407   * @len: length of the provided buffer
408   *
409   * Produces either a manufacturer, product or serial number string for the
410   * virtual root hub device.
411   *
412   * Return: The number of bytes filled in: the length of the descriptor or
413   * of the provided buffer, whichever is less.
414   */
415  static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)416  rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
417  {
418  	char buf[100];
419  	char const *s;
420  	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
421  
422  	/* language ids */
423  	switch (id) {
424  	case 0:
425  		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
426  		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
427  		if (len > 4)
428  			len = 4;
429  		memcpy(data, langids, len);
430  		return len;
431  	case 1:
432  		/* Serial number */
433  		s = hcd->self.bus_name;
434  		break;
435  	case 2:
436  		/* Product name */
437  		s = hcd->product_desc;
438  		break;
439  	case 3:
440  		/* Manufacturer */
441  		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
442  			init_utsname()->release, hcd->driver->description);
443  		s = buf;
444  		break;
445  	default:
446  		/* Can't happen; caller guarantees it */
447  		return 0;
448  	}
449  
450  	return ascii2desc(s, data, len);
451  }
452  
453  
454  /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)455  static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
456  {
457  	struct usb_ctrlrequest *cmd;
458  	u16		typeReq, wValue, wIndex, wLength;
459  	u8		*ubuf = urb->transfer_buffer;
460  	unsigned	len = 0;
461  	int		status;
462  	u8		patch_wakeup = 0;
463  	u8		patch_protocol = 0;
464  	u16		tbuf_size;
465  	u8		*tbuf = NULL;
466  	const u8	*bufp;
467  
468  	might_sleep();
469  
470  	spin_lock_irq(&hcd_root_hub_lock);
471  	status = usb_hcd_link_urb_to_ep(hcd, urb);
472  	spin_unlock_irq(&hcd_root_hub_lock);
473  	if (status)
474  		return status;
475  	urb->hcpriv = hcd;	/* Indicate it's queued */
476  
477  	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
478  	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
479  	wValue   = le16_to_cpu (cmd->wValue);
480  	wIndex   = le16_to_cpu (cmd->wIndex);
481  	wLength  = le16_to_cpu (cmd->wLength);
482  
483  	if (wLength > urb->transfer_buffer_length)
484  		goto error;
485  
486  	/*
487  	 * tbuf should be at least as big as the
488  	 * USB hub descriptor.
489  	 */
490  	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
491  	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
492  	if (!tbuf) {
493  		status = -ENOMEM;
494  		goto err_alloc;
495  	}
496  
497  	bufp = tbuf;
498  
499  
500  	urb->actual_length = 0;
501  	switch (typeReq) {
502  
503  	/* DEVICE REQUESTS */
504  
505  	/* The root hub's remote wakeup enable bit is implemented using
506  	 * driver model wakeup flags.  If this system supports wakeup
507  	 * through USB, userspace may change the default "allow wakeup"
508  	 * policy through sysfs or these calls.
509  	 *
510  	 * Most root hubs support wakeup from downstream devices, for
511  	 * runtime power management (disabling USB clocks and reducing
512  	 * VBUS power usage).  However, not all of them do so; silicon,
513  	 * board, and BIOS bugs here are not uncommon, so these can't
514  	 * be treated quite like external hubs.
515  	 *
516  	 * Likewise, not all root hubs will pass wakeup events upstream,
517  	 * to wake up the whole system.  So don't assume root hub and
518  	 * controller capabilities are identical.
519  	 */
520  
521  	case DeviceRequest | USB_REQ_GET_STATUS:
522  		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
523  					<< USB_DEVICE_REMOTE_WAKEUP)
524  				| (1 << USB_DEVICE_SELF_POWERED);
525  		tbuf[1] = 0;
526  		len = 2;
527  		break;
528  	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
529  		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
530  			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
531  		else
532  			goto error;
533  		break;
534  	case DeviceOutRequest | USB_REQ_SET_FEATURE:
535  		if (device_can_wakeup(&hcd->self.root_hub->dev)
536  				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
537  			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
538  		else
539  			goto error;
540  		break;
541  	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
542  		tbuf[0] = 1;
543  		len = 1;
544  		fallthrough;
545  	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
546  		break;
547  	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
548  		switch (wValue & 0xff00) {
549  		case USB_DT_DEVICE << 8:
550  			switch (hcd->speed) {
551  			case HCD_USB32:
552  			case HCD_USB31:
553  				bufp = usb31_rh_dev_descriptor;
554  				break;
555  			case HCD_USB3:
556  				bufp = usb3_rh_dev_descriptor;
557  				break;
558  			case HCD_USB2:
559  				bufp = usb2_rh_dev_descriptor;
560  				break;
561  			case HCD_USB11:
562  				bufp = usb11_rh_dev_descriptor;
563  				break;
564  			default:
565  				goto error;
566  			}
567  			len = 18;
568  			if (hcd->has_tt)
569  				patch_protocol = 1;
570  			break;
571  		case USB_DT_CONFIG << 8:
572  			switch (hcd->speed) {
573  			case HCD_USB32:
574  			case HCD_USB31:
575  			case HCD_USB3:
576  				bufp = ss_rh_config_descriptor;
577  				len = sizeof ss_rh_config_descriptor;
578  				break;
579  			case HCD_USB2:
580  				bufp = hs_rh_config_descriptor;
581  				len = sizeof hs_rh_config_descriptor;
582  				break;
583  			case HCD_USB11:
584  				bufp = fs_rh_config_descriptor;
585  				len = sizeof fs_rh_config_descriptor;
586  				break;
587  			default:
588  				goto error;
589  			}
590  			if (device_can_wakeup(&hcd->self.root_hub->dev))
591  				patch_wakeup = 1;
592  			break;
593  		case USB_DT_STRING << 8:
594  			if ((wValue & 0xff) < 4)
595  				urb->actual_length = rh_string(wValue & 0xff,
596  						hcd, ubuf, wLength);
597  			else /* unsupported IDs --> "protocol stall" */
598  				goto error;
599  			break;
600  		case USB_DT_BOS << 8:
601  			goto nongeneric;
602  		default:
603  			goto error;
604  		}
605  		break;
606  	case DeviceRequest | USB_REQ_GET_INTERFACE:
607  		tbuf[0] = 0;
608  		len = 1;
609  		fallthrough;
610  	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
611  		break;
612  	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
613  		/* wValue == urb->dev->devaddr */
614  		dev_dbg (hcd->self.controller, "root hub device address %d\n",
615  			wValue);
616  		break;
617  
618  	/* INTERFACE REQUESTS (no defined feature/status flags) */
619  
620  	/* ENDPOINT REQUESTS */
621  
622  	case EndpointRequest | USB_REQ_GET_STATUS:
623  		/* ENDPOINT_HALT flag */
624  		tbuf[0] = 0;
625  		tbuf[1] = 0;
626  		len = 2;
627  		fallthrough;
628  	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
629  	case EndpointOutRequest | USB_REQ_SET_FEATURE:
630  		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
631  		break;
632  
633  	/* CLASS REQUESTS (and errors) */
634  
635  	default:
636  nongeneric:
637  		/* non-generic request */
638  		switch (typeReq) {
639  		case GetHubStatus:
640  			len = 4;
641  			break;
642  		case GetPortStatus:
643  			if (wValue == HUB_PORT_STATUS)
644  				len = 4;
645  			else
646  				/* other port status types return 8 bytes */
647  				len = 8;
648  			break;
649  		case GetHubDescriptor:
650  			len = sizeof (struct usb_hub_descriptor);
651  			break;
652  		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
653  			/* len is returned by hub_control */
654  			break;
655  		}
656  		status = hcd->driver->hub_control (hcd,
657  			typeReq, wValue, wIndex,
658  			tbuf, wLength);
659  
660  		if (typeReq == GetHubDescriptor)
661  			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
662  				(struct usb_hub_descriptor *)tbuf);
663  		break;
664  error:
665  		/* "protocol stall" on error */
666  		status = -EPIPE;
667  	}
668  
669  	if (status < 0) {
670  		len = 0;
671  		if (status != -EPIPE) {
672  			dev_dbg (hcd->self.controller,
673  				"CTRL: TypeReq=0x%x val=0x%x "
674  				"idx=0x%x len=%d ==> %d\n",
675  				typeReq, wValue, wIndex,
676  				wLength, status);
677  		}
678  	} else if (status > 0) {
679  		/* hub_control may return the length of data copied. */
680  		len = status;
681  		status = 0;
682  	}
683  	if (len) {
684  		if (urb->transfer_buffer_length < len)
685  			len = urb->transfer_buffer_length;
686  		urb->actual_length = len;
687  		/* always USB_DIR_IN, toward host */
688  		memcpy (ubuf, bufp, len);
689  
690  		/* report whether RH hardware supports remote wakeup */
691  		if (patch_wakeup &&
692  				len > offsetof (struct usb_config_descriptor,
693  						bmAttributes))
694  			((struct usb_config_descriptor *)ubuf)->bmAttributes
695  				|= USB_CONFIG_ATT_WAKEUP;
696  
697  		/* report whether RH hardware has an integrated TT */
698  		if (patch_protocol &&
699  				len > offsetof(struct usb_device_descriptor,
700  						bDeviceProtocol))
701  			((struct usb_device_descriptor *) ubuf)->
702  				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
703  	}
704  
705  	kfree(tbuf);
706   err_alloc:
707  
708  	/* any errors get returned through the urb completion */
709  	spin_lock_irq(&hcd_root_hub_lock);
710  	usb_hcd_unlink_urb_from_ep(hcd, urb);
711  	usb_hcd_giveback_urb(hcd, urb, status);
712  	spin_unlock_irq(&hcd_root_hub_lock);
713  	return 0;
714  }
715  
716  /*-------------------------------------------------------------------------*/
717  
718  /*
719   * Root Hub interrupt transfers are polled using a timer if the
720   * driver requests it; otherwise the driver is responsible for
721   * calling usb_hcd_poll_rh_status() when an event occurs.
722   *
723   * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
724   */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)725  void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
726  {
727  	struct urb	*urb;
728  	int		length;
729  	int		status;
730  	unsigned long	flags;
731  	char		buffer[6];	/* Any root hubs with > 31 ports? */
732  
733  	if (unlikely(!hcd->rh_pollable))
734  		return;
735  	if (!hcd->uses_new_polling && !hcd->status_urb)
736  		return;
737  
738  	length = hcd->driver->hub_status_data(hcd, buffer);
739  	if (length > 0) {
740  
741  		/* try to complete the status urb */
742  		spin_lock_irqsave(&hcd_root_hub_lock, flags);
743  		urb = hcd->status_urb;
744  		if (urb) {
745  			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
746  			hcd->status_urb = NULL;
747  			if (urb->transfer_buffer_length >= length) {
748  				status = 0;
749  			} else {
750  				status = -EOVERFLOW;
751  				length = urb->transfer_buffer_length;
752  			}
753  			urb->actual_length = length;
754  			memcpy(urb->transfer_buffer, buffer, length);
755  
756  			usb_hcd_unlink_urb_from_ep(hcd, urb);
757  			usb_hcd_giveback_urb(hcd, urb, status);
758  		} else {
759  			length = 0;
760  			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
761  		}
762  		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
763  	}
764  
765  	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
766  	 * exceed that limit if HZ is 100. The math is more clunky than
767  	 * maybe expected, this is to make sure that all timers for USB devices
768  	 * fire at the same time to give the CPU a break in between */
769  	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
770  			(length == 0 && hcd->status_urb != NULL))
771  		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
772  }
773  EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
774  
775  /* timer callback */
rh_timer_func(struct timer_list * t)776  static void rh_timer_func (struct timer_list *t)
777  {
778  	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
779  
780  	usb_hcd_poll_rh_status(_hcd);
781  }
782  
783  /*-------------------------------------------------------------------------*/
784  
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)785  static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
786  {
787  	int		retval;
788  	unsigned long	flags;
789  	unsigned	len = 1 + (urb->dev->maxchild / 8);
790  
791  	spin_lock_irqsave (&hcd_root_hub_lock, flags);
792  	if (hcd->status_urb || urb->transfer_buffer_length < len) {
793  		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
794  		retval = -EINVAL;
795  		goto done;
796  	}
797  
798  	retval = usb_hcd_link_urb_to_ep(hcd, urb);
799  	if (retval)
800  		goto done;
801  
802  	hcd->status_urb = urb;
803  	urb->hcpriv = hcd;	/* indicate it's queued */
804  	if (!hcd->uses_new_polling)
805  		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
806  
807  	/* If a status change has already occurred, report it ASAP */
808  	else if (HCD_POLL_PENDING(hcd))
809  		mod_timer(&hcd->rh_timer, jiffies);
810  	retval = 0;
811   done:
812  	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
813  	return retval;
814  }
815  
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)816  static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
817  {
818  	if (usb_endpoint_xfer_int(&urb->ep->desc))
819  		return rh_queue_status (hcd, urb);
820  	if (usb_endpoint_xfer_control(&urb->ep->desc))
821  		return rh_call_control (hcd, urb);
822  	return -EINVAL;
823  }
824  
825  /*-------------------------------------------------------------------------*/
826  
827  /* Unlinks of root-hub control URBs are legal, but they don't do anything
828   * since these URBs always execute synchronously.
