1  /*
2   * Copyright (c) 2008-2011 Atheros Communications Inc.
3   *
4   * Permission to use, copy, modify, and/or distribute this software for any
5   * purpose with or without fee is hereby granted, provided that the above
6   * copyright notice and this permission notice appear in all copies.
7   *
8   * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9   * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10   * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11   * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12   * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13   * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14   * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15   */
16  
17  #include "hw.h"
18  #include "hw-ops.h"
19  #include <linux/export.h>
20  
ath9k_hw_set_txq_interrupts(struct ath_hw * ah,struct ath9k_tx_queue_info * qi)21  static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22  					struct ath9k_tx_queue_info *qi)
23  {
24  	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25  		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26  		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27  		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28  		ah->txurn_interrupt_mask);
29  
30  	ENABLE_REGWRITE_BUFFER(ah);
31  
32  	REG_WRITE(ah, AR_IMR_S0,
33  		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34  		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35  	REG_WRITE(ah, AR_IMR_S1,
36  		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37  		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38  
39  	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40  	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41  	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42  
43  	REGWRITE_BUFFER_FLUSH(ah);
44  }
45  
ath9k_hw_gettxbuf(struct ath_hw * ah,u32 q)46  u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47  {
48  	return REG_READ(ah, AR_QTXDP(q));
49  }
50  EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51  
ath9k_hw_puttxbuf(struct ath_hw * ah,u32 q,u32 txdp)52  void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53  {
54  	REG_WRITE(ah, AR_QTXDP(q), txdp);
55  }
56  EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57  
ath9k_hw_txstart(struct ath_hw * ah,u32 q)58  void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59  {
60  	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61  	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62  }
63  EXPORT_SYMBOL(ath9k_hw_txstart);
64  
ath9k_hw_numtxpending(struct ath_hw * ah,u32 q)65  u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66  {
67  	u32 npend;
68  
69  	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70  	if (npend == 0) {
71  
72  		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73  			npend = 1;
74  	}
75  
76  	return npend;
77  }
78  EXPORT_SYMBOL(ath9k_hw_numtxpending);
79  
80  /**
81   * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82   *
83   * @ah: atheros hardware struct
84   * @bIncTrigLevel: whether or not the frame trigger level should be updated
85   *
86   * The frame trigger level specifies the minimum number of bytes,
87   * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88   * before the PCU will initiate sending the frame on the air. This can
89   * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90   * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91   * first)
92   *
93   * Caution must be taken to ensure to set the frame trigger level based
94   * on the DMA request size. For example if the DMA request size is set to
95   * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96   * there need to be enough space in the tx FIFO for the requested transfer
97   * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98   * the threshold to a value beyond 6, then the transmit will hang.
99   *
100   * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101   * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102   * there is a hardware issue which forces us to use 2 KB instead so the
103   * frame trigger level must not exceed 2 KB for these chipsets.
104   */
ath9k_hw_updatetxtriglevel(struct ath_hw * ah,bool bIncTrigLevel)105  bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106  {
107  	u32 txcfg, curLevel, newLevel;
108  
109  	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110  		return false;
111  
112  	ath9k_hw_disable_interrupts(ah);
113  
114  	txcfg = REG_READ(ah, AR_TXCFG);
115  	curLevel = MS(txcfg, AR_FTRIG);
116  	newLevel = curLevel;
117  	if (bIncTrigLevel) {
118  		if (curLevel < ah->config.max_txtrig_level)
119  			newLevel++;
120  	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121  		newLevel--;
122  	if (newLevel != curLevel)
123  		REG_WRITE(ah, AR_TXCFG,
124  			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125  
126  	ath9k_hw_enable_interrupts(ah);
127  
128  	ah->tx_trig_level = newLevel;
129  
130  	return newLevel != curLevel;
131  }
132  EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133  
ath9k_hw_abort_tx_dma(struct ath_hw * ah)134  void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135  {
136  	int maxdelay = 1000;
137  	int i, q;
138  
139  	if (ah->curchan) {
140  		if (IS_CHAN_HALF_RATE(ah->curchan))
141  			maxdelay *= 2;
142  		else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143  			maxdelay *= 4;
144  	}
145  
146  	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
