1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright(c) 2007 - 2018 Intel Corporation. */
3  
4  #include <linux/bitfield.h>
5  #include <linux/if_ether.h>
6  #include <linux/delay.h>
7  #include <linux/pci.h>
8  #include <linux/netdevice.h>
9  #include <linux/etherdevice.h>
10  
11  #include "e1000_mac.h"
12  
13  #include "igb.h"
14  
15  static s32 igb_set_default_fc(struct e1000_hw *hw);
16  static void igb_set_fc_watermarks(struct e1000_hw *hw);
17  
18  /**
19   *  igb_get_bus_info_pcie - Get PCIe bus information
20   *  @hw: pointer to the HW structure
21   *
22   *  Determines and stores the system bus information for a particular
23   *  network interface.  The following bus information is determined and stored:
24   *  bus speed, bus width, type (PCIe), and PCIe function.
25   **/
igb_get_bus_info_pcie(struct e1000_hw * hw)26  s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
27  {
28  	struct e1000_bus_info *bus = &hw->bus;
29  	s32 ret_val;
30  	u32 reg;
31  	u16 pcie_link_status;
32  
33  	bus->type = e1000_bus_type_pci_express;
34  
35  	ret_val = igb_read_pcie_cap_reg(hw,
36  					PCI_EXP_LNKSTA,
37  					&pcie_link_status);
38  	if (ret_val) {
39  		bus->width = e1000_bus_width_unknown;
40  		bus->speed = e1000_bus_speed_unknown;
41  	} else {
42  		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
43  		case PCI_EXP_LNKSTA_CLS_2_5GB:
44  			bus->speed = e1000_bus_speed_2500;
45  			break;
46  		case PCI_EXP_LNKSTA_CLS_5_0GB:
47  			bus->speed = e1000_bus_speed_5000;
48  			break;
49  		default:
50  			bus->speed = e1000_bus_speed_unknown;
51  			break;
52  		}
53  
54  		bus->width = (enum e1000_bus_width)FIELD_GET(PCI_EXP_LNKSTA_NLW,
55  							     pcie_link_status);
56  	}
57  
58  	reg = rd32(E1000_STATUS);
59  	bus->func = FIELD_GET(E1000_STATUS_FUNC_MASK, reg);
60  
61  	return 0;
62  }
63  
64  /**
65   *  igb_clear_vfta - Clear VLAN filter table
66   *  @hw: pointer to the HW structure
67   *
68   *  Clears the register array which contains the VLAN filter table by
69   *  setting all the values to 0.
70   **/
igb_clear_vfta(struct e1000_hw * hw)71  void igb_clear_vfta(struct e1000_hw *hw)
72  {
73  	u32 offset;
74  
75  	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
76  		hw->mac.ops.write_vfta(hw, offset, 0);
77  }
78  
79  /**
80   *  igb_write_vfta - Write value to VLAN filter table
81   *  @hw: pointer to the HW structure
82   *  @offset: register offset in VLAN filter table
83   *  @value: register value written to VLAN filter table
84   *
85   *  Writes value at the given offset in the register array which stores
86   *  the VLAN filter table.
87   **/
igb_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)88  void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
89  {
90  	struct igb_adapter *adapter = hw->back;
91  
92  	array_wr32(E1000_VFTA, offset, value);
93  	wrfl();
94  
95  	adapter->shadow_vfta[offset] = value;
96  }
97  
98  /**
99   *  igb_init_rx_addrs - Initialize receive address's
100   *  @hw: pointer to the HW structure
101   *  @rar_count: receive address registers
102   *
103   *  Setups the receive address registers by setting the base receive address
104   *  register to the devices MAC address and clearing all the other receive
105   *  address registers to 0.
106   **/
igb_init_rx_addrs(struct e1000_hw * hw,u16 rar_count)107  void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
108  {
109  	u32 i;
110  	u8 mac_addr[ETH_ALEN] = {0};
111  
112  	/* Setup the receive address */
113  	hw_dbg("Programming MAC Address into RAR[0]\n");
114  
115  	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
116  
117  	/* Zero out the other (rar_entry_count - 1) receive addresses */
118  	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
119  	for (i = 1; i < rar_count; i++)
120  		hw->mac.ops.rar_set(hw, mac_addr, i);
121  }
122  
123  /**
124   *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
125   *  @hw: pointer to hardware structure
126   *  @vlan: VLAN id to write to VLAN filter
127   *  @vlvf_bypass: skip VLVF if no match is found
128   *
129   *  return the VLVF index where this VLAN id should be placed
130   *
131   **/
igb_find_vlvf_slot(struct e1000_hw * hw,u32 vlan,bool vlvf_bypass)132  static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
133  {
134  	s32 regindex, first_empty_slot;
135  	u32 bits;
136  
137  	/* short cut the special case */
138  	if (vlan == 0)
139  		return 0;
140  
141  	/* if vlvf_bypass is set we don't want to use an empty slot, we
142  	 * will simply bypass the VLVF if there are no entries present in the
143  	 * VLVF that contain our VLAN
144  	 */
145  	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
146  
147  	/* Search for the VLAN id in the VLVF entries. Save off the first empty
148  	 * slot found along the way.
149  	 *
150  	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
151  	 */
152  	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
153  		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
154  		if (bits == vlan)
155  			return regindex;
156  		if (!first_empty_slot && !bits)
157  			first_empty_slot = regindex;
158  	}
159  
160  	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
161  }
162  
163  /**
164   *  igb_vfta_set - enable or disable vlan in VLAN filter table
165   *  @hw: pointer to the HW structure
166   *  @vlan: VLAN id to add or remove
167   *  @vind: VMDq output index that maps queue to VLAN id
168   *  @vlan_on: if true add filter, if false remove
169   *  @vlvf_bypass: skip VLVF if no match is found
170   *
171   *  Sets or clears a bit in the VLAN filter table array based on VLAN id
172   *  and if we are adding or removing the filter
173   **/
igb_vfta_set(struct e1000_hw * hw,u32 vlan,u32 vind,bool vlan_on,bool vlvf_bypass)174  s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
175  		 bool vlan_on, bool vlvf_bypass)
176  {
177  	struct igb_adapter *adapter = hw->back;
178  	u32 regidx, vfta_delta, vfta, bits;
179  	s32 vlvf_index;
180  
181  	if ((vlan > 4095) || (vind > 7))
182  		return -E1000_ERR_PARAM;
183  
184  	/* this is a 2 part operation - first the VFTA, then the
185  	 * VLVF and VLVFB if VT Mode is set
186  	 * We don't write the VFTA until we know the VLVF part succeeded.
187  	 */
188  
189  	/* Part 1
190  	 * The VFTA is a bitstring made up of 128 32-bit registers
191  	 * that enable the particular VLAN id, much like the MTA:
192  	 *    bits[11-5]: which register
193  	 *    bits[4-0]:  which bit in the register
194  	 */
195  	regidx = vlan / 32;
196  	vfta_delta = BIT(vlan % 32);
197  	vfta = adapter->shadow_vfta[regidx];
198  
199  	/* vfta_delta represents the difference between the current value
200  	 * of vfta and the value we want in the register.  Since the diff
201  	 * is an XOR mask we can just update vfta using an XOR.