829   */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)830  static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
831  {
832  	unsigned long	flags;
833  	int		rc;
834  
835  	spin_lock_irqsave(&hcd_root_hub_lock, flags);
836  	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
837  	if (rc)
838  		goto done;
839  
840  	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
841  		;	/* Do nothing */
842  
843  	} else {				/* Status URB */
844  		if (!hcd->uses_new_polling)
845  			del_timer (&hcd->rh_timer);
846  		if (urb == hcd->status_urb) {
847  			hcd->status_urb = NULL;
848  			usb_hcd_unlink_urb_from_ep(hcd, urb);
849  			usb_hcd_giveback_urb(hcd, urb, status);
850  		}
851  	}
852   done:
853  	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
854  	return rc;
855  }
856  
857  
858  /*-------------------------------------------------------------------------*/
859  
860  /**
861   * usb_bus_init - shared initialization code
862   * @bus: the bus structure being initialized
863   *
864   * This code is used to initialize a usb_bus structure, memory for which is
865   * separately managed.
866   */
usb_bus_init(struct usb_bus * bus)867  static void usb_bus_init (struct usb_bus *bus)
868  {
869  	memset(&bus->devmap, 0, sizeof(bus->devmap));
870  
871  	bus->devnum_next = 1;
872  
873  	bus->root_hub = NULL;
874  	bus->busnum = -1;
875  	bus->bandwidth_allocated = 0;
876  	bus->bandwidth_int_reqs  = 0;
877  	bus->bandwidth_isoc_reqs = 0;
878  	mutex_init(&bus->devnum_next_mutex);
879  }
880  
881  /*-------------------------------------------------------------------------*/
882  
883  /**
884   * usb_register_bus - registers the USB host controller with the usb core
885   * @bus: pointer to the bus to register
886   *
887   * Context: task context, might sleep.
888   *
889   * Assigns a bus number, and links the controller into usbcore data
890   * structures so that it can be seen by scanning the bus list.
891   *
892   * Return: 0 if successful. A negative error code otherwise.
893   */
usb_register_bus(struct usb_bus * bus)894  static int usb_register_bus(struct usb_bus *bus)
895  {
896  	int result = -E2BIG;
897  	int busnum;
898  
899  	mutex_lock(&usb_bus_idr_lock);
900  	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
901  	if (busnum < 0) {
902  		pr_err("%s: failed to get bus number\n", usbcore_name);
903  		goto error_find_busnum;
904  	}
905  	bus->busnum = busnum;
906  	mutex_unlock(&usb_bus_idr_lock);
907  
908  	usb_notify_add_bus(bus);
909  
910  	dev_info (bus->controller, "new USB bus registered, assigned bus "
911  		  "number %d\n", bus->busnum);
912  	return 0;
913  
914  error_find_busnum:
915  	mutex_unlock(&usb_bus_idr_lock);
916  	return result;
917  }
918  
919  /**
920   * usb_deregister_bus - deregisters the USB host controller
921   * @bus: pointer to the bus to deregister
922   *
923   * Context: task context, might sleep.
924   *
925   * Recycles the bus number, and unlinks the controller from usbcore data
926   * structures so that it won't be seen by scanning the bus list.
927   */
usb_deregister_bus(struct usb_bus * bus)928  static void usb_deregister_bus (struct usb_bus *bus)
929  {
930  	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
931  
932  	/*
933  	 * NOTE: make sure that all the devices are removed by the
934  	 * controller code, as well as having it call this when cleaning
935  	 * itself up
936  	 */
937  	mutex_lock(&usb_bus_idr_lock);
938  	idr_remove(&usb_bus_idr, bus->busnum);
939  	mutex_unlock(&usb_bus_idr_lock);
940  
941  	usb_notify_remove_bus(bus);
942  }
943  
944  /**
945   * register_root_hub - called by usb_add_hcd() to register a root hub
946   * @hcd: host controller for this root hub
947   *
948   * This function registers the root hub with the USB subsystem.  It sets up
949   * the device properly in the device tree and then calls usb_new_device()
950   * to register the usb device.  It also assigns the root hub's USB address
951   * (always 1).
952   *
953   * Return: 0 if successful. A negative error code otherwise.
954   */
register_root_hub(struct usb_hcd * hcd)955  static int register_root_hub(struct usb_hcd *hcd)
956  {
957  	struct device *parent_dev = hcd->self.controller;
958  	struct usb_device *usb_dev = hcd->self.root_hub;
959  	struct usb_device_descriptor *descr;
960  	const int devnum = 1;
961  	int retval;
962  
963  	usb_dev->devnum = devnum;
964  	usb_dev->bus->devnum_next = devnum + 1;
965  	set_bit(devnum, usb_dev->bus->devmap);
966  	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
967  
968  	mutex_lock(&usb_bus_idr_lock);
969  
970  	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
971  	descr = usb_get_device_descriptor(usb_dev);
972  	if (IS_ERR(descr)) {
973  		retval = PTR_ERR(descr);
974  		mutex_unlock(&usb_bus_idr_lock);
975  		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
976  				dev_name(&usb_dev->dev), retval);
977  		return retval;
978  	}
979  	usb_dev->descriptor = *descr;
980  	kfree(descr);
981  
982  	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
983  		retval = usb_get_bos_descriptor(usb_dev);
984  		if (!retval) {
985  			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
986  		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
987  			mutex_unlock(&usb_bus_idr_lock);
988  			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
989  					dev_name(&usb_dev->dev), retval);
990  			return retval;
991  		}
992  	}
993  
994  	retval = usb_new_device (usb_dev);
995  	if (retval) {
996  		dev_err (parent_dev, "can't register root hub for %s, %d\n",
997  				dev_name(&usb_dev->dev), retval);
998  	} else {
999  		spin_lock_irq (&hcd_root_hub_lock);
1000  		hcd->rh_registered = 1;
1001  		spin_unlock_irq (&hcd_root_hub_lock);
1002  
1003  		/* Did the HC die before the root hub was registered? */
1004  		if (HCD_DEAD(hcd))
1005  			usb_hc_died (hcd);	/* This time clean up */
1006  	}
1007  	mutex_unlock(&usb_bus_idr_lock);
1008  
1009  	return retval;
1010  }
1011  
1012  /*
1013   * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1014   * @bus: the bus which the root hub belongs to
1015   * @portnum: the port which is being resumed
1016   *
1017   * HCDs should call this function when they know that a resume signal is
1018   * being sent to a root-hub port.  The root hub will be prevented from
1019   * going into autosuspend until usb_hcd_end_port_resume() is called.
1020   *
1021   * The bus's private lock must be held by the caller.
1022   */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1023  void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1024  {
1025  	unsigned bit = 1 << portnum;
1026  
1027  	if (!(bus->resuming_ports & bit)) {
1028  		bus->resuming_ports |= bit;
1029  		pm_runtime_get_noresume(&bus->root_hub->dev);
1030  	}
1031  }
1032  EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1033  
1034  /*
1035   * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1036   * @bus: the bus which the root hub belongs to
1037   * @portnum: the port which is being resumed
1038   *
1039   * HCDs should call this function when they know that a resume signal has
1040   * stopped being sent to a root-hub port.  The root hub will be allowed to
1041   * autosuspend again.
1042   *
1043   * The bus's private lock must be held by the caller.
1044   */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1045  void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1046  {
1047  	unsigned bit = 1 << portnum;
1048  
1049  	if (bus->resuming_ports & bit) {
1050  		bus->resuming_ports &= ~bit;
1051  		pm_runtime_put_noidle(&bus->root_hub->dev);
1052  	}
1053  }
1054  EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1055  
1056  /*-------------------------------------------------------------------------*/
1057  
1058  /**
1059   * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1060   * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1061   * @is_input: true iff the transaction sends data to the host
1062   * @isoc: true for isochronous transactions, false for interrupt ones
1063   * @bytecount: how many bytes in the transaction.
1064   *
1065   * Return: Approximate bus time in nanoseconds for a periodic transaction.
1066   *
1067   * Note:
1068   * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1069   * scheduled in software, this function is only used for such scheduling.
1070   */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1071  long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1072  {
1073  	unsigned long	tmp;
1074  
1075  	switch (speed) {
1076  	case USB_SPEED_LOW: 	/* INTR only */
1077  		if (is_input) {
1078  			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1079  			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1080  		} else {
1081  			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1082  			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1083  		}
1084  	case USB_SPEED_FULL:	/* ISOC or INTR */
1085  		if (isoc) {
1086  			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1087  			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1088  		} else {
1089  			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1090  			return 9107L + BW_HOST_DELAY + tmp;
1091  		}
1092  	case USB_SPEED_HIGH:	/* ISOC or INTR */
1093  		/* FIXME adjust for input vs output */
1094  		if (isoc)
1095  			tmp = HS_NSECS_ISO (bytecount);
1096  		else
1097  			tmp = HS_NSECS (bytecount);
1098  		return tmp;
1099  	default:
1100  		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1101  		return -1;
1102  	}
1103  }
1104  EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1105  
1106  
1107  /*-------------------------------------------------------------------------*/
1108  
1109  /*
1110   * Generic HC operations.
1111   */
1112  
1113  /*-------------------------------------------------------------------------*/
1114  
1115  /**
1116   * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1117   * @hcd: host controller to which @urb was submitted
1118   * @urb: URB being submitted
1119   *
1120   * Host controller drivers should call this routine in their enqueue()
1121   * method.  The HCD's private spinlock must be held and interrupts must
1122   * be disabled.  The actions carried out here are required for URB
1123   * submission, as well as for endpoint shutdown and for usb_kill_urb.
1124   *
1125   * Return: 0 for no error, otherwise a negative error code (in which case
1126   * the enqueue() method must fail).  If no error occurs but enqueue() fails
1127   * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1128   * the private spinlock and returning.
1129   */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1130  int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1131  {
1132  	int		rc = 0;
1133  
1134  	spin_lock(&hcd_urb_list_lock);
1135  
1136  	/* Check that the URB isn't being killed */
1137  	if (unlikely(atomic_read(&urb->reject))) {
1138  		rc = -EPERM;
1139  		goto done;
1140  	}
1141  
1142  	if (unlikely(!urb->ep->enabled)) {
1143  		rc = -ENOENT;
1144  		goto done;
1145  	}
1146  
1147  	if (unlikely(!urb->dev->can_submit)) {
1148  		rc = -EHOSTUNREACH;
1149  		goto done;
1150  	}
1151  
1152  	/*
1153  	 * Check the host controller's state and add the URB to the
1154  	 * endpoint's queue.
