1  /*
2   * This file is part of the Chelsio T4 Ethernet driver for Linux.
3   *
4   * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5   *
6   * This software is available to you under a choice of one of two
7   * licenses.  You may choose to be licensed under the terms of the GNU
8   * General Public License (GPL) Version 2, available from the file
9   * COPYING in the main directory of this source tree, or the
10   * OpenIB.org BSD license below:
11   *
12   *     Redistribution and use in source and binary forms, with or
13   *     without modification, are permitted provided that the following
14   *     conditions are met:
15   *
16   *      - Redistributions of source code must retain the above
17   *        copyright notice, this list of conditions and the following
18   *        disclaimer.
19   *
20   *      - Redistributions in binary form must reproduce the above
21   *        copyright notice, this list of conditions and the following
22   *        disclaimer in the documentation and/or other materials
23   *        provided with the distribution.
24   *
25   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32   * SOFTWARE.
33   */
34  
35  #include <linux/skbuff.h>
36  #include <linux/netdevice.h>
37  #include <linux/etherdevice.h>
38  #include <linux/if_vlan.h>
39  #include <linux/ip.h>
40  #include <linux/dma-mapping.h>
41  #include <linux/jiffies.h>
42  #include <linux/prefetch.h>
43  #include <linux/export.h>
44  #include <net/xfrm.h>
45  #include <net/ipv6.h>
46  #include <net/tcp.h>
47  #include <net/busy_poll.h>
48  #ifdef CONFIG_CHELSIO_T4_FCOE
49  #include <scsi/fc/fc_fcoe.h>
50  #endif /* CONFIG_CHELSIO_T4_FCOE */
51  #include "cxgb4.h"
52  #include "t4_regs.h"
53  #include "t4_values.h"
54  #include "t4_msg.h"
55  #include "t4fw_api.h"
56  #include "cxgb4_ptp.h"
57  #include "cxgb4_uld.h"
58  #include "cxgb4_tc_mqprio.h"
59  #include "sched.h"
60  
61  /*
62   * Rx buffer size.  We use largish buffers if possible but settle for single
63   * pages under memory shortage.
64   */
65  #if PAGE_SHIFT >= 16
66  # define FL_PG_ORDER 0
67  #else
68  # define FL_PG_ORDER (16 - PAGE_SHIFT)
69  #endif
70  
71  /* RX_PULL_LEN should be <= RX_COPY_THRES */
72  #define RX_COPY_THRES    256
73  #define RX_PULL_LEN      128
74  
75  /*
76   * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77   * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78   */
79  #define RX_PKT_SKB_LEN   512
80  
81  /*
82   * Max number of Tx descriptors we clean up at a time.  Should be modest as
83   * freeing skbs isn't cheap and it happens while holding locks.  We just need
84   * to free packets faster than they arrive, we eventually catch up and keep
85   * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86   * also match the CIDX Flush Threshold.
87   */
88  #define MAX_TX_RECLAIM 32
89  
90  /*
91   * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92   * allocating buffers isn't cheap either.
93   */
94  #define MAX_RX_REFILL 16U
95  
96  /*
97   * Period of the Rx queue check timer.  This timer is infrequent as it has
98   * something to do only when the system experiences severe memory shortage.
99   */
100  #define RX_QCHECK_PERIOD (HZ / 2)
101  
102  /*
103   * Period of the Tx queue check timer.
104   */
105  #define TX_QCHECK_PERIOD (HZ / 2)
106  
107  /*
108   * Max number of Tx descriptors to be reclaimed by the Tx timer.
109   */
110  #define MAX_TIMER_TX_RECLAIM 100
111  
112  /*
113   * Timer index used when backing off due to memory shortage.
114   */
115  #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116  
117  /*
118   * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119   * for a full sized WR.
120   */
121  #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122  
123  /*
124   * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125   * into a WR.
126   */
127  #define MAX_IMM_TX_PKT_LEN 256
128  
129  /*
130   * Max size of a WR sent through a control Tx queue.
131   */
132  #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133  
134  struct rx_sw_desc {                /* SW state per Rx descriptor */
135  	struct page *page;
136  	dma_addr_t dma_addr;
137  };
138  
139  /*
140   * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141   * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142   * We could easily support more but there doesn't seem to be much need for
143   * that ...
144   */
145  #define FL_MTU_SMALL 1500
146  #define FL_MTU_LARGE 9000
147  
fl_mtu_bufsize(struct adapter * adapter,unsigned int mtu)148  static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149  					  unsigned int mtu)
150  {
151  	struct sge *s = &adapter->sge;
152  
153  	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154  }
155  
156  #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157  #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158  
159  /*
160   * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161   * these to specify the buffer size as an index into the SGE Free List Buffer
162   * Size register array.  We also use bit 4, when the buffer has been unmapped
163   * for DMA, but this is of course never sent to the hardware and is only used
164   * to prevent double unmappings.  All of the above requires that the Free List
165   * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166   * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167   * Free List Buffer alignment is 32 bytes, this works out for us ...
168   */
169  enum {
170  	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171  	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172  	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173  
174  	/*
175  	 * XXX We shouldn't depend on being able to use these indices.
176  	 * XXX Especially when some other Master PF has initialized the
177  	 * XXX adapter or we use the Firmware Configuration File.  We
178  	 * XXX should really search through the Host Buffer Size register
179  	 * XXX array for the appropriately sized buffer indices.
180  	 */
181  	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182  	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183  
184  	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185  	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186  };
187  
188  static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189  #define MIN_NAPI_WORK  1
190  
get_buf_addr(const struct rx_sw_desc * d)191  static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192  {
193  	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194  }
195  
is_buf_mapped(const struct rx_sw_desc * d)196  static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197  {
198  	return !(d->dma_addr & RX_UNMAPPED_BUF);
199  }
200  
201  /**
202   *	txq_avail - return the number of available slots in a Tx queue
203   *	@q: the Tx queue
204   *
205   *	Returns the number of descriptors in a Tx queue available to write new
206   *	packets.
207   */
txq_avail(const struct sge_txq * q)208  static inline unsigned int txq_avail(const struct sge_txq *q)
209  {
210  	return q->size - 1 - q->in_use;
211  }
212  
213  /**
214   *	fl_cap - return the capacity of a free-buffer list
215   *	@fl: the FL
216   *
217   *	Returns the capacity of a free-buffer list.  The capacity is less than
218   *	the size because one descriptor needs to be left unpopulated, otherwise
219   *	HW will think the FL is empty.
220   */
fl_cap(const struct sge_fl * fl)221  static inline unsigned int fl_cap(const struct sge_fl *fl)
222  {
223  	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224  }
225  
226  /**
227   *	fl_starving - return whether a Free List is starving.
228   *	@adapter: pointer to the adapter
229   *	@fl: the Free List
230   *
231   *	Tests specified Free List to see whether the number of buffers
232   *	available to the hardware has falled below our "starvation"
233   *	threshold.
234   */
fl_starving(const struct adapter * adapter,const struct sge_fl * fl)235  static inline bool fl_starving(const struct adapter *adapter,
236  			       const struct sge_fl *fl)
237  {
238  	const struct sge *s = &adapter->sge;
239  
240  	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241  }
242  
cxgb4_map_skb(struct device * dev,const struct sk_buff * skb,dma_addr_t * addr)243  int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244  		  dma_addr_t *addr)
245  {
246  	const skb_frag_t *fp, *end;
247  	const struct skb_shared_info *si;
248  
249  	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250  	if (dma_mapping_error(dev, *addr))
251  		goto out_err;
252  
253  	si = skb_shinfo(skb);
254  	end = &si->frags[si->nr_frags];
255  
256  	for (fp = si->frags; fp < end; fp++) {
257  		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258  					   DMA_TO_DEVICE);
259  		if (dma_mapping_error(dev, *addr))
260  			goto unwind;
261  	}
262  	return 0;
263  
264  unwind:
265  	while (fp-- > si->frags)
266  		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267  
268  	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269  out_err:
270  	return -ENOMEM;
271  }
272  EXPORT_SYMBOL(cxgb4_map_skb);
273  
unmap_skb(struct device * dev,const struct sk_buff * skb,const dma_addr_t * addr)274  static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275  		      const dma_addr_t *addr)
276  {
277  	const skb_frag_t *fp, *end;
278  	const struct skb_shared_info *si;
279  
280  	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281  
282  	si = skb_shinfo(skb);
283  	end = &si->frags[si->nr_frags];
284  	for (fp = si->frags; fp < end; fp++)
285  		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286  }
287  
288  #ifdef CONFIG_NEED_DMA_MAP_STATE
289  /**
290   *	deferred_unmap_destructor - unmap a packet when it is freed
291   *	@skb: the packet
292   *
293   *	This is the packet destructor used for Tx packets that need to remain
294   *	mapped until they are freed rather than until their Tx descriptors are
295   *	freed.
296   */
deferred_unmap_destructor(struct sk_buff * skb)297  static void deferred_unmap_destructor(struct sk_buff *skb)
298  {
299  	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300  }
301  #endif
302  
303  /**
304   *	free_tx_desc - reclaims Tx descriptors and their buffers
305   *	@adap: the adapter
306   *	@q: the Tx queue to reclaim descriptors from
307   *	@n: the number of descriptors to reclaim
308   *	@unmap: whether the buffers should be unmapped for DMA
309   *
310   *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311   *	Tx buffers.  Called with the Tx queue lock held.
312   */
free_tx_desc(struct adapter * adap,struct sge_txq * q,unsigned int n,bool unmap)313  void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314  		  unsigned int n, bool unmap)
315  {
316  	unsigned int cidx = q->cidx;
317  	struct tx_sw_desc *d;
318  
319  	d = &q->sdesc[cidx];
320  	while (n--) {
321  		if (d->skb) {                       /* an SGL is present */
322  			if (unmap && d->addr[0]) {
323  				unmap_skb(adap->pdev_dev, d->skb, d->addr);
324  				memset(d->addr, 0, sizeof(d->addr));
325  			}
326  			dev_consume_skb_any(d->skb);
327  			d->skb = NULL;
328  		}
329  		++d;
330  		if (++cidx == q->size) {
331  			cidx = 0;
332  			d = q->sdesc;
333  		}
334  	}
335  	q->cidx = cidx;
336  }
337  
338  /*
339   * Return the number of reclaimable descriptors in a Tx queue.
340   */
reclaimable(const struct sge_txq * q)341  static inline int reclaimable(const struct sge_txq *q)
342  {
343  	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344  	hw_cidx -= q->cidx;
345  	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346  }
347  
348  /**
349   *	reclaim_completed_tx - reclaims completed TX Descriptors
350   *	@adap: the adapter
351   *	@q: the Tx queue to reclaim completed descriptors from
352   *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353   *	@unmap: whether the buffers should be unmapped for DMA
354   *
355   *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
356   *	and frees the associated buffers if possible.  If @max == -1, then
357   *	we'll use a defaiult maximum.  Called with the TX Queue locked.
358   */
reclaim_completed_tx(struct adapter * adap,struct sge_txq * q,int maxreclaim,bool unmap)359  static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360  				       int maxreclaim, bool unmap)
361  {
362  	int reclaim = reclaimable(q);
363  
364  	if (reclaim) {
365  		/*
366  		 * Limit the amount of clean up work we do at a time to keep
367  		 * the Tx lock hold time O(1).
368  		 */
369  		if (maxreclaim < 0)
370  			maxreclaim = MAX_TX_RECLAIM;
371  		if (reclaim > maxreclaim)
372  			reclaim = maxreclaim;
373  
374  		free_tx_desc(adap, q, reclaim, unmap);
375  		q->in_use -= reclaim;
376  	}
377  
378  	return reclaim;
379  }
380  
381  /**
382   *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383   *	@adap: the adapter
384   *	@q: the Tx queue to reclaim completed descriptors from
385   *	@unmap: whether the buffers should be unmapped for DMA
386   *
387   *	Reclaims Tx descriptors that the SGE has indicated it has processed,
388   *	and frees the associated buffers if possible.  Called with the Tx
389   *	queue locked.
