1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Intel IXP4xx Network Processor Engine driver for Linux
4   *
5   * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6   *
7   * The code is based on publicly available information:
8   * - Intel IXP4xx Developer's Manual and other e-papers
9   * - Intel IXP400 Access Library Software (BSD license)
10   * - previous works by Christian Hohnstaedt <chohnstaedt@innominate.com>
11   *   Thanks, Christian.
12   */
13  
14  #include <linux/delay.h>
15  #include <linux/dma-mapping.h>
16  #include <linux/firmware.h>
17  #include <linux/io.h>
18  #include <linux/kernel.h>
19  #include <linux/mfd/syscon.h>
20  #include <linux/module.h>
21  #include <linux/of.h>
22  #include <linux/of_platform.h>
23  #include <linux/platform_device.h>
24  #include <linux/soc/ixp4xx/npe.h>
25  #include <linux/soc/ixp4xx/cpu.h>
26  
27  #define DEBUG_MSG			0
28  #define DEBUG_FW			0
29  
30  #define NPE_COUNT			3
31  #define MAX_RETRIES			1000	/* microseconds */
32  #define NPE_42X_DATA_SIZE		0x800	/* in dwords */
33  #define NPE_46X_DATA_SIZE		0x1000
34  #define NPE_A_42X_INSTR_SIZE		0x1000
35  #define NPE_B_AND_C_42X_INSTR_SIZE	0x800
36  #define NPE_46X_INSTR_SIZE		0x1000
37  #define REGS_SIZE			0x1000
38  
39  #define NPE_PHYS_REG			32
40  
41  #define FW_MAGIC			0xFEEDF00D
42  #define FW_BLOCK_TYPE_INSTR		0x0
43  #define FW_BLOCK_TYPE_DATA		0x1
44  #define FW_BLOCK_TYPE_EOF		0xF
45  
46  /* NPE exec status (read) and command (write) */
47  #define CMD_NPE_STEP			0x01
48  #define CMD_NPE_START			0x02
49  #define CMD_NPE_STOP			0x03
50  #define CMD_NPE_CLR_PIPE		0x04
51  #define CMD_CLR_PROFILE_CNT		0x0C
52  #define CMD_RD_INS_MEM			0x10 /* instruction memory */
53  #define CMD_WR_INS_MEM			0x11
54  #define CMD_RD_DATA_MEM			0x12 /* data memory */
55  #define CMD_WR_DATA_MEM			0x13
56  #define CMD_RD_ECS_REG			0x14 /* exec access register */
57  #define CMD_WR_ECS_REG			0x15
58  
59  #define STAT_RUN			0x80000000
60  #define STAT_STOP			0x40000000
61  #define STAT_CLEAR			0x20000000
62  #define STAT_ECS_K			0x00800000 /* pipeline clean */
63  
64  #define NPE_STEVT			0x1B
65  #define NPE_STARTPC			0x1C
66  #define NPE_REGMAP			0x1E
67  #define NPE_CINDEX			0x1F
68  
69  #define INSTR_WR_REG_SHORT		0x0000C000
70  #define INSTR_WR_REG_BYTE		0x00004000
71  #define INSTR_RD_FIFO			0x0F888220
72  #define INSTR_RESET_MBOX		0x0FAC8210
73  
74  #define ECS_BG_CTXT_REG_0		0x00 /* Background Executing Context */
75  #define ECS_BG_CTXT_REG_1		0x01 /*		Stack level */
76  #define ECS_BG_CTXT_REG_2		0x02
77  #define ECS_PRI_1_CTXT_REG_0		0x04 /* Priority 1 Executing Context */
78  #define ECS_PRI_1_CTXT_REG_1		0x05 /*		Stack level */
79  #define ECS_PRI_1_CTXT_REG_2		0x06
80  #define ECS_PRI_2_CTXT_REG_0		0x08 /* Priority 2 Executing Context */
81  #define ECS_PRI_2_CTXT_REG_1		0x09 /*		Stack level */
82  #define ECS_PRI_2_CTXT_REG_2		0x0A
83  #define ECS_DBG_CTXT_REG_0		0x0C /* Debug Executing Context */
84  #define ECS_DBG_CTXT_REG_1		0x0D /*		Stack level */
85  #define ECS_DBG_CTXT_REG_2		0x0E
86  #define ECS_INSTRUCT_REG		0x11 /* NPE Instruction Register */
87  
88  #define ECS_REG_0_ACTIVE		0x80000000 /* all levels */
89  #define ECS_REG_0_NEXTPC_MASK		0x1FFF0000 /* BG/PRI1/PRI2 levels */
90  #define ECS_REG_0_LDUR_BITS		8
91  #define ECS_REG_0_LDUR_MASK		0x00000700 /* all levels */
92  #define ECS_REG_1_CCTXT_BITS		16