1155  	 */
1156  	if (HCD_RH_RUNNING(hcd)) {
1157  		urb->unlinked = 0;
1158  		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1159  	} else {
1160  		rc = -ESHUTDOWN;
1161  		goto done;
1162  	}
1163   done:
1164  	spin_unlock(&hcd_urb_list_lock);
1165  	return rc;
1166  }
1167  EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1168  
1169  /**
1170   * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1171   * @hcd: host controller to which @urb was submitted
1172   * @urb: URB being checked for unlinkability
1173   * @status: error code to store in @urb if the unlink succeeds
1174   *
1175   * Host controller drivers should call this routine in their dequeue()
1176   * method.  The HCD's private spinlock must be held and interrupts must
1177   * be disabled.  The actions carried out here are required for making
1178   * sure than an unlink is valid.
1179   *
1180   * Return: 0 for no error, otherwise a negative error code (in which case
1181   * the dequeue() method must fail).  The possible error codes are:
1182   *
1183   *	-EIDRM: @urb was not submitted or has already completed.
1184   *		The completion function may not have been called yet.
1185   *
1186   *	-EBUSY: @urb has already been unlinked.
1187   */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1188  int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1189  		int status)
1190  {
1191  	struct list_head	*tmp;
1192  
1193  	/* insist the urb is still queued */
1194  	list_for_each(tmp, &urb->ep->urb_list) {
1195  		if (tmp == &urb->urb_list)
1196  			break;
1197  	}
1198  	if (tmp != &urb->urb_list)
1199  		return -EIDRM;
1200  
1201  	/* Any status except -EINPROGRESS means something already started to
1202  	 * unlink this URB from the hardware.  So there's no more work to do.
1203  	 */
1204  	if (urb->unlinked)
1205  		return -EBUSY;
1206  	urb->unlinked = status;
1207  	return 0;
1208  }
1209  EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1210  
1211  /**
1212   * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1213   * @hcd: host controller to which @urb was submitted
1214   * @urb: URB being unlinked
1215   *
1216   * Host controller drivers should call this routine before calling
1217   * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1218   * interrupts must be disabled.  The actions carried out here are required
1219   * for URB completion.
1220   */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1221  void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1222  {
1223  	/* clear all state linking urb to this dev (and hcd) */
1224  	spin_lock(&hcd_urb_list_lock);
1225  	list_del_init(&urb->urb_list);
1226  	spin_unlock(&hcd_urb_list_lock);
1227  }
1228  EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1229  
1230  /*
1231   * Some usb host controllers can only perform dma using a small SRAM area,
1232   * or have restrictions on addressable DRAM.
1233   * The usb core itself is however optimized for host controllers that can dma
1234   * using regular system memory - like pci devices doing bus mastering.
1235   *
1236   * To support host controllers with limited dma capabilities we provide dma
1237   * bounce buffers. This feature can be enabled by initializing
1238   * hcd->localmem_pool using usb_hcd_setup_local_mem().
1239   *
1240   * The initialized hcd->localmem_pool then tells the usb code to allocate all
1241   * data for dma using the genalloc API.
1242   *
1243   * So, to summarize...
1244   *
1245   * - We need "local" memory, canonical example being
1246   *   a small SRAM on a discrete controller being the
1247   *   only memory that the controller can read ...
1248   *   (a) "normal" kernel memory is no good, and
1249   *   (b) there's not enough to share
1250   *
1251   * - So we use that, even though the primary requirement
1252   *   is that the memory be "local" (hence addressable
1253   *   by that device), not "coherent".
1254   *
1255   */
1256  
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1257  static int hcd_alloc_coherent(struct usb_bus *bus,
1258  			      gfp_t mem_flags, dma_addr_t *dma_handle,
1259  			      void **vaddr_handle, size_t size,
1260  			      enum dma_data_direction dir)
1261  {
1262  	unsigned char *vaddr;
1263  
1264  	if (*vaddr_handle == NULL) {
1265  		WARN_ON_ONCE(1);
1266  		return -EFAULT;
1267  	}
1268  
1269  	vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1270  				 mem_flags, dma_handle);
1271  	if (!vaddr)
1272  		return -ENOMEM;
1273  
1274  	/*
1275  	 * Store the virtual address of the buffer at the end
1276  	 * of the allocated dma buffer. The size of the buffer
1277  	 * may be uneven so use unaligned functions instead
1278  	 * of just rounding up. It makes sense to optimize for
1279  	 * memory footprint over access speed since the amount
1280  	 * of memory available for dma may be limited.
1281  	 */
1282  	put_unaligned((unsigned long)*vaddr_handle,
1283  		      (unsigned long *)(vaddr + size));
1284  
1285  	if (dir == DMA_TO_DEVICE)
1286  		memcpy(vaddr, *vaddr_handle, size);
1287  
1288  	*vaddr_handle = vaddr;
1289  	return 0;
1290  }
1291  
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1292  static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1293  			      void **vaddr_handle, size_t size,
1294  			      enum dma_data_direction dir)
1295  {
1296  	unsigned char *vaddr = *vaddr_handle;
1297  
1298  	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1299  
1300  	if (dir == DMA_FROM_DEVICE)
1301  		memcpy(vaddr, *vaddr_handle, size);
1302  
1303  	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1304  
1305  	*vaddr_handle = vaddr;
1306  	*dma_handle = 0;
1307  }
1308  
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1309  void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1310  {
1311  	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1312  	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1313  		dma_unmap_single(hcd->self.sysdev,
1314  				urb->setup_dma,
1315  				sizeof(struct usb_ctrlrequest),
1316  				DMA_TO_DEVICE);
1317  	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1318  		hcd_free_coherent(urb->dev->bus,
1319  				&urb->setup_dma,
1320  				(void **) &urb->setup_packet,
1321  				sizeof(struct usb_ctrlrequest),
1322  				DMA_TO_DEVICE);
1323  
1324  	/* Make it safe to call this routine more than once */
1325  	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1326  }
1327  EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1328  
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1329  static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1330  {
1331  	if (hcd->driver->unmap_urb_for_dma)
1332  		hcd->driver->unmap_urb_for_dma(hcd, urb);
1333  	else
1334  		usb_hcd_unmap_urb_for_dma(hcd, urb);
1335  }
1336  
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1337  void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1338  {
1339  	enum dma_data_direction dir;
1340  
1341  	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1342  
1343  	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1344  	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1345  	    (urb->transfer_flags & URB_DMA_MAP_SG))
1346  		dma_unmap_sg(hcd->self.sysdev,
1347  				urb->sg,
1348  				urb->num_sgs,
1349  				dir);
1350  	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1351  		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1352  		dma_unmap_page(hcd->self.sysdev,
1353  				urb->transfer_dma,
1354  				urb->transfer_buffer_length,
1355  				dir);
1356  	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1357  		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1358  		dma_unmap_single(hcd->self.sysdev,
1359  				urb->transfer_dma,
1360  				urb->transfer_buffer_length,
1361  				dir);
1362  	else if (urb->transfer_flags & URB_MAP_LOCAL)
1363  		hcd_free_coherent(urb->dev->bus,
1364  				&urb->transfer_dma,
1365  				&urb->transfer_buffer,
1366  				urb->transfer_buffer_length,
1367  				dir);
1368  
1369  	/* Make it safe to call this routine more than once */
1370  	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1371  			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1372  }
1373  EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1374  
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1375  static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1376  			   gfp_t mem_flags)
1377  {
1378  	if (hcd->driver->map_urb_for_dma)
1379  		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1380  	else
1381  		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1382  }
1383  
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1384  int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1385  			    gfp_t mem_flags)
1386  {
1387  	enum dma_data_direction dir;
1388  	int ret = 0;
1389  
1390  	/* Map the URB's buffers for DMA access.
1391  	 * Lower level HCD code should use *_dma exclusively,
1392  	 * unless it uses pio or talks to another transport,
1393  	 * or uses the provided scatter gather list for bulk.
1394  	 */
1395  
1396  	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1397  		if (hcd->self.uses_pio_for_control)
1398  			return ret;
1399  		if (hcd->localmem_pool) {
1400  			ret = hcd_alloc_coherent(
1401  					urb->dev->bus, mem_flags,
1402  					&urb->setup_dma,
1403  					(void **)&urb->setup_packet,
1404  					sizeof(struct usb_ctrlrequest),
1405  					DMA_TO_DEVICE);
1406  			if (ret)
1407  				return ret;
1408  			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1409  		} else if (hcd_uses_dma(hcd)) {
1410  			if (object_is_on_stack(urb->setup_packet)) {
1411  				WARN_ONCE(1, "setup packet is on stack\n");
1412  				return -EAGAIN;
1413  			}
1414  
1415  			urb->setup_dma = dma_map_single(
1416  					hcd->self.sysdev,
1417  					urb->setup_packet,
1418  					sizeof(struct usb_ctrlrequest),
1419  					DMA_TO_DEVICE);
1420  			if (dma_mapping_error(hcd->self.sysdev,
1421  						urb->setup_dma))
1422  				return -EAGAIN;
1423  			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1424  		}
1425  	}
1426  
1427  	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1428  	if (urb->transfer_buffer_length != 0
1429  	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1430  		if (hcd->localmem_pool) {
1431  			ret = hcd_alloc_coherent(
1432  					urb->dev->bus, mem_flags,
1433  					&urb->transfer_dma,
1434  					&urb->transfer_buffer,
1435  					urb->transfer_buffer_length,
1436  					dir);
1437  			if (ret == 0)
1438  				urb->transfer_flags |= URB_MAP_LOCAL;
1439  		} else if (hcd_uses_dma(hcd)) {
1440  			if (urb->num_sgs) {
1441  				int n;
1442  
1443  				/* We don't support sg for isoc transfers ! */
1444  				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1445  					WARN_ON(1);
1446  					return -EINVAL;
1447  				}
1448  
1449  				n = dma_map_sg(
1450  						hcd->self.sysdev,
1451  						urb->sg,
1452  						urb->num_sgs,
1453  						dir);
1454  				if (!n)
1455  					ret = -EAGAIN;
1456  				else
1457  					urb->transfer_flags |= URB_DMA_MAP_SG;
1458  				urb->num_mapped_sgs = n;
1459  				if (n != urb->num_sgs)
1460  					urb->transfer_flags |=
1461  							URB_DMA_SG_COMBINED;
1462  			} else if (urb->sg) {
1463  				struct scatterlist *sg = urb->sg;
1464  				urb->transfer_dma = dma_map_page(
1465  						hcd->self.sysdev,
1466  						sg_page(sg),
1467  						sg->offset,
1468  						urb->transfer_buffer_length,
1469  						dir);
1470  				if (dma_mapping_error(hcd->self.sysdev,
1471  						urb->transfer_dma))
1472  					ret = -EAGAIN;
1473  				else
1474  					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1475  			} else if (object_is_on_stack(urb->transfer_buffer)) {
1476  				WARN_ONCE(1, "transfer buffer is on stack\n");
1477  				ret = -EAGAIN;
1478  			} else {
1479  				urb->transfer_dma = dma_map_single(
1480  						hcd->self.sysdev,
1481  						urb->transfer_buffer,
1482  						urb->transfer_buffer_length,
1483  						dir);
1484  				if (dma_mapping_error(hcd->self.sysdev,
1485  						urb->transfer_dma))
1486  					ret = -EAGAIN;
1487  				else
1488  					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1489  			}
1490  		}
1491  		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1492  				URB_SETUP_MAP_LOCAL)))
1493  			usb_hcd_unmap_urb_for_dma(hcd, urb);
1494  	}
1495  	return ret;
1496  }
1497  EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1498  
1499  /*-------------------------------------------------------------------------*/
1500  
1501  /* may be called in any context with a valid urb->dev usecount
1502   * caller surrenders "ownership" of urb
1503   * expects usb_submit_urb() to have sanity checked and conditioned all
1504   * inputs in the urb
1505   */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1506  int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1507  {
1508  	int			status;
1509  	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1510  
1511  	/* increment urb's reference count as part of giving it to the HCD
1512  	 * (which will control it).  HCD guarantees that it either returns
1513  	 * an error or calls giveback(), but not both.