390   */
cxgb4_reclaim_completed_tx(struct adapter * adap,struct sge_txq * q,bool unmap)391  void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392  				bool unmap)
393  {
394  	(void)reclaim_completed_tx(adap, q, -1, unmap);
395  }
396  EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397  
get_buf_size(struct adapter * adapter,const struct rx_sw_desc * d)398  static inline int get_buf_size(struct adapter *adapter,
399  			       const struct rx_sw_desc *d)
400  {
401  	struct sge *s = &adapter->sge;
402  	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403  	int buf_size;
404  
405  	switch (rx_buf_size_idx) {
406  	case RX_SMALL_PG_BUF:
407  		buf_size = PAGE_SIZE;
408  		break;
409  
410  	case RX_LARGE_PG_BUF:
411  		buf_size = PAGE_SIZE << s->fl_pg_order;
412  		break;
413  
414  	case RX_SMALL_MTU_BUF:
415  		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416  		break;
417  
418  	case RX_LARGE_MTU_BUF:
419  		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420  		break;
421  
422  	default:
423  		BUG();
424  	}
425  
426  	return buf_size;
427  }
428  
429  /**
430   *	free_rx_bufs - free the Rx buffers on an SGE free list
431   *	@adap: the adapter
432   *	@q: the SGE free list to free buffers from
433   *	@n: how many buffers to free
434   *
435   *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
436   *	buffers must be made inaccessible to HW before calling this function.
437   */
free_rx_bufs(struct adapter * adap,struct sge_fl * q,int n)438  static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439  {
440  	while (n--) {
441  		struct rx_sw_desc *d = &q->sdesc[q->cidx];
442  
443  		if (is_buf_mapped(d))
444  			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445  				       get_buf_size(adap, d),
446  				       DMA_FROM_DEVICE);
447  		put_page(d->page);
448  		d->page = NULL;
449  		if (++q->cidx == q->size)
450  			q->cidx = 0;
451  		q->avail--;
452  	}
453  }
454  
455  /**
456   *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457   *	@adap: the adapter
458   *	@q: the SGE free list
459   *
460   *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
461   *	buffer must be made inaccessible to HW before calling this function.
462   *
463   *	This is similar to @free_rx_bufs above but does not free the buffer.
464   *	Do note that the FL still loses any further access to the buffer.
465   */
unmap_rx_buf(struct adapter * adap,struct sge_fl * q)466  static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467  {
468  	struct rx_sw_desc *d = &q->sdesc[q->cidx];
469  
470  	if (is_buf_mapped(d))
471  		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472  			       get_buf_size(adap, d), DMA_FROM_DEVICE);
473  	d->page = NULL;
474  	if (++q->cidx == q->size)
475  		q->cidx = 0;
476  	q->avail--;
477  }
478  
ring_fl_db(struct adapter * adap,struct sge_fl * q)479  static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480  {
481  	if (q->pend_cred >= 8) {
482  		u32 val = adap->params.arch.sge_fl_db;
483  
484  		if (is_t4(adap->params.chip))
485  			val |= PIDX_V(q->pend_cred / 8);
486  		else
487  			val |= PIDX_T5_V(q->pend_cred / 8);
488  
489  		/* Make sure all memory writes to the Free List queue are
490  		 * committed before we tell the hardware about them.
491  		 */
492  		wmb();
493  
494  		/* If we don't have access to the new User Doorbell (T5+), use
495  		 * the old doorbell mechanism; otherwise use the new BAR2
496  		 * mechanism.
497  		 */
498  		if (unlikely(q->bar2_addr == NULL)) {
499  			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500  				     val | QID_V(q->cntxt_id));
501  		} else {
502  			writel(val | QID_V(q->bar2_qid),
503  			       q->bar2_addr + SGE_UDB_KDOORBELL);
504  
505  			/* This Write memory Barrier will force the write to
506  			 * the User Doorbell area to be flushed.
507  			 */
508  			wmb();
509  		}
510  		q->pend_cred &= 7;
511  	}
512  }
513  
set_rx_sw_desc(struct rx_sw_desc * sd,struct page * pg,dma_addr_t mapping)514  static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515  				  dma_addr_t mapping)
516  {
517  	sd->page = pg;
518  	sd->dma_addr = mapping;      /* includes size low bits */
519  }
520  
521  /**
522   *	refill_fl - refill an SGE Rx buffer ring
523   *	@adap: the adapter
524   *	@q: the ring to refill
525   *	@n: the number of new buffers to allocate
526   *	@gfp: the gfp flags for the allocations
527   *
528   *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529   *	allocated with the supplied gfp flags.  The caller must assure that
530   *	@n does not exceed the queue's capacity.  If afterwards the queue is
531   *	found critically low mark it as starving in the bitmap of starving FLs.
532   *
533   *	Returns the number of buffers allocated.
534   */
refill_fl(struct adapter * adap,struct sge_fl * q,int n,gfp_t gfp)535  static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536  			      gfp_t gfp)
537  {
538  	struct sge *s = &adap->sge;
539  	struct page *pg;
540  	dma_addr_t mapping;
541  	unsigned int cred = q->avail;
542  	__be64 *d = &q->desc[q->pidx];
543  	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544  	int node;
545  
546  #ifdef CONFIG_DEBUG_FS
547  	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548  		goto out;
549  #endif
550  
551  	gfp |= __GFP_NOWARN;
552  	node = dev_to_node(adap->pdev_dev);
553  
554  	if (s->fl_pg_order == 0)
555  		goto alloc_small_pages;
556  
557  	/*
558  	 * Prefer large buffers
559  	 */
560  	while (n) {
561  		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562  		if (unlikely(!pg)) {
563  			q->large_alloc_failed++;
564  			break;       /* fall back to single pages */
565  		}
566  
567  		mapping = dma_map_page(adap->pdev_dev, pg, 0,
568  				       PAGE_SIZE << s->fl_pg_order,
569  				       DMA_FROM_DEVICE);
570  		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571  			__free_pages(pg, s->fl_pg_order);
572  			q->mapping_err++;
573  			goto out;   /* do not try small pages for this error */
574  		}
575  		mapping |= RX_LARGE_PG_BUF;
576  		*d++ = cpu_to_be64(mapping);
577  
578  		set_rx_sw_desc(sd, pg, mapping);
579  		sd++;
580  
581  		q->avail++;
582  		if (++q->pidx == q->size) {
583  			q->pidx = 0;
584  			sd = q->sdesc;
585  			d = q->desc;
586  		}
587  		n--;
588  	}
589  
590  alloc_small_pages:
591  	while (n--) {
592  		pg = alloc_pages_node(node, gfp, 0);
593  		if (unlikely(!pg)) {
594  			q->alloc_failed++;
595  			break;
596  		}
597  
598  		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599  				       DMA_FROM_DEVICE);
600  		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601  			put_page(pg);
602  			q->mapping_err++;
603  			goto out;
604  		}
605  		*d++ = cpu_to_be64(mapping);
606  
607  		set_rx_sw_desc(sd, pg, mapping);
608  		sd++;
609  
610  		q->avail++;
611  		if (++q->pidx == q->size) {
612  			q->pidx = 0;
613  			sd = q->sdesc;
614  			d = q->desc;
615  		}
616  	}
617  
618  out:	cred = q->avail - cred;
619  	q->pend_cred += cred;
620  	ring_fl_db(adap, q);
621  
622  	if (unlikely(fl_starving(adap, q))) {
623  		smp_wmb();
624  		q->low++;
625  		set_bit(q->cntxt_id - adap->sge.egr_start,
626  			adap->sge.starving_fl);
627  	}
628  
629  	return cred;
630  }
631  
__refill_fl(struct adapter * adap,struct sge_fl * fl)632  static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633  {
634  	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635  		  GFP_ATOMIC);
636  }
637  
638  /**
639   *	alloc_ring - allocate resources for an SGE descriptor ring
640   *	@dev: the PCI device's core device
641   *	@nelem: the number of descriptors
642   *	@elem_size: the size of each descriptor
643   *	@sw_size: the size of the SW state associated with each ring element
644   *	@phys: the physical address of the allocated ring
645   *	@metadata: address of the array holding the SW state for the ring
646   *	@stat_size: extra space in HW ring for status information
647   *	@node: preferred node for memory allocations
648   *
649   *	Allocates resources for an SGE descriptor ring, such as Tx queues,
650   *	free buffer lists, or response queues.  Each SGE ring requires
651   *	space for its HW descriptors plus, optionally, space for the SW state
652   *	associated with each HW entry (the metadata).  The function returns
653   *	three values: the virtual address for the HW ring (the return value
654   *	of the function), the bus address of the HW ring, and the address
655   *	of the SW ring.
656   */
alloc_ring(struct device * dev,size_t nelem,size_t elem_size,size_t sw_size,dma_addr_t * phys,void * metadata,size_t stat_size,int node)657  static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658  			size_t sw_size, dma_addr_t *phys, void *metadata,
659  			size_t stat_size, int node)
660  {
661  	size_t len = nelem * elem_size + stat_size;
662  	void *s = NULL;
663  	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664  
665  	if (!p)
666  		return NULL;
667  	if (sw_size) {
668  		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669  
670  		if (!s) {
671  			dma_free_coherent(dev, len, p, *phys);
672  			return NULL;
673  		}
674  	}
675  	if (metadata)
676  		*(void **)metadata = s;
677  	return p;
678  }
679  
680  /**
681   *	sgl_len - calculates the size of an SGL of the given capacity
682   *	@n: the number of SGL entries
683   *
684   *	Calculates the number of flits needed for a scatter/gather list that
685   *	can hold the given number of entries.
686   */
sgl_len(unsigned int n)687  static inline unsigned int sgl_len(unsigned int n)
688  {
689  	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690  	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
691  	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692  	 * repeated sequences of { Length[i], Length[i+1], Address[i],
693  	 * Address[i+1] } (this ensures that all addresses are on 64-bit
694  	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
695  	 * Address[N+1] is omitted.
696  	 *
697  	 * The following calculation incorporates all of the above.  It's
698  	 * somewhat hard to follow but, briefly: the "+2" accounts for the
699  	 * first two flits which include the DSGL header, Length0 and
700  	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701  	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702  	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703  	 * (n-1) is odd ...
704  	 */
705  	n--;
706  	return (3 * n) / 2 + (n & 1) + 2;
707  }
708  
709  /**
710   *	flits_to_desc - returns the num of Tx descriptors for the given flits
711   *	@n: the number of flits
712   *
713   *	Returns the number of Tx descriptors needed for the supplied number
714   *	of flits.
715   */
flits_to_desc(unsigned int n)716  static inline unsigned int flits_to_desc(unsigned int n)
717  {
718  	BUG_ON(n > SGE_MAX_WR_LEN / 8);
719  	return DIV_ROUND_UP(n, 8);
720  }
721  
722  /**
723   *	is_eth_imm - can an Ethernet packet be sent as immediate data?
724   *	@skb: the packet
725   *	@chip_ver: chip version
726   *
727   *	Returns whether an Ethernet packet is small enough to fit as
728   *	immediate data. Return value corresponds to headroom required.
729   */
is_eth_imm(const struct sk_buff * skb,unsigned int chip_ver)730  static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731  {
732  	int hdrlen = 0;
733  
734  	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
735  	    chip_ver > CHELSIO_T5) {
736  		hdrlen = sizeof(struct cpl_tx_tnl_lso);
737  		hdrlen += sizeof(struct cpl_tx_pkt_core);
738  	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739  		return 0;
740  	} else {
741  		hdrlen = skb_shinfo(skb)->gso_size ?