93  #define ECS_REG_1_CCTXT_MASK		0x000F0000 /* all levels */
94  #define ECS_REG_1_SELCTXT_BITS		0
95  #define ECS_REG_1_SELCTXT_MASK		0x0000000F /* all levels */
96  #define ECS_DBG_REG_2_IF		0x00100000 /* debug level */
97  #define ECS_DBG_REG_2_IE		0x00080000 /* debug level */
98  
99  /* NPE watchpoint_fifo register bit */
100  #define WFIFO_VALID			0x80000000
101  
102  /* NPE messaging_status register bit definitions */
103  #define MSGSTAT_OFNE	0x00010000 /* OutFifoNotEmpty */
104  #define MSGSTAT_IFNF	0x00020000 /* InFifoNotFull */
105  #define MSGSTAT_OFNF	0x00040000 /* OutFifoNotFull */
106  #define MSGSTAT_IFNE	0x00080000 /* InFifoNotEmpty */
107  #define MSGSTAT_MBINT	0x00100000 /* Mailbox interrupt */
108  #define MSGSTAT_IFINT	0x00200000 /* InFifo interrupt */
109  #define MSGSTAT_OFINT	0x00400000 /* OutFifo interrupt */
110  #define MSGSTAT_WFINT	0x00800000 /* WatchFifo interrupt */
111  
112  /* NPE messaging_control register bit definitions */
113  #define MSGCTL_OUT_FIFO			0x00010000 /* enable output FIFO */
114  #define MSGCTL_IN_FIFO			0x00020000 /* enable input FIFO */
115  #define MSGCTL_OUT_FIFO_WRITE		0x01000000 /* enable FIFO + WRITE */
116  #define MSGCTL_IN_FIFO_WRITE		0x02000000
117  
118  /* NPE mailbox_status value for reset */
119  #define RESET_MBOX_STAT			0x0000F0F0
120  
121  #define NPE_A_FIRMWARE "NPE-A"
122  #define NPE_B_FIRMWARE "NPE-B"
123  #define NPE_C_FIRMWARE "NPE-C"
124  
125  const char *npe_names[] = { NPE_A_FIRMWARE, NPE_B_FIRMWARE, NPE_C_FIRMWARE };
126  
127  #define print_npe(pri, npe, fmt, ...)					\
128  	printk(pri "%s: " fmt, npe_name(npe), ## __VA_ARGS__)
129  
130  #if DEBUG_MSG
131  #define debug_msg(npe, fmt, ...)					\
132  	print_npe(KERN_DEBUG, npe, fmt, ## __VA_ARGS__)
133  #else
134  #define debug_msg(npe, fmt, ...)
135  #endif
136  
137  static struct {
138  	u32 reg, val;
139  } ecs_reset[] = {
140  	{ ECS_BG_CTXT_REG_0,	0xA0000000 },
141  	{ ECS_BG_CTXT_REG_1,	0x01000000 },
142  	{ ECS_BG_CTXT_REG_2,	0x00008000 },
143  	{ ECS_PRI_1_CTXT_REG_0,	0x20000080 },
144  	{ ECS_PRI_1_CTXT_REG_1,	0x01000000 },
145  	{ ECS_PRI_1_CTXT_REG_2,	0x00008000 },
146  	{ ECS_PRI_2_CTXT_REG_0,	0x20000080 },
147  	{ ECS_PRI_2_CTXT_REG_1,	0x01000000 },
148  	{ ECS_PRI_2_CTXT_REG_2,	0x00008000 },
149  	{ ECS_DBG_CTXT_REG_0,	0x20000000 },
150  	{ ECS_DBG_CTXT_REG_1,	0x00000000 },
151  	{ ECS_DBG_CTXT_REG_2,	0x001E0000 },
152  	{ ECS_INSTRUCT_REG,	0x1003C00F },
153  };
154  
155  static struct npe npe_tab[NPE_COUNT] = {
156  	{
157  		.id	= 0,
158  	}, {
159  		.id	= 1,
160  	}, {
161  		.id	= 2,
162  	}
163  };
164  
npe_running(struct npe * npe)165  int npe_running(struct npe *npe)
166  {
167  	return (__raw_readl(&npe->regs->exec_status_cmd) & STAT_RUN) != 0;
168  }
169  
npe_cmd_write(struct npe * npe,u32 addr,int cmd,u32 data)170  static void npe_cmd_write(struct npe *npe, u32 addr, int cmd, u32 data)
171  {
172  	__raw_writel(data, &npe->regs->exec_data);
173  	__raw_writel(addr, &npe->regs->exec_addr);
174  	__raw_writel(cmd, &npe->regs->exec_status_cmd);
175  }
176  
npe_cmd_read(struct npe * npe,u32 addr,int cmd)177  static u32 npe_cmd_read(struct npe *npe, u32 addr, int cmd)
178  {
179  	__raw_writel(addr, &npe->regs->exec_addr);
180  	__raw_writel(cmd, &npe->regs->exec_status_cmd);
181  	/* Iintroduce extra read cycles after issuing read command to NPE
182  	   so that we read the register after the NPE has updated it.
