1  /*
2   * Copyright (c) 2008-2011 Atheros Communications Inc.
3   *
4   * Permission to use, copy, modify, and/or distribute this software for any
5   * purpose with or without fee is hereby granted, provided that the above
6   * copyright notice and this permission notice appear in all copies.
7   *
8   * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9   * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10   * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11   * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12   * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13   * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14   * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15   */
16  
17  #include <linux/io.h>
18  #include <linux/slab.h>
19  #include <linux/module.h>
20  #include <linux/time.h>
21  #include <linux/bitops.h>
22  #include <linux/etherdevice.h>
23  #include <linux/gpio.h>
24  #include <linux/unaligned.h>
25  
26  #include "hw.h"
27  #include "hw-ops.h"
28  #include "ar9003_mac.h"
29  #include "ar9003_mci.h"
30  #include "ar9003_phy.h"
31  #include "ath9k.h"
32  
33  static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34  
35  MODULE_AUTHOR("Atheros Communications");
36  MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37  MODULE_LICENSE("Dual BSD/GPL");
38  
ath9k_hw_set_clockrate(struct ath_hw * ah)39  static void ath9k_hw_set_clockrate(struct ath_hw *ah)
40  {
41  	struct ath_common *common = ath9k_hw_common(ah);
42  	struct ath9k_channel *chan = ah->curchan;
43  	unsigned int clockrate;
44  
45  	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
46  	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
47  		clockrate = 117;
48  	else if (!chan) /* should really check for CCK instead */
49  		clockrate = ATH9K_CLOCK_RATE_CCK;
50  	else if (IS_CHAN_2GHZ(chan))
51  		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
52  	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
53  		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
54  	else
55  		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
56  
57  	if (chan) {
58  		if (IS_CHAN_HT40(chan))
59  			clockrate *= 2;
60  		if (IS_CHAN_HALF_RATE(chan))
61  			clockrate /= 2;
62  		if (IS_CHAN_QUARTER_RATE(chan))
63  			clockrate /= 4;
64  	}
65  
66  	common->clockrate = clockrate;
67  }
68  
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)69  static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
70  {
71  	struct ath_common *common = ath9k_hw_common(ah);
72  
73  	return usecs * common->clockrate;
74  }
75  
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)76  bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77  {
78  	int i;
79  
80  	BUG_ON(timeout < AH_TIME_QUANTUM);
81  
82  	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83  		if ((REG_READ(ah, reg) & mask) == val)
84  			return true;
85  
86  		udelay(AH_TIME_QUANTUM);
87  	}
88  
89  	ath_dbg(ath9k_hw_common(ah), ANY,
90  		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91  		timeout, reg, REG_READ(ah, reg), mask, val);
92  
93  	return false;
94  }
95  EXPORT_SYMBOL(ath9k_hw_wait);
96  
ath9k_hw_synth_delay(struct ath_hw * ah,struct ath9k_channel * chan,int hw_delay)97  void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
98  			  int hw_delay)
99  {
100  	hw_delay /= 10;
101  
102  	if (IS_CHAN_HALF_RATE(chan))
103  		hw_delay *= 2;
104  	else if (IS_CHAN_QUARTER_RATE(chan))
105  		hw_delay *= 4;
106  
107  	udelay(hw_delay + BASE_ACTIVATE_DELAY);
108  }
109  
ath9k_hw_write_array(struct ath_hw * ah,const struct ar5416IniArray * array,int column,unsigned int * writecnt)110  void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
111  			  int column, unsigned int *writecnt)
112  {
113  	int r;
114  
115  	ENABLE_REGWRITE_BUFFER(ah);
116  	for (r = 0; r < array->ia_rows; r++) {
117  		REG_WRITE(ah, INI_RA(array, r, 0),
118  			  INI_RA(array, r, column));
119  		DO_DELAY(*writecnt);
120  	}
121  	REGWRITE_BUFFER_FLUSH(ah);
122  }
123  
ath9k_hw_read_array(struct ath_hw * ah,u32 array[][2],int size)124  void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
125  {
126  	u32 *tmp_reg_list, *tmp_data;
127  	int i;
128  
129  	tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
130  	if (!tmp_reg_list) {
131  		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
132  		return;
133  	}
134  
135  	tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
136  	if (!tmp_data) {
137  		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
138  		goto error_tmp_data;
139  	}
140  
141  	for (i = 0; i < size; i++)
142  		tmp_reg_list[i] = array[i][0];
143  
144  	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
145  
146  	for (i = 0; i < size; i++)
147  		array[i][1] = tmp_data[i];
148  
149  	kfree(tmp_data);
150  error_tmp_data:
151  	kfree(tmp_reg_list);
152  }
153  
ath9k_hw_reverse_bits(u32 val,u32 n)154  u32 ath9k_hw_reverse_bits(u32 val, u32 n)
155  {
156  	u32 retval;
157  	int i;
158  
159  	for (i = 0, retval = 0; i < n; i++) {
160  		retval = (retval << 1) | (val & 1);
161  		val >>= 1;
162  	}
163  	return retval;
164  }
165  
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)166  u16 ath9k_hw_computetxtime(struct ath_hw *ah,
167  			   u8 phy, int kbps,
168  			   u32 frameLen, u16 rateix,
169  			   bool shortPreamble)
170  {
171  	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
172  
173  	if (kbps == 0)
174  		return 0;
175  
176  	switch (phy) {
177  	case WLAN_RC_PHY_CCK:
178  		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
179  		if (shortPreamble)
180  			phyTime >>= 1;
181  		numBits = frameLen << 3;
182  		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
183  		break;
184  	case WLAN_RC_PHY_OFDM:
185  		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
186  			bitsPerSymbol =
187  				((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
188  			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189  			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190  			txTime = OFDM_SIFS_TIME_QUARTER
191  				+ OFDM_PREAMBLE_TIME_QUARTER
192  				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
193  		} else if (ah->curchan &&
194  			   IS_CHAN_HALF_RATE(ah->curchan)) {
195  			bitsPerSymbol =
196  				((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
197  			numBits = OFDM_PLCP_BITS + (frameLen << 3);
198  			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199  			txTime = OFDM_SIFS_TIME_HALF +
200  				OFDM_PREAMBLE_TIME_HALF
201  				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
202  		} else {
203  			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204  			numBits = OFDM_PLCP_BITS + (frameLen << 3);
205  			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206  			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207  				+ (numSymbols * OFDM_SYMBOL_TIME);
208  		}
209  		break;
210  	default:
211  		ath_err(ath9k_hw_common(ah),
212  			"Unknown phy %u (rate ix %u)\n", phy, rateix);
213  		txTime = 0;
214  		break;
215  	}
216  
217  	return txTime;
218  }
219  EXPORT_SYMBOL(ath9k_hw_computetxtime);
220  
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)221  void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222  				  struct ath9k_channel *chan,
223  				  struct chan_centers *centers)
224  {
225  	int8_t extoff;
226  
227  	if (!IS_CHAN_HT40(chan)) {
228  		centers->ctl_center = centers->ext_center =
229  			centers->synth_center = chan->channel;
230  		return;
231  	}
232  
233  	if (IS_CHAN_HT40PLUS(chan)) {
234  		centers->synth_center =
235  			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
236  		extoff = 1;
237  	} else {
238  		centers->synth_center =
239  			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
240  		extoff = -1;
241  	}
242  
243  	centers->ctl_center =
244  		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
245  	/* 25 MHz spacing is supported by hw but not on upper layers */
246  	centers->ext_center =
247  		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
248  }
249  
250  /******************/
251  /* Chip Revisions */
252  /******************/
253  
ath9k_hw_read_revisions(struct ath_hw * ah)254  static bool ath9k_hw_read_revisions(struct ath_hw *ah)
255  {
256  	u32 srev;
257  	u32 val;
258  
259  	if (ah->get_mac_revision)
260  		ah->hw_version.macRev = ah->get_mac_revision();
261  
262  	switch (ah->hw_version.devid) {
263  	case AR5416_AR9100_DEVID:
264  		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
265  		break;
266  	case AR9300_DEVID_AR9330:
267  		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
268  		if (!ah->get_mac_revision) {
269  			val = REG_READ(ah, AR_SREV(ah));
270  			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
271  		}
272  		return true;
273  	case AR9300_DEVID_AR9340:
274  		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
275  		return true;
276  	case AR9300_DEVID_QCA955X:
277  		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
278  		return true;
279  	case AR9300_DEVID_AR953X:
280  		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
281  		return true;
282  	case AR9300_DEVID_QCA956X:
283  		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
284  		return true;
285  	}
286  
287  	srev = REG_READ(ah, AR_SREV(ah));
288  
289  	if (srev == -1) {
290  		ath_err(ath9k_hw_common(ah),
291  			"Failed to read SREV register");
292  		return false;
293  	}
294  
295  	val = srev & AR_SREV_ID(ah);
296  
297  	if (val == 0xFF) {
298  		val = srev;
299  		ah->hw_version.macVersion =
300  			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
301  		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
302  
303  		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
304  			ah->is_pciexpress = true;
305  		else
306  			ah->is_pciexpress = (val &
307  					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
308  	} else {
309  		if (!AR_SREV_9100(ah))
310  			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
311  
312  		ah->hw_version.macRev = val & AR_SREV_REVISION;
313  
314  		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
315  			ah->is_pciexpress = true;
316  	}
317  
318  	return true;
319  }
320  
321  /************************************/
322  /* HW Attach, Detach, Init Routines */
323  /************************************/
324  
ath9k_hw_disablepcie(struct ath_hw * ah)325  static void ath9k_hw_disablepcie(struct ath_hw *ah)
326  {
327  	if (!AR_SREV_5416(ah))
328  		return;
329  
330  	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
331  	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
332  	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
333  	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
334  	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
335  	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
336  	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
337  	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
338  	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
339  
340  	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
341  }
342  
343  /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)344  static bool ath9k_hw_chip_test(struct ath_hw *ah)
345  {
346  	struct ath_common *common = ath9k_hw_common(ah);
347  	u32 regAddr[2] = { AR_STA_ID0 };
348  	u32 regHold[2];
349  	static const u32 patternData[4] = {
350  		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
351  	};
352  	int i, j, loop_max;
353  
354  	if (!AR_SREV_9300_20_OR_LATER(ah)) {
355  		loop_max = 2;
356  		regAddr[1] = AR_PHY_BASE + (8 << 2);
357  	} else
358  		loop_max = 1;
359  
360  	for (i = 0; i < loop_max; i++) {
361  		u32 addr = regAddr[i];
362  		u32 wrData, rdData;
363  
364  		regHold[i] = REG_READ(ah, addr);
365  		for (j = 0; j < 0x100; j++) {
366  			wrData = (j << 16) | j;
367  			REG_WRITE(ah, addr, wrData);
368  			rdData = REG_READ(ah, addr);
369  			if (rdData != wrData) {
370  				ath_err(common,
371  					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
372  					addr, wrData, rdData);
373  				return false;
374  			}
375  		}
376  		for (j = 0; j < 4; j++) {
377  			wrData = patternData[j];
378  			REG_WRITE(ah, addr, wrData);
379  			rdData = REG_READ(ah, addr);
380  			if (wrData != rdData) {
381  				ath_err(common,
382  					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
383  					addr, wrData, rdData);
384  				return false;
385  			}
386  		}
387  		REG_WRITE(ah, regAddr[i], regHold[i]);
388  	}
389  	udelay(100);
390  
391  	return true;
392  }
393  
ath9k_hw_init_config(struct ath_hw * ah)394  static void ath9k_hw_init_config(struct ath_hw *ah)
395  {
396  	struct ath_common *common = ath9k_hw_common(ah);
397  
398  	ah->config.dma_beacon_response_time = 1;
399  	ah->config.sw_beacon_response_time = 6;
400  	ah->config.cwm_ignore_extcca = false;
401  	ah->config.analog_shiftreg = 1;
402  
403  	ah->config.rx_intr_mitigation = true;
404  
405  	if (AR_SREV_9300_20_OR_LATER(ah)) {
406  		ah->config.rimt_last = 500;
407  		ah->config.rimt_first = 2000;
408  	} else {
409  		ah->config.rimt_last = 250;
410  		ah->config.rimt_first = 700;
411  	}
412  
413  	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
414  		ah->config.pll_pwrsave = 7;
415  
416  	/*
417  	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
418  	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
419  	 * This means we use it for all AR5416 devices, and the few
420  	 * minor PCI AR9280 devices out there.
421  	 *
422  	 * Serialization is required because these devices do not handle
423  	 * well the case of two concurrent reads/writes due to the latency
424  	 * involved. During one read/write another read/write can be issued
425  	 * on another CPU while the previous read/write may still be working
426  	 * on our hardware, if we hit this case the hardware poops in a loop.
427  	 * We prevent this by serializing reads and writes.
428  	 *
429  	 * This issue is not present on PCI-Express devices or pre-AR5416
430  	 * devices (legacy, 802.11abg).