742  			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
743  		hdrlen += sizeof(struct cpl_tx_pkt);
744  	}
745  	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
746  		return hdrlen;
747  	return 0;
748  }
749  
750  /**
751   *	calc_tx_flits - calculate the number of flits for a packet Tx WR
752   *	@skb: the packet
753   *	@chip_ver: chip version
754   *
755   *	Returns the number of flits needed for a Tx WR for the given Ethernet
756   *	packet, including the needed WR and CPL headers.
757   */
calc_tx_flits(const struct sk_buff * skb,unsigned int chip_ver)758  static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
759  					 unsigned int chip_ver)
760  {
761  	unsigned int flits;
762  	int hdrlen = is_eth_imm(skb, chip_ver);
763  
764  	/* If the skb is small enough, we can pump it out as a work request
765  	 * with only immediate data.  In that case we just have to have the
766  	 * TX Packet header plus the skb data in the Work Request.
767  	 */
768  
769  	if (hdrlen)
770  		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771  
772  	/* Otherwise, we're going to have to construct a Scatter gather list
773  	 * of the skb body and fragments.  We also include the flits necessary
774  	 * for the TX Packet Work Request and CPL.  We always have a firmware
775  	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776  	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777  	 * message or, if we're doing a Large Send Offload, an LSO CPL message
778  	 * with an embedded TX Packet Write CPL message.
779  	 */
780  	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
781  	if (skb_shinfo(skb)->gso_size) {
782  		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
783  			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
784  				 sizeof(struct cpl_tx_tnl_lso);
785  		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
786  			u32 pkt_hdrlen;
787  
788  			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
789  						     skb_headlen(skb));
790  			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
791  				 round_up(pkt_hdrlen, 16);
792  		} else {
793  			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
794  				 sizeof(struct cpl_tx_pkt_lso_core);
795  		}
796  
797  		hdrlen += sizeof(struct cpl_tx_pkt_core);
798  		flits += (hdrlen / sizeof(__be64));
799  	} else {
800  		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
801  			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
802  	}
803  	return flits;
804  }
805  
806  /**
807   *	cxgb4_write_sgl - populate a scatter/gather list for a packet
808   *	@skb: the packet
809   *	@q: the Tx queue we are writing into
810   *	@sgl: starting location for writing the SGL
811   *	@end: points right after the end of the SGL
812   *	@start: start offset into skb main-body data to include in the SGL
813   *	@addr: the list of bus addresses for the SGL elements
814   *
815   *	Generates a gather list for the buffers that make up a packet.
816   *	The caller must provide adequate space for the SGL that will be written.
817   *	The SGL includes all of the packet's page fragments and the data in its
818   *	main body except for the first @start bytes.  @sgl must be 16-byte
819   *	aligned and within a Tx descriptor with available space.  @end points
820   *	right after the end of the SGL but does not account for any potential
821   *	wrap around, i.e., @end > @sgl.
822   */
cxgb4_write_sgl(const struct sk_buff * skb,struct sge_txq * q,struct ulptx_sgl * sgl,u64 * end,unsigned int start,const dma_addr_t * addr)823  void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
824  		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
825  		     const dma_addr_t *addr)
826  {
827  	unsigned int i, len;
828  	struct ulptx_sge_pair *to;
829  	const struct skb_shared_info *si = skb_shinfo(skb);
830  	unsigned int nfrags = si->nr_frags;
831  	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
832  
833  	len = skb_headlen(skb) - start;
834  	if (likely(len)) {
835  		sgl->len0 = htonl(len);
836  		sgl->addr0 = cpu_to_be64(addr[0] + start);
837  		nfrags++;
838  	} else {
839  		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
840  		sgl->addr0 = cpu_to_be64(addr[1]);
841  	}
842  
843  	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
844  			      ULPTX_NSGE_V(nfrags));
845  	if (likely(--nfrags == 0))
846  		return;
847  	/*
848  	 * Most of the complexity below deals with the possibility we hit the
849  	 * end of the queue in the middle of writing the SGL.  For this case
850  	 * only we create the SGL in a temporary buffer and then copy it.
851  	 */
852  	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
853  
854  	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
855  		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
856  		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
857  		to->addr[0] = cpu_to_be64(addr[i]);
858  		to->addr[1] = cpu_to_be64(addr[++i]);
859  	}
860  	if (nfrags) {
861  		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
862  		to->len[1] = cpu_to_be32(0);
863  		to->addr[0] = cpu_to_be64(addr[i + 1]);
864  	}
865  	if (unlikely((u8 *)end > (u8 *)q->stat)) {
866  		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
867  
868  		if (likely(part0))
869  			memcpy(sgl->sge, buf, part0);
870  		part1 = (u8 *)end - (u8 *)q->stat;
871  		memcpy(q->desc, (u8 *)buf + part0, part1);
872  		end = (void *)q->desc + part1;
873  	}
874  	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
875  		*end = 0;
876  }
877  EXPORT_SYMBOL(cxgb4_write_sgl);
878  
879  /*	cxgb4_write_partial_sgl - populate SGL for partial packet
880   *	@skb: the packet
881   *	@q: the Tx queue we are writing into
882   *	@sgl: starting location for writing the SGL
883   *	@end: points right after the end of the SGL
884   *	@addr: the list of bus addresses for the SGL elements
885   *	@start: start offset in the SKB where partial data starts
886   *	@len: length of data from @start to send out
887   *
888   *	This API will handle sending out partial data of a skb if required.
889   *	Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
890   *	and @len will decide how much data after @start offset to send out.
891   */
cxgb4_write_partial_sgl(const struct sk_buff * skb,struct sge_txq * q,struct ulptx_sgl * sgl,u64 * end,const dma_addr_t * addr,u32 start,u32 len)892  void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
893  			     struct ulptx_sgl *sgl, u64 *end,
894  			     const dma_addr_t *addr, u32 start, u32 len)
895  {
896  	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
897  	u32 frag_size, skb_linear_data_len = skb_headlen(skb);
898  	struct skb_shared_info *si = skb_shinfo(skb);
899  	u8 i = 0, frag_idx = 0, nfrags = 0;
900  	skb_frag_t *frag;
901  
902  	/* Fill the first SGL either from linear data or from partial
903  	 * frag based on @start.
904  	 */
905  	if (unlikely(start < skb_linear_data_len)) {
906  		frag_size = min(len, skb_linear_data_len - start);
907  		sgl->len0 = htonl(frag_size);
908  		sgl->addr0 = cpu_to_be64(addr[0] + start);
909  		len -= frag_size;
910  		nfrags++;
911  	} else {
912  		start -= skb_linear_data_len;
913  		frag = &si->frags[frag_idx];
914  		frag_size = skb_frag_size(frag);
915  		/* find the first frag */
916  		while (start >= frag_size) {
917  			start -= frag_size;
918  			frag_idx++;
919  			frag = &si->frags[frag_idx];
920  			frag_size = skb_frag_size(frag);
921  		}
922  
923  		frag_size = min(len, skb_frag_size(frag) - start);
924  		sgl->len0 = cpu_to_be32(frag_size);
925  		sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
926  		len -= frag_size;
927  		nfrags++;
928  		frag_idx++;
929  	}
930  
931  	/* If the entire partial data fit in one SGL, then send it out
932  	 * now.
933  	 */
934  	if (!len)
935  		goto done;
936  
937  	/* Most of the complexity below deals with the possibility we hit the
938  	 * end of the queue in the middle of writing the SGL.  For this case
939  	 * only we create the SGL in a temporary buffer and then copy it.
940  	 */
941  	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
942  
943  	/* If the skb couldn't fit in first SGL completely, fill the
944  	 * rest of the frags in subsequent SGLs. Note that each SGL
945  	 * pair can store 2 frags.
946  	 */
947  	while (len) {
948  		frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
949  		to->len[i & 1] = cpu_to_be32(frag_size);
950  		to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
951  		if (i && (i & 1))
952  			to++;
953  		nfrags++;
954  		frag_idx++;
955  		i++;
956  		len -= frag_size;
957  	}
958  
959  	/* If we ended in an odd boundary, then set the second SGL's
960  	 * length in the pair to 0.
961  	 */
962  	if (i & 1)
963  		to->len[1] = cpu_to_be32(0);
964  
965  	/* Copy from temporary buffer to Tx ring, in case we hit the
966  	 * end of the queue in the middle of writing the SGL.
967  	 */
968  	if (unlikely((u8 *)end > (u8 *)q->stat)) {
969  		u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
970  
971  		if (likely(part0))
972  			memcpy(sgl->sge, buf, part0);
973  		part1 = (u8 *)end - (u8 *)q->stat;
974  		memcpy(q->desc, (u8 *)buf + part0, part1);
975  		end = (void *)q->desc + part1;
976  	}
977  
978  	/* 0-pad to multiple of 16 */
979  	if ((uintptr_t)end & 8)
980  		*end = 0;
981  done:
982  	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
983  			ULPTX_NSGE_V(nfrags));
984  }
985  EXPORT_SYMBOL(cxgb4_write_partial_sgl);
986  
987  /* This function copies 64 byte coalesced work request to
988   * memory mapped BAR2 space. For coalesced WR SGE fetches
989   * data from the FIFO instead of from Host.
990   */
cxgb_pio_copy(u64 __iomem * dst,u64 * src)991  static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
992  {
993  	int count = 8;
994  
995  	while (count) {
996  		writeq(*src, dst);
997  		src++;
998  		dst++;
999  		count--;
1000  	}
1001  }
1002  
1003  /**
1004   *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
1005   *	@adap: the adapter
1006   *	@q: the Tx queue
1007   *	@n: number of new descriptors to give to HW
1008   *
1009   *	Ring the doorbel for a Tx queue.
1010   */
cxgb4_ring_tx_db(struct adapter * adap,struct sge_txq * q,int n)1011  inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
1012  {
1013  	/* Make sure that all writes to the TX Descriptors are committed
1014  	 * before we tell the hardware about them.
1015  	 */
1016  	wmb();
1017  
1018  	/* If we don't have access to the new User Doorbell (T5+), use the old
1019  	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1020  	 */
1021  	if (unlikely(q->bar2_addr == NULL)) {
1022  		u32 val = PIDX_V(n);
1023  		unsigned long flags;
1024  
1025  		/* For T4 we need to participate in the Doorbell Recovery
1026  		 * mechanism.
1027  		 */
1028  		spin_lock_irqsave(&q->db_lock, flags);
1029  		if (!q->db_disabled)
1030  			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1031  				     QID_V(q->cntxt_id) | val);
1032  		else
1033  			q->db_pidx_inc += n;
1034  		q->db_pidx = q->pidx;
1035  		spin_unlock_irqrestore(&q->db_lock, flags);
1036  	} else {
1037  		u32 val = PIDX_T5_V(n);
1038  
1039  		/* T4 and later chips share the same PIDX field offset within
1040  		 * the doorbell, but T5 and later shrank the field in order to
1041  		 * gain a bit for Doorbell Priority.  The field was absurdly
1042  		 * large in the first place (14 bits) so we just use the T5
1043  		 * and later limits and warn if a Queue ID is too large.
1044  		 */
1045  		WARN_ON(val & DBPRIO_F);
1046  
1047  		/* If we're only writing a single TX Descriptor and we can use
1048  		 * Inferred QID registers, we can use the Write Combining
1049  		 * Gather Buffer; otherwise we use the simple doorbell.