147  
148  	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149  	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150  	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
151  
152  	for (q = 0; q < AR_NUM_QCU; q++) {
153  		for (i = 0; i < maxdelay; i++) {
154  			if (i)
155  				udelay(5);
156  
157  			if (!ath9k_hw_numtxpending(ah, q))
158  				break;
159  		}
160  	}
161  
162  	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163  	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164  	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
165  
166  	REG_WRITE(ah, AR_Q_TXD, 0);
167  }
168  EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
169  
ath9k_hw_stop_dma_queue(struct ath_hw * ah,u32 q)170  bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
171  {
172  #define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
173  #define ATH9K_TIME_QUANTUM		100     /* usec */
174  	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175  	int wait;
176  
177  	REG_WRITE(ah, AR_Q_TXD, 1 << q);
178  
179  	for (wait = wait_time; wait != 0; wait--) {
180  		if (wait != wait_time)
181  			udelay(ATH9K_TIME_QUANTUM);
182  
183  		if (ath9k_hw_numtxpending(ah, q) == 0)
184  			break;
185  	}
186  
187  	REG_WRITE(ah, AR_Q_TXD, 0);
188  
189  	return wait != 0;
190  
191  #undef ATH9K_TX_STOP_DMA_TIMEOUT
192  #undef ATH9K_TIME_QUANTUM
193  }
194  EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
195  
ath9k_hw_set_txq_props(struct ath_hw * ah,int q,const struct ath9k_tx_queue_info * qinfo)196  bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197  			    const struct ath9k_tx_queue_info *qinfo)
198  {
199  	u32 cw;
200  	struct ath_common *common = ath9k_hw_common(ah);
201  	struct ath9k_tx_queue_info *qi;
202  
203  	qi = &ah->txq[q];
204  	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205  		ath_dbg(common, QUEUE,
206  			"Set TXQ properties, inactive queue: %u\n", q);
207  		return false;
208  	}
209  
210  	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
211  
212  	qi->tqi_ver = qinfo->tqi_ver;
213  	qi->tqi_subtype = qinfo->tqi_subtype;
214  	qi->tqi_qflags = qinfo->tqi_qflags;
215  	qi->tqi_priority = qinfo->tqi_priority;
216  	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217  		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218  	else
219  		qi->tqi_aifs = INIT_AIFS;
220  	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221  		cw = min(qinfo->tqi_cwmin, 1024U);
222  		qi->tqi_cwmin = 1;
223  		while (qi->tqi_cwmin < cw)
224  			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225  	} else
226  		qi->tqi_cwmin = qinfo->tqi_cwmin;
227  	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228  		cw = min(qinfo->tqi_cwmax, 1024U);
229  		qi->tqi_cwmax = 1;
230  		while (qi->tqi_cwmax < cw)
231  			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232  	} else
233  		qi->tqi_cwmax = INIT_CWMAX;
234  
235  	if (qinfo->tqi_shretry != 0)
236  		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237  	else
238  		qi->tqi_shretry = INIT_SH_RETRY;
239  	if (qinfo->tqi_lgretry != 0)
240  		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241  	else
242  		qi->tqi_lgretry = INIT_LG_RETRY;
243  	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244  	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245  	qi->tqi_burstTime = qinfo->tqi_burstTime;
246  	qi->tqi_readyTime = qinfo->tqi_readyTime;
247  
248  	switch (qinfo->tqi_subtype) {
249  	case ATH9K_WME_UPSD:
250  		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251  			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252  		break;
253  	default:
254  		break;
255  	}
256  
257  	return true;
258  }
259  EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260  
ath9k_hw_get_txq_props(struct ath_hw * ah,int q,struct ath9k_tx_queue_info * qinfo)261  bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262  			    struct ath9k_tx_queue_info *qinfo)
263  {
264  	struct ath_common *common = ath9k_hw_common(ah);
265  	struct ath9k_tx_queue_info *qi;
266  
267  	qi = &ah->txq[q];
268  	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269  		ath_dbg(common, QUEUE,
270  			"Get TXQ properties, inactive queue: %u\n", q);
271  		return false;
272  	}
273  
274  	qinfo->tqi_qflags = qi->tqi_qflags;
275  	qinfo->tqi_ver = qi->tqi_ver;
276  	qinfo->tqi_subtype = qi->tqi_subtype;
277  	qinfo->tqi_qflags = qi->tqi_qflags;
278  	qinfo->tqi_priority = qi->tqi_priority;
279  	qinfo->tqi_aifs = qi->tqi_aifs;
280  	qinfo->tqi_cwmin = qi->tqi_cwmin;
281  	qinfo->tqi_cwmax = qi->tqi_cwmax;
282  	qinfo->tqi_shretry = qi->tqi_shretry;
283  	qinfo->tqi_lgretry = qi->tqi_lgretry;
284  	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285  	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286  	qinfo->tqi_burstTime = qi->tqi_burstTime;
287  	qinfo->tqi_readyTime = qi->tqi_readyTime;
288  
289  	return true;
290  }
291  EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292  
ath9k_hw_setuptxqueue(struct ath_hw * ah,enum ath9k_tx_queue type,const struct ath9k_tx_queue_info * qinfo)293  int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294  			  const struct ath9k_tx_queue_info *qinfo)
295  {
296  	struct ath_common *common = ath9k_hw_common(ah);
297  	struct ath9k_tx_queue_info *qi;
298  	int q;
299  
300  	switch (type) {
301  	case ATH9K_TX_QUEUE_BEACON:
302  		q = ATH9K_NUM_TX_QUEUES - 1;
303  		break;