431  	 */
432  	if (num_possible_cpus() > 1)
433  		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
434  
435  	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
436  		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
437  		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
438  		     !ah->is_pciexpress)) {
439  			ah->config.serialize_regmode = SER_REG_MODE_ON;
440  		} else {
441  			ah->config.serialize_regmode = SER_REG_MODE_OFF;
442  		}
443  	}
444  
445  	ath_dbg(common, RESET, "serialize_regmode is %d\n",
446  		ah->config.serialize_regmode);
447  
448  	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
449  		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
450  	else
451  		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
452  }
453  
ath9k_hw_init_defaults(struct ath_hw * ah)454  static void ath9k_hw_init_defaults(struct ath_hw *ah)
455  {
456  	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
457  
458  	regulatory->country_code = CTRY_DEFAULT;
459  	regulatory->power_limit = MAX_COMBINED_POWER;
460  
461  	ah->hw_version.magic = AR5416_MAGIC;
462  	ah->hw_version.subvendorid = 0;
463  
464  	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
465  			       AR_STA_ID1_MCAST_KSRCH;
466  	if (AR_SREV_9100(ah))
467  		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
468  
469  	ah->slottime = 9;
470  	ah->globaltxtimeout = (u32) -1;
471  	ah->power_mode = ATH9K_PM_UNDEFINED;
472  	ah->htc_reset_init = true;
473  
474  	ah->tpc_enabled = false;
475  
476  	ah->ani_function = ATH9K_ANI_ALL;
477  	if (!AR_SREV_9300_20_OR_LATER(ah))
478  		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
479  
480  	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
481  		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
482  	else
483  		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
484  }
485  
ath9k_hw_init_macaddr(struct ath_hw * ah)486  static void ath9k_hw_init_macaddr(struct ath_hw *ah)
487  {
488  	struct ath_common *common = ath9k_hw_common(ah);
489  	int i;
490  	u16 eeval;
491  	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
492  
493  	/* MAC address may already be loaded via ath9k_platform_data */
494  	if (is_valid_ether_addr(common->macaddr))
495  		return;
496  
497  	for (i = 0; i < 3; i++) {
498  		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
499  		common->macaddr[2 * i] = eeval >> 8;
500  		common->macaddr[2 * i + 1] = eeval & 0xff;
501  	}
502  
503  	if (is_valid_ether_addr(common->macaddr))
504  		return;
505  
506  	ath_err(common, "eeprom contains invalid mac address: %pM\n",
507  		common->macaddr);
508  
509  	eth_random_addr(common->macaddr);
510  	ath_err(common, "random mac address will be used: %pM\n",
511  		common->macaddr);
512  
513  	return;
514  }
515  
ath9k_hw_post_init(struct ath_hw * ah)516  static int ath9k_hw_post_init(struct ath_hw *ah)
517  {
518  	struct ath_common *common = ath9k_hw_common(ah);
519  	int ecode;
520  
521  	if (common->bus_ops->ath_bus_type != ATH_USB) {
522  		if (!ath9k_hw_chip_test(ah))
523  			return -ENODEV;
524  	}
525  
526  	if (!AR_SREV_9300_20_OR_LATER(ah)) {
527  		ecode = ar9002_hw_rf_claim(ah);
528  		if (ecode != 0)
529  			return ecode;
530  	}
531  
532  	ecode = ath9k_hw_eeprom_init(ah);
533  	if (ecode != 0)
534  		return ecode;
535  
536  	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
537  		ah->eep_ops->get_eeprom_ver(ah),
538  		ah->eep_ops->get_eeprom_rev(ah));
539  
540  	ath9k_hw_ani_init(ah);
541  
542  	/*
543  	 * EEPROM needs to be initialized before we do this.
544  	 * This is required for regulatory compliance.
545  	 */
546  	if (AR_SREV_9300_20_OR_LATER(ah)) {
547  		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
548  		if ((regdmn & 0xF0) == CTL_FCC) {
549  			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
550  			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
551  		}
552  	}
553  
554  	return 0;
555  }
556  
ath9k_hw_attach_ops(struct ath_hw * ah)557  static int ath9k_hw_attach_ops(struct ath_hw *ah)
558  {
559  	if (!AR_SREV_9300_20_OR_LATER(ah))
560  		return ar9002_hw_attach_ops(ah);
561  
562  	ar9003_hw_attach_ops(ah);
563  	return 0;
564  }
565  
566  /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)567  static int __ath9k_hw_init(struct ath_hw *ah)
568  {
569  	struct ath_common *common = ath9k_hw_common(ah);
570  	int r = 0;
571  
572  	if (!ath9k_hw_read_revisions(ah)) {
573  		ath_err(common, "Could not read hardware revisions");
574  		return -EOPNOTSUPP;
575  	}
576  
577  	switch (ah->hw_version.macVersion) {
578  	case AR_SREV_VERSION_5416_PCI:
579  	case AR_SREV_VERSION_5416_PCIE:
580  	case AR_SREV_VERSION_9160:
581  	case AR_SREV_VERSION_9100:
582  	case AR_SREV_VERSION_9280:
583  	case AR_SREV_VERSION_9285:
584  	case AR_SREV_VERSION_9287:
585  	case AR_SREV_VERSION_9271:
586  	case AR_SREV_VERSION_9300:
587  	case AR_SREV_VERSION_9330:
588  	case AR_SREV_VERSION_9485:
589  	case AR_SREV_VERSION_9340:
590  	case AR_SREV_VERSION_9462:
591  	case AR_SREV_VERSION_9550:
592  	case AR_SREV_VERSION_9565:
593  	case AR_SREV_VERSION_9531:
594  	case AR_SREV_VERSION_9561:
595  		break;
596  	default:
597  		ath_err(common,
598  			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
599  			ah->hw_version.macVersion, ah->hw_version.macRev);
600  		return -EOPNOTSUPP;
601  	}
602  
603  	/*
604  	 * Read back AR_WA(ah) into a permanent copy and set bits 14 and 17.
605  	 * We need to do this to avoid RMW of this register. We cannot
606  	 * read the reg when chip is asleep.
607  	 */
608  	if (AR_SREV_9300_20_OR_LATER(ah)) {
609  		ah->WARegVal = REG_READ(ah, AR_WA(ah));
610  		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
611  				 AR_WA_ASPM_TIMER_BASED_DISABLE);
612  	}
613  
614  	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
615  		ath_err(common, "Couldn't reset chip\n");
616  		return -EIO;
617  	}
618  
619  	if (AR_SREV_9565(ah)) {
620  		ah->WARegVal |= AR_WA_BIT22;
621  		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
622  	}
623  
624  	ath9k_hw_init_defaults(ah);
625  	ath9k_hw_init_config(ah);
626  
627  	r = ath9k_hw_attach_ops(ah);
628  	if (r)
629  		return r;
630  
631  	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
632  		ath_err(common, "Couldn't wakeup chip\n");
633  		return -EIO;
634  	}
635  
636  	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
637  	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
638  		ah->is_pciexpress = false;
639  
640  	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
641  	ath9k_hw_init_cal_settings(ah);
642  
643  	if (!ah->is_pciexpress)
644  		ath9k_hw_disablepcie(ah);
645  
646  	r = ath9k_hw_post_init(ah);
647  	if (r)
648  		return r;
649  
650  	ath9k_hw_init_mode_gain_regs(ah);
651  	r = ath9k_hw_fill_cap_info(ah);
652  	if (r)
653  		return r;
654  
655  	ath9k_hw_init_macaddr(ah);
656  	ath9k_hw_init_hang_checks(ah);
657  
658  	common->state = ATH_HW_INITIALIZED;
659  
660  	return 0;
661  }
662  
ath9k_hw_init(struct ath_hw * ah)663  int ath9k_hw_init(struct ath_hw *ah)
664  {
665  	int ret;
666  	struct ath_common *common = ath9k_hw_common(ah);
667  
668  	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
669  	switch (ah->hw_version.devid) {
670  	case AR5416_DEVID_PCI:
671  	case AR5416_DEVID_PCIE:
672  	case AR5416_AR9100_DEVID:
673  	case AR9160_DEVID_PCI:
674  	case AR9280_DEVID_PCI:
675  	case AR9280_DEVID_PCIE:
676  	case AR9285_DEVID_PCIE:
677  	case AR9287_DEVID_PCI:
678  	case AR9287_DEVID_PCIE:
679  	case AR2427_DEVID_PCIE:
680  	case AR9300_DEVID_PCIE:
681  	case AR9300_DEVID_AR9485_PCIE:
682  	case AR9300_DEVID_AR9330:
683  	case AR9300_DEVID_AR9340:
684  	case AR9300_DEVID_QCA955X:
685  	case AR9300_DEVID_AR9580:
686  	case AR9300_DEVID_AR9462:
687  	case AR9485_DEVID_AR1111:
688  	case AR9300_DEVID_AR9565:
689  	case AR9300_DEVID_AR953X:
690  	case AR9300_DEVID_QCA956X:
691  		break;
692  	default:
693  		if (common->bus_ops->ath_bus_type == ATH_USB)
694  			break;
695  		ath_err(common, "Hardware device ID 0x%04x not supported\n",
696  			ah->hw_version.devid);
697  		return -EOPNOTSUPP;
698  	}
699  
700  	ret = __ath9k_hw_init(ah);
701  	if (ret) {
702  		ath_err(common,
703  			"Unable to initialize hardware; initialization status: %d\n",
704  			ret);
705  		return ret;
706  	}
707  
708  	ath_dynack_init(ah);
709  
710  	return 0;
711  }
712  EXPORT_SYMBOL(ath9k_hw_init);
713  
ath9k_hw_init_qos(struct ath_hw * ah)714  static void ath9k_hw_init_qos(struct ath_hw *ah)
715  {
716  	ENABLE_REGWRITE_BUFFER(ah);
717  
718  	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
719  	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
720  
721  	REG_WRITE(ah, AR_QOS_NO_ACK,
722  		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
723  		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
724  		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
725  
726  	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
727  	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
728  	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
729  	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
730  	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
731  
732  	REGWRITE_BUFFER_FLUSH(ah);
733  }
734  
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)735  u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
736  {
737  	struct ath_common *common = ath9k_hw_common(ah);
738  	int i = 0;
739  
740  	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
741  	udelay(100);
742  	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
743  
744  	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
745  
746  		udelay(100);
747  
748  		if (WARN_ON_ONCE(i >= 100)) {
749  			ath_err(common, "PLL4 measurement not done\n");
750  			break;
751  		}
752  
753  		i++;
754  	}
755  
756  	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
757  }
758  EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
759  
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)760  static void ath9k_hw_init_pll(struct ath_hw *ah,
761  			      struct ath9k_channel *chan)
762  {
763  	u32 pll;
764  
765  	pll = ath9k_hw_compute_pll_control(ah, chan);
766  
767  	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
768  		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
769  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
770  			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
771  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
772  			      AR_CH0_DPLL2_KD, 0x40);
773  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
774  			      AR_CH0_DPLL2_KI, 0x4);
775  
776  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
777  			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
778  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
779  			      AR_CH0_BB_DPLL1_NINI, 0x58);
780  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
781  			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
782  
783  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
784  			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
785  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
786  			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
787  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
788  			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
789  
790  		/* program BB PLL phase_shift to 0x6 */
791  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
792  			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
793  
794  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
795  			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
796  		udelay(1000);
797  	} else if (AR_SREV_9330(ah)) {
798  		u32 ddr_dpll2, pll_control2, kd;
799  
800  		if (ah->is_clk_25mhz) {
801  			ddr_dpll2 = 0x18e82f01;
802  			pll_control2 = 0xe04a3d;
803  			kd = 0x1d;
804  		} else {
805  			ddr_dpll2 = 0x19e82f01;
806  			pll_control2 = 0x886666;
807  			kd = 0x3d;
808  		}
809  
810  		/* program DDR PLL ki and kd value */
811  		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
812  
813  		/* program DDR PLL phase_shift */
814  		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
815  			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
816  
817  		REG_WRITE(ah, AR_RTC_PLL_CONTROL(ah),
818  			  pll | AR_RTC_9300_PLL_BYPASS);
819  		udelay(1000);
820  
821  		/* program refdiv, nint, frac to RTC register */
822  		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
823  
824  		/* program BB PLL kd and ki value */
825  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
826  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
827  
828  		/* program BB PLL phase_shift */
829  		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
830  			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
831  	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
832  		   AR_SREV_9561(ah)) {
833  		u32 regval, pll2_divint, pll2_divfrac, refdiv;
834  
835  		REG_WRITE(ah, AR_RTC_PLL_CONTROL(ah),
836  			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
837  		udelay(1000);
838  
839  		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
840  		udelay(100);
841  
842  		if (ah->is_clk_25mhz) {
843  			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
844  				pll2_divint = 0x1c;
845  				pll2_divfrac = 0xa3d2;
846  				refdiv = 1;
847  			} else {
848  				pll2_divint = 0x54;
849  				pll2_divfrac = 0x1eb85;
850  				refdiv = 3;
851  			}
852  		} else {
853  			if (AR_SREV_9340(ah)) {
854  				pll2_divint = 88;
855  				pll2_divfrac = 0;
856  				refdiv = 5;
857  			} else {
858  				pll2_divint = 0x11;