1050  		 */
1051  		if (n == 1 && q->bar2_qid == 0) {
1052  			int index = (q->pidx
1053  				     ? (q->pidx - 1)
1054  				     : (q->size - 1));
1055  			u64 *wr = (u64 *)&q->desc[index];
1056  
1057  			cxgb_pio_copy((u64 __iomem *)
1058  				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
1059  				      wr);
1060  		} else {
1061  			writel(val | QID_V(q->bar2_qid),
1062  			       q->bar2_addr + SGE_UDB_KDOORBELL);
1063  		}
1064  
1065  		/* This Write Memory Barrier will force the write to the User
1066  		 * Doorbell area to be flushed.  This is needed to prevent
1067  		 * writes on different CPUs for the same queue from hitting
1068  		 * the adapter out of order.  This is required when some Work
1069  		 * Requests take the Write Combine Gather Buffer path (user
1070  		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1071  		 * take the traditional path where we simply increment the
1072  		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1073  		 * hardware DMA read the actual Work Request.
1074  		 */
1075  		wmb();
1076  	}
1077  }
1078  EXPORT_SYMBOL(cxgb4_ring_tx_db);
1079  
1080  /**
1081   *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1082   *	@skb: the packet
1083   *	@q: the Tx queue where the packet will be inlined
1084   *	@pos: starting position in the Tx queue where to inline the packet
1085   *
1086   *	Inline a packet's contents directly into Tx descriptors, starting at
1087   *	the given position within the Tx DMA ring.
1088   *	Most of the complexity of this operation is dealing with wrap arounds
1089   *	in the middle of the packet we want to inline.
1090   */
cxgb4_inline_tx_skb(const struct sk_buff * skb,const struct sge_txq * q,void * pos)1091  void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1092  			 const struct sge_txq *q, void *pos)
1093  {
1094  	int left = (void *)q->stat - pos;
1095  	u64 *p;
1096  
1097  	if (likely(skb->len <= left)) {
1098  		if (likely(!skb->data_len))
1099  			skb_copy_from_linear_data(skb, pos, skb->len);
1100  		else
1101  			skb_copy_bits(skb, 0, pos, skb->len);
1102  		pos += skb->len;
1103  	} else {
1104  		skb_copy_bits(skb, 0, pos, left);
1105  		skb_copy_bits(skb, left, q->desc, skb->len - left);
1106  		pos = (void *)q->desc + (skb->len - left);
1107  	}
1108  
1109  	/* 0-pad to multiple of 16 */
1110  	p = PTR_ALIGN(pos, 8);
1111  	if ((uintptr_t)p & 8)
1112  		*p = 0;
1113  }
1114  EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1115  
inline_tx_skb_header(const struct sk_buff * skb,const struct sge_txq * q,void * pos,int length)1116  static void *inline_tx_skb_header(const struct sk_buff *skb,
1117  				  const struct sge_txq *q,  void *pos,
1118  				  int length)
1119  {
1120  	u64 *p;
1121  	int left = (void *)q->stat - pos;
1122  
1123  	if (likely(length <= left)) {
1124  		memcpy(pos, skb->data, length);
1125  		pos += length;
1126  	} else {
1127  		memcpy(pos, skb->data, left);
1128  		memcpy(q->desc, skb->data + left, length - left);
1129  		pos = (void *)q->desc + (length - left);
1130  	}
1131  	/* 0-pad to multiple of 16 */
1132  	p = PTR_ALIGN(pos, 8);
1133  	if ((uintptr_t)p & 8) {
1134  		*p = 0;
1135  		return p + 1;
1136  	}
1137  	return p;
1138  }
1139  
1140  /*
1141   * Figure out what HW csum a packet wants and return the appropriate control
1142   * bits.
1143   */
hwcsum(enum chip_type chip,const struct sk_buff * skb)1144  static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1145  {
1146  	int csum_type;
1147  	bool inner_hdr_csum = false;
1148  	u16 proto, ver;
1149  
1150  	if (skb->encapsulation &&
1151  	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1152  		inner_hdr_csum = true;
1153  
1154  	if (inner_hdr_csum) {
1155  		ver = inner_ip_hdr(skb)->version;
1156  		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1157  			inner_ipv6_hdr(skb)->nexthdr;
1158  	} else {
1159  		ver = ip_hdr(skb)->version;
1160  		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1161  			ipv6_hdr(skb)->nexthdr;
1162  	}
1163  
1164  	if (ver == 4) {
1165  		if (proto == IPPROTO_TCP)
1166  			csum_type = TX_CSUM_TCPIP;
1167  		else if (proto == IPPROTO_UDP)
1168  			csum_type = TX_CSUM_UDPIP;
1169  		else {
1170  nocsum:			/*
1171  			 * unknown protocol, disable HW csum
1172  			 * and hope a bad packet is detected
1173  			 */
1174  			return TXPKT_L4CSUM_DIS_F;
1175  		}
1176  	} else {
1177  		/*
1178  		 * this doesn't work with extension headers
1179  		 */
1180  		if (proto == IPPROTO_TCP)
1181  			csum_type = TX_CSUM_TCPIP6;
1182  		else if (proto == IPPROTO_UDP)
1183  			csum_type = TX_CSUM_UDPIP6;
1184  		else
1185  			goto nocsum;
1186  	}
1187  
1188  	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1189  		int eth_hdr_len, l4_len;
1190  		u64 hdr_len;
1191  
1192  		if (inner_hdr_csum) {
1193  			/* This allows checksum offload for all encapsulated
1194  			 * packets like GRE etc..
1195  			 */
1196  			l4_len = skb_inner_network_header_len(skb);
1197  			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1198  		} else {
1199  			l4_len = skb_network_header_len(skb);
1200  			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1201  		}
1202  		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1203  
1204  		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1205  			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1206  		else
1207  			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1208  		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1209  	} else {
1210  		int start = skb_transport_offset(skb);
1211  
1212  		return TXPKT_CSUM_TYPE_V(csum_type) |
1213  			TXPKT_CSUM_START_V(start) |
1214  			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1215  	}
1216  }
1217  
eth_txq_stop(struct sge_eth_txq * q)1218  static void eth_txq_stop(struct sge_eth_txq *q)
1219  {
1220  	netif_tx_stop_queue(q->txq);
1221  	q->q.stops++;
1222  }
1223  
txq_advance(struct sge_txq * q,unsigned int n)1224  static inline void txq_advance(struct sge_txq *q, unsigned int n)
1225  {
1226  	q->in_use += n;
1227  	q->pidx += n;
1228  	if (q->pidx >= q->size)
1229  		q->pidx -= q->size;
1230  }
1231  
1232  #ifdef CONFIG_CHELSIO_T4_FCOE
1233  static inline int
cxgb_fcoe_offload(struct sk_buff * skb,struct adapter * adap,const struct port_info * pi,u64 * cntrl)1234  cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1235  		  const struct port_info *pi, u64 *cntrl)
1236  {
1237  	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1238  
1239  	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1240  		return 0;
1241  
1242  	if (skb->protocol != htons(ETH_P_FCOE))
1243  		return 0;
1244  
1245  	skb_reset_mac_header(skb);
1246  	skb->mac_len = sizeof(struct ethhdr);
1247  
1248  	skb_set_network_header(skb, skb->mac_len);
1249  	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1250  
1251  	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1252  		return -ENOTSUPP;
1253  
1254  	/* FC CRC offload */
1255  	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1256  		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1257  		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1258  		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1259  		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1260  	return 0;
1261  }
1262  #endif /* CONFIG_CHELSIO_T4_FCOE */
1263  
1264  /* Returns tunnel type if hardware supports offloading of the same.
1265   * It is called only for T5 and onwards.
1266   */
cxgb_encap_offload_supported(struct sk_buff * skb)1267  enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1268  {
1269  	u8 l4_hdr = 0;
1270  	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1271  	struct port_info *pi = netdev_priv(skb->dev);
1272  	struct adapter *adapter = pi->adapter;
1273  
1274  	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1275  	    skb->inner_protocol != htons(ETH_P_TEB))
1276  		return tnl_type;
1277  
1278  	switch (vlan_get_protocol(skb)) {
1279  	case htons(ETH_P_IP):
1280  		l4_hdr = ip_hdr(skb)->protocol;
1281  		break;
1282  	case htons(ETH_P_IPV6):
1283  		l4_hdr = ipv6_hdr(skb)->nexthdr;
1284  		break;
1285  	default:
1286  		return tnl_type;
1287  	}
1288  
1289  	switch (l4_hdr) {
1290  	case IPPROTO_UDP:
1291  		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1292  			tnl_type = TX_TNL_TYPE_VXLAN;
1293  		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1294  			tnl_type = TX_TNL_TYPE_GENEVE;
1295  		break;
1296  	default:
1297  		return tnl_type;
1298  	}
1299  
1300  	return tnl_type;
1301  }
1302  
t6_fill_tnl_lso(struct sk_buff * skb,struct cpl_tx_tnl_lso * tnl_lso,enum cpl_tx_tnl_lso_type tnl_type)1303  static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1304  				   struct cpl_tx_tnl_lso *tnl_lso,
1305  				   enum cpl_tx_tnl_lso_type tnl_type)
1306  {
1307  	u32 val;
1308  	int in_eth_xtra_len;
1309  	int l3hdr_len = skb_network_header_len(skb);
1310  	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1311  	const struct skb_shared_info *ssi = skb_shinfo(skb);
1312  	bool v6 = (ip_hdr(skb)->version == 6);
1313  
1314  	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1315  	      CPL_TX_TNL_LSO_FIRST_F |
1316  	      CPL_TX_TNL_LSO_LAST_F |
1317  	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1318  	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1319  	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1320  	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1321  	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1322  	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1323  	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1324  
1325  	tnl_lso->IpIdOffsetOut = 0;
1326  
1327  	/* Get the tunnel header length */
1328  	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1329  	in_eth_xtra_len = skb_inner_network_header(skb) -
1330  			  skb_inner_mac_header(skb) - ETH_HLEN;
1331  
1332  	switch (tnl_type) {
1333  	case TX_TNL_TYPE_VXLAN:
1334  	case TX_TNL_TYPE_GENEVE:
1335  		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1336  			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1337  			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1338  		break;
1339  	default:
1340  		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1341  		break;
1342  	}
1343  
1344  	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1345  		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1346  		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1347  
1348  	tnl_lso->r1 = 0;
1349  
1350  	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1351  	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1352  	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1353  	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1354  	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1355  
1356  	tnl_lso->IpIdOffset = htons(0);
1357  
1358  	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1359  	tnl_lso->TCPSeqOffset = htonl(0);
1360  	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1361  }
1362  
write_tso_wr(struct adapter * adap,struct sk_buff * skb,struct cpl_tx_pkt_lso_core * lso)1363  static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1364  				 struct cpl_tx_pkt_lso_core *lso)
1365  {
1366  	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1367  	int l3hdr_len = skb_network_header_len(skb);
1368  	const struct skb_shared_info *ssi;
1369  	bool ipv6 = false;
1370  
1371  	ssi = skb_shinfo(skb);
1372  	if (ssi->gso_type & SKB_GSO_TCPV6)
1373  		ipv6 = true;
1374  
1375  	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1376  			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1377  			      LSO_IPV6_V(ipv6) |
1378  			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1379  			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1380  			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1381  	lso->ipid_ofst = htons(0);
1382  	lso->mss = htons(ssi->gso_size);
1383  	lso->seqno_offset = htonl(0);
1384  	if (is_t4(adap->params.chip))
1385  		lso->len = htonl(skb->len);
1386  	else
1387  		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1388  
1389  	return (void *)(lso + 1);
1390  }
1391  
1392  /**
1393   *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1394   *	@adap: the adapter
1395   *	@eq: the Ethernet TX Queue
1396   *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1397   *
1398   *	We're typically called here to update the state of an Ethernet TX
1399   *	Queue with respect to the hardware's progress in consuming the TX
1400   *	Work Requests that we've put on that Egress Queue.  This happens
1401   *	when we get Egress Queue Update messages and also prophylactically
1402   *	in regular timer-based Ethernet TX Queue maintenance.