202  	 */
203  	vfta_delta &= vlan_on ? ~vfta : vfta;
204  	vfta ^= vfta_delta;
205  
206  	/* Part 2
207  	 * If VT Mode is set
208  	 *   Either vlan_on
209  	 *     make sure the VLAN is in VLVF
210  	 *     set the vind bit in the matching VLVFB
211  	 *   Or !vlan_on
212  	 *     clear the pool bit and possibly the vind
213  	 */
214  	if (!adapter->vfs_allocated_count)
215  		goto vfta_update;
216  
217  	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
218  	if (vlvf_index < 0) {
219  		if (vlvf_bypass)
220  			goto vfta_update;
221  		return vlvf_index;
222  	}
223  
224  	bits = rd32(E1000_VLVF(vlvf_index));
225  
226  	/* set the pool bit */
227  	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
228  	if (vlan_on)
229  		goto vlvf_update;
230  
231  	/* clear the pool bit */
232  	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
233  
234  	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
235  		/* Clear VFTA first, then disable VLVF.  Otherwise
236  		 * we run the risk of stray packets leaking into
237  		 * the PF via the default pool
238  		 */
239  		if (vfta_delta)
240  			hw->mac.ops.write_vfta(hw, regidx, vfta);
241  
242  		/* disable VLVF and clear remaining bit from pool */
243  		wr32(E1000_VLVF(vlvf_index), 0);
244  
245  		return 0;
246  	}
247  
248  	/* If there are still bits set in the VLVFB registers
249  	 * for the VLAN ID indicated we need to see if the
250  	 * caller is requesting that we clear the VFTA entry bit.
251  	 * If the caller has requested that we clear the VFTA
252  	 * entry bit but there are still pools/VFs using this VLAN
253  	 * ID entry then ignore the request.  We're not worried
254  	 * about the case where we're turning the VFTA VLAN ID
255  	 * entry bit on, only when requested to turn it off as
256  	 * there may be multiple pools and/or VFs using the
257  	 * VLAN ID entry.  In that case we cannot clear the
258  	 * VFTA bit until all pools/VFs using that VLAN ID have also
259  	 * been cleared.  This will be indicated by "bits" being
260  	 * zero.
261  	 */
262  	vfta_delta = 0;
263  
264  vlvf_update:
265  	/* record pool change and enable VLAN ID if not already enabled */
266  	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
267  
268  vfta_update:
269  	/* bit was set/cleared before we started */
270  	if (vfta_delta)
271  		hw->mac.ops.write_vfta(hw, regidx, vfta);
272  
273  	return 0;
274  }
275  
276  /**
277   *  igb_check_alt_mac_addr - Check for alternate MAC addr
278   *  @hw: pointer to the HW structure
279   *
280   *  Checks the nvm for an alternate MAC address.  An alternate MAC address
281   *  can be setup by pre-boot software and must be treated like a permanent
282   *  address and must override the actual permanent MAC address.  If an
283   *  alternate MAC address is found it is saved in the hw struct and
284   *  programmed into RAR0 and the function returns success, otherwise the
285   *  function returns an error.
286   **/
igb_check_alt_mac_addr(struct e1000_hw * hw)287  s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
288  {
289  	u32 i;
290  	s32 ret_val = 0;
291  	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
292  	u8 alt_mac_addr[ETH_ALEN];
293  
294  	/* Alternate MAC address is handled by the option ROM for 82580
295  	 * and newer. SW support not required.
296  	 */
297  	if (hw->mac.type >= e1000_82580)
298  		goto out;
299  
300  	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
301  				 &nvm_alt_mac_addr_offset);
302  	if (ret_val) {
303  		hw_dbg("NVM Read Error\n");
304  		goto out;
305  	}
306  
307  	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
308  	    (nvm_alt_mac_addr_offset == 0x0000))
309  		/* There is no Alternate MAC Address */
310  		goto out;
311  
312  	if (hw->bus.func == E1000_FUNC_1)
313  		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
314  	if (hw->bus.func == E1000_FUNC_2)
315  		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
316  
317  	if (hw->bus.func == E1000_FUNC_3)
318  		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
319  	for (i = 0; i < ETH_ALEN; i += 2) {
320  		offset = nvm_alt_mac_addr_offset + (i >> 1);
321  		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
322  		if (ret_val) {
323  			hw_dbg("NVM Read Error\n");
324  			goto out;
325  		}
326  
327  		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
328  		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
329  	}
330  
331  	/* if multicast bit is set, the alternate address will not be used */
332  	if (is_multicast_ether_addr(alt_mac_addr)) {
333  		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
334  		goto out;
335  	}
336  
337  	/* We have a valid alternate MAC address, and we want to treat it the
338  	 * same as the normal permanent MAC address stored by the HW into the
339  	 * RAR. Do this by mapping this address into RAR0.
340  	 */
341  	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
342  
343  out:
344  	return ret_val;
345  }
346  
347  /**
348   *  igb_rar_set - Set receive address register
349   *  @hw: pointer to the HW structure
350   *  @addr: pointer to the receive address
351   *  @index: receive address array register
352   *
353   *  Sets the receive address array register at index to the address passed
354   *  in by addr.
355   **/
igb_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)356  void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
357  {
358  	u32 rar_low, rar_high;
359  
360  	/* HW expects these in little endian so we reverse the byte order
361  	 * from network order (big endian) to little endian
362  	 */
363  	rar_low = ((u32) addr[0] |
364  		   ((u32) addr[1] << 8) |
365  		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
366  
367  	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
368  
369  	/* If MAC address zero, no need to set the AV bit */
370  	if (rar_low || rar_high)
371  		rar_high |= E1000_RAH_AV;
372  
373  	/* Some bridges will combine consecutive 32-bit writes into
374  	 * a single burst write, which will malfunction on some parts.
375  	 * The flushes avoid this.
376  	 */
377  	wr32(E1000_RAL(index), rar_low);
378  	wrfl();
379  	wr32(E1000_RAH(index), rar_high);
380  	wrfl();
381  }
382  
383  /**
384   *  igb_mta_set - Set multicast filter table address
385   *  @hw: pointer to the HW structure
386   *  @hash_value: determines the MTA register and bit to set
387   *
388   *  The multicast table address is a register array of 32-bit registers.
389   *  The hash_value is used to determine what register the bit is in, the
390   *  current value is read, the new bit is OR'd in and the new value is
391   *  written back into the register.
392   **/
igb_mta_set(struct e1000_hw * hw,u32 hash_value)393  void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
394  {
395  	u32 hash_bit, hash_reg, mta;
396  
397  	/* The MTA is a register array of 32-bit registers. It is
398  	 * treated like an array of (32*mta_reg_count) bits.  We want to
399  	 * set bit BitArray[hash_value]. So we figure out what register
400  	 * the bit is in, read it, OR in the new bit, then write
401  	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
402  	 * mask to bits 31:5 of the hash value which gives us the
403  	 * register we're modifying.  The hash bit within that register
404  	 * is determined by the lower 5 bits of the hash value.
405  	 */
406  	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
407  	hash_bit = hash_value & 0x1F;
408  
409  	mta = array_rd32(E1000_MTA, hash_reg);
410  
411  	mta |= BIT(hash_bit);
412  
413  	array_wr32(E1000_MTA, hash_reg, mta);
414  	wrfl();
415  }
416  
417  /**
418   *  igb_hash_mc_addr - Generate a multicast hash value
419   *  @hw: pointer to the HW structure
420   *  @mc_addr: pointer to a multicast address
421   *
422   *  Generates a multicast address hash value which is used to determine
423   *  the multicast filter table array address and new table value.  See
424   *  igb_mta_set()
425   **/
igb_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)426  static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
427  {
428  	u32 hash_value, hash_mask;
429  	u8 bit_shift = 1;
430  
431  	/* Register count multiplied by bits per register */
432  	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
433  
434  	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
435  	 * where 0xFF would still fall within the hash mask.