859  				pll2_divfrac = (AR_SREV_9531(ah) ||
860  						AR_SREV_9561(ah)) ?
861  						0x26665 : 0x26666;
862  				refdiv = 1;
863  			}
864  		}
865  
866  		regval = REG_READ(ah, AR_PHY_PLL_MODE);
867  		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
868  			regval |= (0x1 << 22);
869  		else
870  			regval |= (0x1 << 16);
871  		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
872  		udelay(100);
873  
874  		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
875  			  (pll2_divint << 18) | pll2_divfrac);
876  		udelay(100);
877  
878  		regval = REG_READ(ah, AR_PHY_PLL_MODE);
879  		if (AR_SREV_9340(ah))
880  			regval = (regval & 0x80071fff) |
881  				(0x1 << 30) |
882  				(0x1 << 13) |
883  				(0x4 << 26) |
884  				(0x18 << 19);
885  		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
886  			regval = (regval & 0x01c00fff) |
887  				(0x1 << 31) |
888  				(0x2 << 29) |
889  				(0xa << 25) |
890  				(0x1 << 19);
891  
892  			if (AR_SREV_9531(ah))
893  				regval |= (0x6 << 12);
894  		} else
895  			regval = (regval & 0x80071fff) |
896  				(0x3 << 30) |
897  				(0x1 << 13) |
898  				(0x4 << 26) |
899  				(0x60 << 19);
900  		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
901  
902  		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
903  			REG_WRITE(ah, AR_PHY_PLL_MODE,
904  				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
905  		else
906  			REG_WRITE(ah, AR_PHY_PLL_MODE,
907  				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
908  
909  		udelay(1000);
910  	}
911  
912  	if (AR_SREV_9565(ah))
913  		pll |= 0x40000;
914  	REG_WRITE(ah, AR_RTC_PLL_CONTROL(ah), pll);
915  
916  	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
917  	    AR_SREV_9550(ah))
918  		udelay(1000);
919  
920  	/* Switch the core clock for ar9271 to 117Mhz */
921  	if (AR_SREV_9271(ah)) {
922  		udelay(500);
923  		REG_WRITE(ah, 0x50040, 0x304);
924  	}
925  
926  	udelay(RTC_PLL_SETTLE_DELAY);
927  
928  	REG_WRITE(ah, AR_RTC_SLEEP_CLK(ah), AR_RTC_FORCE_DERIVED_CLK);
929  }
930  
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)931  static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
932  					  enum nl80211_iftype opmode)
933  {
934  	u32 sync_default = AR_INTR_SYNC_DEFAULT;
935  	u32 imr_reg = AR_IMR_TXERR |
936  		AR_IMR_TXURN |
937  		AR_IMR_RXERR |
938  		AR_IMR_RXORN |
939  		AR_IMR_BCNMISC;
940  	u32 msi_cfg = 0;
941  
942  	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
943  	    AR_SREV_9561(ah))
944  		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
945  
946  	if (AR_SREV_9300_20_OR_LATER(ah)) {
947  		imr_reg |= AR_IMR_RXOK_HP;
948  		if (ah->config.rx_intr_mitigation) {
949  			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
950  			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
951  		} else {
952  			imr_reg |= AR_IMR_RXOK_LP;
953  			msi_cfg |= AR_INTCFG_MSI_RXOK;
954  		}
955  	} else {
956  		if (ah->config.rx_intr_mitigation) {
957  			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
958  			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
959  		} else {
960  			imr_reg |= AR_IMR_RXOK;
961  			msi_cfg |= AR_INTCFG_MSI_RXOK;
962  		}
963  	}
964  
965  	if (ah->config.tx_intr_mitigation) {
966  		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
967  		msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
968  	} else {
969  		imr_reg |= AR_IMR_TXOK;
970  		msi_cfg |= AR_INTCFG_MSI_TXOK;
971  	}
972  
973  	ENABLE_REGWRITE_BUFFER(ah);
974  
975  	REG_WRITE(ah, AR_IMR, imr_reg);
976  	ah->imrs2_reg |= AR_IMR_S2_GTT;
977  	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
978  
979  	if (ah->msi_enabled) {
980  		ah->msi_reg = REG_READ(ah, AR_PCIE_MSI(ah));
981  		ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
982  		ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
983  		REG_WRITE(ah, AR_INTCFG, msi_cfg);
984  		ath_dbg(ath9k_hw_common(ah), ANY,
985  			"value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
986  			REG_READ(ah, AR_INTCFG), msi_cfg);
987  	}
988  
989  	if (!AR_SREV_9100(ah)) {
990  		REG_WRITE(ah, AR_INTR_SYNC_CAUSE(ah), 0xFFFFFFFF);
991  		REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), sync_default);
992  		REG_WRITE(ah, AR_INTR_SYNC_MASK(ah), 0);
993  	}
994  
995  	REGWRITE_BUFFER_FLUSH(ah);
996  
997  	if (AR_SREV_9300_20_OR_LATER(ah)) {
998  		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah), 0);
999  		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK(ah), 0);
1000  		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE(ah), 0);
1001  		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK(ah), 0);
1002  	}
1003  }
1004  
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)1005  static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1006  {
1007  	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1008  	val = min(val, (u32) 0xFFFF);
1009  	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1010  }
1011  
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)1012  void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1013  {
1014  	u32 val = ath9k_hw_mac_to_clks(ah, us);
1015  	val = min(val, (u32) 0xFFFF);
1016  	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1017  }
1018  
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)1019  void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1020  {
1021  	u32 val = ath9k_hw_mac_to_clks(ah, us);
1022  	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1023  	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1024  }
1025  
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)1026  void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1027  {
1028  	u32 val = ath9k_hw_mac_to_clks(ah, us);
1029  	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1030  	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1031  }
1032  
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)1033  static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1034  {
1035  	if (tu > 0xFFFF) {
1036  		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1037  			tu);
1038  		ah->globaltxtimeout = (u32) -1;
1039  		return false;
1040  	} else {
1041  		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1042  		ah->globaltxtimeout = tu;
1043  		return true;
1044  	}
1045  }
1046  
ath9k_hw_init_global_settings(struct ath_hw * ah)1047  void ath9k_hw_init_global_settings(struct ath_hw *ah)
1048  {
1049  	struct ath_common *common = ath9k_hw_common(ah);
1050  	const struct ath9k_channel *chan = ah->curchan;
1051  	int acktimeout, ctstimeout, ack_offset = 0;
1052  	int slottime;
1053  	int sifstime;
1054  	int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1055  	u32 reg;
1056  
1057  	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1058  		ah->misc_mode);
1059  
1060  	if (!chan)
1061  		return;
1062  
1063  	if (ah->misc_mode != 0)
1064  		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1065  
1066  	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1067  		rx_lat = 41;
1068  	else
1069  		rx_lat = 37;
1070  	tx_lat = 54;
1071  
1072  	if (IS_CHAN_5GHZ(chan))
1073  		sifstime = 16;
1074  	else
1075  		sifstime = 10;
1076  
1077  	if (IS_CHAN_HALF_RATE(chan)) {
1078  		eifs = 175;
1079  		rx_lat *= 2;
1080  		tx_lat *= 2;
1081  		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082  		    tx_lat += 11;
1083  
1084  		sifstime = 32;
1085  		ack_offset = 16;
1086  		ack_shift = 3;
1087  		slottime = 13;
1088  	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1089  		eifs = 340;
1090  		rx_lat = (rx_lat * 4) - 1;
1091  		tx_lat *= 4;
1092  		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1093  		    tx_lat += 22;
1094  
1095  		sifstime = 64;
1096  		ack_offset = 32;
1097  		ack_shift = 1;
1098  		slottime = 21;
1099  	} else {
1100  		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1101  			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1102  			reg = AR_USEC_ASYNC_FIFO;
1103  		} else {
1104  			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1105  				common->clockrate;
1106  			reg = REG_READ(ah, AR_USEC);
1107  		}
1108  		rx_lat = MS(reg, AR_USEC_RX_LAT);
1109  		tx_lat = MS(reg, AR_USEC_TX_LAT);
1110  
1111  		slottime = ah->slottime;
1112  	}
1113  
1114  	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1115  	slottime += 3 * ah->coverage_class;
1116  	acktimeout = slottime + sifstime + ack_offset;
1117  	ctstimeout = acktimeout;
1118  
1119  	/*
1120  	 * Workaround for early ACK timeouts, add an offset to match the
1121  	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1122  	 * This was initially only meant to work around an issue with delayed
1123  	 * BA frames in some implementations, but it has been found to fix ACK
1124  	 * timeout issues in other cases as well.
1125  	 */
1126  	if (IS_CHAN_2GHZ(chan) &&
1127  	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1128  		acktimeout += 64 - sifstime - ah->slottime;
1129  		ctstimeout += 48 - sifstime - ah->slottime;
1130  	}
1131  
1132  	if (ah->dynack.enabled) {
1133  		acktimeout = ah->dynack.ackto;
1134  		ctstimeout = acktimeout;
1135  		slottime = (acktimeout - 3) / 2;
1136  	} else {
1137  		ah->dynack.ackto = acktimeout;
1138  	}
1139  
1140  	ath9k_hw_set_sifs_time(ah, sifstime);
1141  	ath9k_hw_setslottime(ah, slottime);
1142  	ath9k_hw_set_ack_timeout(ah, acktimeout);
1143  	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1144  	if (ah->globaltxtimeout != (u32) -1)
1145  		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1146  
1147  	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1148  	REG_RMW(ah, AR_USEC,
1149  		(common->clockrate - 1) |
1150  		SM(rx_lat, AR_USEC_RX_LAT) |
1151  		SM(tx_lat, AR_USEC_TX_LAT),
1152  		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1153  
1154  	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1155  		REG_RMW(ah, AR_TXSIFS,
1156  			sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1157  			(AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1158  }
1159  EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1160  
ath9k_hw_deinit(struct ath_hw * ah)1161  void ath9k_hw_deinit(struct ath_hw *ah)
1162  {
1163  	struct ath_common *common = ath9k_hw_common(ah);
1164  
1165  	if (common->state < ATH_HW_INITIALIZED)
1166  		return;
1167  
1168  	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1169  }
1170  EXPORT_SYMBOL(ath9k_hw_deinit);
1171  
1172  /*******/
1173  /* INI */
1174  /*******/
1175  
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1176  u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1177  {
1178  	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1179  
1180  	if (IS_CHAN_2GHZ(chan))
1181  		ctl |= CTL_11G;
1182  	else
1183  		ctl |= CTL_11A;
1184  
1185  	return ctl;
1186  }
1187  
1188  /****************************************/
1189  /* Reset and Channel Switching Routines */
1190  /****************************************/
1191  
ath9k_hw_set_dma(struct ath_hw * ah)1192  static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1193  {
1194  	struct ath_common *common = ath9k_hw_common(ah);
1195  	int txbuf_size;
1196  
1197  	ENABLE_REGWRITE_BUFFER(ah);
1198  
1199  	/*
1200  	 * set AHB_MODE not to do cacheline prefetches
1201  	*/
1202  	if (!AR_SREV_9300_20_OR_LATER(ah))
1203  		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1204  
1205  	/*
1206  	 * let mac dma reads be in 128 byte chunks
1207  	 */
1208  	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1209  
1210  	REGWRITE_BUFFER_FLUSH(ah);
1211  
1212  	/*
1213  	 * Restore TX Trigger Level to its pre-reset value.
1214  	 * The initial value depends on whether aggregation is enabled, and is
1215  	 * adjusted whenever underruns are detected.
1216  	 */
1217  	if (!AR_SREV_9300_20_OR_LATER(ah))
1218  		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1219  
1220  	ENABLE_REGWRITE_BUFFER(ah);
1221  
1222  	/*
1223  	 * let mac dma writes be in 128 byte chunks
1224  	 */
1225  	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1226  
1227  	/*
1228  	 * Setup receive FIFO threshold to hold off TX activities
1229  	 */
1230  	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1231  
1232  	if (AR_SREV_9300_20_OR_LATER(ah)) {
1233  		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1234  		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1235  
1236  		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1237  			ah->caps.rx_status_len);
1238  	}
1239  
1240  	/*
1241  	 * reduce the number of usable entries in PCU TXBUF to avoid
1242  	 * wrap around issues.
1243  	 */
1244  	if (AR_SREV_9285(ah)) {
1245  		/* For AR9285 the number of Fifos are reduced to half.
1246  		 * So set the usable tx buf size also to half to
1247  		 * avoid data/delimiter underruns
1248  		 */
1249  		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1250  	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1251  		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1252  		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1253  	} else {
1254  		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1255  	}
1256  
1257  	if (!AR_SREV_9271(ah))
1258  		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1259  
1260  	REGWRITE_BUFFER_FLUSH(ah);
1261  
1262  	if (AR_SREV_9300_20_OR_LATER(ah))
1263  		ath9k_hw_reset_txstatus_ring(ah);
1264  }
1265  
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1266  static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1267  {
1268  	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1269  	u32 set = AR_STA_ID1_KSRCH_MODE;
1270  
1271  	ENABLE_REG_RMW_BUFFER(ah);
1272  	switch (opmode) {
1273  	case NL80211_IFTYPE_ADHOC:
1274  		if (!AR_SREV_9340_13(ah)) {
1275  			set |= AR_STA_ID1_ADHOC;
1276  			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1277  			break;
1278  		}
1279  		fallthrough;
1280  	case NL80211_IFTYPE_OCB:
1281  	case NL80211_IFTYPE_MESH_POINT:
1282  	case NL80211_IFTYPE_AP:
1283  		set |= AR_STA_ID1_STA_AP;
1284  		fallthrough;
1285  	case NL80211_IFTYPE_STATION:
1286  		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1287  		break;
1288  	default:
1289  		if (!ah->is_monitoring)
1290  			set = 0;
1291  		break;
1292  	}
1293  	REG_RMW(ah, AR_STA_ID1, set, mask);
1294  	REG_RMW_BUFFER_FLUSH(ah);
1295  }
1296  
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1297  void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1298  				   u32 *coef_mantissa, u32 *coef_exponent)
1299  {
1300  	u32 coef_exp, coef_man;
1301  
1302  	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1303  		if ((coef_scaled >> coef_exp) & 0x1)
1304  			break;
1305  
1306  	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1307  
1308  	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1309  
1310  	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1311  	*coef_exponent = coef_exp - 16;
1312  }
1313  
1314  /* AR9330 WAR:
1315   * call external reset function to reset WMAC if:
1316   * - doing a cold reset
1317   * - we have pending frames in the TX queues.