304  	case ATH9K_TX_QUEUE_CAB:
305  		q = ATH9K_NUM_TX_QUEUES - 2;
306  		break;
307  	case ATH9K_TX_QUEUE_PSPOLL:
308  		q = 1;
309  		break;
310  	case ATH9K_TX_QUEUE_UAPSD:
311  		q = ATH9K_NUM_TX_QUEUES - 3;
312  		break;
313  	case ATH9K_TX_QUEUE_DATA:
314  		q = qinfo->tqi_subtype;
315  		break;
316  	default:
317  		ath_err(common, "Invalid TX queue type: %u\n", type);
318  		return -1;
319  	}
320  
321  	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
322  
323  	qi = &ah->txq[q];
324  	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
325  		ath_err(common, "TX queue: %u already active\n", q);
326  		return -1;
327  	}
328  	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
329  	qi->tqi_type = type;
330  	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
331  	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
332  
333  	return q;
334  }
335  EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
336  
ath9k_hw_clear_queue_interrupts(struct ath_hw * ah,u32 q)337  static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
338  {
339  	ah->txok_interrupt_mask &= ~(1 << q);
340  	ah->txerr_interrupt_mask &= ~(1 << q);
341  	ah->txdesc_interrupt_mask &= ~(1 << q);
342  	ah->txeol_interrupt_mask &= ~(1 << q);
343  	ah->txurn_interrupt_mask &= ~(1 << q);
344  }
345  
ath9k_hw_releasetxqueue(struct ath_hw * ah,u32 q)346  bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
347  {
348  	struct ath_common *common = ath9k_hw_common(ah);
349  	struct ath9k_tx_queue_info *qi;
350  
351  	qi = &ah->txq[q];
352  	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
353  		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
354  		return false;
355  	}
356  
357  	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
358  
359  	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
360  	ath9k_hw_clear_queue_interrupts(ah, q);
361  	ath9k_hw_set_txq_interrupts(ah, qi);
362  
363  	return true;
364  }
365  EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
366  
ath9k_hw_resettxqueue(struct ath_hw * ah,u32 q)367  bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
368  {
369  	struct ath_common *common = ath9k_hw_common(ah);
370  	struct ath9k_tx_queue_info *qi;
371  	u32 cwMin, chanCwMin, value;
372  
373  	qi = &ah->txq[q];
374  	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
375  		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
376  		return true;
377  	}
378  
379  	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
380  
381  	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
382  		chanCwMin = INIT_CWMIN;
383  
384  		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
385  	} else
386  		cwMin = qi->tqi_cwmin;
387  
388  	ENABLE_REGWRITE_BUFFER(ah);
389  
390  	REG_WRITE(ah, AR_DLCL_IFS(q),
391  		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
392  		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
393  		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
394  
395  	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
396  		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
397  		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
398  		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
399  
400  	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
401  
402  	if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
403  		REG_WRITE(ah, AR_DMISC(q),
404  			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
405  	else
406  		REG_WRITE(ah, AR_DMISC(q),
407  			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
408  
409  	if (qi->tqi_cbrPeriod) {
410  		REG_WRITE(ah, AR_QCBRCFG(q),
411  			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
412  			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
413  		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
414  			    (qi->tqi_cbrOverflowLimit ?
415  			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
416  	}
417  	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
418  		REG_WRITE(ah, AR_QRDYTIMECFG(q),
419  			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
420  			  AR_Q_RDYTIMECFG_EN);
421  	}
422  
423  	REG_WRITE(ah, AR_DCHNTIME(q),
424  		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
425  		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
426  
427  	if (qi->tqi_burstTime
428  	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
429  		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
430  
431  	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
432  		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
433  
434  	REGWRITE_BUFFER_FLUSH(ah);
435  
436  	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
437  		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
438  
439  	switch (qi->tqi_type) {
440  	case ATH9K_TX_QUEUE_BEACON:
441  		ENABLE_REGWRITE_BUFFER(ah);
442  
443  		REG_SET_BIT(ah, AR_QMISC(q),
444  			    AR_Q_MISC_FSP_DBA_GATED
445  			    | AR_Q_MISC_BEACON_USE
446  			    | AR_Q_MISC_CBR_INCR_DIS1);
447  
448  		REG_SET_BIT(ah, AR_DMISC(q),
449  			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
450  			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
451  			    | AR_D_MISC_BEACON_USE
452  			    | AR_D_MISC_POST_FR_BKOFF_DIS);
453  
454  		REGWRITE_BUFFER_FLUSH(ah);
455  
456  		/*
457  		 * cwmin and cwmax should be 0 for beacon queue
458  		 * but not for IBSS as we would create an imbalance
459  		 * on beaconing fairness for participating nodes.