436  	 */
437  	while (hash_mask >> bit_shift != 0xFF && bit_shift < 4)
438  		bit_shift++;
439  
440  	/* The portion of the address that is used for the hash table
441  	 * is determined by the mc_filter_type setting.
442  	 * The algorithm is such that there is a total of 8 bits of shifting.
443  	 * The bit_shift for a mc_filter_type of 0 represents the number of
444  	 * left-shifts where the MSB of mc_addr[5] would still fall within
445  	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
446  	 * of 8 bits of shifting, then mc_addr[4] will shift right the
447  	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
448  	 * cases are a variation of this algorithm...essentially raising the
449  	 * number of bits to shift mc_addr[5] left, while still keeping the
450  	 * 8-bit shifting total.
451  	 *
452  	 * For example, given the following Destination MAC Address and an
453  	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
454  	 * we can see that the bit_shift for case 0 is 4.  These are the hash
455  	 * values resulting from each mc_filter_type...
456  	 * [0] [1] [2] [3] [4] [5]
457  	 * 01  AA  00  12  34  56
458  	 * LSB                 MSB
459  	 *
460  	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
461  	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
462  	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
463  	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
464  	 */
465  	switch (hw->mac.mc_filter_type) {
466  	default:
467  	case 0:
468  		break;
469  	case 1:
470  		bit_shift += 1;
471  		break;
472  	case 2:
473  		bit_shift += 2;
474  		break;
475  	case 3:
476  		bit_shift += 4;
477  		break;
478  	}
479  
480  	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
481  				  (((u16) mc_addr[5]) << bit_shift)));
482  
483  	return hash_value;
484  }
485  
486  /**
487   * igb_i21x_hw_doublecheck - double checks potential HW issue in i21X
488   * @hw: pointer to the HW structure
489   *
490   * Checks if multicast array is wrote correctly
491   * If not then rewrites again to register
492   **/
igb_i21x_hw_doublecheck(struct e1000_hw * hw)493  static void igb_i21x_hw_doublecheck(struct e1000_hw *hw)
494  {
495  	int failed_cnt = 3;
496  	bool is_failed;
497  	int i;
498  
499  	do {
500  		is_failed = false;
501  		for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) {
502  			if (array_rd32(E1000_MTA, i) != hw->mac.mta_shadow[i]) {
503  				is_failed = true;
504  				array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
505  				wrfl();
506  			}
507  		}
508  		if (is_failed && --failed_cnt <= 0) {
509  			hw_dbg("Failed to update MTA_REGISTER, too many retries");
510  			break;
511  		}
512  	} while (is_failed);
513  }
514  
515  /**
516   *  igb_update_mc_addr_list - Update Multicast addresses
517   *  @hw: pointer to the HW structure
518   *  @mc_addr_list: array of multicast addresses to program
519   *  @mc_addr_count: number of multicast addresses to program
520   *
521   *  Updates entire Multicast Table Array.
522   *  The caller must have a packed mc_addr_list of multicast addresses.
523   **/
igb_update_mc_addr_list(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)524  void igb_update_mc_addr_list(struct e1000_hw *hw,
525  			     u8 *mc_addr_list, u32 mc_addr_count)
526  {
527  	u32 hash_value, hash_bit, hash_reg;
528  	int i;
529  
530  	/* clear mta_shadow */
531  	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
532  
533  	/* update mta_shadow from mc_addr_list */
534  	for (i = 0; (u32) i < mc_addr_count; i++) {
535  		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
536  
537  		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
538  		hash_bit = hash_value & 0x1F;
539  
540  		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
541  		mc_addr_list += (ETH_ALEN);
542  	}
543  
544  	/* replace the entire MTA table */
545  	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
546  		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
547  	wrfl();
548  	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
549  		igb_i21x_hw_doublecheck(hw);
550  }
551  
552  /**
553   *  igb_clear_hw_cntrs_base - Clear base hardware counters
554   *  @hw: pointer to the HW structure
555   *
556   *  Clears the base hardware counters by reading the counter registers.
557   **/
igb_clear_hw_cntrs_base(struct e1000_hw * hw)558  void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
559  {
560  	rd32(E1000_CRCERRS);
561  	rd32(E1000_SYMERRS);
562  	rd32(E1000_MPC);
563  	rd32(E1000_SCC);
564  	rd32(E1000_ECOL);
565  	rd32(E1000_MCC);
566  	rd32(E1000_LATECOL);
567  	rd32(E1000_COLC);
568  	rd32(E1000_DC);
569  	rd32(E1000_SEC);
570  	rd32(E1000_RLEC);
571  	rd32(E1000_XONRXC);
572  	rd32(E1000_XONTXC);
573  	rd32(E1000_XOFFRXC);
574  	rd32(E1000_XOFFTXC);
575  	rd32(E1000_FCRUC);
576  	rd32(E1000_GPRC);
577  	rd32(E1000_BPRC);
578  	rd32(E1000_MPRC);
579  	rd32(E1000_GPTC);
580  	rd32(E1000_GORCL);
581  	rd32(E1000_GORCH);
582  	rd32(E1000_GOTCL);
583  	rd32(E1000_GOTCH);
584  	rd32(E1000_RNBC);
585  	rd32(E1000_RUC);
586  	rd32(E1000_RFC);
587  	rd32(E1000_ROC);
588  	rd32(E1000_RJC);
589  	rd32(E1000_TORL);
590  	rd32(E1000_TORH);
591  	rd32(E1000_TOTL);
592  	rd32(E1000_TOTH);
593  	rd32(E1000_TPR);
594  	rd32(E1000_TPT);
595  	rd32(E1000_MPTC);
596  	rd32(E1000_BPTC);
597  }
598  
599  /**
600   *  igb_check_for_copper_link - Check for link (Copper)
601   *  @hw: pointer to the HW structure
602   *
603   *  Checks to see of the link status of the hardware has changed.  If a
604   *  change in link status has been detected, then we read the PHY registers
605   *  to get the current speed/duplex if link exists.
606   **/
igb_check_for_copper_link(struct e1000_hw * hw)607  s32 igb_check_for_copper_link(struct e1000_hw *hw)
608  {
609  	struct e1000_mac_info *mac = &hw->mac;
610  	s32 ret_val;
611  	bool link;
612  
613  	/* We only want to go out to the PHY registers to see if Auto-Neg
614  	 * has completed and/or if our link status has changed.  The
615  	 * get_link_status flag is set upon receiving a Link Status
616  	 * Change or Rx Sequence Error interrupt.
617  	 */
618  	if (!mac->get_link_status) {
619  		ret_val = 0;
620  		goto out;
621  	}
622  
623  	/* First we want to see if the MII Status Register reports
624  	 * link.  If so, then we want to get the current speed/duplex
625  	 * of the PHY.