1514  	 */
1515  	usb_get_urb(urb);
1516  	atomic_inc(&urb->use_count);
1517  	atomic_inc(&urb->dev->urbnum);
1518  	usbmon_urb_submit(&hcd->self, urb);
1519  
1520  	/* NOTE requirements on root-hub callers (usbfs and the hub
1521  	 * driver, for now):  URBs' urb->transfer_buffer must be
1522  	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1523  	 * they could clobber root hub response data.  Also, control
1524  	 * URBs must be submitted in process context with interrupts
1525  	 * enabled.
1526  	 */
1527  
1528  	if (is_root_hub(urb->dev)) {
1529  		status = rh_urb_enqueue(hcd, urb);
1530  	} else {
1531  		status = map_urb_for_dma(hcd, urb, mem_flags);
1532  		if (likely(status == 0)) {
1533  			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1534  			if (unlikely(status))
1535  				unmap_urb_for_dma(hcd, urb);
1536  		}
1537  	}
1538  
1539  	if (unlikely(status)) {
1540  		usbmon_urb_submit_error(&hcd->self, urb, status);
1541  		urb->hcpriv = NULL;
1542  		INIT_LIST_HEAD(&urb->urb_list);
1543  		atomic_dec(&urb->use_count);
1544  		/*
1545  		 * Order the write of urb->use_count above before the read
1546  		 * of urb->reject below.  Pairs with the memory barriers in
1547  		 * usb_kill_urb() and usb_poison_urb().
1548  		 */
1549  		smp_mb__after_atomic();
1550  
1551  		atomic_dec(&urb->dev->urbnum);
1552  		if (atomic_read(&urb->reject))
1553  			wake_up(&usb_kill_urb_queue);
1554  		usb_put_urb(urb);
1555  	}
1556  	return status;
1557  }
1558  
1559  /*-------------------------------------------------------------------------*/
1560  
1561  /* this makes the hcd giveback() the urb more quickly, by kicking it
1562   * off hardware queues (which may take a while) and returning it as
1563   * soon as practical.  we've already set up the urb's return status,
1564   * but we can't know if the callback completed already.
1565   */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1566  static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1567  {
1568  	int		value;
1569  
1570  	if (is_root_hub(urb->dev))
1571  		value = usb_rh_urb_dequeue(hcd, urb, status);
1572  	else {
1573  
1574  		/* The only reason an HCD might fail this call is if
1575  		 * it has not yet fully queued the urb to begin with.
1576  		 * Such failures should be harmless. */
1577  		value = hcd->driver->urb_dequeue(hcd, urb, status);
1578  	}
1579  	return value;
1580  }
1581  
1582  /*
1583   * called in any context
1584   *
1585   * caller guarantees urb won't be recycled till both unlink()
1586   * and the urb's completion function return
1587   */
usb_hcd_unlink_urb(struct urb * urb,int status)1588  int usb_hcd_unlink_urb (struct urb *urb, int status)
1589  {
1590  	struct usb_hcd		*hcd;
1591  	struct usb_device	*udev = urb->dev;
1592  	int			retval = -EIDRM;
1593  	unsigned long		flags;
1594  
1595  	/* Prevent the device and bus from going away while
1596  	 * the unlink is carried out.  If they are already gone
1597  	 * then urb->use_count must be 0, since disconnected
1598  	 * devices can't have any active URBs.
1599  	 */
1600  	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1601  	if (atomic_read(&urb->use_count) > 0) {
1602  		retval = 0;
1603  		usb_get_dev(udev);
1604  	}
1605  	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1606  	if (retval == 0) {
1607  		hcd = bus_to_hcd(urb->dev->bus);
1608  		retval = unlink1(hcd, urb, status);
1609  		if (retval == 0)
1610  			retval = -EINPROGRESS;
1611  		else if (retval != -EIDRM && retval != -EBUSY)
1612  			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1613  					urb, retval);
1614  		usb_put_dev(udev);
1615  	}
1616  	return retval;
1617  }
1618  
1619  /*-------------------------------------------------------------------------*/
1620  
__usb_hcd_giveback_urb(struct urb * urb)1621  static void __usb_hcd_giveback_urb(struct urb *urb)
1622  {
1623  	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1624  	struct usb_anchor *anchor = urb->anchor;
1625  	int status = urb->unlinked;
1626  	unsigned long flags;
1627  
1628  	urb->hcpriv = NULL;
1629  	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1630  	    urb->actual_length < urb->transfer_buffer_length &&
1631  	    !status))
1632  		status = -EREMOTEIO;
1633  
1634  	unmap_urb_for_dma(hcd, urb);
1635  	usbmon_urb_complete(&hcd->self, urb, status);
1636  	usb_anchor_suspend_wakeups(anchor);
1637  	usb_unanchor_urb(urb);
1638  	if (likely(status == 0))
1639  		usb_led_activity(USB_LED_EVENT_HOST);
1640  
1641  	/* pass ownership to the completion handler */
1642  	urb->status = status;
1643  	/*
1644  	 * Only collect coverage in the softirq context and disable interrupts
1645  	 * to avoid scenarios with nested remote coverage collection sections
1646  	 * that KCOV does not support.
1647  	 * See the comment next to kcov_remote_start_usb_softirq() for details.
1648  	 */
1649  	flags = kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1650  	urb->complete(urb);
1651  	kcov_remote_stop_softirq(flags);
1652  
1653  	usb_anchor_resume_wakeups(anchor);
1654  	atomic_dec(&urb->use_count);
1655  	/*
1656  	 * Order the write of urb->use_count above before the read
1657  	 * of urb->reject below.  Pairs with the memory barriers in
1658  	 * usb_kill_urb() and usb_poison_urb().
1659  	 */
1660  	smp_mb__after_atomic();
1661  
1662  	if (unlikely(atomic_read(&urb->reject)))
1663  		wake_up(&usb_kill_urb_queue);
1664  	usb_put_urb(urb);
1665  }
1666  
usb_giveback_urb_bh(struct work_struct * work)1667  static void usb_giveback_urb_bh(struct work_struct *work)
1668  {
1669  	struct giveback_urb_bh *bh =
1670  		container_of(work, struct giveback_urb_bh, bh);
1671  	struct list_head local_list;
1672  
1673  	spin_lock_irq(&bh->lock);
1674  	bh->running = true;
1675  	list_replace_init(&bh->head, &local_list);
1676  	spin_unlock_irq(&bh->lock);
1677  
1678  	while (!list_empty(&local_list)) {
1679  		struct urb *urb;
1680  
1681  		urb = list_entry(local_list.next, struct urb, urb_list);
1682  		list_del_init(&urb->urb_list);
1683  		bh->completing_ep = urb->ep;
1684  		__usb_hcd_giveback_urb(urb);
1685  		bh->completing_ep = NULL;
1686  	}
1687  
1688  	/*
1689  	 * giveback new URBs next time to prevent this function
1690  	 * from not exiting for a long time.
1691  	 */
1692  	spin_lock_irq(&bh->lock);
1693  	if (!list_empty(&bh->head)) {
1694  		if (bh->high_prio)
1695  			queue_work(system_bh_highpri_wq, &bh->bh);
1696  		else
1697  			queue_work(system_bh_wq, &bh->bh);
1698  	}
1699  	bh->running = false;
1700  	spin_unlock_irq(&bh->lock);
1701  }
1702  
1703  /**
1704   * usb_hcd_giveback_urb - return URB from HCD to device driver
1705   * @hcd: host controller returning the URB
1706   * @urb: urb being returned to the USB device driver.
1707   * @status: completion status code for the URB.
1708   *
1709   * Context: atomic. The completion callback is invoked in caller's context.
1710   * For HCDs with HCD_BH flag set, the completion callback is invoked in BH
1711   * context (except for URBs submitted to the root hub which always complete in
1712   * caller's context).
1713   *
1714   * This hands the URB from HCD to its USB device driver, using its
1715   * completion function.  The HCD has freed all per-urb resources
1716   * (and is done using urb->hcpriv).  It also released all HCD locks;
1717   * the device driver won't cause problems if it frees, modifies,
1718   * or resubmits this URB.
1719   *
1720   * If @urb was unlinked, the value of @status will be overridden by
1721   * @urb->unlinked.  Erroneous short transfers are detected in case
1722   * the HCD hasn't checked for them.
1723   */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1724  void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1725  {
1726  	struct giveback_urb_bh *bh;
1727  	bool running;
1728  
1729  	/* pass status to BH via unlinked */
1730  	if (likely(!urb->unlinked))
1731  		urb->unlinked = status;
1732  
1733  	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1734  		__usb_hcd_giveback_urb(urb);
1735  		return;
1736  	}
1737  
1738  	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1739  		bh = &hcd->high_prio_bh;
1740  	else
1741  		bh = &hcd->low_prio_bh;
1742  
1743  	spin_lock(&bh->lock);
1744  	list_add_tail(&urb->urb_list, &bh->head);
1745  	running = bh->running;
1746  	spin_unlock(&bh->lock);
1747  
1748  	if (running)
1749  		;
1750  	else if (bh->high_prio)
1751  		queue_work(system_bh_highpri_wq, &bh->bh);
1752  	else
1753  		queue_work(system_bh_wq, &bh->bh);
1754  }
1755  EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1756  
1757  /*-------------------------------------------------------------------------*/
1758  
1759  /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1760   * queue to drain completely.  The caller must first insure that no more
1761   * URBs can be submitted for this endpoint.
1762   */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1763  void usb_hcd_flush_endpoint(struct usb_device *udev,
1764  		struct usb_host_endpoint *ep)
1765  {
1766  	struct usb_hcd		*hcd;
1767  	struct urb		*urb;
1768  
1769  	if (!ep)
1770  		return;
1771  	might_sleep();
1772  	hcd = bus_to_hcd(udev->bus);
1773  
1774  	/* No more submits can occur */
1775  	spin_lock_irq(&hcd_urb_list_lock);
1776  rescan:
1777  	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1778  		int	is_in;
1779  
1780  		if (urb->unlinked)
1781  			continue;
1782  		usb_get_urb (urb);
1783  		is_in = usb_urb_dir_in(urb);
1784  		spin_unlock(&hcd_urb_list_lock);
1785  
1786  		/* kick hcd */
1787  		unlink1(hcd, urb, -ESHUTDOWN);
1788  		dev_dbg (hcd->self.controller,
1789  			"shutdown urb %pK ep%d%s-%s\n",
1790  			urb, usb_endpoint_num(&ep->desc),
1791  			is_in ? "in" : "out",
1792  			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1793  		usb_put_urb (urb);
1794  
1795  		/* list contents may have changed */
1796  		spin_lock(&hcd_urb_list_lock);
1797  		goto rescan;
1798  	}
1799  	spin_unlock_irq(&hcd_urb_list_lock);
1800  
1801  	/* Wait until the endpoint queue is completely empty */
1802  	while (!list_empty (&ep->urb_list)) {
1803  		spin_lock_irq(&hcd_urb_list_lock);
1804  
1805  		/* The list may have changed while we acquired the spinlock */
1806  		urb = NULL;
1807  		if (!list_empty (&ep->urb_list)) {
1808  			urb = list_entry (ep->urb_list.prev, struct urb,
1809  					urb_list);
1810  			usb_get_urb (urb);
1811  		}
1812  		spin_unlock_irq(&hcd_urb_list_lock);
1813  
1814  		if (urb) {
1815  			usb_kill_urb (urb);
1816  			usb_put_urb (urb);
1817  		}
1818  	}
1819  }
1820  
1821  /**
1822   * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1823   *				the bus bandwidth
1824   * @udev: target &usb_device
1825   * @new_config: new configuration to install
1826   * @cur_alt: the current alternate interface setting
1827   * @new_alt: alternate interface setting that is being installed
1828   *
1829   * To change configurations, pass in the new configuration in new_config,
1830   * and pass NULL for cur_alt and new_alt.