1318   */
ath9k_hw_ar9330_reset_war(struct ath_hw * ah,int type)1319  static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1320  {
1321  	int i, npend = 0;
1322  
1323  	for (i = 0; i < AR_NUM_QCU; i++) {
1324  		npend = ath9k_hw_numtxpending(ah, i);
1325  		if (npend)
1326  			break;
1327  	}
1328  
1329  	if (ah->external_reset &&
1330  	    (npend || type == ATH9K_RESET_COLD)) {
1331  		int reset_err = 0;
1332  
1333  		ath_dbg(ath9k_hw_common(ah), RESET,
1334  			"reset MAC via external reset\n");
1335  
1336  		reset_err = ah->external_reset();
1337  		if (reset_err) {
1338  			ath_err(ath9k_hw_common(ah),
1339  				"External reset failed, err=%d\n",
1340  				reset_err);
1341  			return false;
1342  		}
1343  
1344  		REG_WRITE(ah, AR_RTC_RESET(ah), 1);
1345  	}
1346  
1347  	return true;
1348  }
1349  
ath9k_hw_set_reset(struct ath_hw * ah,int type)1350  static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1351  {
1352  	u32 rst_flags;
1353  	u32 tmpReg;
1354  
1355  	if (AR_SREV_9100(ah)) {
1356  		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK(ah),
1357  			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1358  		(void)REG_READ(ah, AR_RTC_DERIVED_CLK(ah));
1359  	}
1360  
1361  	ENABLE_REGWRITE_BUFFER(ah);
1362  
1363  	if (AR_SREV_9300_20_OR_LATER(ah)) {
1364  		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
1365  		udelay(10);
1366  	}
1367  
1368  	REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN |
1369  		  AR_RTC_FORCE_WAKE_ON_INT);
1370  
1371  	if (AR_SREV_9100(ah)) {
1372  		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1373  			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1374  	} else {
1375  		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE(ah));
1376  		if (AR_SREV_9340(ah))
1377  			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1378  		else
1379  			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1380  				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1381  
1382  		if (tmpReg) {
1383  			u32 val;
1384  			REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), 0);
1385  
1386  			val = AR_RC_HOSTIF;
1387  			if (!AR_SREV_9300_20_OR_LATER(ah))
1388  				val |= AR_RC_AHB;
1389  			REG_WRITE(ah, AR_RC, val);
1390  
1391  		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1392  			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1393  
1394  		rst_flags = AR_RTC_RC_MAC_WARM;
1395  		if (type == ATH9K_RESET_COLD)
1396  			rst_flags |= AR_RTC_RC_MAC_COLD;
1397  	}
1398  
1399  	if (AR_SREV_9330(ah)) {
1400  		if (!ath9k_hw_ar9330_reset_war(ah, type))
1401  			return false;
1402  	}
1403  
1404  	if (ath9k_hw_mci_is_enabled(ah))
1405  		ar9003_mci_check_gpm_offset(ah);
1406  
1407  	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1408  	 * RTC_RC reg read
1409  	 */
1410  	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1411  		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1412  		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1413  			      20 * AH_WAIT_TIMEOUT);
1414  		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1415  	}
1416  
1417  	REG_WRITE(ah, AR_RTC_RC(ah), rst_flags);
1418  
1419  	REGWRITE_BUFFER_FLUSH(ah);
1420  
1421  	if (AR_SREV_9300_20_OR_LATER(ah))
1422  		udelay(50);
1423  	else if (AR_SREV_9100(ah))
1424  		mdelay(10);
1425  	else
1426  		udelay(100);
1427  
1428  	REG_WRITE(ah, AR_RTC_RC(ah), 0);
1429  	if (!ath9k_hw_wait(ah, AR_RTC_RC(ah), AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1430  		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1431  		return false;
1432  	}
1433  
1434  	if (!AR_SREV_9100(ah))
1435  		REG_WRITE(ah, AR_RC, 0);
1436  
1437  	if (AR_SREV_9100(ah))
1438  		udelay(50);
1439  
1440  	return true;
1441  }
1442  
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1443  static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1444  {
1445  	ENABLE_REGWRITE_BUFFER(ah);
1446  
1447  	if (AR_SREV_9300_20_OR_LATER(ah)) {
1448  		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
1449  		udelay(10);
1450  	}
1451  
1452  	REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN |
1453  		  AR_RTC_FORCE_WAKE_ON_INT);
1454  
1455  	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1456  		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1457  
1458  	REG_WRITE(ah, AR_RTC_RESET(ah), 0);
1459  
1460  	REGWRITE_BUFFER_FLUSH(ah);
1461  
1462  	udelay(2);
1463  
1464  	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1465  		REG_WRITE(ah, AR_RC, 0);
1466  
1467  	REG_WRITE(ah, AR_RTC_RESET(ah), 1);
1468  
1469  	if (!ath9k_hw_wait(ah,
1470  			   AR_RTC_STATUS(ah),
1471  			   AR_RTC_STATUS_M(ah),
1472  			   AR_RTC_STATUS_ON,
1473  			   AH_WAIT_TIMEOUT)) {
1474  		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1475  		return false;
1476  	}
1477  
1478  	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1479  }
1480  
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1481  static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1482  {
1483  	bool ret = false;
1484  
1485  	if (AR_SREV_9300_20_OR_LATER(ah)) {
1486  		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
1487  		udelay(10);
1488  	}
1489  
1490  	REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah),
1491  		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1492  
1493  	if (!ah->reset_power_on)
1494  		type = ATH9K_RESET_POWER_ON;
1495  
1496  	switch (type) {
1497  	case ATH9K_RESET_POWER_ON:
1498  		ret = ath9k_hw_set_reset_power_on(ah);
1499  		if (ret)
1500  			ah->reset_power_on = true;
1501  		break;
1502  	case ATH9K_RESET_WARM:
1503  	case ATH9K_RESET_COLD:
1504  		ret = ath9k_hw_set_reset(ah, type);
1505  		break;
1506  	default:
1507  		break;
1508  	}
1509  
1510  	return ret;
1511  }
1512  
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1513  static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1514  				struct ath9k_channel *chan)
1515  {
1516  	int reset_type = ATH9K_RESET_WARM;
1517  
1518  	if (AR_SREV_9280(ah)) {
1519  		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1520  			reset_type = ATH9K_RESET_POWER_ON;
1521  		else
1522  			reset_type = ATH9K_RESET_COLD;
1523  	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1524  		   (REG_READ(ah, AR_CR) & AR_CR_RXE(ah)))
1525  		reset_type = ATH9K_RESET_COLD;
1526  
1527  	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1528  		return false;
1529  
1530  	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1531  		return false;
1532  
1533  	ah->chip_fullsleep = false;
1534  
1535  	if (AR_SREV_9330(ah))
1536  		ar9003_hw_internal_regulator_apply(ah);
1537  	ath9k_hw_init_pll(ah, chan);
1538  
1539  	return true;
1540  }
1541  
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1542  static bool ath9k_hw_channel_change(struct ath_hw *ah,
1543  				    struct ath9k_channel *chan)
1544  {
1545  	struct ath_common *common = ath9k_hw_common(ah);
1546  	struct ath9k_hw_capabilities *pCap = &ah->caps;
1547  	bool band_switch = false, mode_diff = false;
1548  	u8 ini_reloaded = 0;
1549  	u32 qnum;
1550  	int r;
1551  
1552  	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1553  		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1554  		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1555  		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1556  	}
1557  
1558  	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1559  		if (ath9k_hw_numtxpending(ah, qnum)) {
1560  			ath_dbg(common, QUEUE,
1561  				"Transmit frames pending on queue %d\n", qnum);
1562  			return false;
1563  		}
1564  	}
1565  
1566  	if (!ath9k_hw_rfbus_req(ah)) {
1567  		ath_err(common, "Could not kill baseband RX\n");
1568  		return false;
1569  	}
1570  
1571  	if (band_switch || mode_diff) {
1572  		ath9k_hw_mark_phy_inactive(ah);
1573  		udelay(5);
1574  
1575  		if (band_switch)
1576  			ath9k_hw_init_pll(ah, chan);
1577  
1578  		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1579  			ath_err(common, "Failed to do fast channel change\n");
1580  			return false;
1581  		}
1582  	}
1583  
1584  	ath9k_hw_set_channel_regs(ah, chan);
1585  
1586  	r = ath9k_hw_rf_set_freq(ah, chan);
1587  	if (r) {
1588  		ath_err(common, "Failed to set channel\n");
1589  		return false;
1590  	}
1591  	ath9k_hw_set_clockrate(ah);
1592  	ath9k_hw_apply_txpower(ah, chan, false);
1593  
1594  	ath9k_hw_set_delta_slope(ah, chan);
1595  	ath9k_hw_spur_mitigate_freq(ah, chan);
1596  
1597  	if (band_switch || ini_reloaded)
1598  		ah->eep_ops->set_board_values(ah, chan);
1599  
1600  	ath9k_hw_init_bb(ah, chan);
1601  	ath9k_hw_rfbus_done(ah);
1602  
1603  	if (band_switch || ini_reloaded) {
1604  		ah->ah_flags |= AH_FASTCC;
1605  		ath9k_hw_init_cal(ah, chan);
1606  		ah->ah_flags &= ~AH_FASTCC;
1607  	}
1608  
1609  	return true;
1610  }
1611  
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1612  static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1613  {
1614  	u32 gpio_mask = ah->gpio_mask;
1615  	int i;
1616  
1617  	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1618  		if (!(gpio_mask & 1))
1619  			continue;
1620  
1621  		ath9k_hw_gpio_request_out(ah, i, NULL,
1622  					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1623  		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1624  	}
1625  }
1626  
ath9k_hw_check_nav(struct ath_hw * ah)1627  void ath9k_hw_check_nav(struct ath_hw *ah)
1628  {
1629  	struct ath_common *common = ath9k_hw_common(ah);
1630  	u32 val;
1631  
1632  	val = REG_READ(ah, AR_NAV);
1633  	if (val != 0xdeadbeef && val > 0x7fff) {
1634  		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1635  		REG_WRITE(ah, AR_NAV, 0);
1636  	}
1637  }
1638  EXPORT_SYMBOL(ath9k_hw_check_nav);
1639  
ath9k_hw_check_alive(struct ath_hw * ah)1640  bool ath9k_hw_check_alive(struct ath_hw *ah)
1641  {
1642  	int count = 50;
1643  	u32 reg, last_val;
1644  
1645  	/* Check if chip failed to wake up */
1646  	if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1647  		return false;
1648  
1649  	if (AR_SREV_9300(ah))
1650  		return !ath9k_hw_detect_mac_hang(ah);
1651  
1652  	if (AR_SREV_9285_12_OR_LATER(ah))
1653  		return true;
1654  
1655  	last_val = REG_READ(ah, AR_OBS_BUS_1);
1656  	do {
1657  		reg = REG_READ(ah, AR_OBS_BUS_1);
1658  		if (reg != last_val)
1659  			return true;
1660  
1661  		udelay(1);
1662  		last_val = reg;
1663  		if ((reg & 0x7E7FFFEF) == 0x00702400)
1664  			continue;
1665  
1666  		switch (reg & 0x7E000B00) {
1667  		case 0x1E000000:
1668  		case 0x52000B00:
1669  		case 0x18000B00:
1670  			continue;
1671  		default:
1672  			return true;
1673  		}
1674  	} while (count-- > 0);
1675  
1676  	return false;
1677  }
1678  EXPORT_SYMBOL(ath9k_hw_check_alive);
1679  
ath9k_hw_init_mfp(struct ath_hw * ah)1680  static void ath9k_hw_init_mfp(struct ath_hw *ah)
1681  {
1682  	/* Setup MFP options for CCMP */
1683  	if (AR_SREV_9280_20_OR_LATER(ah)) {
1684  		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1685  		 * frames when constructing CCMP AAD. */
1686  		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1687  			      0xc7ff);
1688  		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1689  			ah->sw_mgmt_crypto_tx = true;
1690  		else
1691  			ah->sw_mgmt_crypto_tx = false;
1692  		ah->sw_mgmt_crypto_rx = false;
1693  	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1694  		/* Disable hardware crypto for management frames */
1695  		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1696  			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1697  		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1698  			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1699  		ah->sw_mgmt_crypto_tx = true;
1700  		ah->sw_mgmt_crypto_rx = true;
1701  	} else {
1702  		ah->sw_mgmt_crypto_tx = true;
1703  		ah->sw_mgmt_crypto_rx = true;
1704  	}
1705  }
1706  
ath9k_hw_reset_opmode(struct ath_hw * ah,u32 macStaId1,u32 saveDefAntenna)1707  static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1708  				  u32 macStaId1, u32 saveDefAntenna)
1709  {
1710  	struct ath_common *common = ath9k_hw_common(ah);
1711  
1712  	ENABLE_REGWRITE_BUFFER(ah);
1713  
1714  	REG_RMW(ah, AR_STA_ID1, macStaId1
1715  		  | AR_STA_ID1_RTS_USE_DEF
1716  		  | ah->sta_id1_defaults,
1717  		  ~AR_STA_ID1_SADH_MASK);
1718  	ath_hw_setbssidmask(common);
1719  	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1720  	ath9k_hw_write_associd(ah);
1721  	REG_WRITE(ah, AR_ISR, ~0);
1722  	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1723  
1724  	REGWRITE_BUFFER_FLUSH(ah);
1725  
1726  	ath9k_hw_set_operating_mode(ah, ah->opmode);
1727  }
1728  
ath9k_hw_init_queues(struct ath_hw * ah)1729  static void ath9k_hw_init_queues(struct ath_hw *ah)
1730  {
1731  	int i;
1732  
1733  	ENABLE_REGWRITE_BUFFER(ah);
1734  
1735  	for (i = 0; i < AR_NUM_DCU; i++)
1736  		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1737  
1738  	REGWRITE_BUFFER_FLUSH(ah);
1739  
1740  	ah->intr_txqs = 0;
1741  	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1742  		ath9k_hw_resettxqueue(ah, i);
1743  }
1744  
1745  /*
1746   * For big endian systems turn on swapping for descriptors
1747   */
ath9k_hw_init_desc(struct ath_hw * ah)1748  static void ath9k_hw_init_desc(struct ath_hw *ah)
1749  {
1750  	struct ath_common *common = ath9k_hw_common(ah);
1751  
1752  	if (AR_SREV_9100(ah)) {
1753  		u32 mask;
1754  		mask = REG_READ(ah, AR_CFG);
1755  		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1756  			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1757  				mask);
1758  		} else {
1759  			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1760  			REG_WRITE(ah, AR_CFG, mask);
1761  			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1762  				REG_READ(ah, AR_CFG));
1763  		}
1764  	} else {
1765  		if (common->bus_ops->ath_bus_type == ATH_USB) {
1766  			/* Configure AR9271 target WLAN */
1767  			if (AR_SREV_9271(ah))
1768  				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1769  			else
1770  				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1771  		}
1772  #ifdef __BIG_ENDIAN
1773  		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1774  			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1775  			 AR_SREV_9561(ah))
1776  			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1777  		else
1778  			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1779  #endif
1780  	}
1781  }
1782  
1783  /*
1784   * Fast channel change:
1785   * (Change synthesizer based on channel freq without resetting chip)
1786   */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1787  static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1788  {
1789  	struct ath_common *common = ath9k_hw_common(ah);
1790  	struct ath9k_hw_capabilities *pCap = &ah->caps;
1791  	int ret;
1792  
1793  	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1794  		goto fail;
1795  
1796  	if (ah->chip_fullsleep)
1797  		goto fail;
1798  
1799  	if (!ah->curchan)
1800  		goto fail;
1801  
1802  	if (chan->channel == ah->curchan->channel)
1803  		goto fail;
1804  
1805  	if ((ah->curchan->channelFlags | chan->channelFlags) &
1806  	    (CHANNEL_HALF | CHANNEL_QUARTER))
1807  		goto fail;
1808  
1809  	/*
1810  	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1811  	 */
1812  	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1813  	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1814  		goto fail;
1815  
1816  	if (!ath9k_hw_check_alive(ah))
1817  		goto fail;
1818  
1819  	/*
1820  	 * For AR9462, make sure that calibration data for
1821  	 * re-using are present.