626  	 */
627  	ret_val = igb_phy_has_link(hw, 1, 0, &link);
628  	if (ret_val)
629  		goto out;
630  
631  	if (!link)
632  		goto out; /* No link detected */
633  
634  	mac->get_link_status = false;
635  
636  	/* Check if there was DownShift, must be checked
637  	 * immediately after link-up
638  	 */
639  	igb_check_downshift(hw);
640  
641  	/* If we are forcing speed/duplex, then we simply return since
642  	 * we have already determined whether we have link or not.
643  	 */
644  	if (!mac->autoneg) {
645  		ret_val = -E1000_ERR_CONFIG;
646  		goto out;
647  	}
648  
649  	/* Auto-Neg is enabled.  Auto Speed Detection takes care
650  	 * of MAC speed/duplex configuration.  So we only need to
651  	 * configure Collision Distance in the MAC.
652  	 */
653  	igb_config_collision_dist(hw);
654  
655  	/* Configure Flow Control now that Auto-Neg has completed.
656  	 * First, we need to restore the desired flow control
657  	 * settings because we may have had to re-autoneg with a
658  	 * different link partner.
659  	 */
660  	ret_val = igb_config_fc_after_link_up(hw);
661  	if (ret_val)
662  		hw_dbg("Error configuring flow control\n");
663  
664  out:
665  	return ret_val;
666  }
667  
668  /**
669   *  igb_setup_link - Setup flow control and link settings
670   *  @hw: pointer to the HW structure
671   *
672   *  Determines which flow control settings to use, then configures flow
673   *  control.  Calls the appropriate media-specific link configuration
674   *  function.  Assuming the adapter has a valid link partner, a valid link
675   *  should be established.  Assumes the hardware has previously been reset
676   *  and the transmitter and receiver are not enabled.
677   **/
igb_setup_link(struct e1000_hw * hw)678  s32 igb_setup_link(struct e1000_hw *hw)
679  {
680  	s32 ret_val = 0;
681  
682  	/* In the case of the phy reset being blocked, we already have a link.
683  	 * We do not need to set it up again.
684  	 */
685  	if (igb_check_reset_block(hw))
686  		goto out;
687  
688  	/* If requested flow control is set to default, set flow control
689  	 * based on the EEPROM flow control settings.
690  	 */
691  	if (hw->fc.requested_mode == e1000_fc_default) {
692  		ret_val = igb_set_default_fc(hw);
693  		if (ret_val)
694  			goto out;
695  	}
696  
697  	/* We want to save off the original Flow Control configuration just
698  	 * in case we get disconnected and then reconnected into a different
699  	 * hub or switch with different Flow Control capabilities.
700  	 */
701  	hw->fc.current_mode = hw->fc.requested_mode;
702  
703  	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
704  
705  	/* Call the necessary media_type subroutine to configure the link. */
706  	ret_val = hw->mac.ops.setup_physical_interface(hw);
707  	if (ret_val)
708  		goto out;
709  
710  	/* Initialize the flow control address, type, and PAUSE timer
711  	 * registers to their default values.  This is done even if flow
712  	 * control is disabled, because it does not hurt anything to
713  	 * initialize these registers.
714  	 */
715  	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
716  	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
717  	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
718  	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
719  
720  	wr32(E1000_FCTTV, hw->fc.pause_time);
721  
722  	igb_set_fc_watermarks(hw);
723  
724  out:
725  
726  	return ret_val;
727  }
728  
729  /**
730   *  igb_config_collision_dist - Configure collision distance
731   *  @hw: pointer to the HW structure
732   *
733   *  Configures the collision distance to the default value and is used
734   *  during link setup. Currently no func pointer exists and all
735   *  implementations are handled in the generic version of this function.
736   **/
igb_config_collision_dist(struct e1000_hw * hw)737  void igb_config_collision_dist(struct e1000_hw *hw)
738  {
739  	u32 tctl;
740  
741  	tctl = rd32(E1000_TCTL);
742  
743  	tctl &= ~E1000_TCTL_COLD;
744  	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
745  
746  	wr32(E1000_TCTL, tctl);
747  	wrfl();
748  }
749  
750  /**
751   *  igb_set_fc_watermarks - Set flow control high/low watermarks
752   *  @hw: pointer to the HW structure
753   *
754   *  Sets the flow control high/low threshold (watermark) registers.  If
755   *  flow control XON frame transmission is enabled, then set XON frame
756   *  tansmission as well.
757   **/
igb_set_fc_watermarks(struct e1000_hw * hw)758  static void igb_set_fc_watermarks(struct e1000_hw *hw)
759  {
760  	u32 fcrtl = 0, fcrth = 0;
761  
762  	/* Set the flow control receive threshold registers.  Normally,
763  	 * these registers will be set to a default threshold that may be
764  	 * adjusted later by the driver's runtime code.  However, if the
765  	 * ability to transmit pause frames is not enabled, then these
766  	 * registers will be set to 0.
767  	 */
768  	if (hw->fc.current_mode & e1000_fc_tx_pause) {
769  		/* We need to set up the Receive Threshold high and low water
770  		 * marks as well as (optionally) enabling the transmission of
771  		 * XON frames.
772  		 */
773  		fcrtl = hw->fc.low_water;
774  		if (hw->fc.send_xon)
775  			fcrtl |= E1000_FCRTL_XONE;
776  
777  		fcrth = hw->fc.high_water;
778  	}
779  	wr32(E1000_FCRTL, fcrtl);
780  	wr32(E1000_FCRTH, fcrth);
781  }
782  
783  /**
784   *  igb_set_default_fc - Set flow control default values
785   *  @hw: pointer to the HW structure
786   *
787   *  Read the EEPROM for the default values for flow control and store the
788   *  values.
789   **/
igb_set_default_fc(struct e1000_hw * hw)790  static s32 igb_set_default_fc(struct e1000_hw *hw)
791  {
792  	s32 ret_val = 0;
793  	u16 lan_offset;
794  	u16 nvm_data;
795  
796  	/* Read and store word 0x0F of the EEPROM. This word contains bits
797  	 * that determine the hardware's default PAUSE (flow control) mode,
798  	 * a bit that determines whether the HW defaults to enabling or
799  	 * disabling auto-negotiation, and the direction of the
800  	 * SW defined pins. If there is no SW over-ride of the flow
801  	 * control setting, then the variable hw->fc will
802  	 * be initialized based on a value in the EEPROM.
803  	 */
804  	if (hw->mac.type == e1000_i350)
805  		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
806  	else
807  		lan_offset = 0;
808  
809  	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
810  				   1, &nvm_data);
811  	if (ret_val) {
812  		hw_dbg("NVM Read Error\n");
813  		goto out;
814  	}
815  
816  	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
817  		hw->fc.requested_mode = e1000_fc_none;
818  	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
819  		hw->fc.requested_mode = e1000_fc_tx_pause;
820  	else
821  		hw->fc.requested_mode = e1000_fc_full;
822  
823  out:
824  	return ret_val;
825  }
826  
827  /**
828   *  igb_force_mac_fc - Force the MAC's flow control settings
829   *  @hw: pointer to the HW structure
830   *
831   *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
832   *  device control register to reflect the adapter settings.  TFCE and RFCE
833   *  need to be explicitly set by software when a copper PHY is used because
834   *  autonegotiation is managed by the PHY rather than the MAC.  Software must
835   *  also configure these bits when link is forced on a fiber connection.