183  	   This is to overcome race condition between XScale and NPE */
184  	__raw_readl(&npe->regs->exec_data);
185  	__raw_readl(&npe->regs->exec_data);
186  	return __raw_readl(&npe->regs->exec_data);
187  }
188  
npe_clear_active(struct npe * npe,u32 reg)189  static void npe_clear_active(struct npe *npe, u32 reg)
190  {
191  	u32 val = npe_cmd_read(npe, reg, CMD_RD_ECS_REG);
192  	npe_cmd_write(npe, reg, CMD_WR_ECS_REG, val & ~ECS_REG_0_ACTIVE);
193  }
194  
npe_start(struct npe * npe)195  static void npe_start(struct npe *npe)
196  {
197  	/* ensure only Background Context Stack Level is active */
198  	npe_clear_active(npe, ECS_PRI_1_CTXT_REG_0);
199  	npe_clear_active(npe, ECS_PRI_2_CTXT_REG_0);
200  	npe_clear_active(npe, ECS_DBG_CTXT_REG_0);
201  
202  	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
203  	__raw_writel(CMD_NPE_START, &npe->regs->exec_status_cmd);
204  }
205  
npe_stop(struct npe * npe)206  static void npe_stop(struct npe *npe)
207  {
208  	__raw_writel(CMD_NPE_STOP, &npe->regs->exec_status_cmd);
209  	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd); /*FIXME?*/
210  }
211  
npe_debug_instr(struct npe * npe,u32 instr,u32 ctx,u32 ldur)212  static int __must_check npe_debug_instr(struct npe *npe, u32 instr, u32 ctx,
213  					u32 ldur)
214  {
215  	u32 wc;
216  	int i;
217  
218  	/* set the Active bit, and the LDUR, in the debug level */
219  	npe_cmd_write(npe, ECS_DBG_CTXT_REG_0, CMD_WR_ECS_REG,
220  		      ECS_REG_0_ACTIVE | (ldur << ECS_REG_0_LDUR_BITS));
221  
222  	/* set CCTXT at ECS DEBUG L3 to specify in which context to execute
223  	   the instruction, and set SELCTXT at ECS DEBUG Level to specify
224  	   which context store to access.
225  	   Debug ECS Level Reg 1 has form 0x000n000n, where n = context number
226  	*/
227  	npe_cmd_write(npe, ECS_DBG_CTXT_REG_1, CMD_WR_ECS_REG,
228  		      (ctx << ECS_REG_1_CCTXT_BITS) |
229  		      (ctx << ECS_REG_1_SELCTXT_BITS));
230  
231  	/* clear the pipeline */
232  	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
233  
234  	/* load NPE instruction into the instruction register */
235  	npe_cmd_write(npe, ECS_INSTRUCT_REG, CMD_WR_ECS_REG, instr);
236  
237  	/* we need this value later to wait for completion of NPE execution
238  	   step */
239  	wc = __raw_readl(&npe->regs->watch_count);
240  
241  	/* issue a Step One command via the Execution Control register */
242  	__raw_writel(CMD_NPE_STEP, &npe->regs->exec_status_cmd);
243  
244  	/* Watch Count register increments when NPE completes an instruction */
245  	for (i = 0; i < MAX_RETRIES; i++) {
246  		if (wc != __raw_readl(&npe->regs->watch_count))
247  			return 0;
248  		udelay(1);
249  	}
250  
251  	print_npe(KERN_ERR, npe, "reset: npe_debug_instr(): timeout\n");
252  	return -ETIMEDOUT;
253  }
254  
npe_logical_reg_write8(struct npe * npe,u32 addr,u8 val,u32 ctx)255  static int __must_check npe_logical_reg_write8(struct npe *npe, u32 addr,
256  					       u8 val, u32 ctx)
257  {
258  	/* here we build the NPE assembler instruction: mov8 d0, #0 */
259  	u32 instr = INSTR_WR_REG_BYTE |	/* OpCode */
260  		addr << 9 |		/* base Operand */
261  		(val & 0x1F) << 4 |	/* lower 5 bits to immediate data */
262  		(val & ~0x1F) << (18 - 5);/* higher 3 bits to CoProc instr. */
263  	return npe_debug_instr(npe, instr, ctx, 1); /* execute it */
264  }
265  