1822  	 */
1823  	if (AR_SREV_9462(ah) && (ah->caldata &&
1824  				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1825  				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1826  				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1827  		goto fail;
1828  
1829  	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1830  		ah->curchan->channel, chan->channel);
1831  
1832  	ret = ath9k_hw_channel_change(ah, chan);
1833  	if (!ret)
1834  		goto fail;
1835  
1836  	if (ath9k_hw_mci_is_enabled(ah))
1837  		ar9003_mci_2g5g_switch(ah, false);
1838  
1839  	ath9k_hw_loadnf(ah, ah->curchan);
1840  	ath9k_hw_start_nfcal(ah, true);
1841  
1842  	if (AR_SREV_9271(ah))
1843  		ar9002_hw_load_ani_reg(ah, chan);
1844  
1845  	return 0;
1846  fail:
1847  	return -EINVAL;
1848  }
1849  
ath9k_hw_get_tsf_offset(struct timespec64 * last,struct timespec64 * cur)1850  u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1851  {
1852  	struct timespec64 ts;
1853  	s64 usec;
1854  
1855  	if (!cur) {
1856  		ktime_get_raw_ts64(&ts);
1857  		cur = &ts;
1858  	}
1859  
1860  	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1861  	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1862  
1863  	return (u32) usec;
1864  }
1865  EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1866  
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1867  int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1868  		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1869  {
1870  	struct ath_common *common = ath9k_hw_common(ah);
1871  	u32 saveLedState;
1872  	u32 saveDefAntenna;
1873  	u32 macStaId1;
1874  	struct timespec64 tsf_ts;
1875  	u32 tsf_offset;
1876  	u64 tsf = 0;
1877  	int r;
1878  	bool start_mci_reset = false;
1879  	bool save_fullsleep = ah->chip_fullsleep;
1880  
1881  	if (ath9k_hw_mci_is_enabled(ah)) {
1882  		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1883  		if (start_mci_reset)
1884  			return 0;
1885  	}
1886  
1887  	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1888  		return -EIO;
1889  
1890  	if (ah->curchan && !ah->chip_fullsleep)
1891  		ath9k_hw_getnf(ah, ah->curchan);
1892  
1893  	ah->caldata = caldata;
1894  	if (caldata && (chan->channel != caldata->channel ||
1895  			chan->channelFlags != caldata->channelFlags)) {
1896  		/* Operating channel changed, reset channel calibration data */
1897  		memset(caldata, 0, sizeof(*caldata));
1898  		ath9k_init_nfcal_hist_buffer(ah, chan);
1899  	} else if (caldata) {
1900  		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1901  	}
1902  	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1903  
1904  	if (fastcc) {
1905  		r = ath9k_hw_do_fastcc(ah, chan);
1906  		if (!r)
1907  			return r;
1908  	}
1909  
1910  	if (ath9k_hw_mci_is_enabled(ah))
1911  		ar9003_mci_stop_bt(ah, save_fullsleep);
1912  
1913  	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1914  	if (saveDefAntenna == 0)
1915  		saveDefAntenna = 1;
1916  
1917  	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1918  
1919  	/* Save TSF before chip reset, a cold reset clears it */
1920  	ktime_get_raw_ts64(&tsf_ts);
1921  	tsf = ath9k_hw_gettsf64(ah);
1922  
1923  	saveLedState = REG_READ(ah, AR_CFG_LED) &
1924  		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1925  		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1926  
1927  	ath9k_hw_mark_phy_inactive(ah);
1928  
1929  	ah->paprd_table_write_done = false;
1930  
1931  	/* Only required on the first reset */
1932  	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1933  		REG_WRITE(ah,
1934  			  AR9271_RESET_POWER_DOWN_CONTROL,
1935  			  AR9271_RADIO_RF_RST);
1936  		udelay(50);
1937  	}
1938  
1939  	if (!ath9k_hw_chip_reset(ah, chan)) {
1940  		ath_err(common, "Chip reset failed\n");
1941  		return -EINVAL;
1942  	}
1943  
1944  	/* Only required on the first reset */
1945  	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1946  		ah->htc_reset_init = false;
1947  		REG_WRITE(ah,
1948  			  AR9271_RESET_POWER_DOWN_CONTROL,
1949  			  AR9271_GATE_MAC_CTL);
1950  		udelay(50);
1951  	}
1952  
1953  	/* Restore TSF */
1954  	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1955  	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1956  
1957  	if (AR_SREV_9280_20_OR_LATER(ah))
1958  		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL(ah), AR_GPIO_JTAG_DISABLE);
1959  
1960  	if (!AR_SREV_9300_20_OR_LATER(ah))
1961  		ar9002_hw_enable_async_fifo(ah);
1962  
1963  	r = ath9k_hw_process_ini(ah, chan);
1964  	if (r)
1965  		return r;
1966  
1967  	ath9k_hw_set_rfmode(ah, chan);
1968  
1969  	if (ath9k_hw_mci_is_enabled(ah))
1970  		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1971  
1972  	/*
1973  	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1974  	 * right after the chip reset. When that happens, write a new
1975  	 * value after the initvals have been applied.
1976  	 */
1977  	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1978  		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1979  		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1980  	}
1981  
1982  	ath9k_hw_init_mfp(ah);
1983  
1984  	ath9k_hw_set_delta_slope(ah, chan);
1985  	ath9k_hw_spur_mitigate_freq(ah, chan);
1986  	ah->eep_ops->set_board_values(ah, chan);
1987  
1988  	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1989  
1990  	r = ath9k_hw_rf_set_freq(ah, chan);
1991  	if (r)
1992  		return r;
1993  
1994  	ath9k_hw_set_clockrate(ah);
1995  
1996  	ath9k_hw_init_queues(ah);
1997  	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1998  	ath9k_hw_ani_cache_ini_regs(ah);
1999  	ath9k_hw_init_qos(ah);
2000  
2001  	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2002  		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2003  
2004  	ath9k_hw_init_global_settings(ah);
2005  
2006  	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2007  		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2008  			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2009  		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2010  			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2011  		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2012  			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2013  	}
2014  
2015  	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2016  
2017  	ath9k_hw_set_dma(ah);
2018  
2019  	if (!ath9k_hw_mci_is_enabled(ah))
2020  		REG_WRITE(ah, AR_OBS(ah), 8);
2021  
2022  	ENABLE_REG_RMW_BUFFER(ah);
2023  	if (ah->config.rx_intr_mitigation) {
2024  		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2025  		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2026  	}
2027  
2028  	if (ah->config.tx_intr_mitigation) {
2029  		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2030  		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2031  	}
2032  	REG_RMW_BUFFER_FLUSH(ah);
2033  
2034  	ath9k_hw_init_bb(ah, chan);
2035  
2036  	if (caldata) {
2037  		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2038  		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2039  	}
2040  	if (!ath9k_hw_init_cal(ah, chan))
2041  		return -EIO;
2042  
2043  	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2044  		return -EIO;
2045  
2046  	ENABLE_REGWRITE_BUFFER(ah);
2047  
2048  	ath9k_hw_restore_chainmask(ah);
2049  	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2050  
2051  	REGWRITE_BUFFER_FLUSH(ah);
2052  
2053  	ath9k_hw_gen_timer_start_tsf2(ah);
2054  
2055  	ath9k_hw_init_desc(ah);
2056  
2057  	if (ath9k_hw_btcoex_is_enabled(ah))
2058  		ath9k_hw_btcoex_enable(ah);
2059  
2060  	if (ath9k_hw_mci_is_enabled(ah))
2061  		ar9003_mci_check_bt(ah);
2062  
2063  	if (AR_SREV_9300_20_OR_LATER(ah)) {
2064  		ath9k_hw_loadnf(ah, chan);
2065  		ath9k_hw_start_nfcal(ah, true);
2066  	}
2067  
2068  	if (AR_SREV_9300_20_OR_LATER(ah))
2069  		ar9003_hw_bb_watchdog_config(ah);
2070  
2071  	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2072  		ar9003_hw_disable_phy_restart(ah);
2073  
2074  	ath9k_hw_apply_gpio_override(ah);
2075  
2076  	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2077  		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2078  
2079  	if (ah->hw->conf.radar_enabled) {
2080  		/* set HW specific DFS configuration */
2081  		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2082  		ath9k_hw_set_radar_params(ah);
2083  	}
2084  
2085  	return 0;
2086  }
2087  EXPORT_SYMBOL(ath9k_hw_reset);
2088  
2089  /******************************/
2090  /* Power Management (Chipset) */
2091  /******************************/
2092  
2093  /*
2094   * Notify Power Mgt is disabled in self-generated frames.
2095   * If requested, force chip to sleep.
2096   */
ath9k_set_power_sleep(struct ath_hw * ah)2097  static void ath9k_set_power_sleep(struct ath_hw *ah)
2098  {
2099  	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2100  
2101  	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2102  		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2103  		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2104  		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2105  		/* xxx Required for WLAN only case ? */
2106  		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2107  		udelay(100);
2108  	}
2109  
2110  	/*
2111  	 * Clear the RTC force wake bit to allow the
2112  	 * mac to go to sleep.
2113  	 */
2114  	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN);
2115  
2116  	if (ath9k_hw_mci_is_enabled(ah))
2117  		udelay(100);
2118  
2119  	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2120  		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2121  
2122  	/* Shutdown chip. Active low */
2123  	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2124  		REG_CLR_BIT(ah, AR_RTC_RESET(ah), AR_RTC_RESET_EN);
2125  		udelay(2);
2126  	}
2127  
2128  	/* Clear Bit 14 of AR_WA(ah) after putting chip into Full Sleep mode. */
2129  	if (AR_SREV_9300_20_OR_LATER(ah))
2130  		REG_WRITE(ah, AR_WA(ah), ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2131  }
2132  
2133  /*
2134   * Notify Power Management is enabled in self-generating
2135   * frames. If request, set power mode of chip to
2136   * auto/normal.  Duration in units of 128us (1/8 TU).