460  		 */
461  		if (AR_SREV_9300_20_OR_LATER(ah) &&
462  		    ah->opmode != NL80211_IFTYPE_ADHOC) {
463  			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
464  				  | SM(0, AR_D_LCL_IFS_CWMAX)
465  				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
466  		}
467  		break;
468  	case ATH9K_TX_QUEUE_CAB:
469  		ENABLE_REGWRITE_BUFFER(ah);
470  
471  		REG_SET_BIT(ah, AR_QMISC(q),
472  			    AR_Q_MISC_FSP_DBA_GATED
473  			    | AR_Q_MISC_CBR_INCR_DIS1
474  			    | AR_Q_MISC_CBR_INCR_DIS0);
475  		value = (qi->tqi_readyTime -
476  			 (ah->config.sw_beacon_response_time -
477  			  ah->config.dma_beacon_response_time)) * 1024;
478  		REG_WRITE(ah, AR_QRDYTIMECFG(q),
479  			  value | AR_Q_RDYTIMECFG_EN);
480  		REG_SET_BIT(ah, AR_DMISC(q),
481  			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
482  			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
483  
484  		REGWRITE_BUFFER_FLUSH(ah);
485  
486  		break;
487  	case ATH9K_TX_QUEUE_PSPOLL:
488  		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
489  		break;
490  	case ATH9K_TX_QUEUE_UAPSD:
491  		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
492  		break;
493  	default:
494  		break;
495  	}
496  
497  	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
498  		REG_SET_BIT(ah, AR_DMISC(q),
499  			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
500  			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
501  			    AR_D_MISC_POST_FR_BKOFF_DIS);
502  	}
503  
504  	if (AR_SREV_9300_20_OR_LATER(ah))
505  		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
506  
507  	ath9k_hw_clear_queue_interrupts(ah, q);
508  	if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
509  		ah->txok_interrupt_mask |= 1 << q;
510  		ah->txerr_interrupt_mask |= 1 << q;
511  	}
512  	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
513  		ah->txdesc_interrupt_mask |= 1 << q;
514  	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
515  		ah->txeol_interrupt_mask |= 1 << q;
516  	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
517  		ah->txurn_interrupt_mask |= 1 << q;
518  	ath9k_hw_set_txq_interrupts(ah, qi);
519  
520  	return true;
521  }
522  EXPORT_SYMBOL(ath9k_hw_resettxqueue);
523  
ath9k_hw_rxprocdesc(struct ath_hw * ah,struct ath_desc * ds,struct ath_rx_status * rs)524  int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
525  			struct ath_rx_status *rs)
526  {
527  	struct ar5416_desc ads;
528  	struct ar5416_desc *adsp = AR5416DESC(ds);
529  	u32 phyerr;
530  
531  	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
532  		return -EINPROGRESS;
533  
534  	ads.u.rx = adsp->u.rx;
535  
536  	rs->rs_status = 0;
537  	rs->rs_flags = 0;
538  	rs->enc_flags = 0;
539  	rs->bw = RATE_INFO_BW_20;
540  
541  	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
542  	rs->rs_tstamp = ads.AR_RcvTimestamp;
543  
544  	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
545  		rs->rs_rssi = ATH9K_RSSI_BAD;
546  		rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
547  		rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
548  		rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
549  		rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
550  		rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
551  		rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
552  	} else {
553  		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
554  		rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
555  						AR_RxRSSIAnt00);
556  		rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
557  						AR_RxRSSIAnt01);
558  		rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
559  						AR_RxRSSIAnt02);
560  		rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
561  						AR_RxRSSIAnt10);
562  		rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
563  						AR_RxRSSIAnt11);
564  		rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
565  						AR_RxRSSIAnt12);
566  	}
567  	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
568  		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
569  	else
570  		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
571  
572  	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
573  	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
574  
575  	rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
576  	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
577  	rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
578  	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
579  
580  	/* directly mapped flags for ieee80211_rx_status */
581  	rs->enc_flags |=
582  		(ads.ds_rxstatus3 & AR_GI) ? RX_ENC_FLAG_SHORT_GI : 0;
583  	rs->bw = (ads.ds_rxstatus3 & AR_2040) ? RATE_INFO_BW_40 :
584  						RATE_INFO_BW_20;
585  	if (AR_SREV_9280_20_OR_LATER(ah))
586  		rs->enc_flags |=
587  			(ads.ds_rxstatus3 & AR_STBC) ?