1831   *
1832   * To reset a device's configuration (put the device in the ADDRESSED state),
1833   * pass in NULL for new_config, cur_alt, and new_alt.
1834   *
1835   * To change alternate interface settings, pass in NULL for new_config,
1836   * pass in the current alternate interface setting in cur_alt,
1837   * and pass in the new alternate interface setting in new_alt.
1838   *
1839   * Return: An error if the requested bandwidth change exceeds the
1840   * bus bandwidth or host controller internal resources.
1841   */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1842  int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1843  		struct usb_host_config *new_config,
1844  		struct usb_host_interface *cur_alt,
1845  		struct usb_host_interface *new_alt)
1846  {
1847  	int num_intfs, i, j;
1848  	struct usb_host_interface *alt = NULL;
1849  	int ret = 0;
1850  	struct usb_hcd *hcd;
1851  	struct usb_host_endpoint *ep;
1852  
1853  	hcd = bus_to_hcd(udev->bus);
1854  	if (!hcd->driver->check_bandwidth)
1855  		return 0;
1856  
1857  	/* Configuration is being removed - set configuration 0 */
1858  	if (!new_config && !cur_alt) {
1859  		for (i = 1; i < 16; ++i) {
1860  			ep = udev->ep_out[i];
1861  			if (ep)
1862  				hcd->driver->drop_endpoint(hcd, udev, ep);
1863  			ep = udev->ep_in[i];
1864  			if (ep)
1865  				hcd->driver->drop_endpoint(hcd, udev, ep);
1866  		}
1867  		hcd->driver->check_bandwidth(hcd, udev);
1868  		return 0;
1869  	}
1870  	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1871  	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1872  	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1873  	 * ok to exclude it.
1874  	 */
1875  	if (new_config) {
1876  		num_intfs = new_config->desc.bNumInterfaces;
1877  		/* Remove endpoints (except endpoint 0, which is always on the
1878  		 * schedule) from the old config from the schedule
1879  		 */
1880  		for (i = 1; i < 16; ++i) {
1881  			ep = udev->ep_out[i];
1882  			if (ep) {
1883  				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1884  				if (ret < 0)
1885  					goto reset;
1886  			}
1887  			ep = udev->ep_in[i];
1888  			if (ep) {
1889  				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1890  				if (ret < 0)
1891  					goto reset;
1892  			}
1893  		}
1894  		for (i = 0; i < num_intfs; ++i) {
1895  			struct usb_host_interface *first_alt;
1896  			int iface_num;
1897  
1898  			first_alt = &new_config->intf_cache[i]->altsetting[0];
1899  			iface_num = first_alt->desc.bInterfaceNumber;
1900  			/* Set up endpoints for alternate interface setting 0 */
1901  			alt = usb_find_alt_setting(new_config, iface_num, 0);
1902  			if (!alt)
1903  				/* No alt setting 0? Pick the first setting. */
1904  				alt = first_alt;
1905  
1906  			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1907  				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1908  				if (ret < 0)
1909  					goto reset;
1910  			}
1911  		}
1912  	}
1913  	if (cur_alt && new_alt) {
1914  		struct usb_interface *iface = usb_ifnum_to_if(udev,
1915  				cur_alt->desc.bInterfaceNumber);
1916  
1917  		if (!iface)
1918  			return -EINVAL;
1919  		if (iface->resetting_device) {
1920  			/*
1921  			 * The USB core just reset the device, so the xHCI host
1922  			 * and the device will think alt setting 0 is installed.
1923  			 * However, the USB core will pass in the alternate
1924  			 * setting installed before the reset as cur_alt.  Dig
1925  			 * out the alternate setting 0 structure, or the first
1926  			 * alternate setting if a broken device doesn't have alt
1927  			 * setting 0.
1928  			 */
1929  			cur_alt = usb_altnum_to_altsetting(iface, 0);
1930  			if (!cur_alt)
1931  				cur_alt = &iface->altsetting[0];
1932  		}
1933  
1934  		/* Drop all the endpoints in the current alt setting */
1935  		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1936  			ret = hcd->driver->drop_endpoint(hcd, udev,
1937  					&cur_alt->endpoint[i]);
1938  			if (ret < 0)
1939  				goto reset;
1940  		}
1941  		/* Add all the endpoints in the new alt setting */
1942  		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1943  			ret = hcd->driver->add_endpoint(hcd, udev,
1944  					&new_alt->endpoint[i]);
1945  			if (ret < 0)
1946  				goto reset;
1947  		}
1948  	}
1949  	ret = hcd->driver->check_bandwidth(hcd, udev);
1950  reset:
1951  	if (ret < 0)
1952  		hcd->driver->reset_bandwidth(hcd, udev);
1953  	return ret;
1954  }
1955  
1956  /* Disables the endpoint: synchronizes with the hcd to make sure all
1957   * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1958   * have been called previously.  Use for set_configuration, set_interface,
1959   * driver removal, physical disconnect.
1960   *
1961   * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1962   * type, maxpacket size, toggle, halt status, and scheduling.
1963   */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1964  void usb_hcd_disable_endpoint(struct usb_device *udev,
1965  		struct usb_host_endpoint *ep)
1966  {
1967  	struct usb_hcd		*hcd;
1968  
1969  	might_sleep();
1970  	hcd = bus_to_hcd(udev->bus);
1971  	if (hcd->driver->endpoint_disable)
1972  		hcd->driver->endpoint_disable(hcd, ep);
1973  }
1974  
1975  /**
1976   * usb_hcd_reset_endpoint - reset host endpoint state
1977   * @udev: USB device.
1978   * @ep:   the endpoint to reset.
1979   *
1980   * Resets any host endpoint state such as the toggle bit, sequence
1981   * number and current window.
1982   */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1983  void usb_hcd_reset_endpoint(struct usb_device *udev,
1984  			    struct usb_host_endpoint *ep)
1985  {
1986  	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1987  
1988  	if (hcd->driver->endpoint_reset)
1989  		hcd->driver->endpoint_reset(hcd, ep);
1990  	else {
1991  		int epnum = usb_endpoint_num(&ep->desc);
1992  		int is_out = usb_endpoint_dir_out(&ep->desc);
1993  		int is_control = usb_endpoint_xfer_control(&ep->desc);
1994  
1995  		usb_settoggle(udev, epnum, is_out, 0);
1996  		if (is_control)
1997  			usb_settoggle(udev, epnum, !is_out, 0);
1998  	}
1999  }
2000  
2001  /**
2002   * usb_alloc_streams - allocate bulk endpoint stream IDs.
2003   * @interface:		alternate setting that includes all endpoints.
2004   * @eps:		array of endpoints that need streams.
2005   * @num_eps:		number of endpoints in the array.
2006   * @num_streams:	number of streams to allocate.
2007   * @mem_flags:		flags hcd should use to allocate memory.
2008   *
2009   * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2010   * Drivers may queue multiple transfers to different stream IDs, which may
2011   * complete in a different order than they were queued.
2012   *
2013   * Return: On success, the number of allocated streams. On failure, a negative
2014   * error code.
2015   */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2016  int usb_alloc_streams(struct usb_interface *interface,
2017  		struct usb_host_endpoint **eps, unsigned int num_eps,
2018  		unsigned int num_streams, gfp_t mem_flags)
2019  {
2020  	struct usb_hcd *hcd;
2021  	struct usb_device *dev;
2022  	int i, ret;
2023  
2024  	dev = interface_to_usbdev(interface);
2025  	hcd = bus_to_hcd(dev->bus);
2026  	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2027  		return -EINVAL;
2028  	if (dev->speed < USB_SPEED_SUPER)
2029  		return -EINVAL;
2030  	if (dev->state < USB_STATE_CONFIGURED)
2031  		return -ENODEV;
2032  
2033  	for (i = 0; i < num_eps; i++) {
2034  		/* Streams only apply to bulk endpoints. */
2035  		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2036  			return -EINVAL;
2037  		/* Re-alloc is not allowed */
2038  		if (eps[i]->streams)
2039  			return -EINVAL;
2040  	}
2041  
2042  	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2043  			num_streams, mem_flags);
2044  	if (ret < 0)
2045  		return ret;
2046  
2047  	for (i = 0; i < num_eps; i++)
2048  		eps[i]->streams = ret;
2049  
2050  	return ret;
2051  }
2052  EXPORT_SYMBOL_GPL(usb_alloc_streams);
2053  
2054  /**
2055   * usb_free_streams - free bulk endpoint stream IDs.
2056   * @interface:	alternate setting that includes all endpoints.
2057   * @eps:	array of endpoints to remove streams from.
2058   * @num_eps:	number of endpoints in the array.
2059   * @mem_flags:	flags hcd should use to allocate memory.
2060   *
2061   * Reverts a group of bulk endpoints back to not using stream IDs.
2062   * Can fail if we are given bad arguments, or HCD is broken.
2063   *
2064   * Return: 0 on success. On failure, a negative error code.
2065   */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2066  int usb_free_streams(struct usb_interface *interface,
2067  		struct usb_host_endpoint **eps, unsigned int num_eps,
2068  		gfp_t mem_flags)
2069  {
2070  	struct usb_hcd *hcd;
2071  	struct usb_device *dev;
2072  	int i, ret;
2073  
2074  	dev = interface_to_usbdev(interface);
2075  	hcd = bus_to_hcd(dev->bus);
2076  	if (dev->speed < USB_SPEED_SUPER)
2077  		return -EINVAL;
2078  
2079  	/* Double-free is not allowed */
2080  	for (i = 0; i < num_eps; i++)
2081  		if (!eps[i] || !eps[i]->streams)
2082  			return -EINVAL;
2083  
2084  	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2085  	if (ret < 0)
2086  		return ret;
2087  
2088  	for (i = 0; i < num_eps; i++)
2089  		eps[i]->streams = 0;
2090  
2091  	return ret;
2092  }
2093  EXPORT_SYMBOL_GPL(usb_free_streams);
2094  
2095  /* Protect against drivers that try to unlink URBs after the device
2096   * is gone, by waiting until all unlinks for @udev are finished.
2097   * Since we don't currently track URBs by device, simply wait until
2098   * nothing is running in the locked region of usb_hcd_unlink_urb().
2099   */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2100  void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2101  {
2102  	spin_lock_irq(&hcd_urb_unlink_lock);
2103  	spin_unlock_irq(&hcd_urb_unlink_lock);
2104  }
2105  
2106  /*-------------------------------------------------------------------------*/
2107  
2108  /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2109  int usb_hcd_get_frame_number (struct usb_device *udev)
2110  {
2111  	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2112  
2113  	if (!HCD_RH_RUNNING(hcd))
2114  		return -ESHUTDOWN;
2115  	return hcd->driver->get_frame_number (hcd);
2116  }
2117  
2118  /*-------------------------------------------------------------------------*/
2119  #ifdef CONFIG_USB_HCD_TEST_MODE
2120  
usb_ehset_completion(struct urb * urb)2121  static void usb_ehset_completion(struct urb *urb)
2122  {
2123  	struct completion  *done = urb->context;
2124  
2125  	complete(done);
2126  }
2127  /*
2128   * Allocate and initialize a control URB. This request will be used by the
2129   * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2130   * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2131   * Return NULL if failed.