2137   */
ath9k_set_power_network_sleep(struct ath_hw * ah)2138  static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2139  {
2140  	struct ath9k_hw_capabilities *pCap = &ah->caps;
2141  
2142  	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2143  
2144  	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2145  		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2146  		REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah),
2147  			  AR_RTC_FORCE_WAKE_ON_INT);
2148  	} else {
2149  
2150  		/* When chip goes into network sleep, it could be waken
2151  		 * up by MCI_INT interrupt caused by BT's HW messages
2152  		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2153  		 * rate (~100us). This will cause chip to leave and
2154  		 * re-enter network sleep mode frequently, which in
2155  		 * consequence will have WLAN MCI HW to generate lots of
2156  		 * SYS_WAKING and SYS_SLEEPING messages which will make
2157  		 * BT CPU to busy to process.
2158  		 */
2159  		if (ath9k_hw_mci_is_enabled(ah))
2160  			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2161  				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2162  		/*
2163  		 * Clear the RTC force wake bit to allow the
2164  		 * mac to go to sleep.
2165  		 */
2166  		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN);
2167  
2168  		if (ath9k_hw_mci_is_enabled(ah))
2169  			udelay(30);
2170  	}
2171  
2172  	/* Clear Bit 14 of AR_WA(ah) after putting chip into Net Sleep mode. */
2173  	if (AR_SREV_9300_20_OR_LATER(ah))
2174  		REG_WRITE(ah, AR_WA(ah), ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2175  }
2176  
ath9k_hw_set_power_awake(struct ath_hw * ah)2177  static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2178  {
2179  	u32 val;
2180  	int i;
2181  
2182  	/* Set Bits 14 and 17 of AR_WA(ah) before powering on the chip. */
2183  	if (AR_SREV_9300_20_OR_LATER(ah)) {
2184  		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
2185  		udelay(10);
2186  	}
2187  
2188  	if ((REG_READ(ah, AR_RTC_STATUS(ah)) &
2189  	     AR_RTC_STATUS_M(ah)) == AR_RTC_STATUS_SHUTDOWN) {
2190  		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2191  			return false;
2192  		}
2193  		if (!AR_SREV_9300_20_OR_LATER(ah))
2194  			ath9k_hw_init_pll(ah, NULL);
2195  	}
2196  	if (AR_SREV_9100(ah))
2197  		REG_SET_BIT(ah, AR_RTC_RESET(ah),
2198  			    AR_RTC_RESET_EN);
2199  
2200  	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE(ah),
2201  		    AR_RTC_FORCE_WAKE_EN);
2202  	if (AR_SREV_9100(ah))
2203  		mdelay(10);
2204  	else
2205  		udelay(50);
2206  
2207  	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2208  		val = REG_READ(ah, AR_RTC_STATUS(ah)) & AR_RTC_STATUS_M(ah);
2209  		if (val == AR_RTC_STATUS_ON)
2210  			break;
2211  		udelay(50);
2212  		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE(ah),
2213  			    AR_RTC_FORCE_WAKE_EN);
2214  	}
2215  	if (i == 0) {
2216  		ath_err(ath9k_hw_common(ah),
2217  			"Failed to wakeup in %uus\n",
2218  			POWER_UP_TIME / 20);
2219  		return false;
2220  	}
2221  
2222  	if (ath9k_hw_mci_is_enabled(ah))
2223  		ar9003_mci_set_power_awake(ah);
2224  
2225  	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2226  
2227  	return true;
2228  }
2229  
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2230  bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2231  {
2232  	struct ath_common *common = ath9k_hw_common(ah);
2233  	int status = true;
2234  	static const char *modes[] = {
2235  		"AWAKE",
2236  		"FULL-SLEEP",
2237  		"NETWORK SLEEP",
2238  		"UNDEFINED"
2239  	};
2240  
2241  	if (ah->power_mode == mode)
2242  		return status;
2243  
2244  	ath_dbg(common, RESET, "%s -> %s\n",
2245  		modes[ah->power_mode], modes[mode]);
2246  
2247  	switch (mode) {
2248  	case ATH9K_PM_AWAKE:
2249  		status = ath9k_hw_set_power_awake(ah);
2250  		break;
2251  	case ATH9K_PM_FULL_SLEEP:
2252  		if (ath9k_hw_mci_is_enabled(ah))
2253  			ar9003_mci_set_full_sleep(ah);
2254  
2255  		ath9k_set_power_sleep(ah);
2256  		ah->chip_fullsleep = true;
2257  		break;
2258  	case ATH9K_PM_NETWORK_SLEEP:
2259  		ath9k_set_power_network_sleep(ah);
2260  		break;
2261  	default:
2262  		ath_err(common, "Unknown power mode %u\n", mode);
2263  		return false;
2264  	}
2265  	ah->power_mode = mode;
2266  
2267  	/*
2268  	 * XXX: If this warning never comes up after a while then
2269  	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2270  	 * ath9k_hw_setpower() return type void.
2271  	 */
2272  
2273  	if (!(ah->ah_flags & AH_UNPLUGGED))
2274  		ATH_DBG_WARN_ON_ONCE(!status);
2275  
2276  	return status;
2277  }
2278  EXPORT_SYMBOL(ath9k_hw_setpower);
2279  
2280  /*******************/
2281  /* Beacon Handling */
2282  /*******************/
2283  
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2284  void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2285  {
2286  	int flags = 0;
2287  
2288  	ENABLE_REGWRITE_BUFFER(ah);
2289  
2290  	switch (ah->opmode) {
2291  	case NL80211_IFTYPE_ADHOC:
2292  		REG_SET_BIT(ah, AR_TXCFG,
2293  			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2294  		fallthrough;
2295  	case NL80211_IFTYPE_MESH_POINT:
2296  	case NL80211_IFTYPE_AP:
2297  		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2298  		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2299  			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2300  		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2301  			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2302  		flags |=
2303  			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2304  		break;
2305  	default:
2306  		ath_dbg(ath9k_hw_common(ah), BEACON,
2307  			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2308  		return;
2309  	}
2310  
2311  	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2312  	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2313  	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2314  
2315  	REGWRITE_BUFFER_FLUSH(ah);
2316  
2317  	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2318  }
2319  EXPORT_SYMBOL(ath9k_hw_beaconinit);
2320  
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2321  void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2322  				    const struct ath9k_beacon_state *bs)
2323  {
2324  	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2325  	struct ath9k_hw_capabilities *pCap = &ah->caps;
2326  	struct ath_common *common = ath9k_hw_common(ah);
2327  
2328  	ENABLE_REGWRITE_BUFFER(ah);
2329  
2330  	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2331  	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2332  	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2333  
2334  	REGWRITE_BUFFER_FLUSH(ah);
2335  
2336  	REG_RMW_FIELD(ah, AR_RSSI_THR,
2337  		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2338  
2339  	beaconintval = bs->bs_intval;
2340  
2341  	if (bs->bs_sleepduration > beaconintval)
2342  		beaconintval = bs->bs_sleepduration;
2343  
2344  	dtimperiod = bs->bs_dtimperiod;
2345  	if (bs->bs_sleepduration > dtimperiod)
2346  		dtimperiod = bs->bs_sleepduration;
2347  
2348  	if (beaconintval == dtimperiod)
2349  		nextTbtt = bs->bs_nextdtim;
2350  	else
2351  		nextTbtt = bs->bs_nexttbtt;
2352  
2353  	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2354  	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2355  	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2356  	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2357  
2358  	ENABLE_REGWRITE_BUFFER(ah);
2359  
2360  	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2361  	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2362  
2363  	REG_WRITE(ah, AR_SLEEP1,
2364  		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2365  		  | AR_SLEEP1_ASSUME_DTIM);
2366  
2367  	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2368  		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2369  	else
2370  		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2371  
2372  	REG_WRITE(ah, AR_SLEEP2,
2373  		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2374  
2375  	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2376  	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2377  
2378  	REGWRITE_BUFFER_FLUSH(ah);
2379  
2380  	REG_SET_BIT(ah, AR_TIMER_MODE,
2381  		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2382  		    AR_DTIM_TIMER_EN);
2383  
2384  	/* TSF Out of Range Threshold */
2385  	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2386  }
2387  EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2388  
2389  /*******************/
2390  /* HW Capabilities */
2391  /*******************/
2392  
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2393  static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2394  {
2395  	eeprom_chainmask &= chip_chainmask;
2396  	if (eeprom_chainmask)
2397  		return eeprom_chainmask;
2398  	else
2399  		return chip_chainmask;
2400  }
2401  
2402  /**
2403   * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2404   * @ah: the atheros hardware data structure
2405   *
2406   * We enable DFS support upstream on chipsets which have passed a series
2407   * of tests. The testing requirements are going to be documented. Desired
2408   * test requirements are documented at:
2409   *
2410   * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2411   *
2412   * Once a new chipset gets properly tested an individual commit can be used
2413   * to document the testing for DFS for that chipset.
2414   */
ath9k_hw_dfs_tested(struct ath_hw * ah)2415  static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2416  {
2417  
2418  	switch (ah->hw_version.macVersion) {
2419  	/* for temporary testing DFS with 9280 */
2420  	case AR_SREV_VERSION_9280:
2421  	/* AR9580 will likely be our first target to get testing on */
2422  	case AR_SREV_VERSION_9580:
2423  		return true;
2424  	default:
2425  		return false;
2426  	}
2427  }
2428  
ath9k_gpio_cap_init(struct ath_hw * ah)2429  static void ath9k_gpio_cap_init(struct ath_hw *ah)
2430  {
2431  	struct ath9k_hw_capabilities *pCap = &ah->caps;
2432  
2433  	if (AR_SREV_9271(ah)) {
2434  		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2435  		pCap->gpio_mask = AR9271_GPIO_MASK;
2436  	} else if (AR_DEVID_7010(ah)) {
2437  		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2438  		pCap->gpio_mask = AR7010_GPIO_MASK;
2439  	} else if (AR_SREV_9287(ah)) {
2440  		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2441  		pCap->gpio_mask = AR9287_GPIO_MASK;
2442  	} else if (AR_SREV_9285(ah)) {
2443  		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2444  		pCap->gpio_mask = AR9285_GPIO_MASK;
2445  	} else if (AR_SREV_9280(ah)) {
2446  		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2447  		pCap->gpio_mask = AR9280_GPIO_MASK;
2448  	} else if (AR_SREV_9300(ah)) {
2449  		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2450  		pCap->gpio_mask = AR9300_GPIO_MASK;
2451  	} else if (AR_SREV_9330(ah)) {
2452  		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2453  		pCap->gpio_mask = AR9330_GPIO_MASK;
2454  	} else if (AR_SREV_9340(ah)) {
2455  		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2456  		pCap->gpio_mask = AR9340_GPIO_MASK;
2457  	} else if (AR_SREV_9462(ah)) {
2458  		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2459  		pCap->gpio_mask = AR9462_GPIO_MASK;
2460  	} else if (AR_SREV_9485(ah)) {
2461  		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2462  		pCap->gpio_mask = AR9485_GPIO_MASK;
2463  	} else if (AR_SREV_9531(ah)) {
2464  		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2465  		pCap->gpio_mask = AR9531_GPIO_MASK;
2466  	} else if (AR_SREV_9550(ah)) {
2467  		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2468  		pCap->gpio_mask = AR9550_GPIO_MASK;
2469  	} else if (AR_SREV_9561(ah)) {
2470  		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2471  		pCap->gpio_mask = AR9561_GPIO_MASK;
2472  	} else if (AR_SREV_9565(ah)) {
2473  		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2474  		pCap->gpio_mask = AR9565_GPIO_MASK;
2475  	} else if (AR_SREV_9580(ah)) {
2476  		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2477  		pCap->gpio_mask = AR9580_GPIO_MASK;
2478  	} else {
2479  		pCap->num_gpio_pins = AR_NUM_GPIO;
2480  		pCap->gpio_mask = AR_GPIO_MASK;
2481  	}
2482  }
2483  
ath9k_hw_fill_cap_info(struct ath_hw * ah)2484  int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2485  {
2486  	struct ath9k_hw_capabilities *pCap = &ah->caps;
2487  	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2488  	struct ath_common *common = ath9k_hw_common(ah);
2489  
2490  	u16 eeval;
2491  	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2492  
2493  	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2494  	regulatory->current_rd = eeval;
2495  
2496  	if (ah->opmode != NL80211_IFTYPE_AP &&
2497  	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2498  		if (regulatory->current_rd == 0x64 ||
2499  		    regulatory->current_rd == 0x65)
2500  			regulatory->current_rd += 5;
2501  		else if (regulatory->current_rd == 0x41)
2502  			regulatory->current_rd = 0x43;
2503  		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2504  			regulatory->current_rd);
2505  	}
2506  
2507  	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2508  
2509  	if (eeval & AR5416_OPFLAGS_11A) {
2510  		if (ah->disable_5ghz)
2511  			ath_warn(common, "disabling 5GHz band\n");
2512  		else
2513  			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2514  	}
2515  
2516  	if (eeval & AR5416_OPFLAGS_11G) {
2517  		if (ah->disable_2ghz)
2518  			ath_warn(common, "disabling 2GHz band\n");
2519  		else
2520  			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2521  	}
2522  
2523  	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2524  		ath_err(common, "both bands are disabled\n");
2525  		return -EINVAL;
2526  	}
2527  
2528  	ath9k_gpio_cap_init(ah);
2529  
2530  	if (AR_SREV_9485(ah) ||
2531  	    AR_SREV_9285(ah) ||
2532  	    AR_SREV_9330(ah) ||
2533  	    AR_SREV_9565(ah))
2534  		pCap->chip_chainmask = 1;
2535  	else if (!AR_SREV_9280_20_OR_LATER(ah))
2536  		pCap->chip_chainmask = 7;
2537  	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2538  		 AR_SREV_9340(ah) ||
2539  		 AR_SREV_9462(ah) ||
2540  		 AR_SREV_9531(ah))
2541  		pCap->chip_chainmask = 3;
2542  	else
2543  		pCap->chip_chainmask = 7;
2544  
2545  	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2546  	/*
2547  	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2548  	 * the EEPROM.