588  				/* we can only Nss=1 STBC */
589  				(1 << RX_ENC_FLAG_STBC_SHIFT) : 0;
590  
591  	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
592  		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
593  	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
594  		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
595  	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
596  		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
597  
598  	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
599  		/*
600  		 * Treat these errors as mutually exclusive to avoid spurious
601  		 * extra error reports from the hardware. If a CRC error is
602  		 * reported, then decryption and MIC errors are irrelevant,
603  		 * the frame is going to be dropped either way
604  		 */
605  		if (ads.ds_rxstatus8 & AR_PHYErr) {
606  			rs->rs_status |= ATH9K_RXERR_PHY;
607  			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
608  			rs->rs_phyerr = phyerr;
609  		} else if (ads.ds_rxstatus8 & AR_CRCErr)
610  			rs->rs_status |= ATH9K_RXERR_CRC;
611  		else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
612  			rs->rs_status |= ATH9K_RXERR_DECRYPT;
613  		else if (ads.ds_rxstatus8 & AR_MichaelErr)
614  			rs->rs_status |= ATH9K_RXERR_MIC;
615  	} else {
616  		if (ads.ds_rxstatus8 &
617  		    (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
618  			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
619  
620  		/* Only up to MCS16 supported, everything above is invalid */
621  		if (rs->rs_rate >= 0x90)
622  			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
623  	}
624  
625  	if (ads.ds_rxstatus8 & AR_KeyMiss)
626  		rs->rs_status |= ATH9K_RXERR_KEYMISS;
627  
628  	return 0;
629  }
630  EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
631  
632  /*
633   * This can stop or re-enables RX.
634   *
635   * If bool is set this will kill any frame which is currently being
636   * transferred between the MAC and baseband and also prevent any new
637   * frames from getting started.
638   */
ath9k_hw_setrxabort(struct ath_hw * ah,bool set)639  bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
640  {
641  	u32 reg;
642  
643  	if (set) {
644  		REG_SET_BIT(ah, AR_DIAG_SW,
645  			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
646  
647  		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
648  				   0, AH_WAIT_TIMEOUT)) {
649  			REG_CLR_BIT(ah, AR_DIAG_SW,
650  				    (AR_DIAG_RX_DIS |
651  				     AR_DIAG_RX_ABORT));
652  
653  			reg = REG_READ(ah, AR_OBS_BUS_1);
654  			ath_err(ath9k_hw_common(ah),
655  				"RX failed to go idle in 10 ms RXSM=0x%x\n",
656  				reg);
657  
658  			return false;
659  		}
660  	} else {
661  		REG_CLR_BIT(ah, AR_DIAG_SW,
662  			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
663  	}
664  
665  	return true;
666  }
667  EXPORT_SYMBOL(ath9k_hw_setrxabort);
668  
ath9k_hw_putrxbuf(struct ath_hw * ah,u32 rxdp)669  void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
670  {
671  	REG_WRITE(ah, AR_RXDP, rxdp);
672  }
673  EXPORT_SYMBOL(ath9k_hw_putrxbuf);
674  
ath9k_hw_startpcureceive(struct ath_hw * ah,bool is_scanning)675  void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
676  {
677  	ath9k_enable_mib_counters(ah);
678  
679  	ath9k_ani_reset(ah, is_scanning);
680  
681  	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
682  }
683  EXPORT_SYMBOL(ath9k_hw_startpcureceive);
684  
ath9k_hw_abortpcurecv(struct ath_hw * ah)685  void ath9k_hw_abortpcurecv(struct ath_hw *ah)
686  {
687  	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
688  
689  	ath9k_hw_disable_mib_counters(ah);
690  }
691  EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
692  
ath9k_hw_stopdmarecv(struct ath_hw * ah,bool * reset)693  bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
694  {
695  #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
696  	struct ath_common *common = ath9k_hw_common(ah);