836   **/
igb_force_mac_fc(struct e1000_hw * hw)837  s32 igb_force_mac_fc(struct e1000_hw *hw)
838  {
839  	u32 ctrl;
840  	s32 ret_val = 0;
841  
842  	ctrl = rd32(E1000_CTRL);
843  
844  	/* Because we didn't get link via the internal auto-negotiation
845  	 * mechanism (we either forced link or we got link via PHY
846  	 * auto-neg), we have to manually enable/disable transmit an
847  	 * receive flow control.
848  	 *
849  	 * The "Case" statement below enables/disable flow control
850  	 * according to the "hw->fc.current_mode" parameter.
851  	 *
852  	 * The possible values of the "fc" parameter are:
853  	 *      0:  Flow control is completely disabled
854  	 *      1:  Rx flow control is enabled (we can receive pause
855  	 *          frames but not send pause frames).
856  	 *      2:  Tx flow control is enabled (we can send pause frames
857  	 *          but we do not receive pause frames).
858  	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
859  	 *  other:  No other values should be possible at this point.
860  	 */
861  	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
862  
863  	switch (hw->fc.current_mode) {
864  	case e1000_fc_none:
865  		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
866  		break;
867  	case e1000_fc_rx_pause:
868  		ctrl &= (~E1000_CTRL_TFCE);
869  		ctrl |= E1000_CTRL_RFCE;
870  		break;
871  	case e1000_fc_tx_pause:
872  		ctrl &= (~E1000_CTRL_RFCE);
873  		ctrl |= E1000_CTRL_TFCE;
874  		break;
875  	case e1000_fc_full:
876  		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
877  		break;
878  	default:
879  		hw_dbg("Flow control param set incorrectly\n");
880  		ret_val = -E1000_ERR_CONFIG;
881  		goto out;
882  	}
883  
884  	wr32(E1000_CTRL, ctrl);
885  
886  out:
887  	return ret_val;
888  }
889  
890  /**
891   *  igb_config_fc_after_link_up - Configures flow control after link
892   *  @hw: pointer to the HW structure
893   *
894   *  Checks the status of auto-negotiation after link up to ensure that the
895   *  speed and duplex were not forced.  If the link needed to be forced, then
896   *  flow control needs to be forced also.  If auto-negotiation is enabled
897   *  and did not fail, then we configure flow control based on our link
898   *  partner.
899   **/
igb_config_fc_after_link_up(struct e1000_hw * hw)900  s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
901  {
902  	struct e1000_mac_info *mac = &hw->mac;
903  	s32 ret_val = 0;
904  	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
905  	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
906  	u16 speed, duplex;
907  
908  	/* Check for the case where we have fiber media and auto-neg failed
909  	 * so we had to force link.  In this case, we need to force the
910  	 * configuration of the MAC to match the "fc" parameter.
911  	 */
912  	if (mac->autoneg_failed) {
913  		if (hw->phy.media_type == e1000_media_type_internal_serdes)
914  			ret_val = igb_force_mac_fc(hw);
915  	} else {
916  		if (hw->phy.media_type == e1000_media_type_copper)
917  			ret_val = igb_force_mac_fc(hw);
918  	}
919  
920  	if (ret_val) {
921  		hw_dbg("Error forcing flow control settings\n");
922  		goto out;
923  	}
924  
925  	/* Check for the case where we have copper media and auto-neg is
926  	 * enabled.  In this case, we need to check and see if Auto-Neg
927  	 * has completed, and if so, how the PHY and link partner has
928  	 * flow control configured.
929  	 */
930  	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
931  		/* Read the MII Status Register and check to see if AutoNeg
932  		 * has completed.  We read this twice because this reg has
933  		 * some "sticky" (latched) bits.
934  		 */
935  		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
936  						   &mii_status_reg);
937  		if (ret_val)
938  			goto out;
939  		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
940  						   &mii_status_reg);
941  		if (ret_val)
942  			goto out;
943  
944  		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
945  			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
946  			goto out;
947  		}
948  
949  		/* The AutoNeg process has completed, so we now need to
950  		 * read both the Auto Negotiation Advertisement
951  		 * Register (Address 4) and the Auto_Negotiation Base
952  		 * Page Ability Register (Address 5) to determine how
953  		 * flow control was negotiated.
954  		 */
955  		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
956  					    &mii_nway_adv_reg);
957  		if (ret_val)
958  			goto out;
959  		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
960  					    &mii_nway_lp_ability_reg);
961  		if (ret_val)
962  			goto out;
963  
964  		/* Two bits in the Auto Negotiation Advertisement Register
965  		 * (Address 4) and two bits in the Auto Negotiation Base
966  		 * Page Ability Register (Address 5) determine flow control
967  		 * for both the PHY and the link partner.  The following
968  		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
969  		 * 1999, describes these PAUSE resolution bits and how flow
970  		 * control is determined based upon these settings.
971  		 * NOTE:  DC = Don't Care
972  		 *
973  		 *   LOCAL DEVICE  |   LINK PARTNER
974  		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
975  		 *-------|---------|-------|---------|--------------------
976  		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
977  		 *   0   |    1    |   0   |   DC    | e1000_fc_none
978  		 *   0   |    1    |   1   |    0    | e1000_fc_none
979  		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
980  		 *   1   |    0    |   0   |   DC    | e1000_fc_none
981  		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
982  		 *   1   |    1    |   0   |    0    | e1000_fc_none
983  		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
984  		 *
985  		 * Are both PAUSE bits set to 1?  If so, this implies
986  		 * Symmetric Flow Control is enabled at both ends.  The
987  		 * ASM_DIR bits are irrelevant per the spec.
988  		 *
989  		 * For Symmetric Flow Control:
990  		 *
991  		 *   LOCAL DEVICE  |   LINK PARTNER
992  		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
993  		 *-------|---------|-------|---------|--------------------
994  		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
995  		 *
996  		 */
997  		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
998  		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
999  			/* Now we need to check if the user selected RX ONLY
1000  			 * of pause frames.  In this case, we had to advertise
1001  			 * FULL flow control because we could not advertise RX
1002  			 * ONLY. Hence, we must now check to see if we need to
1003  			 * turn OFF  the TRANSMISSION of PAUSE frames.
1004  			 */
1005  			if (hw->fc.requested_mode == e1000_fc_full) {
1006  				hw->fc.current_mode = e1000_fc_full;
1007  				hw_dbg("Flow Control = FULL.\n");
1008  			} else {
1009  				hw->fc.current_mode = e1000_fc_rx_pause;
1010  				hw_dbg("Flow Control = RX PAUSE frames only.\n");
1011  			}
1012  		}
1013  		/* For receiving PAUSE frames ONLY.
1014  		 *
1015  		 *   LOCAL DEVICE  |   LINK PARTNER
1016  		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1017  		 *-------|---------|-------|---------|--------------------
1018  		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1019  		 */
1020  		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1021  			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1022  			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1023  			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1024  			hw->fc.current_mode = e1000_fc_tx_pause;
1025  			hw_dbg("Flow Control = TX PAUSE frames only.\n");
1026  		}
1027  		/* For transmitting PAUSE frames ONLY.