2132   */
request_single_step_set_feature_urb(struct usb_device * udev,void * dr,void * buf,struct completion * done)2133  static struct urb *request_single_step_set_feature_urb(
2134  	struct usb_device	*udev,
2135  	void			*dr,
2136  	void			*buf,
2137  	struct completion	*done)
2138  {
2139  	struct urb *urb;
2140  	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2141  
2142  	urb = usb_alloc_urb(0, GFP_KERNEL);
2143  	if (!urb)
2144  		return NULL;
2145  
2146  	urb->pipe = usb_rcvctrlpipe(udev, 0);
2147  
2148  	urb->ep = &udev->ep0;
2149  	urb->dev = udev;
2150  	urb->setup_packet = (void *)dr;
2151  	urb->transfer_buffer = buf;
2152  	urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2153  	urb->complete = usb_ehset_completion;
2154  	urb->status = -EINPROGRESS;
2155  	urb->actual_length = 0;
2156  	urb->transfer_flags = URB_DIR_IN;
2157  	usb_get_urb(urb);
2158  	atomic_inc(&urb->use_count);
2159  	atomic_inc(&urb->dev->urbnum);
2160  	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2161  		usb_put_urb(urb);
2162  		usb_free_urb(urb);
2163  		return NULL;
2164  	}
2165  
2166  	urb->context = done;
2167  	return urb;
2168  }
2169  
ehset_single_step_set_feature(struct usb_hcd * hcd,int port)2170  int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2171  {
2172  	int retval = -ENOMEM;
2173  	struct usb_ctrlrequest *dr;
2174  	struct urb *urb;
2175  	struct usb_device *udev;
2176  	struct usb_device_descriptor *buf;
2177  	DECLARE_COMPLETION_ONSTACK(done);
2178  
2179  	/* Obtain udev of the rhub's child port */
2180  	udev = usb_hub_find_child(hcd->self.root_hub, port);
2181  	if (!udev) {
2182  		dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2183  		return -ENODEV;
2184  	}
2185  	buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2186  	if (!buf)
2187  		return -ENOMEM;
2188  
2189  	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2190  	if (!dr) {
2191  		kfree(buf);
2192  		return -ENOMEM;
2193  	}
2194  
2195  	/* Fill Setup packet for GetDescriptor */
2196  	dr->bRequestType = USB_DIR_IN;
2197  	dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2198  	dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2199  	dr->wIndex = 0;
2200  	dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2201  	urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2202  	if (!urb)
2203  		goto cleanup;
2204  
2205  	/* Submit just the SETUP stage */
2206  	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2207  	if (retval)
2208  		goto out1;
2209  	if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2210  		usb_kill_urb(urb);
2211  		retval = -ETIMEDOUT;
2212  		dev_err(hcd->self.controller,
2213  			"%s SETUP stage timed out on ep0\n", __func__);
2214  		goto out1;
2215  	}
2216  	msleep(15 * 1000);
2217  
2218  	/* Complete remaining DATA and STATUS stages using the same URB */
2219  	urb->status = -EINPROGRESS;
2220  	usb_get_urb(urb);
2221  	atomic_inc(&urb->use_count);
2222  	atomic_inc(&urb->dev->urbnum);
2223  	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2224  	if (!retval && !wait_for_completion_timeout(&done,
2225  						msecs_to_jiffies(2000))) {
2226  		usb_kill_urb(urb);
2227  		retval = -ETIMEDOUT;
2228  		dev_err(hcd->self.controller,
2229  			"%s IN stage timed out on ep0\n", __func__);
2230  	}
2231  out1:
2232  	usb_free_urb(urb);
2233  cleanup:
2234  	kfree(dr);
2235  	kfree(buf);
2236  	return retval;
2237  }
2238  EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2239  #endif /* CONFIG_USB_HCD_TEST_MODE */
2240  
2241  /*-------------------------------------------------------------------------*/
2242  
2243  #ifdef	CONFIG_PM
2244  
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2245  int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2246  {
2247  	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2248  	int		status;
2249  	int		old_state = hcd->state;
2250  
2251  	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2252  			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2253  			rhdev->do_remote_wakeup);
2254  	if (HCD_DEAD(hcd)) {
2255  		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2256  		return 0;
2257  	}
2258  
2259  	if (!hcd->driver->bus_suspend) {
2260  		status = -ENOENT;
2261  	} else {
2262  		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2263  		hcd->state = HC_STATE_QUIESCING;
2264  		status = hcd->driver->bus_suspend(hcd);
2265  	}
2266  	if (status == 0) {
2267  		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2268  		hcd->state = HC_STATE_SUSPENDED;
2269  
2270  		if (!PMSG_IS_AUTO(msg))
2271  			usb_phy_roothub_suspend(hcd->self.sysdev,
2272  						hcd->phy_roothub);
2273  
2274  		/* Did we race with a root-hub wakeup event? */
2275  		if (rhdev->do_remote_wakeup) {
2276  			char	buffer[6];
2277  
2278  			status = hcd->driver->hub_status_data(hcd, buffer);
2279  			if (status != 0) {
2280  				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2281  				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2282  				status = -EBUSY;
2283  			}
2284  		}
2285  	} else {
2286  		spin_lock_irq(&hcd_root_hub_lock);
2287  		if (!HCD_DEAD(hcd)) {
2288  			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2289  			hcd->state = old_state;
2290  		}
2291  		spin_unlock_irq(&hcd_root_hub_lock);
2292  		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2293  				"suspend", status);
2294  	}
2295  	return status;
2296  }
2297  
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2298  int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2299  {
2300  	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2301  	int		status;
2302  	int		old_state = hcd->state;
2303  
2304  	dev_dbg(&rhdev->dev, "usb %sresume\n",
2305  			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2306  	if (HCD_DEAD(hcd)) {
2307  		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2308  		return 0;
2309  	}
2310  
2311  	if (!PMSG_IS_AUTO(msg)) {
2312  		status = usb_phy_roothub_resume(hcd->self.sysdev,
2313  						hcd->phy_roothub);
2314  		if (status)
2315  			return status;
2316  	}
2317  
2318  	if (!hcd->driver->bus_resume)
2319  		return -ENOENT;
2320  	if (HCD_RH_RUNNING(hcd))
2321  		return 0;
2322  
2323  	hcd->state = HC_STATE_RESUMING;
2324  	status = hcd->driver->bus_resume(hcd);
2325  	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2326  	if (status == 0)
2327  		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2328  
2329  	if (status == 0) {
2330  		struct usb_device *udev;
2331  		int port1;
2332  
2333  		spin_lock_irq(&hcd_root_hub_lock);
2334  		if (!HCD_DEAD(hcd)) {
2335  			usb_set_device_state(rhdev, rhdev->actconfig
2336  					? USB_STATE_CONFIGURED
2337  					: USB_STATE_ADDRESS);
2338  			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2339  			hcd->state = HC_STATE_RUNNING;
2340  		}
2341  		spin_unlock_irq(&hcd_root_hub_lock);
2342  
2343  		/*
2344  		 * Check whether any of the enabled ports on the root hub are
2345  		 * unsuspended.  If they are then a TRSMRCY delay is needed
2346  		 * (this is what the USB-2 spec calls a "global resume").
2347  		 * Otherwise we can skip the delay.
2348  		 */
2349  		usb_hub_for_each_child(rhdev, port1, udev) {
2350  			if (udev->state != USB_STATE_NOTATTACHED &&
2351  					!udev->port_is_suspended) {
2352  				usleep_range(10000, 11000);	/* TRSMRCY */
2353  				break;
2354  			}
2355  		}
2356  	} else {
2357  		hcd->state = old_state;
2358  		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2359  		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2360  				"resume", status);
2361  		if (status != -ESHUTDOWN)
2362  			usb_hc_died(hcd);
2363  	}
2364  	return status;
2365  }
2366  
2367  /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2368  static void hcd_resume_work(struct work_struct *work)
2369  {
2370  	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2371  	struct usb_device *udev = hcd->self.root_hub;
2372  
2373  	usb_remote_wakeup(udev);
2374  }
2375  
2376  /**
2377   * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2378   * @hcd: host controller for this root hub
2379   *
2380   * The USB host controller calls this function when its root hub is
2381   * suspended (with the remote wakeup feature enabled) and a remote
2382   * wakeup request is received.  The routine submits a workqueue request
2383   * to resume the root hub (that is, manage its downstream ports again).
2384   */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2385  void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2386  {
2387  	unsigned long flags;
2388  
2389  	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2390  	if (hcd->rh_registered) {
2391  		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2392  		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2393  		queue_work(pm_wq, &hcd->wakeup_work);
2394  	}
2395  	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2396  }
2397  EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2398  
2399  #endif	/* CONFIG_PM */
2400  
2401  /*-------------------------------------------------------------------------*/
2402  
2403  #ifdef	CONFIG_USB_OTG
2404  
2405  /**
2406   * usb_bus_start_enum - start immediate enumeration (for OTG)
2407   * @bus: the bus (must use hcd framework)
2408   * @port_num: 1-based number of port; usually bus->otg_port
2409   * Context: atomic
2410   *
2411   * Starts enumeration, with an immediate reset followed later by
2412   * hub_wq identifying and possibly configuring the device.
2413   * This is needed by OTG controller drivers, where it helps meet
2414   * HNP protocol timing requirements for starting a port reset.
2415   *
2416   * Return: 0 if successful.
2417   */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2418  int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2419  {
2420  	struct usb_hcd		*hcd;
2421  	int			status = -EOPNOTSUPP;
2422  
2423  	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2424  	 * boards with root hubs hooked up to internal devices (instead of
2425  	 * just the OTG port) may need more attention to resetting...
2426  	 */
2427  	hcd = bus_to_hcd(bus);
2428  	if (port_num && hcd->driver->start_port_reset)
2429  		status = hcd->driver->start_port_reset(hcd, port_num);
2430  
2431  	/* allocate hub_wq shortly after (first) root port reset finishes;
2432  	 * it may issue others, until at least 50 msecs have passed.
2433  	 */
2434  	if (status == 0)
2435  		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2436  	return status;
2437  }
2438  EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2439  
2440  #endif
2441  
2442  /*-------------------------------------------------------------------------*/
2443  
2444  /**
2445   * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2446   * @irq: the IRQ being raised
2447   * @__hcd: pointer to the HCD whose IRQ is being signaled
2448   *
2449   * If the controller isn't HALTed, calls the driver's irq handler.
2450   * Checks whether the controller is now dead.
2451   *
2452   * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2453   */
usb_hcd_irq(int irq,void * __hcd)2454  irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2455  {
2456  	struct usb_hcd		*hcd = __hcd;
2457  	irqreturn_t		rc;
2458  
2459  	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2460  		rc = IRQ_NONE;
2461  	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2462  		rc = IRQ_NONE;
2463  	else
2464  		rc = IRQ_HANDLED;
2465  
2466  	return rc;
2467  }
2468  EXPORT_SYMBOL_GPL(usb_hcd_irq);
2469  
2470  /*-------------------------------------------------------------------------*/
2471  
2472  /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2473  static void hcd_died_work(struct work_struct *work)
2474  {
2475  	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2476  	static char *env[] = {
2477  		"ERROR=DEAD",
2478  		NULL
2479  	};
2480  
2481  	/* Notify user space that the host controller has died */
2482  	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2483  }
2484  
2485  /**
2486   * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2487   * @hcd: pointer to the HCD representing the controller
2488   *
2489   * This is called by bus glue to report a USB host controller that died
2490   * while operations may still have been pending.  It's called automatically
2491   * by the PCI glue, so only glue for non-PCI busses should need to call it.