697  	u32 mac_status, last_mac_status = 0;
698  	int i;
699  
700  	/* Enable access to the DMA observation bus */
701  	REG_WRITE(ah, AR_MACMISC,
702  		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
703  		   (AR_MACMISC_MISC_OBS_BUS_1 <<
704  		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
705  
706  	REG_WRITE(ah, AR_CR, AR_CR_RXD);
707  
708  	/* Wait for rx enable bit to go low */
709  	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
710  		if ((REG_READ(ah, AR_CR) & AR_CR_RXE(ah)) == 0)
711  			break;
712  
713  		if (!AR_SREV_9300_20_OR_LATER(ah)) {
714  			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
715  			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
716  				*reset = true;
717  				break;
718  			}
719  
720  			last_mac_status = mac_status;
721  		}
722  
723  		udelay(AH_TIME_QUANTUM);
724  	}
725  
726  	if (i == 0) {
727  		ath_err(common,
728  			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
729  			AH_RX_STOP_DMA_TIMEOUT / 1000,
730  			REG_READ(ah, AR_CR),
731  			REG_READ(ah, AR_DIAG_SW),
732  			REG_READ(ah, AR_DMADBG_7));
733  		return false;
734  	} else {
735  		return true;
736  	}
737  
738  #undef AH_RX_STOP_DMA_TIMEOUT
739  }
740  EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
741  
ath9k_hw_beaconq_setup(struct ath_hw * ah)742  int ath9k_hw_beaconq_setup(struct ath_hw *ah)
743  {
744  	struct ath9k_tx_queue_info qi;
745  
746  	memset(&qi, 0, sizeof(qi));
747  	qi.tqi_aifs = 1;
748  	qi.tqi_cwmin = 0;
749  	qi.tqi_cwmax = 0;
750  
751  	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
752  		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
753  
754  	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
755  }
756  EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
757  
ath9k_hw_intrpend(struct ath_hw * ah)758  bool ath9k_hw_intrpend(struct ath_hw *ah)
759  {
760  	u32 host_isr;
761  
762  	if (AR_SREV_9100(ah))
763  		return true;
764  
765  	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE(ah));
766  
767  	if (((host_isr & AR_INTR_MAC_IRQ) ||
768  	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
769  	    (host_isr != AR_INTR_SPURIOUS))
770  		return true;
771  
772  	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE(ah));
773  	if ((host_isr & AR_INTR_SYNC_DEFAULT)
774  	    && (host_isr != AR_INTR_SPURIOUS))
775  		return true;
776  
777  	return false;
778  }
779  EXPORT_SYMBOL(ath9k_hw_intrpend);
780  
ath9k_hw_kill_interrupts(struct ath_hw * ah)781  void ath9k_hw_kill_interrupts(struct ath_hw *ah)
782  {
783  	struct ath_common *common = ath9k_hw_common(ah);
784  
785  	ath_dbg(common, INTERRUPT, "disable IER\n");
786  	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
787  	(void) REG_READ(ah, AR_IER);
788  	if (!AR_SREV_9100(ah)) {
789  		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE(ah), 0);
790  		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE(ah));
791  
792  		REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), 0);
793  		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE(ah));
794  	}
795  }
796  EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
797  
ath9k_hw_disable_interrupts(struct ath_hw * ah)798  void ath9k_hw_disable_interrupts(struct ath_hw *ah)
799  {
800  	if (!(ah->imask & ATH9K_INT_GLOBAL))
801  		atomic_set(&ah->intr_ref_cnt, -1);
802  	else
803  		atomic_dec(&ah->intr_ref_cnt);
804  
805  	ath9k_hw_kill_interrupts(ah);
806  }
807  EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
808  
__ath9k_hw_enable_interrupts(struct ath_hw * ah)809  static void __ath9k_hw_enable_interrupts(struct ath_hw *ah)
810  {
811  	struct ath_common *common = ath9k_hw_common(ah);
812  	u32 sync_default = AR_INTR_SYNC_DEFAULT;
813  	u32 async_mask;
814  
815  	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
816  	    AR_SREV_9561(ah))
817  		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