1403   */
t4_sge_eth_txq_egress_update(struct adapter * adap,struct sge_eth_txq * eq,int maxreclaim)1404  int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1405  				 int maxreclaim)
1406  {
1407  	unsigned int reclaimed, hw_cidx;
1408  	struct sge_txq *q = &eq->q;
1409  	int hw_in_use;
1410  
1411  	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1412  		return 0;
1413  
1414  	/* Reclaim pending completed TX Descriptors. */
1415  	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1416  
1417  	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1418  	hw_in_use = q->pidx - hw_cidx;
1419  	if (hw_in_use < 0)
1420  		hw_in_use += q->size;
1421  
1422  	/* If the TX Queue is currently stopped and there's now more than half
1423  	 * the queue available, restart it.  Otherwise bail out since the rest
1424  	 * of what we want do here is with the possibility of shipping any
1425  	 * currently buffered Coalesced TX Work Request.
1426  	 */
1427  	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1428  		netif_tx_wake_queue(eq->txq);
1429  		eq->q.restarts++;
1430  	}
1431  
1432  	__netif_tx_unlock(eq->txq);
1433  	return reclaimed;
1434  }
1435  
cxgb4_validate_skb(struct sk_buff * skb,struct net_device * dev,u32 min_pkt_len)1436  static inline int cxgb4_validate_skb(struct sk_buff *skb,
1437  				     struct net_device *dev,
1438  				     u32 min_pkt_len)
1439  {
1440  	u32 max_pkt_len;
1441  
1442  	/* The chip min packet length is 10 octets but some firmware
1443  	 * commands have a minimum packet length requirement. So, play
1444  	 * safe and reject anything shorter than @min_pkt_len.
1445  	 */
1446  	if (unlikely(skb->len < min_pkt_len))
1447  		return -EINVAL;
1448  
1449  	/* Discard the packet if the length is greater than mtu */
1450  	max_pkt_len = ETH_HLEN + dev->mtu;
1451  
1452  	if (skb_vlan_tagged(skb))
1453  		max_pkt_len += VLAN_HLEN;
1454  
1455  	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1456  		return -EINVAL;
1457  
1458  	return 0;
1459  }
1460  
write_eo_udp_wr(struct sk_buff * skb,struct fw_eth_tx_eo_wr * wr,u32 hdr_len)1461  static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1462  			     u32 hdr_len)
1463  {
1464  	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1465  	wr->u.udpseg.ethlen = skb_network_offset(skb);
1466  	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1467  	wr->u.udpseg.udplen = sizeof(struct udphdr);
1468  	wr->u.udpseg.rtplen = 0;
1469  	wr->u.udpseg.r4 = 0;
1470  	if (skb_shinfo(skb)->gso_size)
1471  		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1472  	else
1473  		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1474  	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1475  	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1476  
1477  	return (void *)(wr + 1);
1478  }
1479  
1480  /**
1481   *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1482   *	@skb: the packet
1483   *	@dev: the egress net device
1484   *
1485   *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1486   */
cxgb4_eth_xmit(struct sk_buff * skb,struct net_device * dev)1487  static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1488  {
1489  	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1490  	bool ptp_enabled = is_ptp_enabled(skb, dev);
1491  	unsigned int last_desc, flits, ndesc;
1492  	u32 wr_mid, ctrl0, op, sgl_off = 0;
1493  	const struct skb_shared_info *ssi;
1494  	int len, qidx, credits, ret, left;
1495  	struct tx_sw_desc *sgl_sdesc;
1496  	struct fw_eth_tx_eo_wr *eowr;
1497  	struct fw_eth_tx_pkt_wr *wr;
1498  	struct cpl_tx_pkt_core *cpl;
1499  	const struct port_info *pi;
1500  	bool immediate = false;
1501  	u64 cntrl, *end, *sgl;
1502  	struct sge_eth_txq *q;
1503  	unsigned int chip_ver;
1504  	struct adapter *adap;
1505  
1506  	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1507  	if (ret)
1508  		goto out_free;
1509  
1510  	pi = netdev_priv(dev);
1511  	adap = pi->adapter;
1512  	ssi = skb_shinfo(skb);
1513  #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
1514  	if (xfrm_offload(skb) && !ssi->gso_size)
1515  		return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
1516  #endif /* CHELSIO_IPSEC_INLINE */
1517  
1518  #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
1519  	if (tls_is_skb_tx_device_offloaded(skb) &&
1520  	    (skb->len - skb_tcp_all_headers(skb)))
1521  		return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
1522  #endif /* CHELSIO_TLS_DEVICE */
1523  
1524  	qidx = skb_get_queue_mapping(skb);
1525  	if (ptp_enabled) {
1526  		if (!(adap->ptp_tx_skb)) {
1527  			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1528  			adap->ptp_tx_skb = skb_get(skb);
1529  		} else {
1530  			goto out_free;
1531  		}
1532  		q = &adap->sge.ptptxq;
1533  	} else {
1534  		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1535  	}
1536  	skb_tx_timestamp(skb);
1537  
1538  	reclaim_completed_tx(adap, &q->q, -1, true);
1539  	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1540  
1541  #ifdef CONFIG_CHELSIO_T4_FCOE
1542  	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1543  	if (unlikely(ret == -EOPNOTSUPP))
1544  		goto out_free;
1545  #endif /* CONFIG_CHELSIO_T4_FCOE */
1546  
1547  	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1548  	flits = calc_tx_flits(skb, chip_ver);
1549  	ndesc = flits_to_desc(flits);
1550  	credits = txq_avail(&q->q) - ndesc;
1551  
1552  	if (unlikely(credits < 0)) {
1553  		eth_txq_stop(q);
1554  		dev_err(adap->pdev_dev,
1555  			"%s: Tx ring %u full while queue awake!\n",
1556  			dev->name, qidx);
1557  		return NETDEV_TX_BUSY;
1558  	}
1559  
1560  	if (is_eth_imm(skb, chip_ver))
1561  		immediate = true;
1562  
1563  	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1564  		tnl_type = cxgb_encap_offload_supported(skb);
1565  
1566  	last_desc = q->q.pidx + ndesc - 1;
1567  	if (last_desc >= q->q.size)
1568  		last_desc -= q->q.size;
1569  	sgl_sdesc = &q->q.sdesc[last_desc];
1570  
1571  	if (!immediate &&
1572  	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1573  		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1574  		q->mapping_err++;
1575  		goto out_free;
1576  	}
1577  
1578  	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1579  	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1580  		/* After we're done injecting the Work Request for this
1581  		 * packet, we'll be below our "stop threshold" so stop the TX
1582  		 * Queue now and schedule a request for an SGE Egress Queue
1583  		 * Update message. The queue will get started later on when
1584  		 * the firmware processes this Work Request and sends us an
1585  		 * Egress Queue Status Update message indicating that space
1586  		 * has opened up.
1587  		 */
1588  		eth_txq_stop(q);
1589  		if (chip_ver > CHELSIO_T5)
1590  			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1591  	}
1592  
1593  	wr = (void *)&q->q.desc[q->q.pidx];
1594  	eowr = (void *)&q->q.desc[q->q.pidx];
1595  	wr->equiq_to_len16 = htonl(wr_mid);
1596  	wr->r3 = cpu_to_be64(0);
1597  	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1598  		end = (u64 *)eowr + flits;
1599  	else
1600  		end = (u64 *)wr + flits;
1601  
1602  	len = immediate ? skb->len : 0;
1603  	len += sizeof(*cpl);
1604  	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1605  		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1606  		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1607  
1608  		if (tnl_type)
1609  			len += sizeof(*tnl_lso);
1610  		else
1611  			len += sizeof(*lso);
1612  
1613  		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1614  				       FW_WR_IMMDLEN_V(len));
1615  		if (tnl_type) {
1616  			struct iphdr *iph = ip_hdr(skb);
1617  
1618  			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1619  			cpl = (void *)(tnl_lso + 1);
1620  			/* Driver is expected to compute partial checksum that
1621  			 * does not include the IP Total Length.
1622  			 */
1623  			if (iph->version == 4) {
1624  				iph->check = 0;
1625  				iph->tot_len = 0;
1626  				iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1627  			}
1628  			if (skb->ip_summed == CHECKSUM_PARTIAL)
1629  				cntrl = hwcsum(adap->params.chip, skb);
1630  		} else {
1631  			cpl = write_tso_wr(adap, skb, lso);
1632  			cntrl = hwcsum(adap->params.chip, skb);
1633  		}
1634  		sgl = (u64 *)(cpl + 1); /* sgl start here */
1635  		q->tso++;
1636  		q->tx_cso += ssi->gso_segs;
1637  	} else if (ssi->gso_size) {
1638  		u64 *start;
1639  		u32 hdrlen;
1640  
1641  		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1642  		len += hdrlen;
1643  		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1644  					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1645  		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1646  		cntrl = hwcsum(adap->params.chip, skb);
1647  
1648  		start = (u64 *)(cpl + 1);
1649  		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1650  						  hdrlen);
1651  		if (unlikely(start > sgl)) {
1652  			left = (u8 *)end - (u8 *)q->q.stat;
1653  			end = (void *)q->q.desc + left;
1654  		}
1655  		sgl_off = hdrlen;
1656  		q->uso++;
1657  		q->tx_cso += ssi->gso_segs;
1658  	} else {
1659  		if (ptp_enabled)
1660  			op = FW_PTP_TX_PKT_WR;
1661  		else
1662  			op = FW_ETH_TX_PKT_WR;
1663  		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1664  				       FW_WR_IMMDLEN_V(len));
1665  		cpl = (void *)(wr + 1);
1666  		sgl = (u64 *)(cpl + 1);
1667  		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1668  			cntrl = hwcsum(adap->params.chip, skb) |
1669  				TXPKT_IPCSUM_DIS_F;
1670  			q->tx_cso++;
1671  		}
1672  	}
1673  
1674  	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1675  		/* If current position is already at the end of the
1676  		 * txq, reset the current to point to start of the queue
1677  		 * and update the end ptr as well.
1678  		 */
1679  		left = (u8 *)end - (u8 *)q->q.stat;
1680  		end = (void *)q->q.desc + left;
1681  		sgl = (void *)q->q.desc;
1682  	}
1683  
1684  	if (skb_vlan_tag_present(skb)) {
1685  		q->vlan_ins++;
1686  		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1687  #ifdef CONFIG_CHELSIO_T4_FCOE
1688  		if (skb->protocol == htons(ETH_P_FCOE))
1689  			cntrl |= TXPKT_VLAN_V(
1690  				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1691  #endif /* CONFIG_CHELSIO_T4_FCOE */
1692  	}
1693  
1694  	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1695  		TXPKT_PF_V(adap->pf);
1696  	if (ptp_enabled)
1697  		ctrl0 |= TXPKT_TSTAMP_F;
1698  #ifdef CONFIG_CHELSIO_T4_DCB
1699  	if (is_t4(adap->params.chip))
1700  		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1701  	else
1702  		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1703  #endif
1704  	cpl->ctrl0 = htonl(ctrl0);
1705  	cpl->pack = htons(0);
1706  	cpl->len = htons(skb->len);
1707  	cpl->ctrl1 = cpu_to_be64(cntrl);
1708  
1709  	if (immediate) {
1710  		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1711  		dev_consume_skb_any(skb);
1712  	} else {
1713  		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1714  				sgl_sdesc->addr);
1715  		skb_orphan(skb);
1716  		sgl_sdesc->skb = skb;
1717  	}
1718  
1719  	txq_advance(&q->q, ndesc);
1720  
1721  	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1722  	return NETDEV_TX_OK;
1723  
1724  out_free:
1725  	dev_kfree_skb_any(skb);
1726  	return NETDEV_TX_OK;
1727  }
1728  
1729  /* Constants ... */
1730  enum {
1731  	/* Egress Queue sizes, producer and consumer indices are all in units
1732  	 * of Egress Context Units bytes.  Note that as far as the hardware is
1733  	 * concerned, the free list is an Egress Queue (the host produces free
1734  	 * buffers which the hardware consumes) and free list entries are
1735  	 * 64-bit PCI DMA addresses.