1028  		 *
1029  		 *   LOCAL DEVICE  |   LINK PARTNER
1030  		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1031  		 *-------|---------|-------|---------|--------------------
1032  		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1033  		 */
1034  		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1035  			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1036  			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1037  			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1038  			hw->fc.current_mode = e1000_fc_rx_pause;
1039  			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1040  		}
1041  		/* Per the IEEE spec, at this point flow control should be
1042  		 * disabled.  However, we want to consider that we could
1043  		 * be connected to a legacy switch that doesn't advertise
1044  		 * desired flow control, but can be forced on the link
1045  		 * partner.  So if we advertised no flow control, that is
1046  		 * what we will resolve to.  If we advertised some kind of
1047  		 * receive capability (Rx Pause Only or Full Flow Control)
1048  		 * and the link partner advertised none, we will configure
1049  		 * ourselves to enable Rx Flow Control only.  We can do
1050  		 * this safely for two reasons:  If the link partner really
1051  		 * didn't want flow control enabled, and we enable Rx, no
1052  		 * harm done since we won't be receiving any PAUSE frames
1053  		 * anyway.  If the intent on the link partner was to have
1054  		 * flow control enabled, then by us enabling RX only, we
1055  		 * can at least receive pause frames and process them.
1056  		 * This is a good idea because in most cases, since we are
1057  		 * predominantly a server NIC, more times than not we will
1058  		 * be asked to delay transmission of packets than asking
1059  		 * our link partner to pause transmission of frames.
1060  		 */
1061  		else if ((hw->fc.requested_mode == e1000_fc_none) ||
1062  			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1063  			 (hw->fc.strict_ieee)) {
1064  			hw->fc.current_mode = e1000_fc_none;
1065  			hw_dbg("Flow Control = NONE.\n");
1066  		} else {
1067  			hw->fc.current_mode = e1000_fc_rx_pause;
1068  			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1069  		}
1070  
1071  		/* Now we need to do one last check...  If we auto-
1072  		 * negotiated to HALF DUPLEX, flow control should not be
1073  		 * enabled per IEEE 802.3 spec.
1074  		 */
1075  		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1076  		if (ret_val) {
1077  			hw_dbg("Error getting link speed and duplex\n");
1078  			goto out;
1079  		}
1080  
1081  		if (duplex == HALF_DUPLEX)
1082  			hw->fc.current_mode = e1000_fc_none;
1083  
1084  		/* Now we call a subroutine to actually force the MAC
1085  		 * controller to use the correct flow control settings.
1086  		 */
1087  		ret_val = igb_force_mac_fc(hw);
1088  		if (ret_val) {
1089  			hw_dbg("Error forcing flow control settings\n");
1090  			goto out;
1091  		}
1092  	}
1093  	/* Check for the case where we have SerDes media and auto-neg is
1094  	 * enabled.  In this case, we need to check and see if Auto-Neg
1095  	 * has completed, and if so, how the PHY and link partner has
1096  	 * flow control configured.
1097  	 */
1098  	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1099  		&& mac->autoneg) {
1100  		/* Read the PCS_LSTS and check to see if AutoNeg
1101  		 * has completed.
1102  		 */
1103  		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1104  
1105  		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1106  			hw_dbg("PCS Auto Neg has not completed.\n");
1107  			return ret_val;
1108  		}
1109  
1110  		/* The AutoNeg process has completed, so we now need to
1111  		 * read both the Auto Negotiation Advertisement
1112  		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1113  		 * Page Ability Register (PCS_LPAB) to determine how
1114  		 * flow control was negotiated.
1115  		 */
1116  		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1117  		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1118  
1119  		/* Two bits in the Auto Negotiation Advertisement Register
1120  		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1121  		 * Page Ability Register (PCS_LPAB) determine flow control
1122  		 * for both the PHY and the link partner.  The following
1123  		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1124  		 * 1999, describes these PAUSE resolution bits and how flow
1125  		 * control is determined based upon these settings.
1126  		 * NOTE:  DC = Don't Care
1127  		 *
1128  		 *   LOCAL DEVICE  |   LINK PARTNER
1129  		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1130  		 *-------|---------|-------|---------|--------------------
1131  		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1132  		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1133  		 *   0   |    1    |   1   |    0    | e1000_fc_none
1134  		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1135  		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1136  		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1137  		 *   1   |    1    |   0   |    0    | e1000_fc_none
1138  		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1139  		 *
1140  		 * Are both PAUSE bits set to 1?  If so, this implies
1141  		 * Symmetric Flow Control is enabled at both ends.  The
1142  		 * ASM_DIR bits are irrelevant per the spec.
1143  		 *
1144  		 * For Symmetric Flow Control:
1145  		 *
1146  		 *   LOCAL DEVICE  |   LINK PARTNER
1147  		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148  		 *-------|---------|-------|---------|--------------------
1149  		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1150  		 *
1151  		 */
1152  		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1153  		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1154  			/* Now we need to check if the user selected Rx ONLY
1155  			 * of pause frames.  In this case, we had to advertise
1156  			 * FULL flow control because we could not advertise Rx
1157  			 * ONLY. Hence, we must now check to see if we need to
1158  			 * turn OFF the TRANSMISSION of PAUSE frames.
1159  			 */
1160  			if (hw->fc.requested_mode == e1000_fc_full) {
1161  				hw->fc.current_mode = e1000_fc_full;
1162  				hw_dbg("Flow Control = FULL.\n");
1163  			} else {
1164  				hw->fc.current_mode = e1000_fc_rx_pause;
1165  				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1166  			}
1167  		}
1168  		/* For receiving PAUSE frames ONLY.
1169  		 *
1170  		 *   LOCAL DEVICE  |   LINK PARTNER
1171  		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1172  		 *-------|---------|-------|---------|--------------------
1173  		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1174  		 */
1175  		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1176  			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1177  			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1178  			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1179  			hw->fc.current_mode = e1000_fc_tx_pause;
1180  			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1181  		}
1182  		/* For transmitting PAUSE frames ONLY.
1183  		 *
1184  		 *   LOCAL DEVICE  |   LINK PARTNER
1185  		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1186  		 *-------|---------|-------|---------|--------------------
1187  		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1188  		 */
1189  		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1190  			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1191  			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1192  			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1193  			hw->fc.current_mode = e1000_fc_rx_pause;
1194  			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1195  		} else {
1196  			/* Per the IEEE spec, at this point flow control
1197  			 * should be disabled.
1198  			 */
1199  			hw->fc.current_mode = e1000_fc_none;
1200  			hw_dbg("Flow Control = NONE.\n");
1201  		}
1202  
1203  		/* Now we call a subroutine to actually force the MAC
1204  		 * controller to use the correct flow control settings.
1205  		 */
1206  		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1207  		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1208  		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1209  
1210  		ret_val = igb_force_mac_fc(hw);
1211  		if (ret_val) {
1212  			hw_dbg("Error forcing flow control settings\n");
1213  			return ret_val;
1214  		}
1215  	}
1216  
1217  out:
1218  	return ret_val;
1219  }
1220  
1221  /**
1222   *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1223   *  @hw: pointer to the HW structure
1224   *  @speed: stores the current speed
1225   *  @duplex: stores the current duplex
1226   *
1227   *  Read the status register for the current speed/duplex and store the current
1228   *  speed and duplex for copper connections.