npe_logical_reg_write16(struct npe * npe,u32 addr,u16 val,u32 ctx)266  static int __must_check npe_logical_reg_write16(struct npe *npe, u32 addr,
267  						u16 val, u32 ctx)
268  {
269  	/* here we build the NPE assembler instruction: mov16 d0, #0 */
270  	u32 instr = INSTR_WR_REG_SHORT | /* OpCode */
271  		addr << 9 |		/* base Operand */
272  		(val & 0x1F) << 4 |	/* lower 5 bits to immediate data */
273  		(val & ~0x1F) << (18 - 5);/* higher 11 bits to CoProc instr. */
274  	return npe_debug_instr(npe, instr, ctx, 1); /* execute it */
275  }
276  
npe_logical_reg_write32(struct npe * npe,u32 addr,u32 val,u32 ctx)277  static int __must_check npe_logical_reg_write32(struct npe *npe, u32 addr,
278  						u32 val, u32 ctx)
279  {
280  	/* write in 16 bit steps first the high and then the low value */
281  	if (npe_logical_reg_write16(npe, addr, val >> 16, ctx))
282  		return -ETIMEDOUT;
283  	return npe_logical_reg_write16(npe, addr + 2, val & 0xFFFF, ctx);
284  }
285  
npe_reset(struct npe * npe)286  static int npe_reset(struct npe *npe)
287  {
288  	u32 reset_bit = (IXP4XX_FEATURE_RESET_NPEA << npe->id);
289  	u32 val, ctl, exec_count, ctx_reg2;
290  	int i;
291  
292  	ctl = (__raw_readl(&npe->regs->messaging_control) | 0x3F000000) &
293  		0x3F3FFFFF;
294  
295  	/* disable parity interrupt */
296  	__raw_writel(ctl & 0x3F00FFFF, &npe->regs->messaging_control);
297  
298  	/* pre exec - debug instruction */
299  	/* turn off the halt bit by clearing Execution Count register. */
300  	exec_count = __raw_readl(&npe->regs->exec_count);
301  	__raw_writel(0, &npe->regs->exec_count);
302  	/* ensure that IF and IE are on (temporarily), so that we don't end up
303  	   stepping forever */
304  	ctx_reg2 = npe_cmd_read(npe, ECS_DBG_CTXT_REG_2, CMD_RD_ECS_REG);
305  	npe_cmd_write(npe, ECS_DBG_CTXT_REG_2, CMD_WR_ECS_REG, ctx_reg2 |
306  		      ECS_DBG_REG_2_IF | ECS_DBG_REG_2_IE);
307  
308  	/* clear the FIFOs */
309  	while (__raw_readl(&npe->regs->watchpoint_fifo) & WFIFO_VALID)
310  		;
311  	while (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_OFNE)
312  		/* read from the outFIFO until empty */
313  		print_npe(KERN_DEBUG, npe, "npe_reset: read FIFO = 0x%X\n",
314  			  __raw_readl(&npe->regs->in_out_fifo));
315  
316  	while (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE)
317  		/* step execution of the NPE intruction to read inFIFO using
318  		   the Debug Executing Context stack */
319  		if (npe_debug_instr(npe, INSTR_RD_FIFO, 0, 0))
320  			return -ETIMEDOUT;
321  
322  	/* reset the mailbox reg from the XScale side */
323  	__raw_writel(RESET_MBOX_STAT, &npe->regs->mailbox_status);
324  	/* from NPE side */
325  	if (npe_debug_instr(npe, INSTR_RESET_MBOX, 0, 0))
326  		return -ETIMEDOUT;
327  
328  	/* Reset the physical registers in the NPE register file */
329  	for (val = 0; val < NPE_PHYS_REG; val++) {
330  		if (npe_logical_reg_write16(npe, NPE_REGMAP, val >> 1, 0))
331  			return -ETIMEDOUT;
332  		/* address is either 0 or 4 */
333  		if (npe_logical_reg_write32(npe, (val & 1) * 4, 0, 0))
334  			return -ETIMEDOUT;
335  	}
336  
337  	/* Reset the context store = each context's Context Store registers */
338  
339  	/* Context 0 has no STARTPC. Instead, this value is used to set NextPC
340  	   for Background ECS, to set where NPE starts executing code */
341  	val = npe_cmd_read(npe, ECS_BG_CTXT_REG_0, CMD_RD_ECS_REG);
342  	val &= ~ECS_REG_0_NEXTPC_MASK;
343  	val |= (0 /* NextPC */ << 16) & ECS_REG_0_NEXTPC_MASK;