1736  	 */
1737  	EQ_UNIT = SGE_EQ_IDXSIZE,
1738  	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1739  	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1740  
1741  	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1742  			       sizeof(struct cpl_tx_pkt_lso_core) +
1743  			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1744  };
1745  
1746  /**
1747   *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1748   *	@skb: the packet
1749   *
1750   *	Returns whether an Ethernet packet is small enough to fit completely as
1751   *	immediate data.
1752   */
t4vf_is_eth_imm(const struct sk_buff * skb)1753  static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1754  {
1755  	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1756  	 * which does not accommodate immediate data.  We could dike out all
1757  	 * of the support code for immediate data but that would tie our hands
1758  	 * too much if we ever want to enhace the firmware.  It would also
1759  	 * create more differences between the PF and VF Drivers.
1760  	 */
1761  	return false;
1762  }
1763  
1764  /**
1765   *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1766   *	@skb: the packet
1767   *
1768   *	Returns the number of flits needed for a TX Work Request for the
1769   *	given Ethernet packet, including the needed WR and CPL headers.
1770   */
t4vf_calc_tx_flits(const struct sk_buff * skb)1771  static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1772  {
1773  	unsigned int flits;
1774  
1775  	/* If the skb is small enough, we can pump it out as a work request
1776  	 * with only immediate data.  In that case we just have to have the
1777  	 * TX Packet header plus the skb data in the Work Request.
1778  	 */
1779  	if (t4vf_is_eth_imm(skb))
1780  		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1781  				    sizeof(__be64));
1782  
1783  	/* Otherwise, we're going to have to construct a Scatter gather list
1784  	 * of the skb body and fragments.  We also include the flits necessary
1785  	 * for the TX Packet Work Request and CPL.  We always have a firmware
1786  	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1787  	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1788  	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1789  	 * with an embedded TX Packet Write CPL message.
1790  	 */
1791  	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1792  	if (skb_shinfo(skb)->gso_size)
1793  		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1794  			  sizeof(struct cpl_tx_pkt_lso_core) +
1795  			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1796  	else
1797  		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1798  			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1799  	return flits;
1800  }
1801  
1802  /**
1803   *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1804   *	@skb: the packet
1805   *	@dev: the egress net device
1806   *
1807   *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1808   */
cxgb4_vf_eth_xmit(struct sk_buff * skb,struct net_device * dev)1809  static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1810  				     struct net_device *dev)
1811  {
1812  	unsigned int last_desc, flits, ndesc;
1813  	const struct skb_shared_info *ssi;
1814  	struct fw_eth_tx_pkt_vm_wr *wr;
1815  	struct tx_sw_desc *sgl_sdesc;
1816  	struct cpl_tx_pkt_core *cpl;
1817  	const struct port_info *pi;
1818  	struct sge_eth_txq *txq;
1819  	struct adapter *adapter;
1820  	int qidx, credits, ret;
1821  	size_t fw_hdr_copy_len;
1822  	unsigned int chip_ver;
1823  	u64 cntrl, *end;
1824  	u32 wr_mid;
1825  
1826  	/* The chip minimum packet length is 10 octets but the firmware
1827  	 * command that we are using requires that we copy the Ethernet header
1828  	 * (including the VLAN tag) into the header so we reject anything
1829  	 * smaller than that ...
1830  	 */
1831  	BUILD_BUG_ON(sizeof(wr->firmware) !=
1832  		     (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1833  		      sizeof(wr->ethtype) + sizeof(wr->vlantci)));
1834  	fw_hdr_copy_len = sizeof(wr->firmware);
1835  	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1836  	if (ret)
1837  		goto out_free;
1838  
1839  	/* Figure out which TX Queue we're going to use. */
1840  	pi = netdev_priv(dev);
1841  	adapter = pi->adapter;
1842  	qidx = skb_get_queue_mapping(skb);
1843  	WARN_ON(qidx >= pi->nqsets);
1844  	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1845  
1846  	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1847  	 * transfers have completed.
1848  	 */
1849  	reclaim_completed_tx(adapter, &txq->q, -1, true);
1850  
1851  	/* Calculate the number of flits and TX Descriptors we're going to
1852  	 * need along with how many TX Descriptors will be left over after
1853  	 * we inject our Work Request.
1854  	 */
1855  	flits = t4vf_calc_tx_flits(skb);
1856  	ndesc = flits_to_desc(flits);
1857  	credits = txq_avail(&txq->q) - ndesc;
1858  
1859  	if (unlikely(credits < 0)) {
1860  		/* Not enough room for this packet's Work Request.  Stop the
1861  		 * TX Queue and return a "busy" condition.  The queue will get
1862  		 * started later on when the firmware informs us that space
1863  		 * has opened up.
1864  		 */
1865  		eth_txq_stop(txq);
1866  		dev_err(adapter->pdev_dev,
1867  			"%s: TX ring %u full while queue awake!\n",
1868  			dev->name, qidx);
1869  		return NETDEV_TX_BUSY;
1870  	}
1871  
1872  	last_desc = txq->q.pidx + ndesc - 1;
1873  	if (last_desc >= txq->q.size)
1874  		last_desc -= txq->q.size;
1875  	sgl_sdesc = &txq->q.sdesc[last_desc];
1876  
1877  	if (!t4vf_is_eth_imm(skb) &&
1878  	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1879  				   sgl_sdesc->addr) < 0)) {
1880  		/* We need to map the skb into PCI DMA space (because it can't
1881  		 * be in-lined directly into the Work Request) and the mapping
1882  		 * operation failed.  Record the error and drop the packet.
1883  		 */
1884  		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1885  		txq->mapping_err++;
1886  		goto out_free;
1887  	}
1888  
1889  	chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1890  	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1891  	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1892  		/* After we're done injecting the Work Request for this
1893  		 * packet, we'll be below our "stop threshold" so stop the TX
1894  		 * Queue now and schedule a request for an SGE Egress Queue
1895  		 * Update message.  The queue will get started later on when
1896  		 * the firmware processes this Work Request and sends us an
1897  		 * Egress Queue Status Update message indicating that space
1898  		 * has opened up.
1899  		 */
1900  		eth_txq_stop(txq);
1901  		if (chip_ver > CHELSIO_T5)
1902  			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1903  	}
1904  
1905  	/* Start filling in our Work Request.  Note that we do _not_ handle
1906  	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1907  	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1908  	 * do something else here.
1909  	 */
1910  	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1911  	wr = (void *)&txq->q.desc[txq->q.pidx];
1912  	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1913  	wr->r3[0] = cpu_to_be32(0);
1914  	wr->r3[1] = cpu_to_be32(0);
1915  	skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
1916  	end = (u64 *)wr + flits;
1917  
1918  	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1919  	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1920  	 * just use a TX Packet CPL message.
1921  	 */
1922  	ssi = skb_shinfo(skb);
1923  	if (ssi->gso_size) {
1924  		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1925  		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1926  		int l3hdr_len = skb_network_header_len(skb);
1927  		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1928  
1929  		wr->op_immdlen =
1930  			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1931  				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1932  						    sizeof(*cpl)));
1933  		 /* Fill in the LSO CPL message. */
1934  		lso->lso_ctrl =
1935  			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1936  				    LSO_FIRST_SLICE_F |
1937  				    LSO_LAST_SLICE_F |
1938  				    LSO_IPV6_V(v6) |
1939  				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1940  				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1941  				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1942  		lso->ipid_ofst = cpu_to_be16(0);
1943  		lso->mss = cpu_to_be16(ssi->gso_size);
1944  		lso->seqno_offset = cpu_to_be32(0);
1945  		if (is_t4(adapter->params.chip))
1946  			lso->len = cpu_to_be32(skb->len);
1947  		else
1948  			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1949  
1950  		/* Set up TX Packet CPL pointer, control word and perform
1951  		 * accounting.
1952  		 */
1953  		cpl = (void *)(lso + 1);
1954  
1955  		if (chip_ver <= CHELSIO_T5)
1956  			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1957  		else
1958  			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1959  
1960  		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1961  					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1962  			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1963  		txq->tso++;
1964  		txq->tx_cso += ssi->gso_segs;
1965  	} else {
1966  		int len;
1967  
1968  		len = (t4vf_is_eth_imm(skb)
1969  		       ? skb->len + sizeof(*cpl)
1970  		       : sizeof(*cpl));
1971  		wr->op_immdlen =
1972  			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1973  				    FW_WR_IMMDLEN_V(len));
1974  
1975  		/* Set up TX Packet CPL pointer, control word and perform
1976  		 * accounting.
1977  		 */
1978  		cpl = (void *)(wr + 1);
1979  		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1980  			cntrl = hwcsum(adapter->params.chip, skb) |
1981  				TXPKT_IPCSUM_DIS_F;
1982  			txq->tx_cso++;
1983  		} else {
1984  			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1985  		}
1986  	}
1987  
1988  	/* If there's a VLAN tag present, add that to the list of things to
1989  	 * do in this Work Request.
1990  	 */
1991  	if (skb_vlan_tag_present(skb)) {
1992  		txq->vlan_ins++;
1993  		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1994  	}
1995  
1996  	 /* Fill in the TX Packet CPL message header. */
1997  	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1998  				 TXPKT_INTF_V(pi->port_id) |
1999  				 TXPKT_PF_V(0));
2000  	cpl->pack = cpu_to_be16(0);
2001  	cpl->len = cpu_to_be16(skb->len);
2002  	cpl->ctrl1 = cpu_to_be64(cntrl);
2003  
2004  	/* Fill in the body of the TX Packet CPL message with either in-lined
2005  	 * data or a Scatter/Gather List.
2006  	 */
2007  	if (t4vf_is_eth_imm(skb)) {
2008  		/* In-line the packet's data and free the skb since we don't
2009  		 * need it any longer.
2010  		 */
2011  		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
2012  		dev_consume_skb_any(skb);
2013  	} else {
2014  		/* Write the skb's Scatter/Gather list into the TX Packet CPL
2015  		 * message and retain a pointer to the skb so we can free it
2016  		 * later when its DMA completes.  (We store the skb pointer
2017  		 * in the Software Descriptor corresponding to the last TX
2018  		 * Descriptor used by the Work Request.)
2019  		 *
2020  		 * The retained skb will be freed when the corresponding TX
2021  		 * Descriptors are reclaimed after their DMAs complete.
2022  		 * However, this could take quite a while since, in general,
2023  		 * the hardware is set up to be lazy about sending DMA
2024  		 * completion notifications to us and we mostly perform TX
2025  		 * reclaims in the transmit routine.
2026  		 *
2027  		 * This is good for performamce but means that we rely on new
2028  		 * TX packets arriving to run the destructors of completed
2029  		 * packets, which open up space in their sockets' send queues.
2030  		 * Sometimes we do not get such new packets causing TX to
2031  		 * stall.  A single UDP transmitter is a good example of this
2032  		 * situation.  We have a clean up timer that periodically
2033  		 * reclaims completed packets but it doesn't run often enough
2034  		 * (nor do we want it to) to prevent lengthy stalls.  A
2035  		 * solution to this problem is to run the destructor early,
2036  		 * after the packet is queued but before it's DMAd.  A con is
2037  		 * that we lie to socket memory accounting, but the amount of
2038  		 * extra memory is reasonable (limited by the number of TX
2039  		 * descriptors), the packets do actually get freed quickly by
2040  		 * new packets almost always, and for protocols like TCP that
2041  		 * wait for acks to really free up the data the extra memory
2042  		 * is even less.  On the positive side we run the destructors
2043  		 * on the sending CPU rather than on a potentially different
2044  		 * completing CPU, usually a good thing.