818  
819  	async_mask = AR_INTR_MAC_IRQ;
820  
821  	if (ah->imask & ATH9K_INT_MCI)
822  		async_mask |= AR_INTR_ASYNC_MASK_MCI;
823  
824  	ath_dbg(common, INTERRUPT, "enable IER\n");
825  	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
826  	if (!AR_SREV_9100(ah)) {
827  		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE(ah), async_mask);
828  		REG_WRITE(ah, AR_INTR_ASYNC_MASK(ah), async_mask);
829  
830  		REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), sync_default);
831  		REG_WRITE(ah, AR_INTR_SYNC_MASK(ah), sync_default);
832  	}
833  	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
834  		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
835  
836  	if (ah->msi_enabled) {
837  		u32 _msi_reg = 0;
838  		u32 i = 0;
839  		u32 msi_pend_addr_mask = AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
840  
841  		ath_dbg(ath9k_hw_common(ah), INTERRUPT,
842  			"Enabling MSI, msi_mask=0x%X\n", ah->msi_mask);
843  
844  		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah), ah->msi_mask);
845  		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK(ah), ah->msi_mask);
846  		ath_dbg(ath9k_hw_common(ah), INTERRUPT,
847  			"AR_INTR_PRIO_ASYNC_ENABLE=0x%X, AR_INTR_PRIO_ASYNC_MASK=0x%X\n",
848  			REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah)),
849  			REG_READ(ah, AR_INTR_PRIO_ASYNC_MASK(ah)));
850  
851  		if (ah->msi_reg == 0)
852  			ah->msi_reg = REG_READ(ah, AR_PCIE_MSI(ah));
853  
854  		ath_dbg(ath9k_hw_common(ah), INTERRUPT,
855  			"AR_PCIE_MSI=0x%X, ah->msi_reg = 0x%X\n",
856  			AR_PCIE_MSI(ah), ah->msi_reg);
857  
858  		i = 0;
859  		do {
860  			REG_WRITE(ah, AR_PCIE_MSI(ah),
861  				  (ah->msi_reg | AR_PCIE_MSI_ENABLE)
862  				  & msi_pend_addr_mask);
863  			_msi_reg = REG_READ(ah, AR_PCIE_MSI(ah));
864  			i++;
865  		} while ((_msi_reg & AR_PCIE_MSI_ENABLE) == 0 && i < 200);
866  
867  		if (i >= 200)
868  			ath_err(ath9k_hw_common(ah),
869  				"%s: _msi_reg = 0x%X\n",
870  				__func__, _msi_reg);
871  	}
872  }
873  
ath9k_hw_resume_interrupts(struct ath_hw * ah)874  void ath9k_hw_resume_interrupts(struct ath_hw *ah)
875  {
876  	struct ath_common *common = ath9k_hw_common(ah);
877  
878  	if (!(ah->imask & ATH9K_INT_GLOBAL))
879  		return;
880  
881  	if (atomic_read(&ah->intr_ref_cnt) != 0) {
882  		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
883  			atomic_read(&ah->intr_ref_cnt));
884  		return;
885  	}
886  
887  	__ath9k_hw_enable_interrupts(ah);
888  }
889  EXPORT_SYMBOL(ath9k_hw_resume_interrupts);
890  
ath9k_hw_enable_interrupts(struct ath_hw * ah)891  void ath9k_hw_enable_interrupts(struct ath_hw *ah)
892  {
893  	struct ath_common *common = ath9k_hw_common(ah);
894  
895  	if (!(ah->imask & ATH9K_INT_GLOBAL))
896  		return;
897  
898  	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
899  		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
900  			atomic_read(&ah->intr_ref_cnt));
901  		return;
902  	}
903  
904  	__ath9k_hw_enable_interrupts(ah);
905  }
906  EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
907  
ath9k_hw_set_interrupts(struct ath_hw * ah)908  void ath9k_hw_set_interrupts(struct ath_hw *ah)
909  {
910  	enum ath9k_int ints = ah->imask;
911  	u32 mask, mask2;
912  	struct ath9k_hw_capabilities *pCap = &ah->caps;
913  	struct ath_common *common = ath9k_hw_common(ah);
914  
915  	if (!(ints & ATH9K_INT_GLOBAL))
916  		ath9k_hw_disable_interrupts(ah);
917  
918  	if (ah->msi_enabled) {
919  		ath_dbg(common, INTERRUPT, "Clearing AR_INTR_PRIO_ASYNC_ENABLE\n");
920  
921  		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah), 0);
922  		REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah));
923  	}
924  
925  	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
926  
927  	mask = ints & ATH9K_INT_COMMON;
928  	mask2 = 0;
929  
930  	ah->msi_mask = 0;
931  	if (ints & ATH9K_INT_TX) {