344  	npe_cmd_write(npe, ECS_BG_CTXT_REG_0, CMD_WR_ECS_REG, val);
345  
346  	for (i = 0; i < 16; i++) {
347  		if (i) {	/* Context 0 has no STEVT nor STARTPC */
348  			/* STEVT = off, 0x80 */
349  			if (npe_logical_reg_write8(npe, NPE_STEVT, 0x80, i))
350  				return -ETIMEDOUT;
351  			if (npe_logical_reg_write16(npe, NPE_STARTPC, 0, i))
352  				return -ETIMEDOUT;
353  		}
354  		/* REGMAP = d0->p0, d8->p2, d16->p4 */
355  		if (npe_logical_reg_write16(npe, NPE_REGMAP, 0x820, i))
356  			return -ETIMEDOUT;
357  		if (npe_logical_reg_write8(npe, NPE_CINDEX, 0, i))
358  			return -ETIMEDOUT;
359  	}
360  
361  	/* post exec */
362  	/* clear active bit in debug level */
363  	npe_cmd_write(npe, ECS_DBG_CTXT_REG_0, CMD_WR_ECS_REG, 0);
364  	/* clear the pipeline */
365  	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
366  	/* restore previous values */
367  	__raw_writel(exec_count, &npe->regs->exec_count);
368  	npe_cmd_write(npe, ECS_DBG_CTXT_REG_2, CMD_WR_ECS_REG, ctx_reg2);
369  
370  	/* write reset values to Execution Context Stack registers */
371  	for (val = 0; val < ARRAY_SIZE(ecs_reset); val++)
372  		npe_cmd_write(npe, ecs_reset[val].reg, CMD_WR_ECS_REG,
373  			      ecs_reset[val].val);
374  
375  	/* clear the profile counter */
376  	__raw_writel(CMD_CLR_PROFILE_CNT, &npe->regs->exec_status_cmd);
377  
378  	__raw_writel(0, &npe->regs->exec_count);
379  	__raw_writel(0, &npe->regs->action_points[0]);
380  	__raw_writel(0, &npe->regs->action_points[1]);
381  	__raw_writel(0, &npe->regs->action_points[2]);
382  	__raw_writel(0, &npe->regs->action_points[3]);
383  	__raw_writel(0, &npe->regs->watch_count);
384  
385  	/*
386  	 * We need to work on cached values here because the register
387  	 * will read inverted but needs to be written non-inverted.
388  	 */
389  	val = cpu_ixp4xx_features(npe->rmap);
390  	/* reset the NPE */
391  	regmap_write(npe->rmap, IXP4XX_EXP_CNFG2, val & ~reset_bit);
392  	/* deassert reset */
393  	regmap_write(npe->rmap, IXP4XX_EXP_CNFG2, val | reset_bit);
394  
395  	for (i = 0; i < MAX_RETRIES; i++) {
396  		val = cpu_ixp4xx_features(npe->rmap);
397  		if (val & reset_bit)
398  			break;	/* NPE is back alive */
399  		udelay(1);
400  	}
401  	if (i == MAX_RETRIES)
402  		return -ETIMEDOUT;
403  
404  	npe_stop(npe);
405  
406  	/* restore NPE configuration bus Control Register - parity settings */
407  	__raw_writel(ctl, &npe->regs->messaging_control);
408  	return 0;
409  }
410  
411  
npe_send_message(struct npe * npe,const void * msg,const char * what)412  int npe_send_message(struct npe *npe, const void *msg, const char *what)
413  {
414  	const u32 *send = msg;
415  	int cycles = 0;
416  
417  	debug_msg(npe, "Trying to send message %s [%08X:%08X]\n",
418  		  what, send[0], send[1]);
419  
420  	if (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE) {
421  		debug_msg(npe, "NPE input FIFO not empty\n");
422  		return -EIO;
423  	}
424  
425  	__raw_writel(send[0], &npe->regs->in_out_fifo);
426  
427  	if (!(__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNF)) {
428  		debug_msg(npe, "NPE input FIFO full\n");
429  		return -EIO;
430  	}
431  
432  	__raw_writel(send[1], &npe->regs->in_out_fifo);
433  
434  	while ((cycles < MAX_RETRIES) &&
435  	       (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE)) {
436  		udelay(1);
437  		cycles++;
438  	}
439  