2045  		 *
2046  		 * Run the destructor before telling the DMA engine about the
2047  		 * packet to make sure it doesn't complete and get freed
2048  		 * prematurely.
2049  		 */
2050  		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
2051  		struct sge_txq *tq = &txq->q;
2052  
2053  		/* If the Work Request header was an exact multiple of our TX
2054  		 * Descriptor length, then it's possible that the starting SGL
2055  		 * pointer lines up exactly with the end of our TX Descriptor
2056  		 * ring.  If that's the case, wrap around to the beginning
2057  		 * here ...
2058  		 */
2059  		if (unlikely((void *)sgl == (void *)tq->stat)) {
2060  			sgl = (void *)tq->desc;
2061  			end = (void *)((void *)tq->desc +
2062  				       ((void *)end - (void *)tq->stat));
2063  		}
2064  
2065  		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
2066  		skb_orphan(skb);
2067  		sgl_sdesc->skb = skb;
2068  	}
2069  
2070  	/* Advance our internal TX Queue state, tell the hardware about
2071  	 * the new TX descriptors and return success.
2072  	 */
2073  	txq_advance(&txq->q, ndesc);
2074  
2075  	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
2076  	return NETDEV_TX_OK;
2077  
2078  out_free:
2079  	/* An error of some sort happened.  Free the TX skb and tell the
2080  	 * OS that we've "dealt" with the packet ...
2081  	 */
2082  	dev_kfree_skb_any(skb);
2083  	return NETDEV_TX_OK;
2084  }
2085  
2086  /**
2087   * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2088   * @q: the SGE control Tx queue
2089   *
2090   * This is a variant of cxgb4_reclaim_completed_tx() that is used
2091   * for Tx queues that send only immediate data (presently just
2092   * the control queues) and	thus do not have any sk_buffs to release.
2093   */
reclaim_completed_tx_imm(struct sge_txq * q)2094  static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2095  {
2096  	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2097  	int reclaim = hw_cidx - q->cidx;
2098  
2099  	if (reclaim < 0)
2100  		reclaim += q->size;
2101  
2102  	q->in_use -= reclaim;
2103  	q->cidx = hw_cidx;
2104  }
2105  
eosw_txq_advance_index(u32 * idx,u32 n,u32 max)2106  static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2107  {
2108  	u32 val = *idx + n;
2109  
2110  	if (val >= max)
2111  		val -= max;
2112  
2113  	*idx = val;
2114  }
2115  
cxgb4_eosw_txq_free_desc(struct adapter * adap,struct sge_eosw_txq * eosw_txq,u32 ndesc)2116  void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2117  			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2118  {
2119  	struct tx_sw_desc *d;
2120  
2121  	d = &eosw_txq->desc[eosw_txq->last_cidx];
2122  	while (ndesc--) {
2123  		if (d->skb) {
2124  			if (d->addr[0]) {
2125  				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2126  				memset(d->addr, 0, sizeof(d->addr));
2127  			}
2128  			dev_consume_skb_any(d->skb);
2129  			d->skb = NULL;
2130  		}
2131  		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2132  				       eosw_txq->ndesc);
2133  		d = &eosw_txq->desc[eosw_txq->last_cidx];
2134  	}
2135  }
2136  
eosw_txq_advance(struct sge_eosw_txq * eosw_txq,u32 n)2137  static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2138  {
2139  	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2140  	eosw_txq->inuse += n;
2141  }
2142  
eosw_txq_enqueue(struct sge_eosw_txq * eosw_txq,struct sk_buff * skb)2143  static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2144  				   struct sk_buff *skb)
2145  {
2146  	if (eosw_txq->inuse == eosw_txq->ndesc)
2147  		return -ENOMEM;
2148  
2149  	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2150  	return 0;
2151  }
2152  
eosw_txq_peek(struct sge_eosw_txq * eosw_txq)2153  static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2154  {
2155  	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2156  }
2157  
ethofld_calc_tx_flits(struct adapter * adap,struct sk_buff * skb,u32 hdr_len)2158  static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2159  				       struct sk_buff *skb, u32 hdr_len)
2160  {
2161  	u8 flits, nsgl = 0;
2162  	u32 wrlen;
2163  
2164  	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2165  	if (skb_shinfo(skb)->gso_size &&
2166  	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2167  		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2168  
2169  	wrlen += roundup(hdr_len, 16);
2170  
2171  	/* Packet headers + WR + CPLs */
2172  	flits = DIV_ROUND_UP(wrlen, 8);
2173  
2174  	if (skb_shinfo(skb)->nr_frags > 0) {
2175  		if (skb_headlen(skb) - hdr_len)
2176  			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2177  		else
2178  			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2179  	} else if (skb->len - hdr_len) {
2180  		nsgl = sgl_len(1);
2181  	}
2182  
2183  	return flits + nsgl;
2184  }
2185  
write_eo_wr(struct adapter * adap,struct sge_eosw_txq * eosw_txq,struct sk_buff * skb,struct fw_eth_tx_eo_wr * wr,u32 hdr_len,u32 wrlen)2186  static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2187  			 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2188  			 u32 hdr_len, u32 wrlen)
2189  {
2190  	const struct skb_shared_info *ssi = skb_shinfo(skb);
2191  	struct cpl_tx_pkt_core *cpl;
2192  	u32 immd_len, wrlen16;
2193  	bool compl = false;
2194  	u8 ver, proto;
2195  
2196  	ver = ip_hdr(skb)->version;
2197  	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2198  
2199  	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2200  	immd_len = sizeof(struct cpl_tx_pkt_core);
2201  	if (skb_shinfo(skb)->gso_size &&
2202  	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2203  		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2204  	immd_len += hdr_len;
2205  
2206  	if (!eosw_txq->ncompl ||
2207  	    (eosw_txq->last_compl + wrlen16) >=
2208  	    (adap->params.ofldq_wr_cred / 2)) {
2209  		compl = true;
2210  		eosw_txq->ncompl++;
2211  		eosw_txq->last_compl = 0;
2212  	}
2213  
2214  	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2215  				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2216  				     FW_WR_COMPL_V(compl));
2217  	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2218  					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2219  	wr->r3 = 0;
2220  	if (proto == IPPROTO_UDP) {
2221  		cpl = write_eo_udp_wr(skb, wr, hdr_len);
2222  	} else {
2223  		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2224  		wr->u.tcpseg.ethlen = skb_network_offset(skb);
2225  		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2226  		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2227  		wr->u.tcpseg.tsclk_tsoff = 0;
2228  		wr->u.tcpseg.r4 = 0;
2229  		wr->u.tcpseg.r5 = 0;
2230  		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2231  
2232  		if (ssi->gso_size) {
2233  			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2234  
2235  			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2236  			cpl = write_tso_wr(adap, skb, lso);
2237  		} else {
2238  			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2239  			cpl = (void *)(wr + 1);
2240  		}
2241  	}
2242  
2243  	eosw_txq->cred -= wrlen16;
2244  	eosw_txq->last_compl += wrlen16;
2245  	return cpl;
2246  }
2247  
ethofld_hard_xmit(struct net_device * dev,struct sge_eosw_txq * eosw_txq)2248  static int ethofld_hard_xmit(struct net_device *dev,
2249  			     struct sge_eosw_txq *eosw_txq)
2250  {
2251  	struct port_info *pi = netdev2pinfo(dev);
2252  	struct adapter *adap = netdev2adap(dev);
2253  	u32 wrlen, wrlen16, hdr_len, data_len;
2254  	enum sge_eosw_state next_state;
2255  	u64 cntrl, *start, *end, *sgl;
2256  	struct sge_eohw_txq *eohw_txq;
2257  	struct cpl_tx_pkt_core *cpl;
2258  	struct fw_eth_tx_eo_wr *wr;
2259  	bool skip_eotx_wr = false;
2260  	struct tx_sw_desc *d;
2261  	struct sk_buff *skb;
2262  	int left, ret = 0;
2263  	u8 flits, ndesc;
2264  
2265  	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2266  	spin_lock(&eohw_txq->lock);
2267  	reclaim_completed_tx_imm(&eohw_txq->q);
2268  
2269  	d = &eosw_txq->desc[eosw_txq->last_pidx];
2270  	skb = d->skb;
2271  	skb_tx_timestamp(skb);
2272  
2273  	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2274  	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2275  		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2276  		hdr_len = skb->len;
2277  		data_len = 0;
2278  		flits = DIV_ROUND_UP(hdr_len, 8);
2279  		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2280  			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2281  		else
2282  			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2283  		skip_eotx_wr = true;
2284  	} else {
2285  		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2286  		data_len = skb->len - hdr_len;
2287  		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2288  	}
2289  	ndesc = flits_to_desc(flits);
2290  	wrlen = flits * 8;
2291  	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2292  
2293  	left = txq_avail(&eohw_txq->q) - ndesc;
2294  
2295  	/* If there are no descriptors left in hardware queues or no
2296  	 * CPL credits left in software queues, then wait for them
2297  	 * to come back and retry again. Note that we always request
2298  	 * for credits update via interrupt for every half credits
2299  	 * consumed. So, the interrupt will eventually restore the
2300  	 * credits and invoke the Tx path again.
2301  	 */
2302  	if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2303  		ret = -ENOMEM;
2304  		goto out_unlock;
2305  	}
2306  
2307  	if (unlikely(skip_eotx_wr)) {
2308  		start = (u64 *)wr;
2309  		eosw_txq->state = next_state;
2310  		eosw_txq->cred -= wrlen16;
2311  		eosw_txq->ncompl++;
2312  		eosw_txq->last_compl = 0;
2313  		goto write_wr_headers;
2314  	}
2315  
2316  	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2317  	cntrl = hwcsum(adap->params.chip, skb);
2318  	if (skb_vlan_tag_present(skb))
2319  		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2320  
2321  	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2322  				 TXPKT_INTF_V(pi->tx_chan) |
2323  				 TXPKT_PF_V(adap->pf));
2324  	cpl->pack = 0;
2325  	cpl->len = cpu_to_be16(skb->len);
2326  	cpl->ctrl1 = cpu_to_be64(cntrl);
2327  
2328  	start = (u64 *)(cpl + 1);
2329  
2330  write_wr_headers:
2331  	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2332  					  hdr_len);
2333  	if (data_len) {
2334  		ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2335  		if (unlikely(ret)) {
2336  			memset(d->addr, 0, sizeof(d->addr));
2337  			eohw_txq->mapping_err++;
2338  			goto out_unlock;
2339  		}
2340  
2341  		end = (u64 *)wr + flits;
2342  		if (unlikely(start > sgl)) {
2343  			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2344  			end = (void *)eohw_txq->q.desc + left;
2345  		}
2346  
2347  		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2348  			/* If current position is already at the end of the
2349  			 * txq, reset the current to point to start of the queue
2350  			 * and update the end ptr as well.