2492   *
2493   * Only call this function with the primary HCD.
2494   */
usb_hc_died(struct usb_hcd * hcd)2495  void usb_hc_died (struct usb_hcd *hcd)
2496  {
2497  	unsigned long flags;
2498  
2499  	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2500  
2501  	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2502  	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2503  	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2504  	if (hcd->rh_registered) {
2505  		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2506  
2507  		/* make hub_wq clean up old urbs and devices */
2508  		usb_set_device_state (hcd->self.root_hub,
2509  				USB_STATE_NOTATTACHED);
2510  		usb_kick_hub_wq(hcd->self.root_hub);
2511  	}
2512  	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2513  		hcd = hcd->shared_hcd;
2514  		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2515  		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2516  		if (hcd->rh_registered) {
2517  			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2518  
2519  			/* make hub_wq clean up old urbs and devices */
2520  			usb_set_device_state(hcd->self.root_hub,
2521  					USB_STATE_NOTATTACHED);
2522  			usb_kick_hub_wq(hcd->self.root_hub);
2523  		}
2524  	}
2525  
2526  	/* Handle the case where this function gets called with a shared HCD */
2527  	if (usb_hcd_is_primary_hcd(hcd))
2528  		schedule_work(&hcd->died_work);
2529  	else
2530  		schedule_work(&hcd->primary_hcd->died_work);
2531  
2532  	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2533  	/* Make sure that the other roothub is also deallocated. */
2534  }
2535  EXPORT_SYMBOL_GPL (usb_hc_died);
2536  
2537  /*-------------------------------------------------------------------------*/
2538  
init_giveback_urb_bh(struct giveback_urb_bh * bh)2539  static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2540  {
2541  
2542  	spin_lock_init(&bh->lock);
2543  	INIT_LIST_HEAD(&bh->head);
2544  	INIT_WORK(&bh->bh, usb_giveback_urb_bh);
2545  }
2546  
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2547  struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2548  		struct device *sysdev, struct device *dev, const char *bus_name,
2549  		struct usb_hcd *primary_hcd)
2550  {
2551  	struct usb_hcd *hcd;
2552  
2553  	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2554  	if (!hcd)
2555  		return NULL;
2556  	if (primary_hcd == NULL) {
2557  		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2558  				GFP_KERNEL);
2559  		if (!hcd->address0_mutex) {
2560  			kfree(hcd);
2561  			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2562  			return NULL;
2563  		}
2564  		mutex_init(hcd->address0_mutex);
2565  		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2566  				GFP_KERNEL);
2567  		if (!hcd->bandwidth_mutex) {
2568  			kfree(hcd->address0_mutex);
2569  			kfree(hcd);
2570  			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2571  			return NULL;
2572  		}
2573  		mutex_init(hcd->bandwidth_mutex);
2574  		dev_set_drvdata(dev, hcd);
2575  	} else {
2576  		mutex_lock(&usb_port_peer_mutex);
2577  		hcd->address0_mutex = primary_hcd->address0_mutex;
2578  		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2579  		hcd->primary_hcd = primary_hcd;
2580  		primary_hcd->primary_hcd = primary_hcd;
2581  		hcd->shared_hcd = primary_hcd;
2582  		primary_hcd->shared_hcd = hcd;
2583  		mutex_unlock(&usb_port_peer_mutex);
2584  	}
2585  
2586  	kref_init(&hcd->kref);
2587  
2588  	usb_bus_init(&hcd->self);
2589  	hcd->self.controller = dev;
2590  	hcd->self.sysdev = sysdev;
2591  	hcd->self.bus_name = bus_name;
2592  
2593  	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2594  #ifdef CONFIG_PM
2595  	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2596  #endif
2597  
2598  	INIT_WORK(&hcd->died_work, hcd_died_work);
2599  
2600  	hcd->driver = driver;
2601  	hcd->speed = driver->flags & HCD_MASK;
2602  	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2603  			"USB Host Controller";
2604  	return hcd;
2605  }
2606  EXPORT_SYMBOL_GPL(__usb_create_hcd);
2607  
2608  /**
2609   * usb_create_shared_hcd - create and initialize an HCD structure
2610   * @driver: HC driver that will use this hcd
2611   * @dev: device for this HC, stored in hcd->self.controller
2612   * @bus_name: value to store in hcd->self.bus_name
2613   * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2614   *              PCI device.  Only allocate certain resources for the primary HCD
2615   *
2616   * Context: task context, might sleep.
2617   *
2618   * Allocate a struct usb_hcd, with extra space at the end for the
2619   * HC driver's private data.  Initialize the generic members of the
2620   * hcd structure.
2621   *
2622   * Return: On success, a pointer to the created and initialized HCD structure.
2623   * On failure (e.g. if memory is unavailable), %NULL.
2624   */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2625  struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2626  		struct device *dev, const char *bus_name,
2627  		struct usb_hcd *primary_hcd)
2628  {
2629  	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2630  }
2631  EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2632  
2633  /**
2634   * usb_create_hcd - create and initialize an HCD structure
2635   * @driver: HC driver that will use this hcd
2636   * @dev: device for this HC, stored in hcd->self.controller
2637   * @bus_name: value to store in hcd->self.bus_name
2638   *
2639   * Context: task context, might sleep.
2640   *
2641   * Allocate a struct usb_hcd, with extra space at the end for the
2642   * HC driver's private data.  Initialize the generic members of the
2643   * hcd structure.
2644   *
2645   * Return: On success, a pointer to the created and initialized HCD
2646   * structure. On failure (e.g. if memory is unavailable), %NULL.
2647   */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2648  struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2649  		struct device *dev, const char *bus_name)
2650  {
2651  	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2652  }
2653  EXPORT_SYMBOL_GPL(usb_create_hcd);
2654  
2655  /*
2656   * Roothubs that share one PCI device must also share the bandwidth mutex.
2657   * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2658   * deallocated.
2659   *
2660   * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2661   * freed.  When hcd_release() is called for either hcd in a peer set,
2662   * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2663   */
hcd_release(struct kref * kref)2664  static void hcd_release(struct kref *kref)
2665  {
2666  	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2667  
2668  	mutex_lock(&usb_port_peer_mutex);
2669  	if (hcd->shared_hcd) {
2670  		struct usb_hcd *peer = hcd->shared_hcd;
2671  
2672  		peer->shared_hcd = NULL;
2673  		peer->primary_hcd = NULL;
2674  	} else {
2675  		kfree(hcd->address0_mutex);
2676  		kfree(hcd->bandwidth_mutex);
2677  	}
2678  	mutex_unlock(&usb_port_peer_mutex);
2679  	kfree(hcd);
2680  }
2681  
usb_get_hcd(struct usb_hcd * hcd)2682  struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2683  {
2684  	if (hcd)
2685  		kref_get (&hcd->kref);
2686  	return hcd;
2687  }
2688  EXPORT_SYMBOL_GPL(usb_get_hcd);
2689  
usb_put_hcd(struct usb_hcd * hcd)2690  void usb_put_hcd (struct usb_hcd *hcd)
2691  {
2692  	if (hcd)
2693  		kref_put (&hcd->kref, hcd_release);
2694  }
2695  EXPORT_SYMBOL_GPL(usb_put_hcd);
2696  
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2697  int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2698  {
2699  	if (!hcd->primary_hcd)
2700  		return 1;
2701  	return hcd == hcd->primary_hcd;
2702  }
2703  EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2704  
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2705  int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2706  {
2707  	if (!hcd->driver->find_raw_port_number)
2708  		return port1;
2709  
2710  	return hcd->driver->find_raw_port_number(hcd, port1);
2711  }
2712  
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2713  static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2714  		unsigned int irqnum, unsigned long irqflags)
2715  {
2716  	int retval;
2717  
2718  	if (hcd->driver->irq) {
2719  
2720  		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2721  				hcd->driver->description, hcd->self.busnum);
2722  		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2723  				hcd->irq_descr, hcd);
2724  		if (retval != 0) {
2725  			dev_err(hcd->self.controller,
2726  					"request interrupt %d failed\n",
2727  					irqnum);
2728  			return retval;
2729  		}
2730  		hcd->irq = irqnum;
2731  		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2732  				(hcd->driver->flags & HCD_MEMORY) ?
2733  					"io mem" : "io port",
2734  				(unsigned long long)hcd->rsrc_start);
2735  	} else {
2736  		hcd->irq = 0;
2737  		if (hcd->rsrc_start)
2738  			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2739  					(hcd->driver->flags & HCD_MEMORY) ?
2740  						"io mem" : "io port",
2741  					(unsigned long long)hcd->rsrc_start);
2742  	}
2743  	return 0;
2744  }
2745  
2746  /*
2747   * Before we free this root hub, flush in-flight peering attempts
2748   * and disable peer lookups
2749   */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2750  static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2751  {
2752  	struct usb_device *rhdev;
2753  
2754  	mutex_lock(&usb_port_peer_mutex);
2755  	rhdev = hcd->self.root_hub;
2756  	hcd->self.root_hub = NULL;
2757  	mutex_unlock(&usb_port_peer_mutex);
2758  	usb_put_dev(rhdev);
2759  }
2760  
2761  /**
2762   * usb_stop_hcd - Halt the HCD
2763   * @hcd: the usb_hcd that has to be halted
2764   *
2765   * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2766   */
usb_stop_hcd(struct usb_hcd * hcd)2767  static void usb_stop_hcd(struct usb_hcd *hcd)
2768  {
2769  	hcd->rh_pollable = 0;
2770  	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2771  	del_timer_sync(&hcd->rh_timer);
2772  
2773  	hcd->driver->stop(hcd);
2774  	hcd->state = HC_STATE_HALT;
2775  
2776  	/* In case the HCD restarted the timer, stop it again. */
2777  	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2778  	del_timer_sync(&hcd->rh_timer);
2779  }
2780  
2781  /**
2782   * usb_add_hcd - finish generic HCD structure initialization and register
2783   * @hcd: the usb_hcd structure to initialize
2784   * @irqnum: Interrupt line to allocate
2785   * @irqflags: Interrupt type flags
2786   *
2787   * Finish the remaining parts of generic HCD initialization: allocate the
2788   * buffers of consistent memory, register the bus, request the IRQ line,
2789   * and call the driver's reset() and start() routines.
2790   */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2791  int usb_add_hcd(struct usb_hcd *hcd,
2792  		unsigned int irqnum, unsigned long irqflags)
2793  {
2794  	int retval;
2795  	struct usb_device *rhdev;
2796  	struct usb_hcd *shared_hcd;
2797  
2798  	if (!hcd->skip_phy_initialization) {
2799  		if (usb_hcd_is_primary_hcd(hcd)) {
2800  			hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2801  			if (IS_ERR(hcd->phy_roothub))
2802  				return PTR_ERR(hcd->phy_roothub);
2803  		} else {
2804  			hcd->phy_roothub = usb_phy_roothub_alloc_usb3_phy(hcd->self.sysdev);
2805  			if (IS_ERR(hcd->phy_roothub))
2806  				return PTR_ERR(hcd->phy_roothub);
2807  		}
2808  
2809  		retval = usb_phy_roothub_init(hcd->phy_roothub);
2810  		if (retval)
2811  			return retval;
2812  
2813  		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2814  						  PHY_MODE_USB_HOST_SS);
2815  		if (retval)
2816  			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2817  							  PHY_MODE_USB_HOST);
2818  		if (retval)
2819  			goto err_usb_phy_roothub_power_on;
2820  
2821  		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2822  		if (retval)
2823  			goto err_usb_phy_roothub_power_on;
2824  	}
2825  
2826  	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2827  
2828  	switch (authorized_default) {
2829  	case USB_AUTHORIZE_NONE:
2830  		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2831  		break;
2832  
2833  	case USB_AUTHORIZE_INTERNAL:
2834  		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2835  		break;
2836  
2837  	case USB_AUTHORIZE_ALL:
2838  	case USB_AUTHORIZE_WIRED:
2839  	default:
2840  		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2841  		break;
2842  	}
2843  
2844  	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2845  
2846  	/* per default all interfaces are authorized */
2847  	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2848  
2849  	/* HC is in reset state, but accessible.  Now do the one-time init,
2850  	 * bottom up so that hcds can customize the root hubs before hub_wq
2851  	 * starts talking to them.  (Note, bus id is assigned early too.)