440  	if (cycles == MAX_RETRIES) {
441  		debug_msg(npe, "Timeout sending message\n");
442  		return -ETIMEDOUT;
443  	}
444  
445  #if DEBUG_MSG > 1
446  	debug_msg(npe, "Sending a message took %i cycles\n", cycles);
447  #endif
448  	return 0;
449  }
450  
npe_recv_message(struct npe * npe,void * msg,const char * what)451  int npe_recv_message(struct npe *npe, void *msg, const char *what)
452  {
453  	u32 *recv = msg;
454  	int cycles = 0, cnt = 0;
455  
456  	debug_msg(npe, "Trying to receive message %s\n", what);
457  
458  	while (cycles < MAX_RETRIES) {
459  		if (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_OFNE) {
460  			recv[cnt++] = __raw_readl(&npe->regs->in_out_fifo);
461  			if (cnt == 2)
462  				break;
463  		} else {
464  			udelay(1);
465  			cycles++;
466  		}
467  	}
468  
469  	switch(cnt) {
470  	case 1:
471  		debug_msg(npe, "Received [%08X]\n", recv[0]);
472  		break;
473  	case 2:
474  		debug_msg(npe, "Received [%08X:%08X]\n", recv[0], recv[1]);
475  		break;
476  	}
477  
478  	if (cycles == MAX_RETRIES) {
479  		debug_msg(npe, "Timeout waiting for message\n");
480  		return -ETIMEDOUT;
481  	}
482  
483  #if DEBUG_MSG > 1
484  	debug_msg(npe, "Receiving a message took %i cycles\n", cycles);
485  #endif
486  	return 0;
487  }
488  
npe_send_recv_message(struct npe * npe,void * msg,const char * what)489  int npe_send_recv_message(struct npe *npe, void *msg, const char *what)
490  {
491  	int result;
492  	u32 *send = msg, recv[2];
493  
494  	if ((result = npe_send_message(npe, msg, what)) != 0)
495  		return result;
496  	if ((result = npe_recv_message(npe, recv, what)) != 0)
497  		return result;
498  
499  	if ((recv[0] != send[0]) || (recv[1] != send[1])) {
500  		debug_msg(npe, "Message %s: unexpected message received\n",
501  			  what);
502  		return -EIO;
503  	}
504  	return 0;
505  }
506  
507  
npe_load_firmware(struct npe * npe,const char * name,struct device * dev)508  int npe_load_firmware(struct npe *npe, const char *name, struct device *dev)
509  {
510  	const struct firmware *fw_entry;
511  
512  	struct dl_block {
513  		u32 type;
514  		u32 offset;
515  	} *blk;
516  
517  	struct dl_image {
518  		u32 magic;
519  		u32 id;
520  		u32 size;
521  		union {
522  			DECLARE_FLEX_ARRAY(u32, data);
523  			DECLARE_FLEX_ARRAY(struct dl_block, blocks);
524  		};
525  	} *image;
526  
527  	struct dl_codeblock {
528  		u32 npe_addr;
529  		u32 size;
530  		u32 data[];
531  	} *cb;
532  
533  	int i, j, err, data_size, instr_size, blocks, table_end;
534  	u32 cmd;
535  
536  	if ((err = request_firmware(&fw_entry, name, dev)) != 0)
537  		return err;
538  
539  	err = -EINVAL;
540  	if (fw_entry->size < sizeof(struct dl_image)) {
541  		print_npe(KERN_ERR, npe, "incomplete firmware file\n");
542  		goto err;
543  	}
544  	image = (struct dl_image*)fw_entry->data;
545  
546  #if DEBUG_FW
547  	print_npe(KERN_DEBUG, npe, "firmware: %08X %08X %08X (0x%X bytes)\n",
548  		  image->magic, image->id, image->size, image->size * 4);
549  #endif
550  
551  	if (image->magic == swab32(FW_MAGIC)) { /* swapped file */
552  		image->id = swab32(image->id);
553  		image->size = swab32(image->size);
554  	} else if (image->magic != FW_MAGIC) {
555  		print_npe(KERN_ERR, npe, "bad firmware file magic: 0x%X\n",
556  			  image->magic);
557  		goto err;
558  	}
559  	if ((image->size * 4 + sizeof(struct dl_image)) != fw_entry->size) {