1229   **/
igb_get_speed_and_duplex_copper(struct e1000_hw * hw,u16 * speed,u16 * duplex)1230  s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1231  				      u16 *duplex)
1232  {
1233  	u32 status;
1234  
1235  	status = rd32(E1000_STATUS);
1236  	if (status & E1000_STATUS_SPEED_1000) {
1237  		*speed = SPEED_1000;
1238  		hw_dbg("1000 Mbs, ");
1239  	} else if (status & E1000_STATUS_SPEED_100) {
1240  		*speed = SPEED_100;
1241  		hw_dbg("100 Mbs, ");
1242  	} else {
1243  		*speed = SPEED_10;
1244  		hw_dbg("10 Mbs, ");
1245  	}
1246  
1247  	if (status & E1000_STATUS_FD) {
1248  		*duplex = FULL_DUPLEX;
1249  		hw_dbg("Full Duplex\n");
1250  	} else {
1251  		*duplex = HALF_DUPLEX;
1252  		hw_dbg("Half Duplex\n");
1253  	}
1254  
1255  	return 0;
1256  }
1257  
1258  /**
1259   *  igb_get_hw_semaphore - Acquire hardware semaphore
1260   *  @hw: pointer to the HW structure
1261   *
1262   *  Acquire the HW semaphore to access the PHY or NVM
1263   **/
igb_get_hw_semaphore(struct e1000_hw * hw)1264  s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1265  {
1266  	u32 swsm;
1267  	s32 ret_val = 0;
1268  	s32 timeout = hw->nvm.word_size + 1;
1269  	s32 i = 0;
1270  
1271  	/* Get the SW semaphore */
1272  	while (i < timeout) {
1273  		swsm = rd32(E1000_SWSM);
1274  		if (!(swsm & E1000_SWSM_SMBI))
1275  			break;
1276  
1277  		udelay(50);
1278  		i++;
1279  	}
1280  
1281  	if (i == timeout) {
1282  		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1283  		ret_val = -E1000_ERR_NVM;
1284  		goto out;
1285  	}
1286  
1287  	/* Get the FW semaphore. */
1288  	for (i = 0; i < timeout; i++) {
1289  		swsm = rd32(E1000_SWSM);
1290  		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1291  
1292  		/* Semaphore acquired if bit latched */
1293  		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1294  			break;
1295  
1296  		udelay(50);
1297  	}
1298  
1299  	if (i == timeout) {
1300  		/* Release semaphores */
1301  		igb_put_hw_semaphore(hw);
1302  		hw_dbg("Driver can't access the NVM\n");
1303  		ret_val = -E1000_ERR_NVM;
1304  		goto out;
1305  	}
1306  
1307  out:
1308  	return ret_val;
1309  }
1310  
1311  /**
1312   *  igb_put_hw_semaphore - Release hardware semaphore
1313   *  @hw: pointer to the HW structure
1314   *
1315   *  Release hardware semaphore used to access the PHY or NVM
1316   **/
igb_put_hw_semaphore(struct e1000_hw * hw)1317  void igb_put_hw_semaphore(struct e1000_hw *hw)
1318  {
1319  	u32 swsm;
1320  
1321  	swsm = rd32(E1000_SWSM);
1322  
1323  	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1324  
1325  	wr32(E1000_SWSM, swsm);
1326  }
1327  
1328  /**
1329   *  igb_get_auto_rd_done - Check for auto read completion
1330   *  @hw: pointer to the HW structure
1331   *
1332   *  Check EEPROM for Auto Read done bit.
1333   **/
igb_get_auto_rd_done(struct e1000_hw * hw)1334  s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1335  {
1336  	s32 i = 0;
1337  	s32 ret_val = 0;
1338  
1339  
1340  	while (i < AUTO_READ_DONE_TIMEOUT) {
1341  		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1342  			break;
1343  		usleep_range(1000, 2000);
1344  		i++;
1345  	}
1346  
1347  	if (i == AUTO_READ_DONE_TIMEOUT) {
1348  		hw_dbg("Auto read by HW from NVM has not completed.\n");
1349  		ret_val = -E1000_ERR_RESET;
1350  		goto out;
1351  	}
1352  
1353  out:
1354  	return ret_val;
1355  }
1356  
1357  /**
1358   *  igb_valid_led_default - Verify a valid default LED config
1359   *  @hw: pointer to the HW structure
1360   *  @data: pointer to the NVM (EEPROM)
1361   *
1362   *  Read the EEPROM for the current default LED configuration.  If the
1363   *  LED configuration is not valid, set to a valid LED configuration.
1364   **/
igb_valid_led_default(struct e1000_hw * hw,u16 * data)1365  static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1366  {
1367  	s32 ret_val;
1368  
1369  	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1370  	if (ret_val) {
1371  		hw_dbg("NVM Read Error\n");
1372  		goto out;
1373  	}
1374  
1375  	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1376  		switch (hw->phy.media_type) {
1377  		case e1000_media_type_internal_serdes:
1378  			*data = ID_LED_DEFAULT_82575_SERDES;
1379  			break;
1380  		case e1000_media_type_copper:
1381  		default:
1382  			*data = ID_LED_DEFAULT;
1383  			break;
1384  		}
1385  	}
1386  out:
1387  	return ret_val;
1388  }
1389  
1390  /**
1391   *  igb_id_led_init -
1392   *  @hw: pointer to the HW structure
1393   *
1394   **/
igb_id_led_init(struct e1000_hw * hw)1395  s32 igb_id_led_init(struct e1000_hw *hw)
1396  {
1397  	struct e1000_mac_info *mac = &hw->mac;
1398  	s32 ret_val;
1399  	const u32 ledctl_mask = 0x000000FF;
1400  	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1401  	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1402  	u16 data, i, temp;
1403  	const u16 led_mask = 0x0F;
1404  
1405  	/* i210 and i211 devices have different LED mechanism */
1406  	if ((hw->mac.type == e1000_i210) ||
1407  	    (hw->mac.type == e1000_i211))
1408  		ret_val = igb_valid_led_default_i210(hw, &data);
1409  	else
1410  		ret_val = igb_valid_led_default(hw, &data);
1411  
1412  	if (ret_val)
1413  		goto out;
1414  
1415  	mac->ledctl_default = rd32(E1000_LEDCTL);
1416  	mac->ledctl_mode1 = mac->ledctl_default;
1417  	mac->ledctl_mode2 = mac->ledctl_default;
1418  
1419  	for (i = 0; i < 4; i++) {
1420  		temp = (data >> (i << 2)) & led_mask;
1421  		switch (temp) {
1422  		case ID_LED_ON1_DEF2:
1423  		case ID_LED_ON1_ON2:
1424  		case ID_LED_ON1_OFF2:
1425  			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1426  			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1427  			break;
1428  		case ID_LED_OFF1_DEF2:
1429  		case ID_LED_OFF1_ON2:
1430  		case ID_LED_OFF1_OFF2:
1431  			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1432  			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1433  			break;
1434  		default:
1435  			/* Do nothing */
1436  			break;
1437  		}
1438  		switch (temp) {
1439  		case ID_LED_DEF1_ON2:
1440  		case ID_LED_ON1_ON2:
1441  		case ID_LED_OFF1_ON2:
1442  			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1443  			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1444  			break;
1445  		case ID_LED_DEF1_OFF2:
1446  		case ID_LED_ON1_OFF2:
1447  		case ID_LED_OFF1_OFF2:
1448  			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1449  			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1450  			break;
1451  		default:
1452  			/* Do nothing */
1453  			break;
1454  		}
1455  	}
1456  
1457  out:
1458  	return ret_val;
1459  }
1460  
1461  /**
1462   *  igb_cleanup_led - Set LED config to default operation
1463   *  @hw: pointer to the HW structure
1464   *
1465   *  Remove the current LED configuration and set the LED configuration
1466   *  to the default value, saved from the EEPROM.