2549  	 */
2550  	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2551  	    !(eeval & AR5416_OPFLAGS_11A) &&
2552  	    !(AR_SREV_9271(ah)))
2553  		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2554  		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2555  	else if (AR_SREV_9100(ah))
2556  		pCap->rx_chainmask = 0x7;
2557  	else
2558  		/* Use rx_chainmask from EEPROM. */
2559  		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2560  
2561  	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2562  	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2563  	ah->txchainmask = pCap->tx_chainmask;
2564  	ah->rxchainmask = pCap->rx_chainmask;
2565  
2566  	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2567  
2568  	/* enable key search for every frame in an aggregate */
2569  	if (AR_SREV_9300_20_OR_LATER(ah))
2570  		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2571  
2572  	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2573  
2574  	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2575  		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2576  	else
2577  		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2578  
2579  	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2580  		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2581  	else
2582  		pCap->rts_aggr_limit = (8 * 1024);
2583  
2584  #ifdef CONFIG_ATH9K_RFKILL
2585  	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2586  	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2587  		ah->rfkill_gpio =
2588  			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2589  		ah->rfkill_polarity =
2590  			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2591  
2592  		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2593  	}
2594  #endif
2595  	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2596  		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2597  	else
2598  		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2599  
2600  	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2601  		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2602  	else
2603  		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2604  
2605  	if (AR_SREV_9300_20_OR_LATER(ah)) {
2606  		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2607  		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2608  		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2609  			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2610  
2611  		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2612  		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2613  		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2614  		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2615  		pCap->txs_len = sizeof(struct ar9003_txs);
2616  	} else {
2617  		pCap->tx_desc_len = sizeof(struct ath_desc);
2618  		if (AR_SREV_9280_20(ah))
2619  			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2620  	}
2621  
2622  	if (AR_SREV_9300_20_OR_LATER(ah))
2623  		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2624  
2625  	if (AR_SREV_9561(ah))
2626  		ah->ent_mode = 0x3BDA000;
2627  	else if (AR_SREV_9300_20_OR_LATER(ah))
2628  		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2629  
2630  	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2631  		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2632  
2633  	if (AR_SREV_9285(ah)) {
2634  		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2635  			ant_div_ctl1 =
2636  				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2637  			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2638  				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2639  				ath_info(common, "Enable LNA combining\n");
2640  			}
2641  		}
2642  	}
2643  
2644  	if (AR_SREV_9300_20_OR_LATER(ah)) {
2645  		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2646  			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2647  	}
2648  
2649  	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2650  		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2651  		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2652  			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2653  			ath_info(common, "Enable LNA combining\n");
2654  		}
2655  	}
2656  
2657  	if (ath9k_hw_dfs_tested(ah))
2658  		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2659  
2660  	tx_chainmask = pCap->tx_chainmask;
2661  	rx_chainmask = pCap->rx_chainmask;
2662  	while (tx_chainmask || rx_chainmask) {
2663  		if (tx_chainmask & BIT(0))
2664  			pCap->max_txchains++;
2665  		if (rx_chainmask & BIT(0))
2666  			pCap->max_rxchains++;
2667  
2668  		tx_chainmask >>= 1;
2669  		rx_chainmask >>= 1;
2670  	}
2671  
2672  	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2673  		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2674  			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2675  
2676  		if (AR_SREV_9462_20_OR_LATER(ah))
2677  			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2678  	}
2679  
2680  	if (AR_SREV_9300_20_OR_LATER(ah) &&
2681  	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2682  			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2683  
2684  #ifdef CONFIG_ATH9K_WOW
2685  	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2686  		ah->wow.max_patterns = MAX_NUM_PATTERN;
2687  	else
2688  		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2689  #endif
2690  
2691  	return 0;
2692  }
2693  
2694  /****************************/
2695  /* GPIO / RFKILL / Antennae */
2696  /****************************/
2697  
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2698  static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2699  {
2700  	int addr;
2701  	u32 gpio_shift, tmp;
2702  
2703  	if (gpio > 11)
2704  		addr = AR_GPIO_OUTPUT_MUX3(ah);
2705  	else if (gpio > 5)
2706  		addr = AR_GPIO_OUTPUT_MUX2(ah);
2707  	else
2708  		addr = AR_GPIO_OUTPUT_MUX1(ah);
2709  
2710  	gpio_shift = (gpio % 6) * 5;
2711  
2712  	if (AR_SREV_9280_20_OR_LATER(ah) ||
2713  	    (addr != AR_GPIO_OUTPUT_MUX1(ah))) {
2714  		REG_RMW(ah, addr, (type << gpio_shift),
2715  			(0x1f << gpio_shift));
2716  	} else {
2717  		tmp = REG_READ(ah, addr);
2718  		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2719  		tmp &= ~(0x1f << gpio_shift);
2720  		tmp |= (type << gpio_shift);
2721  		REG_WRITE(ah, addr, tmp);
2722  	}
2723  }
2724  
2725  /* BSP should set the corresponding MUX register correctly.
2726   */
ath9k_hw_gpio_cfg_soc(struct ath_hw * ah,u32 gpio,bool out,const char * label)2727  static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2728  				  const char *label)
2729  {
2730  	int err;
2731  
2732  	if (ah->caps.gpio_requested & BIT(gpio))
2733  		return;
2734  
2735  	err = devm_gpio_request_one(ah->dev, gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label);
2736  	if (err) {
2737  		ath_err(ath9k_hw_common(ah), "request GPIO%d failed:%d\n",
2738  			gpio, err);
2739  		return;
2740  	}
2741  
2742  	ah->caps.gpio_requested |= BIT(gpio);
2743  }
2744  
ath9k_hw_gpio_cfg_wmac(struct ath_hw * ah,u32 gpio,bool out,u32 ah_signal_type)2745  static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2746  				   u32 ah_signal_type)
2747  {
2748  	u32 gpio_set, gpio_shift = gpio;
2749  
2750  	if (AR_DEVID_7010(ah)) {
2751  		gpio_set = out ?
2752  			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2753  		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2754  			AR7010_GPIO_OE_MASK << gpio_shift);
2755  	} else if (AR_SREV_SOC(ah)) {
2756  		gpio_set = out ? 1 : 0;
2757  		REG_RMW(ah, AR_GPIO_OE_OUT(ah), gpio_set << gpio_shift,
2758  			gpio_set << gpio_shift);
2759  	} else {
2760  		gpio_shift = gpio << 1;
2761  		gpio_set = out ?
2762  			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2763  		REG_RMW(ah, AR_GPIO_OE_OUT(ah), gpio_set << gpio_shift,
2764  			AR_GPIO_OE_OUT_DRV << gpio_shift);
2765  
2766  		if (out)
2767  			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2768  	}
2769  }
2770  
ath9k_hw_gpio_request(struct ath_hw * ah,u32 gpio,bool out,const char * label,u32 ah_signal_type)2771  static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2772  				  const char *label, u32 ah_signal_type)
2773  {
2774  	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2775  
2776  	if (BIT(gpio) & ah->caps.gpio_mask)
2777  		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2778  	else if (AR_SREV_SOC(ah))
2779  		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2780  	else
2781  		WARN_ON(1);
2782  }
2783  
ath9k_hw_gpio_request_in(struct ath_hw * ah,u32 gpio,const char * label)2784  void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2785  {
2786  	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2787  }
2788  EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2789  
ath9k_hw_gpio_request_out(struct ath_hw * ah,u32 gpio,const char * label,u32 ah_signal_type)2790  void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2791  			       u32 ah_signal_type)
2792  {
2793  	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2794  }
2795  EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2796  
ath9k_hw_gpio_free(struct ath_hw * ah,u32 gpio)2797  void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2798  {
2799  	if (!AR_SREV_SOC(ah))
2800  		return;
2801  
2802  	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2803  
2804  	if (ah->caps.gpio_requested & BIT(gpio))
2805  		ah->caps.gpio_requested &= ~BIT(gpio);
2806  }
2807  EXPORT_SYMBOL(ath9k_hw_gpio_free);
2808  
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2809  u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2810  {
2811  	u32 val = 0xffffffff;
2812  
2813  #define MS_REG_READ(x, y) \
2814  	(MS(REG_READ(ah, AR_GPIO_IN_OUT(ah)), x##_GPIO_IN_VAL) & BIT(y))
2815  
2816  	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2817  
2818  	if (BIT(gpio) & ah->caps.gpio_mask) {
2819  		if (AR_SREV_9271(ah))
2820  			val = MS_REG_READ(AR9271, gpio);
2821  		else if (AR_SREV_9287(ah))
2822  			val = MS_REG_READ(AR9287, gpio);
2823  		else if (AR_SREV_9285(ah))
2824  			val = MS_REG_READ(AR9285, gpio);
2825  		else if (AR_SREV_9280(ah))
2826  			val = MS_REG_READ(AR928X, gpio);
2827  		else if (AR_DEVID_7010(ah))
2828  			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2829  		else if (AR_SREV_9300_20_OR_LATER(ah))
2830  			val = REG_READ(ah, AR_GPIO_IN(ah)) & BIT(gpio);
2831  		else
2832  			val = MS_REG_READ(AR, gpio);
2833  	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2834  		val = gpio_get_value(gpio) & BIT(gpio);
2835  	} else {
2836  		WARN_ON(1);
2837  	}
2838  
2839  	return !!val;
2840  }
2841  EXPORT_SYMBOL(ath9k_hw_gpio_get);
2842  
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2843  void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2844  {
2845  	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2846  
2847  	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2848  		val = !val;
2849  	else
2850  		val = !!val;
2851  
2852  	if (BIT(gpio) & ah->caps.gpio_mask) {
2853  		u32 out_addr = AR_DEVID_7010(ah) ?