560  		print_npe(KERN_ERR, npe,
561  			  "inconsistent size of firmware file\n");
562  		goto err;
563  	}
564  	if (((image->id >> 24) & 0xF /* NPE ID */) != npe->id) {
565  		print_npe(KERN_ERR, npe, "firmware file NPE ID mismatch\n");
566  		goto err;
567  	}
568  	if (image->magic == swab32(FW_MAGIC))
569  		for (i = 0; i < image->size; i++)
570  			image->data[i] = swab32(image->data[i]);
571  
572  	if (cpu_is_ixp42x() && ((image->id >> 28) & 0xF /* device ID */)) {
573  		print_npe(KERN_INFO, npe, "IXP43x/IXP46x firmware ignored on "
574  			  "IXP42x\n");
575  		goto err;
576  	}
577  
578  	if (npe_running(npe)) {
579  		print_npe(KERN_INFO, npe, "unable to load firmware, NPE is "
580  			  "already running\n");
581  		err = -EBUSY;
582  		goto err;
583  	}
584  #if 0
585  	npe_stop(npe);
586  	npe_reset(npe);
587  #endif
588  
589  	print_npe(KERN_INFO, npe, "firmware functionality 0x%X, "
590  		  "revision 0x%X:%X\n", (image->id >> 16) & 0xFF,
591  		  (image->id >> 8) & 0xFF, image->id & 0xFF);
592  
593  	if (cpu_is_ixp42x()) {
594  		if (!npe->id)
595  			instr_size = NPE_A_42X_INSTR_SIZE;
596  		else
597  			instr_size = NPE_B_AND_C_42X_INSTR_SIZE;
598  		data_size = NPE_42X_DATA_SIZE;
599  	} else {
600  		instr_size = NPE_46X_INSTR_SIZE;
601  		data_size = NPE_46X_DATA_SIZE;
602  	}
603  
604  	for (blocks = 0; blocks * sizeof(struct dl_block) / 4 < image->size;
605  	     blocks++)
606  		if (image->blocks[blocks].type == FW_BLOCK_TYPE_EOF)
607  			break;
608  	if (blocks * sizeof(struct dl_block) / 4 >= image->size) {
609  		print_npe(KERN_INFO, npe, "firmware EOF block marker not "
610  			  "found\n");
611  		goto err;
612  	}
613  
614  #if DEBUG_FW
615  	print_npe(KERN_DEBUG, npe, "%i firmware blocks found\n", blocks);
616  #endif
617  
618  	table_end = blocks * sizeof(struct dl_block) / 4 + 1 /* EOF marker */;
619  	for (i = 0, blk = image->blocks; i < blocks; i++, blk++) {
620  		if (blk->offset > image->size - sizeof(struct dl_codeblock) / 4
621  		    || blk->offset < table_end) {
622  			print_npe(KERN_INFO, npe, "invalid offset 0x%X of "
623  				  "firmware block #%i\n", blk->offset, i);
624  			goto err;
625  		}
626  
627  		cb = (struct dl_codeblock*)&image->data[blk->offset];
628  		if (blk->type == FW_BLOCK_TYPE_INSTR) {
629  			if (cb->npe_addr + cb->size > instr_size)
630  				goto too_big;
631  			cmd = CMD_WR_INS_MEM;
632  		} else if (blk->type == FW_BLOCK_TYPE_DATA) {
633  			if (cb->npe_addr + cb->size > data_size)
634  				goto too_big;
635  			cmd = CMD_WR_DATA_MEM;
636  		} else {
637  			print_npe(KERN_INFO, npe, "invalid firmware block #%i "
638  				  "type 0x%X\n", i, blk->type);
639  			goto err;
640  		}
641  		if (blk->offset + sizeof(*cb) / 4 + cb->size > image->size) {
642  			print_npe(KERN_INFO, npe, "firmware block #%i doesn't "
643  				  "fit in firmware image: type %c, start 0x%X,"
644  				  " length 0x%X\n", i,
645  				  blk->type == FW_BLOCK_TYPE_INSTR ? 'I' : 'D',
646  				  cb->npe_addr, cb->size);
647  			goto err;
648  		}
649  
650  		for (j = 0; j < cb->size; j++)
651  			npe_cmd_write(npe, cb->npe_addr + j, cmd, cb->data[j]);
652  	}
653  
654  	npe_start(npe);
655  	if (!npe_running(npe))
656  		print_npe(KERN_ERR, npe, "unable to start\n");
657  	release_firmware(fw_entry);
658  	return 0;
659  
660  too_big:
661  	print_npe(KERN_INFO, npe, "firmware block #%i doesn't fit in NPE "