2852  	 */
2853  	retval = hcd_buffer_create(hcd);
2854  	if (retval != 0) {
2855  		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2856  		goto err_create_buf;
2857  	}
2858  
2859  	retval = usb_register_bus(&hcd->self);
2860  	if (retval < 0)
2861  		goto err_register_bus;
2862  
2863  	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2864  	if (rhdev == NULL) {
2865  		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2866  		retval = -ENOMEM;
2867  		goto err_allocate_root_hub;
2868  	}
2869  	mutex_lock(&usb_port_peer_mutex);
2870  	hcd->self.root_hub = rhdev;
2871  	mutex_unlock(&usb_port_peer_mutex);
2872  
2873  	rhdev->rx_lanes = 1;
2874  	rhdev->tx_lanes = 1;
2875  	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2876  
2877  	switch (hcd->speed) {
2878  	case HCD_USB11:
2879  		rhdev->speed = USB_SPEED_FULL;
2880  		break;
2881  	case HCD_USB2:
2882  		rhdev->speed = USB_SPEED_HIGH;
2883  		break;
2884  	case HCD_USB3:
2885  		rhdev->speed = USB_SPEED_SUPER;
2886  		break;
2887  	case HCD_USB32:
2888  		rhdev->rx_lanes = 2;
2889  		rhdev->tx_lanes = 2;
2890  		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2891  		rhdev->speed = USB_SPEED_SUPER_PLUS;
2892  		break;
2893  	case HCD_USB31:
2894  		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2895  		rhdev->speed = USB_SPEED_SUPER_PLUS;
2896  		break;
2897  	default:
2898  		retval = -EINVAL;
2899  		goto err_set_rh_speed;
2900  	}
2901  
2902  	/* wakeup flag init defaults to "everything works" for root hubs,
2903  	 * but drivers can override it in reset() if needed, along with
2904  	 * recording the overall controller's system wakeup capability.
2905  	 */
2906  	device_set_wakeup_capable(&rhdev->dev, 1);
2907  
2908  	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2909  	 * registered.  But since the controller can die at any time,
2910  	 * let's initialize the flag before touching the hardware.
2911  	 */
2912  	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2913  
2914  	/* "reset" is misnamed; its role is now one-time init. the controller
2915  	 * should already have been reset (and boot firmware kicked off etc).
2916  	 */
2917  	if (hcd->driver->reset) {
2918  		retval = hcd->driver->reset(hcd);
2919  		if (retval < 0) {
2920  			dev_err(hcd->self.controller, "can't setup: %d\n",
2921  					retval);
2922  			goto err_hcd_driver_setup;
2923  		}
2924  	}
2925  	hcd->rh_pollable = 1;
2926  
2927  	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2928  	if (retval)
2929  		goto err_hcd_driver_setup;
2930  
2931  	/* NOTE: root hub and controller capabilities may not be the same */
2932  	if (device_can_wakeup(hcd->self.controller)
2933  			&& device_can_wakeup(&hcd->self.root_hub->dev))
2934  		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2935  
2936  	/* initialize BHs */
2937  	init_giveback_urb_bh(&hcd->high_prio_bh);
2938  	hcd->high_prio_bh.high_prio = true;
2939  	init_giveback_urb_bh(&hcd->low_prio_bh);
2940  
2941  	/* enable irqs just before we start the controller,
2942  	 * if the BIOS provides legacy PCI irqs.
2943  	 */
2944  	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2945  		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2946  		if (retval)
2947  			goto err_request_irq;
2948  	}
2949  
2950  	hcd->state = HC_STATE_RUNNING;
2951  	retval = hcd->driver->start(hcd);
2952  	if (retval < 0) {
2953  		dev_err(hcd->self.controller, "startup error %d\n", retval);
2954  		goto err_hcd_driver_start;
2955  	}
2956  
2957  	/* starting here, usbcore will pay attention to the shared HCD roothub */
2958  	shared_hcd = hcd->shared_hcd;
2959  	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2960  		retval = register_root_hub(shared_hcd);
2961  		if (retval != 0)
2962  			goto err_register_root_hub;
2963  
2964  		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2965  			usb_hcd_poll_rh_status(shared_hcd);
2966  	}
2967  
2968  	/* starting here, usbcore will pay attention to this root hub */
2969  	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2970  		retval = register_root_hub(hcd);
2971  		if (retval != 0)
2972  			goto err_register_root_hub;
2973  
2974  		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2975  			usb_hcd_poll_rh_status(hcd);
2976  	}
2977  
2978  	return retval;
2979  
2980  err_register_root_hub:
2981  	usb_stop_hcd(hcd);
2982  err_hcd_driver_start:
2983  	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2984  		free_irq(irqnum, hcd);
2985  err_request_irq:
2986  err_hcd_driver_setup:
2987  err_set_rh_speed:
2988  	usb_put_invalidate_rhdev(hcd);
2989  err_allocate_root_hub:
2990  	usb_deregister_bus(&hcd->self);
2991  err_register_bus:
2992  	hcd_buffer_destroy(hcd);
2993  err_create_buf:
2994  	usb_phy_roothub_power_off(hcd->phy_roothub);
2995  err_usb_phy_roothub_power_on:
2996  	usb_phy_roothub_exit(hcd->phy_roothub);
2997  
2998  	return retval;
2999  }
3000  EXPORT_SYMBOL_GPL(usb_add_hcd);
3001  
3002  /**
3003   * usb_remove_hcd - shutdown processing for generic HCDs
3004   * @hcd: the usb_hcd structure to remove
3005   *
3006   * Context: task context, might sleep.
3007   *
3008   * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3009   * invoking the HCD's stop() method.
3010   */
usb_remove_hcd(struct usb_hcd * hcd)3011  void usb_remove_hcd(struct usb_hcd *hcd)
3012  {
3013  	struct usb_device *rhdev;
3014  	bool rh_registered;
3015  
3016  	if (!hcd) {
3017  		pr_debug("%s: hcd is NULL\n", __func__);
3018  		return;
3019  	}
3020  	rhdev = hcd->self.root_hub;
3021  
3022  	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3023  
3024  	usb_get_dev(rhdev);
3025  	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3026  	if (HC_IS_RUNNING (hcd->state))
3027  		hcd->state = HC_STATE_QUIESCING;
3028  
3029  	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3030  	spin_lock_irq (&hcd_root_hub_lock);
3031  	rh_registered = hcd->rh_registered;
3032  	hcd->rh_registered = 0;
3033  	spin_unlock_irq (&hcd_root_hub_lock);
3034  
3035  #ifdef CONFIG_PM
3036  	cancel_work_sync(&hcd->wakeup_work);
3037  #endif
3038  	cancel_work_sync(&hcd->died_work);
3039  
3040  	mutex_lock(&usb_bus_idr_lock);
3041  	if (rh_registered)
3042  		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
3043  	mutex_unlock(&usb_bus_idr_lock);
3044  
3045  	/*
3046  	 * flush_work() isn't needed here because:
3047  	 * - driver's disconnect() called from usb_disconnect() should
3048  	 *   make sure its URBs are completed during the disconnect()
3049  	 *   callback
3050  	 *
3051  	 * - it is too late to run complete() here since driver may have
3052  	 *   been removed already now
3053  	 */
3054  
3055  	/* Prevent any more root-hub status calls from the timer.
3056  	 * The HCD might still restart the timer (if a port status change
3057  	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3058  	 * the hub_status_data() callback.
3059  	 */
3060  	usb_stop_hcd(hcd);
3061  
3062  	if (usb_hcd_is_primary_hcd(hcd)) {
3063  		if (hcd->irq > 0)
3064  			free_irq(hcd->irq, hcd);
3065  	}
3066  
3067  	usb_deregister_bus(&hcd->self);
3068  	hcd_buffer_destroy(hcd);
3069  
3070  	usb_phy_roothub_power_off(hcd->phy_roothub);
3071  	usb_phy_roothub_exit(hcd->phy_roothub);
3072  
3073  	usb_put_invalidate_rhdev(hcd);
3074  	hcd->flags = 0;
3075  }
3076  EXPORT_SYMBOL_GPL(usb_remove_hcd);
3077  
3078  void
usb_hcd_platform_shutdown(struct platform_device * dev)3079  usb_hcd_platform_shutdown(struct platform_device *dev)
3080  {
3081  	struct usb_hcd *hcd = platform_get_drvdata(dev);
3082  
3083  	/* No need for pm_runtime_put(), we're shutting down */
3084  	pm_runtime_get_sync(&dev->dev);
3085  
3086  	if (hcd->driver->shutdown)
3087  		hcd->driver->shutdown(hcd);
3088  }
3089  EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3090  
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)3091  int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3092  			    dma_addr_t dma, size_t size)
3093  {
3094  	int err;
3095  	void *local_mem;
3096  
3097  	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3098  						  dev_to_node(hcd->self.sysdev),
3099  						  dev_name(hcd->self.sysdev));
3100  	if (IS_ERR(hcd->localmem_pool))
3101  		return PTR_ERR(hcd->localmem_pool);
3102  
3103  	/*
3104  	 * if a physical SRAM address was passed, map it, otherwise
3105  	 * allocate system memory as a buffer.
3106  	 */
3107  	if (phys_addr)
3108  		local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3109  					  size, MEMREMAP_WC);
3110  	else
3111  		local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3112  					     GFP_KERNEL,
3113  					     DMA_ATTR_WRITE_COMBINE);
3114  
3115  	if (IS_ERR_OR_NULL(local_mem)) {
3116  		if (!local_mem)
3117  			return -ENOMEM;
3118  
3119  		return PTR_ERR(local_mem);
3120  	}
3121  
3122  	/*
3123  	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3124  	 * It's not backed by system memory and thus there's no kernel mapping
3125  	 * for it.
3126  	 */
3127  	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3128  				dma, size, dev_to_node(hcd->self.sysdev));
3129  	if (err < 0) {
3130  		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3131  			err);
3132  		return err;
3133  	}
3134  
3135  	return 0;
3136  }
3137  EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3138  
3139  /*-------------------------------------------------------------------------*/
3140  
3141  #if IS_ENABLED(CONFIG_USB_MON)
3142  
3143  const struct usb_mon_operations *mon_ops;
3144  
3145  /*
3146   * The registration is unlocked.
3147   * We do it this way because we do not want to lock in hot paths.
3148   *
3149   * Notice that the code is minimally error-proof. Because usbmon needs
3150   * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3151   */
3152  
usb_mon_register(const struct usb_mon_operations * ops)3153  int usb_mon_register(const struct usb_mon_operations *ops)
3154  {
3155  
3156  	if (mon_ops)
3157  		return -EBUSY;
3158  
3159  	mon_ops = ops;
3160  	mb();
3161  	return 0;
3162  }
3163  EXPORT_SYMBOL_GPL (usb_mon_register);
3164  
usb_mon_deregister(void)3165  void usb_mon_deregister (void)
3166  {
3167  
3168  	if (mon_ops == NULL) {
3169  		printk(KERN_ERR "USB: monitor was not registered\n");
3170  		return;
3171  	}
3172  	mon_ops = NULL;
3173  	mb();
3174  }
3175  EXPORT_SYMBOL_GPL (usb_mon_deregister);
3176  
3177  #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3178