2854  			AR7010_GPIO_OUT : AR_GPIO_IN_OUT(ah);
2855  
2856  		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2857  	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2858  		gpio_set_value(gpio, val);
2859  	} else {
2860  		WARN_ON(1);
2861  	}
2862  }
2863  EXPORT_SYMBOL(ath9k_hw_set_gpio);
2864  
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2865  void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2866  {
2867  	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2868  }
2869  EXPORT_SYMBOL(ath9k_hw_setantenna);
2870  
2871  /*********************/
2872  /* General Operation */
2873  /*********************/
2874  
ath9k_hw_getrxfilter(struct ath_hw * ah)2875  u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2876  {
2877  	u32 bits = REG_READ(ah, AR_RX_FILTER);
2878  	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2879  
2880  	if (phybits & AR_PHY_ERR_RADAR)
2881  		bits |= ATH9K_RX_FILTER_PHYRADAR;
2882  	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2883  		bits |= ATH9K_RX_FILTER_PHYERR;
2884  
2885  	return bits;
2886  }
2887  EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2888  
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2889  void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2890  {
2891  	u32 phybits;
2892  
2893  	ENABLE_REGWRITE_BUFFER(ah);
2894  
2895  	REG_WRITE(ah, AR_RX_FILTER, bits);
2896  
2897  	phybits = 0;
2898  	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2899  		phybits |= AR_PHY_ERR_RADAR;
2900  	if (bits & ATH9K_RX_FILTER_PHYERR)
2901  		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2902  	REG_WRITE(ah, AR_PHY_ERR, phybits);
2903  
2904  	if (phybits)
2905  		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2906  	else
2907  		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2908  
2909  	REGWRITE_BUFFER_FLUSH(ah);
2910  }
2911  EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2912  
ath9k_hw_phy_disable(struct ath_hw * ah)2913  bool ath9k_hw_phy_disable(struct ath_hw *ah)
2914  {
2915  	if (ath9k_hw_mci_is_enabled(ah))
2916  		ar9003_mci_bt_gain_ctrl(ah);
2917  
2918  	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2919  		return false;
2920  
2921  	ath9k_hw_init_pll(ah, NULL);
2922  	ah->htc_reset_init = true;
2923  	return true;
2924  }
2925  EXPORT_SYMBOL(ath9k_hw_phy_disable);
2926  
ath9k_hw_disable(struct ath_hw * ah)2927  bool ath9k_hw_disable(struct ath_hw *ah)
2928  {
2929  	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2930  		return false;
2931  
2932  	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2933  		return false;
2934  
2935  	ath9k_hw_init_pll(ah, NULL);
2936  	return true;
2937  }
2938  EXPORT_SYMBOL(ath9k_hw_disable);
2939  
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2940  static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2941  {
2942  	enum eeprom_param gain_param;
2943  
2944  	if (IS_CHAN_2GHZ(chan))
2945  		gain_param = EEP_ANTENNA_GAIN_2G;
2946  	else
2947  		gain_param = EEP_ANTENNA_GAIN_5G;
2948  
2949  	return ah->eep_ops->get_eeprom(ah, gain_param);
2950  }
2951  
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2952  void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2953  			    bool test)
2954  {
2955  	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2956  	struct ieee80211_channel *channel;
2957  	int chan_pwr, new_pwr;
2958  	u16 ctl = NO_CTL;
2959  
2960  	if (!chan)
2961  		return;
2962  
2963  	if (!test)
2964  		ctl = ath9k_regd_get_ctl(reg, chan);
2965  
2966  	channel = chan->chan;
2967  	chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2968  	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2969  
2970  	ah->eep_ops->set_txpower(ah, chan, ctl,
2971  				 get_antenna_gain(ah, chan), new_pwr, test);
2972  }
2973  
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2974  void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2975  {
2976  	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2977  	struct ath9k_channel *chan = ah->curchan;
2978  	struct ieee80211_channel *channel = chan->chan;
2979  
2980  	reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2981  	if (test)
2982  		channel->max_power = MAX_COMBINED_POWER / 2;
2983  
2984  	ath9k_hw_apply_txpower(ah, chan, test);
2985  
2986  	if (test)
2987  		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2988  }
2989  EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2990  
ath9k_hw_setopmode(struct ath_hw * ah)2991  void ath9k_hw_setopmode(struct ath_hw *ah)
2992  {
2993  	ath9k_hw_set_operating_mode(ah, ah->opmode);
2994  }
2995  EXPORT_SYMBOL(ath9k_hw_setopmode);
2996  
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2997  void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2998  {
2999  	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3000  	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3001  }
3002  EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3003  
ath9k_hw_write_associd(struct ath_hw * ah)3004  void ath9k_hw_write_associd(struct ath_hw *ah)
3005  {
3006  	struct ath_common *common = ath9k_hw_common(ah);
3007  
3008  	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3009  	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3010  		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3011  }
3012  EXPORT_SYMBOL(ath9k_hw_write_associd);
3013  
3014  #define ATH9K_MAX_TSF_READ 10
3015  
ath9k_hw_gettsf64(struct ath_hw * ah)3016  u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3017  {
3018  	u32 tsf_lower, tsf_upper1, tsf_upper2;
3019  	int i;
3020  
3021  	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3022  	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3023  		tsf_lower = REG_READ(ah, AR_TSF_L32);
3024  		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3025  		if (tsf_upper2 == tsf_upper1)
3026  			break;
3027  		tsf_upper1 = tsf_upper2;
3028  	}
3029  
3030  	WARN_ON( i == ATH9K_MAX_TSF_READ );
3031  
3032  	return (((u64)tsf_upper1 << 32) | tsf_lower);
3033  }
3034  EXPORT_SYMBOL(ath9k_hw_gettsf64);
3035  
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)3036  void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3037  {
3038  	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3039  	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3040  }
3041  EXPORT_SYMBOL(ath9k_hw_settsf64);
3042  
ath9k_hw_reset_tsf(struct ath_hw * ah)3043  void ath9k_hw_reset_tsf(struct ath_hw *ah)
3044  {
3045  	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3046  			   AH_TSF_WRITE_TIMEOUT))
3047  		ath_dbg(ath9k_hw_common(ah), RESET,
3048  			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3049  
3050  	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3051  }
3052  EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3053  
ath9k_hw_set_tsfadjust(struct ath_hw * ah,bool set)3054  void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3055  {
3056  	if (set)
3057  		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3058  	else
3059  		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3060  }
3061  EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3062  
ath9k_hw_set11nmac2040(struct ath_hw * ah,struct ath9k_channel * chan)3063  void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3064  {
3065  	u32 macmode;
3066  
3067  	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3068  		macmode = AR_2040_JOINED_RX_CLEAR;
3069  	else
3070  		macmode = 0;
3071  
3072  	REG_WRITE(ah, AR_2040_MODE, macmode);
3073  }
3074  
3075  /* HW Generic timers configuration */
3076  
3077  static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3078  {
3079  	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3080  	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3081  	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3082  	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3083  	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084  	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085  	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086  	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087  	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3088  	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3089  				AR_NDP2_TIMER_MODE, 0x0002},
3090  	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3091  				AR_NDP2_TIMER_MODE, 0x0004},
3092  	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3093  				AR_NDP2_TIMER_MODE, 0x0008},
3094  	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3095  				AR_NDP2_TIMER_MODE, 0x0010},
3096  	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3097  				AR_NDP2_TIMER_MODE, 0x0020},
3098  	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3099  				AR_NDP2_TIMER_MODE, 0x0040},
3100  	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3101  				AR_NDP2_TIMER_MODE, 0x0080}
3102  };
3103  
3104  /* HW generic timer primitives */
3105  
ath9k_hw_gettsf32(struct ath_hw * ah)3106  u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3107  {
3108  	return REG_READ(ah, AR_TSF_L32);
3109  }
3110  EXPORT_SYMBOL(ath9k_hw_gettsf32);
3111  
ath9k_hw_gen_timer_start_tsf2(struct ath_hw * ah)3112  void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3113  {
3114  	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3115  
3116  	if (timer_table->tsf2_enabled) {
3117  		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3118  		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3119  	}
3120  }
3121  
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)3122  struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3123  					  void (*trigger)(void *),
3124  					  void (*overflow)(void *),
3125  					  void *arg,
3126  					  u8 timer_index)
3127  {
3128  	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3129  	struct ath_gen_timer *timer;
3130  
3131  	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3132  	    (timer_index >= ATH_MAX_GEN_TIMER))
3133  		return NULL;
3134  
3135  	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3136  	    !AR_SREV_9300_20_OR_LATER(ah))
3137  		return NULL;
3138  
3139  	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3140  	if (timer == NULL)
3141  		return NULL;
3142  
3143  	/* allocate a hardware generic timer slot */
3144  	timer_table->timers[timer_index] = timer;
3145  	timer->index = timer_index;
3146  	timer->trigger = trigger;
3147  	timer->overflow = overflow;
3148  	timer->arg = arg;
3149  
3150  	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3151  		timer_table->tsf2_enabled = true;
3152  		ath9k_hw_gen_timer_start_tsf2(ah);
3153  	}
3154  
3155  	return timer;
3156  }
3157  EXPORT_SYMBOL(ath_gen_timer_alloc);
3158  
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 timer_next,u32 timer_period)3159  void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3160  			      struct ath_gen_timer *timer,
3161  			      u32 timer_next,
3162  			      u32 timer_period)
3163  {
3164  	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3165  	u32 mask = 0;
3166  
3167  	timer_table->timer_mask |= BIT(timer->index);
3168  
3169  	/*
3170  	 * Program generic timer registers
3171  	 */
3172  	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3173  		 timer_next);
3174  	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3175  		  timer_period);
3176  	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3177  		    gen_tmr_configuration[timer->index].mode_mask);
3178  
3179  	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3180  		/*
3181  		 * Starting from AR9462, each generic timer can select which tsf
3182  		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3183  		 * 8 - 15  use tsf2.
3184  		 */
3185  		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3186  			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3187  				       (1 << timer->index));
3188  		else
3189  			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3190  				       (1 << timer->index));
3191  	}
3192  
3193  	if (timer->trigger)
3194  		mask |= SM(AR_GENTMR_BIT(timer->index),
3195  			   AR_IMR_S5_GENTIMER_TRIG);
3196  	if (timer->overflow)
3197  		mask |= SM(AR_GENTMR_BIT(timer->index),
3198  			   AR_IMR_S5_GENTIMER_THRESH);
3199  
3200  	REG_SET_BIT(ah, AR_IMR_S5, mask);
3201  
3202  	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3203  		ah->imask |= ATH9K_INT_GENTIMER;
3204  		ath9k_hw_set_interrupts(ah);
3205  	}
3206  }
3207  EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3208  
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)3209  void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3210  {
3211  	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3212  
3213  	/* Clear generic timer enable bits. */
3214  	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3215  			gen_tmr_configuration[timer->index].mode_mask);
3216  
3217  	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3218  		/*
3219  		 * Need to switch back to TSF if it was using TSF2.
3220  		 */
3221  		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3222  			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3223  				    (1 << timer->index));
3224  		}
3225  	}
3226  
3227  	/* Disable both trigger and thresh interrupt masks */
3228  	REG_CLR_BIT(ah, AR_IMR_S5,
3229  		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3230  		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3231  
3232  	timer_table->timer_mask &= ~BIT(timer->index);
3233  
3234  	if (timer_table->timer_mask == 0) {
3235  		ah->imask &= ~ATH9K_INT_GENTIMER;
3236  		ath9k_hw_set_interrupts(ah);
3237  	}
3238  }
3239  EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3240  
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)3241  void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3242  {
3243  	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3244  
3245  	/* free the hardware generic timer slot */
3246  	timer_table->timers[timer->index] = NULL;
3247  	kfree(timer);
3248  }
3249  EXPORT_SYMBOL(ath_gen_timer_free);
3250  
3251  /*
3252   * Generic Timer Interrupts handling
3253   */
ath_gen_timer_isr(struct ath_hw * ah)3254  void ath_gen_timer_isr(struct ath_hw *ah)
3255  {
3256  	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3257  	struct ath_gen_timer *timer;
3258  	unsigned long trigger_mask, thresh_mask;
3259  	unsigned int index;
3260  
3261  	/* get hardware generic timer interrupt status */
3262  	trigger_mask = ah->intr_gen_timer_trigger;
3263  	thresh_mask = ah->intr_gen_timer_thresh;
3264  	trigger_mask &= timer_table->timer_mask;
3265  	thresh_mask &= timer_table->timer_mask;
3266  
3267  	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3268  		timer = timer_table->timers[index];
3269  		if (!timer)
3270  		    continue;
3271  		if (!timer->overflow)
3272  		    continue;
3273  
3274  		trigger_mask &= ~BIT(index);
3275  		timer->overflow(timer->arg);
3276  	}
3277  
3278  	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3279  		timer = timer_table->timers[index];
3280  		if (!timer)
3281  		    continue;
3282  		if (!timer->trigger)
3283  		    continue;
3284  		timer->trigger(timer->arg);
3285  	}
3286  }
3287  EXPORT_SYMBOL(ath_gen_timer_isr);
3288  
3289  /********/
3290  /* HTC  */
3291  /********/
3292  
3293  static struct {
3294  	u32 version;
3295  	const char * name;
3296  } ath_mac_bb_names[] = {
3297  	/* Devices with external radios */
3298  	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3299  	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3300  	{ AR_SREV_VERSION_9100,		"9100" },
3301  	{ AR_SREV_VERSION_9160,		"9160" },
3302  	/* Single-chip solutions */
3303  	{ AR_SREV_VERSION_9280,		"9280" },
3304  	{ AR_SREV_VERSION_9285,		"9285" },
3305  	{ AR_SREV_VERSION_9287,         "9287" },
3306  	{ AR_SREV_VERSION_9271,         "9271" },
3307  	{ AR_SREV_VERSION_9300,         "9300" },
3308  	{ AR_SREV_VERSION_9330,         "9330" },
3309  	{ AR_SREV_VERSION_9340,		"9340" },
3310  	{ AR_SREV_VERSION_9485,         "9485" },
3311  	{ AR_SREV_VERSION_9462,         "9462" },
3312  	{ AR_SREV_VERSION_9550,         "9550" },
3313  	{ AR_SREV_VERSION_9565,         "9565" },
3314  	{ AR_SREV_VERSION_9531,         "9531" },
3315  	{ AR_SREV_VERSION_9561,         "9561" },
3316  };
3317  
3318  /* For devices with external radios */
3319  static struct {
3320  	u16 version;
3321  	const char * name;
3322  } ath_rf_names[] = {
3323  	{ 0,				"5133" },
3324  	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3325  	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3326  	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3327  	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3328  };
3329  
3330  /*
3331   * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3332   */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3333  static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3334  {
3335  	int i;
3336  
3337  	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3338  		if (ath_mac_bb_names[i].version == mac_bb_version) {
3339  			return ath_mac_bb_names[i].name;
3340  		}
3341  	}
3342  
3343  	return "????";
3344  }
3345  
3346  /*
3347   * Return the RF name. "????" is returned if the RF is unknown.
3348   * Used for devices with external radios.
3349   */
ath9k_hw_rf_name(u16 rf_version)3350  static const char *ath9k_hw_rf_name(u16 rf_version)
3351  {
3352  	int i;
3353  
3354  	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3355  		if (ath_rf_names[i].version == rf_version) {
3356  			return ath_rf_names[i].name;
3357  		}
3358  	}
3359  
3360  	return "????";
3361  }
3362  
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3363  void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3364  {
3365  	int used;
3366  
3367  	/* chipsets >= AR9280 are single-chip */
3368  	if (AR_SREV_9280_20_OR_LATER(ah)) {
3369  		used = scnprintf(hw_name, len,
3370  				 "Atheros AR%s Rev:%x",
3371  				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3372  				 ah->hw_version.macRev);
3373  	}
3374  	else {
3375  		used = scnprintf(hw_name, len,
3376  				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3377  				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3378  				 ah->hw_version.macRev,
3379  				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3380  						  & AR_RADIO_SREV_MAJOR)),
3381  				 ah->hw_version.phyRev);
3382  	}
3383  
3384  	hw_name[used] = '\0';
3385  }
3386  EXPORT_SYMBOL(ath9k_hw_name);
3387