662  		  "memory: type %c, start 0x%X, length 0x%X\n", i,
663  		  blk->type == FW_BLOCK_TYPE_INSTR ? 'I' : 'D',
664  		  cb->npe_addr, cb->size);
665  err:
666  	release_firmware(fw_entry);
667  	return err;
668  }
669  
670  
npe_request(unsigned id)671  struct npe *npe_request(unsigned id)
672  {
673  	if (id < NPE_COUNT)
674  		if (npe_tab[id].valid)
675  			if (try_module_get(THIS_MODULE))
676  				return &npe_tab[id];
677  	return NULL;
678  }
679  
npe_release(struct npe * npe)680  void npe_release(struct npe *npe)
681  {
682  	module_put(THIS_MODULE);
683  }
684  
ixp4xx_npe_probe(struct platform_device * pdev)685  static int ixp4xx_npe_probe(struct platform_device *pdev)
686  {
687  	int i, found = 0;
688  	struct device *dev = &pdev->dev;
689  	struct device_node *np = dev->of_node;
690  	struct resource *res;
691  	struct regmap *rmap;
692  	u32 val;
693  
694  	/* This system has only one syscon, so fetch it */
695  	rmap = syscon_regmap_lookup_by_compatible("syscon");
696  	if (IS_ERR(rmap))
697  		return dev_err_probe(dev, PTR_ERR(rmap),
698  				     "failed to look up syscon\n");
699  
700  	for (i = 0; i < NPE_COUNT; i++) {
701  		struct npe *npe = &npe_tab[i];
702  
703  		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
704  		if (!res)
705  			return -ENODEV;
706  
707  		val = cpu_ixp4xx_features(rmap);
708  
709  		if (!(val & (IXP4XX_FEATURE_RESET_NPEA << i))) {
710  			dev_info(dev, "NPE%d at %pR not available\n",
711  				 i, res);
712  			continue; /* NPE already disabled or not present */
713  		}
714  		npe->regs = devm_ioremap_resource(dev, res);
715  		if (IS_ERR(npe->regs))
716  			return PTR_ERR(npe->regs);
717  		npe->rmap = rmap;
718  
719  		if (npe_reset(npe)) {
720  			dev_info(dev, "NPE%d at %pR does not reset\n",
721  				 i, res);
722  			continue;
723  		}
724  		npe->valid = 1;
725  		dev_info(dev, "NPE%d at %pR registered\n", i, res);
726  		found++;
727  	}
728  
729  	if (!found)
730  		return -ENODEV;
731  
732  	/* Spawn crypto subdevice if using device tree */
733  	if (IS_ENABLED(CONFIG_OF) && np)
734  		devm_of_platform_populate(dev);
735  
736  	return 0;
737  }
738  
ixp4xx_npe_remove(struct platform_device * pdev)739  static void ixp4xx_npe_remove(struct platform_device *pdev)
740  {
741  	int i;
742  
743  	for (i = 0; i < NPE_COUNT; i++)
744  		if (npe_tab[i].regs) {
745  			npe_reset(&npe_tab[i]);
746  		}
747  }
748  
749  static const struct of_device_id ixp4xx_npe_of_match[] = {
750  	{
751  		.compatible = "intel,ixp4xx-network-processing-engine",
752          },
753  	{},
754  };
755  
756  static struct platform_driver ixp4xx_npe_driver = {
757  	.driver = {
758  		.name           = "ixp4xx-npe",
759  		.of_match_table = ixp4xx_npe_of_match,
760  	},
761  	.probe = ixp4xx_npe_probe,
762  	.remove_new = ixp4xx_npe_remove,
763  };
764  module_platform_driver(ixp4xx_npe_driver);
765  
766  MODULE_AUTHOR("Krzysztof Halasa");
767  MODULE_DESCRIPTION("Intel IXP4xx Network Processor Engine driver");
768  MODULE_LICENSE("GPL v2");
769  MODULE_FIRMWARE(NPE_A_FIRMWARE);
770  MODULE_FIRMWARE(NPE_B_FIRMWARE);
771  MODULE_FIRMWARE(NPE_C_FIRMWARE);
772  
773  EXPORT_SYMBOL(npe_names);
774  EXPORT_SYMBOL(npe_running);
775  EXPORT_SYMBOL(npe_request);
776  EXPORT_SYMBOL(npe_release);
777  EXPORT_SYMBOL(npe_load_firmware);
778  EXPORT_SYMBOL(npe_send_message);
779  EXPORT_SYMBOL(npe_recv_message);
780  EXPORT_SYMBOL(npe_send_recv_message);
781