1467   **/
igb_cleanup_led(struct e1000_hw * hw)1468  s32 igb_cleanup_led(struct e1000_hw *hw)
1469  {
1470  	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1471  	return 0;
1472  }
1473  
1474  /**
1475   *  igb_blink_led - Blink LED
1476   *  @hw: pointer to the HW structure
1477   *
1478   *  Blink the led's which are set to be on.
1479   **/
igb_blink_led(struct e1000_hw * hw)1480  s32 igb_blink_led(struct e1000_hw *hw)
1481  {
1482  	u32 ledctl_blink = 0;
1483  	u32 i;
1484  
1485  	if (hw->phy.media_type == e1000_media_type_fiber) {
1486  		/* always blink LED0 for PCI-E fiber */
1487  		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1488  		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1489  	} else {
1490  		/* Set the blink bit for each LED that's "on" (0x0E)
1491  		 * (or "off" if inverted) in ledctl_mode2.  The blink
1492  		 * logic in hardware only works when mode is set to "on"
1493  		 * so it must be changed accordingly when the mode is
1494  		 * "off" and inverted.
1495  		 */
1496  		ledctl_blink = hw->mac.ledctl_mode2;
1497  		for (i = 0; i < 32; i += 8) {
1498  			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1499  			    E1000_LEDCTL_LED0_MODE_MASK;
1500  			u32 led_default = hw->mac.ledctl_default >> i;
1501  
1502  			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1503  			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1504  			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1505  			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1506  				ledctl_blink &=
1507  				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1508  				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1509  						 E1000_LEDCTL_MODE_LED_ON) << i;
1510  			}
1511  		}
1512  	}
1513  
1514  	wr32(E1000_LEDCTL, ledctl_blink);
1515  
1516  	return 0;
1517  }
1518  
1519  /**
1520   *  igb_led_off - Turn LED off
1521   *  @hw: pointer to the HW structure
1522   *
1523   *  Turn LED off.
1524   **/
igb_led_off(struct e1000_hw * hw)1525  s32 igb_led_off(struct e1000_hw *hw)
1526  {
1527  	switch (hw->phy.media_type) {
1528  	case e1000_media_type_copper:
1529  		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1530  		break;
1531  	default:
1532  		break;
1533  	}
1534  
1535  	return 0;
1536  }
1537  
1538  /**
1539   *  igb_disable_pcie_master - Disables PCI-express master access
1540   *  @hw: pointer to the HW structure
1541   *
1542   *  Returns 0 (0) if successful, else returns -10
1543   *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1544   *  the master requests to be disabled.
1545   *
1546   *  Disables PCI-Express master access and verifies there are no pending
1547   *  requests.
1548   **/
igb_disable_pcie_master(struct e1000_hw * hw)1549  s32 igb_disable_pcie_master(struct e1000_hw *hw)
1550  {
1551  	u32 ctrl;
1552  	s32 timeout = MASTER_DISABLE_TIMEOUT;
1553  	s32 ret_val = 0;
1554  
1555  	if (hw->bus.type != e1000_bus_type_pci_express)
1556  		goto out;
1557  
1558  	ctrl = rd32(E1000_CTRL);
1559  	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1560  	wr32(E1000_CTRL, ctrl);
1561  
1562  	while (timeout) {
1563  		if (!(rd32(E1000_STATUS) &
1564  		      E1000_STATUS_GIO_MASTER_ENABLE))
1565  			break;
1566  		udelay(100);
1567  		timeout--;
1568  	}
1569  
1570  	if (!timeout) {
1571  		hw_dbg("Master requests are pending.\n");
1572  		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1573  		goto out;
1574  	}
1575  
1576  out:
1577  	return ret_val;
1578  }
1579  
1580  /**
1581   *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1582   *  @hw: pointer to the HW structure
1583   *
1584   *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1585   *  set, which is forced to MDI mode only.
1586   **/
igb_validate_mdi_setting(struct e1000_hw * hw)1587  s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1588  {
1589  	s32 ret_val = 0;
1590  
1591  	/* All MDI settings are supported on 82580 and newer. */
1592  	if (hw->mac.type >= e1000_82580)
1593  		goto out;
1594  
1595  	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1596  		hw_dbg("Invalid MDI setting detected\n");
1597  		hw->phy.mdix = 1;
1598  		ret_val = -E1000_ERR_CONFIG;
1599  		goto out;
1600  	}
1601  
1602  out:
1603  	return ret_val;
1604  }
1605  
1606  /**
1607   *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1608   *  @hw: pointer to the HW structure
1609   *  @reg: 32bit register offset such as E1000_SCTL
1610   *  @offset: register offset to write to
1611   *  @data: data to write at register offset
1612   *
1613   *  Writes an address/data control type register.  There are several of these
1614   *  and they all have the format address << 8 | data and bit 31 is polled for
1615   *  completion.
1616   **/
igb_write_8bit_ctrl_reg(struct e1000_hw * hw,u32 reg,u32 offset,u8 data)1617  s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1618  			      u32 offset, u8 data)
1619  {
1620  	u32 i, regvalue = 0;
1621  	s32 ret_val = 0;
1622  
1623  	/* Set up the address and data */
1624  	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1625  	wr32(reg, regvalue);
1626  
1627  	/* Poll the ready bit to see if the MDI read completed */
1628  	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1629  		udelay(5);
1630  		regvalue = rd32(reg);
1631  		if (regvalue & E1000_GEN_CTL_READY)
1632  			break;
1633  	}
1634  	if (!(regvalue & E1000_GEN_CTL_READY)) {
1635  		hw_dbg("Reg %08x did not indicate ready\n", reg);
1636  		ret_val = -E1000_ERR_PHY;
1637  		goto out;
1638  	}
1639  
1640  out:
1641  	return ret_val;
1642  }
1643  
1644  /**
1645   *  igb_enable_mng_pass_thru - Enable processing of ARP's
1646   *  @hw: pointer to the HW structure
1647   *
1648   *  Verifies the hardware needs to leave interface enabled so that frames can
1649   *  be directed to and from the management interface.
1650   **/
igb_enable_mng_pass_thru(struct e1000_hw * hw)1651  bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1652  {
1653  	u32 manc;
1654  	u32 fwsm, factps;
1655  	bool ret_val = false;
1656  
1657  	if (!hw->mac.asf_firmware_present)
1658  		goto out;
1659  
1660  	manc = rd32(E1000_MANC);
1661  
1662  	if (!(manc & E1000_MANC_RCV_TCO_EN))
1663  		goto out;
1664  
1665  	if (hw->mac.arc_subsystem_valid) {
1666  		fwsm = rd32(E1000_FWSM);
1667  		factps = rd32(E1000_FACTPS);
1668  
1669  		if (!(factps & E1000_FACTPS_MNGCG) &&
1670  		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1671  		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1672  			ret_val = true;
1673  			goto out;
1674  		}
1675  	} else {
1676  		if ((manc & E1000_MANC_SMBUS_EN) &&
1677  		    !(manc & E1000_MANC_ASF_EN)) {
1678  			ret_val = true;
1679  			goto out;
1680  		}
1681  	}
1682  
1683  out:
1684  	return ret_val;
1685  }
1686