932  		ah->msi_mask |= AR_INTR_PRIO_TX;
933  		if (ah->config.tx_intr_mitigation)
934  			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
935  		else {
936  			if (ah->txok_interrupt_mask)
937  				mask |= AR_IMR_TXOK;
938  			if (ah->txdesc_interrupt_mask)
939  				mask |= AR_IMR_TXDESC;
940  		}
941  		if (ah->txerr_interrupt_mask)
942  			mask |= AR_IMR_TXERR;
943  		if (ah->txeol_interrupt_mask)
944  			mask |= AR_IMR_TXEOL;
945  	}
946  	if (ints & ATH9K_INT_RX) {
947  		ah->msi_mask |= AR_INTR_PRIO_RXLP | AR_INTR_PRIO_RXHP;
948  		if (AR_SREV_9300_20_OR_LATER(ah)) {
949  			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
950  			if (ah->config.rx_intr_mitigation) {
951  				mask &= ~AR_IMR_RXOK_LP;
952  				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
953  			} else {
954  				mask |= AR_IMR_RXOK_LP;
955  			}
956  		} else {
957  			if (ah->config.rx_intr_mitigation)
958  				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
959  			else
960  				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
961  		}
962  		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
963  			mask |= AR_IMR_GENTMR;
964  	}
965  
966  	if (ints & ATH9K_INT_GENTIMER)
967  		mask |= AR_IMR_GENTMR;
968  
969  	if (ints & (ATH9K_INT_BMISC)) {
970  		mask |= AR_IMR_BCNMISC;
971  		if (ints & ATH9K_INT_TIM)
972  			mask2 |= AR_IMR_S2_TIM;
973  		if (ints & ATH9K_INT_DTIM)
974  			mask2 |= AR_IMR_S2_DTIM;
975  		if (ints & ATH9K_INT_DTIMSYNC)
976  			mask2 |= AR_IMR_S2_DTIMSYNC;
977  		if (ints & ATH9K_INT_CABEND)
978  			mask2 |= AR_IMR_S2_CABEND;
979  		if (ints & ATH9K_INT_TSFOOR)
980  			mask2 |= AR_IMR_S2_TSFOOR;
981  	}
982  
983  	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
984  		mask |= AR_IMR_BCNMISC;
985  		if (ints & ATH9K_INT_GTT)
986  			mask2 |= AR_IMR_S2_GTT;
987  		if (ints & ATH9K_INT_CST)
988  			mask2 |= AR_IMR_S2_CST;
989  	}
990  
991  	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
992  		if (ints & ATH9K_INT_BB_WATCHDOG) {
993  			mask |= AR_IMR_BCNMISC;
994  			mask2 |= AR_IMR_S2_BB_WATCHDOG;
995  		}
996  	}
997  
998  	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
999  	REG_WRITE(ah, AR_IMR, mask);
1000  	ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
1001  			   AR_IMR_S2_DTIM |
1002  			   AR_IMR_S2_DTIMSYNC |
1003  			   AR_IMR_S2_CABEND |
1004  			   AR_IMR_S2_CABTO |
1005  			   AR_IMR_S2_TSFOOR |
1006  			   AR_IMR_S2_GTT |
1007  			   AR_IMR_S2_CST);
1008  
1009  	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
1010  		if (ints & ATH9K_INT_BB_WATCHDOG)
1011  			ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
1012  	}
1013  
1014  	ah->imrs2_reg |= mask2;
1015  	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1016  
1017  	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1018  		if (ints & ATH9K_INT_TIM_TIMER)
1019  			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1020  		else
1021  			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1022  	}
1023  
1024  	return;
1025  }
1026  EXPORT_SYMBOL(ath9k_hw_set_interrupts);
1027  
1028  #define ATH9K_HW_MAX_DCU       10
1029  #define ATH9K_HW_SLICE_PER_DCU 16
1030  #define ATH9K_HW_BIT_IN_SLICE  16
ath9k_hw_set_tx_filter(struct ath_hw * ah,u8 destidx,bool set)1031  void ath9k_hw_set_tx_filter(struct ath_hw *ah, u8 destidx, bool set)
1032  {
1033  	int dcu_idx;
1034  	u32 filter;
1035  
1036  	for (dcu_idx = 0; dcu_idx < 10; dcu_idx++) {
1037  		filter = SM(set, AR_D_TXBLK_WRITE_COMMAND);
1038  		filter |= SM(dcu_idx, AR_D_TXBLK_WRITE_DCU);
1039  		filter |= SM((destidx / ATH9K_HW_SLICE_PER_DCU),
1040  			     AR_D_TXBLK_WRITE_SLICE);
1041  		filter |= BIT(destidx % ATH9K_HW_BIT_IN_SLICE);
1042  		ath_dbg(ath9k_hw_common(ah), PS,
1043  			"DCU%d staid %d set %d txfilter %08x\n",
1044  			dcu_idx, destidx, set, filter);
1045  		REG_WRITE(ah, AR_D_TXBLK_BASE, filter);
1046  	}
1047  }
1048  EXPORT_SYMBOL(ath9k_hw_set_tx_filter);
1049