2351  			 */
2352  			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2353  
2354  			end = (void *)eohw_txq->q.desc + left;
2355  			sgl = (void *)eohw_txq->q.desc;
2356  		}
2357  
2358  		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2359  				d->addr);
2360  	}
2361  
2362  	if (skb_shinfo(skb)->gso_size) {
2363  		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2364  			eohw_txq->uso++;
2365  		else
2366  			eohw_txq->tso++;
2367  		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2368  	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2369  		eohw_txq->tx_cso++;
2370  	}
2371  
2372  	if (skb_vlan_tag_present(skb))
2373  		eohw_txq->vlan_ins++;
2374  
2375  	txq_advance(&eohw_txq->q, ndesc);
2376  	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2377  	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2378  
2379  out_unlock:
2380  	spin_unlock(&eohw_txq->lock);
2381  	return ret;
2382  }
2383  
ethofld_xmit(struct net_device * dev,struct sge_eosw_txq * eosw_txq)2384  static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2385  {
2386  	struct sk_buff *skb;
2387  	int pktcount, ret;
2388  
2389  	switch (eosw_txq->state) {
2390  	case CXGB4_EO_STATE_ACTIVE:
2391  	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2392  	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2393  		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2394  		if (pktcount < 0)
2395  			pktcount += eosw_txq->ndesc;
2396  		break;
2397  	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2398  	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2399  	case CXGB4_EO_STATE_CLOSED:
2400  	default:
2401  		return;
2402  	}
2403  
2404  	while (pktcount--) {
2405  		skb = eosw_txq_peek(eosw_txq);
2406  		if (!skb) {
2407  			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2408  					       eosw_txq->ndesc);
2409  			continue;
2410  		}
2411  
2412  		ret = ethofld_hard_xmit(dev, eosw_txq);
2413  		if (ret)
2414  			break;
2415  	}
2416  }
2417  
cxgb4_ethofld_xmit(struct sk_buff * skb,struct net_device * dev)2418  static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2419  				      struct net_device *dev)
2420  {
2421  	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2422  	struct port_info *pi = netdev2pinfo(dev);
2423  	struct adapter *adap = netdev2adap(dev);
2424  	struct sge_eosw_txq *eosw_txq;
2425  	u32 qid;
2426  	int ret;
2427  
2428  	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2429  	if (ret)
2430  		goto out_free;
2431  
2432  	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2433  	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2434  	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2435  	spin_lock_bh(&eosw_txq->lock);
2436  	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2437  		goto out_unlock;
2438  
2439  	ret = eosw_txq_enqueue(eosw_txq, skb);
2440  	if (ret)
2441  		goto out_unlock;
2442  
2443  	/* SKB is queued for processing until credits are available.
2444  	 * So, call the destructor now and we'll free the skb later
2445  	 * after it has been successfully transmitted.
2446  	 */
2447  	skb_orphan(skb);
2448  
2449  	eosw_txq_advance(eosw_txq, 1);
2450  	ethofld_xmit(dev, eosw_txq);
2451  	spin_unlock_bh(&eosw_txq->lock);
2452  	return NETDEV_TX_OK;
2453  
2454  out_unlock:
2455  	spin_unlock_bh(&eosw_txq->lock);
2456  out_free:
2457  	dev_kfree_skb_any(skb);
2458  	return NETDEV_TX_OK;
2459  }
2460  
t4_start_xmit(struct sk_buff * skb,struct net_device * dev)2461  netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2462  {
2463  	struct port_info *pi = netdev_priv(dev);
2464  	u16 qid = skb_get_queue_mapping(skb);
2465  
2466  	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2467  		return cxgb4_vf_eth_xmit(skb, dev);
2468  
2469  	if (unlikely(qid >= pi->nqsets))
2470  		return cxgb4_ethofld_xmit(skb, dev);
2471  
2472  	if (is_ptp_enabled(skb, dev)) {
2473  		struct adapter *adap = netdev2adap(dev);
2474  		netdev_tx_t ret;
2475  
2476  		spin_lock(&adap->ptp_lock);
2477  		ret = cxgb4_eth_xmit(skb, dev);
2478  		spin_unlock(&adap->ptp_lock);
2479  		return ret;
2480  	}
2481  
2482  	return cxgb4_eth_xmit(skb, dev);
2483  }
2484  
eosw_txq_flush_pending_skbs(struct sge_eosw_txq * eosw_txq)2485  static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2486  {
2487  	int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2488  	int pidx = eosw_txq->pidx;
2489  	struct sk_buff *skb;
2490  
2491  	if (!pktcount)
2492  		return;
2493  
2494  	if (pktcount < 0)
2495  		pktcount += eosw_txq->ndesc;
2496  
2497  	while (pktcount--) {
2498  		pidx--;
2499  		if (pidx < 0)
2500  			pidx += eosw_txq->ndesc;
2501  
2502  		skb = eosw_txq->desc[pidx].skb;
2503  		if (skb) {
2504  			dev_consume_skb_any(skb);
2505  			eosw_txq->desc[pidx].skb = NULL;
2506  			eosw_txq->inuse--;
2507  		}
2508  	}
2509  
2510  	eosw_txq->pidx = eosw_txq->last_pidx + 1;
2511  }
2512  
2513  /**
2514   * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2515   * @dev: netdevice
2516   * @eotid: ETHOFLD tid to bind/unbind
2517   * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2518   *
2519   * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2520   * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2521   * a traffic class.
2522   */
cxgb4_ethofld_send_flowc(struct net_device * dev,u32 eotid,u32 tc)2523  int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2524  {
2525  	struct port_info *pi = netdev2pinfo(dev);
2526  	struct adapter *adap = netdev2adap(dev);
2527  	enum sge_eosw_state next_state;
2528  	struct sge_eosw_txq *eosw_txq;
2529  	u32 len, len16, nparams = 6;
2530  	struct fw_flowc_wr *flowc;
2531  	struct eotid_entry *entry;
2532  	struct sge_ofld_rxq *rxq;
2533  	struct sk_buff *skb;
2534  	int ret = 0;
2535  
2536  	len = struct_size(flowc, mnemval, nparams);
2537  	len16 = DIV_ROUND_UP(len, 16);
2538  
2539  	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2540  	if (!entry)
2541  		return -ENOMEM;
2542  
2543  	eosw_txq = (struct sge_eosw_txq *)entry->data;
2544  	if (!eosw_txq)
2545  		return -ENOMEM;
2546  
2547  	if (!(adap->flags & CXGB4_FW_OK)) {
2548  		/* Don't stall caller when access to FW is lost */
2549  		complete(&eosw_txq->completion);
2550  		return -EIO;
2551  	}
2552  
2553  	skb = alloc_skb(len, GFP_KERNEL);
2554  	if (!skb)
2555  		return -ENOMEM;
2556  
2557  	spin_lock_bh(&eosw_txq->lock);
2558  	if (tc != FW_SCHED_CLS_NONE) {
2559  		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2560  			goto out_free_skb;
2561  
2562  		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2563  	} else {
2564  		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2565  			goto out_free_skb;
2566  
2567  		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2568  	}
2569  
2570  	flowc = __skb_put(skb, len);
2571  	memset(flowc, 0, len);
2572  
2573  	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2574  	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2575  					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2576  	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2577  					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2578  					   FW_WR_COMPL_V(1));
2579  	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2580  	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2581  	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2582  	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2583  	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2584  	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2585  	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2586  	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2587  	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2588  	flowc->mnemval[4].val = cpu_to_be32(tc);
2589  	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2590  	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2591  					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2592  					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2593  
2594  	/* Free up any pending skbs to ensure there's room for
2595  	 * termination FLOWC.
2596  	 */
2597  	if (tc == FW_SCHED_CLS_NONE)
2598  		eosw_txq_flush_pending_skbs(eosw_txq);
2599  
2600  	ret = eosw_txq_enqueue(eosw_txq, skb);
2601  	if (ret)
2602  		goto out_free_skb;
2603  
2604  	eosw_txq->state = next_state;
2605  	eosw_txq->flowc_idx = eosw_txq->pidx;
2606  	eosw_txq_advance(eosw_txq, 1);
2607  	ethofld_xmit(dev, eosw_txq);
2608  
2609  	spin_unlock_bh(&eosw_txq->lock);
2610  	return 0;
2611  
2612  out_free_skb:
2613  	dev_consume_skb_any(skb);
2614  	spin_unlock_bh(&eosw_txq->lock);
2615  	return ret;
2616  }
2617  
2618  /**
2619   *	is_imm - check whether a packet can be sent as immediate data
2620   *	@skb: the packet
2621   *
2622   *	Returns true if a packet can be sent as a WR with immediate data.
2623   */
is_imm(const struct sk_buff * skb)2624  static inline int is_imm(const struct sk_buff *skb)
2625  {
2626  	return skb->len <= MAX_CTRL_WR_LEN;
2627  }
2628  
2629  /**
2630   *	ctrlq_check_stop - check if a control queue is full and should stop
2631   *	@q: the queue
2632   *	@wr: most recent WR written to the queue
2633   *
2634   *	Check if a control queue has become full and should be stopped.
2635   *	We clean up control queue descriptors very lazily, only when we are out.
2636   *	If the queue is still full after reclaiming any completed descriptors
2637   *	we suspend it and have the last WR wake it up.
2638   */
ctrlq_check_stop(struct sge_ctrl_txq * q,struct fw_wr_hdr * wr)2639  static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2640  {
2641  	reclaim_completed_tx_imm(&q->q);
2642  	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2643  		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2644  		q->q.stops++;
2645  		q->full = 1;
2646  	}
2647  }
2648  
2649  #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
2650  
cxgb4_selftest_lb_pkt(struct net_device * netdev)2651  int cxgb4_selftest_lb_pkt(struct net_device *netdev)
2652  {
2653  	struct port_info *pi = netdev_priv(netdev);
2654  	struct adapter *adap = pi->adapter;
2655  	struct cxgb4_ethtool_lb_test *lb;
2656  	int ret, i = 0, pkt_len, credits;
2657  	struct fw_eth_tx_pkt_wr *wr;
2658  	struct cpl_tx_pkt_core *cpl;
2659  	u32 ctrl0, ndesc, flits;
2660  	struct sge_eth_txq *q;
2661  	u8 *sgl;
2662  
2663  	pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
2664  
2665  	flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
2666  			     sizeof(__be64));
2667  	ndesc = flits_to_desc(flits);
2668  
2669  	lb = &pi->ethtool_lb;
2670  	lb->loopback = 1;
2671  
2672  	q = &adap->sge.ethtxq[pi->first_qset];
2673  	__netif_tx_lock_bh(q->txq);
2674  
2675  	reclaim_completed_tx(adap, &q->q, -1, true);
2676  	credits = txq_avail(&q->q) - ndesc;
2677  	if (unlikely(credits < 0)) {
2678  		__netif_tx_unlock_bh(q->txq);
2679  		return -ENOMEM;
2680  	}
2681  
2682  	wr = (void *)&q->q.desc[q->q.pidx];
2683  	memset(wr, 0, sizeof(struct tx_desc));
2684  
2685  	wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
2686  			       FW_WR_IMMDLEN_V(pkt_len +
2687  			       sizeof(*cpl)));
2688  	wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
2689  	wr->r3 = cpu_to_be64(0);
2690  
2691  	cpl = (void *)(wr + 1);
2692  	sgl = (u8 *)(cpl + 1);
2693  
2694  	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
2695  		TXPKT_INTF_V(pi->tx_chan + 4);
2696  
2697  	cpl->ctrl0 = htonl(ctrl0);
2698  	cpl->pack = htons(0);
2699  	cpl->len = htons(pkt_len);
2700  	cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
2701  
2702  	eth_broadcast_addr(sgl);
2703  	i += ETH_ALEN;
2704  	ether_addr_copy(&sgl[i], netdev->dev_addr);
2705  	i += ETH_ALEN;
2706  
2707  	snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
2708  		 CXGB4_SELFTEST_LB_STR);
2709  
2710  	init_completion(&lb->completion);
2711  	txq_advance(&q->q, ndesc);
2712  	cxgb4_ring_tx_db(adap, &q->q, ndesc);
2713  	__netif_tx_unlock_bh(q->txq);
2714  
2715  	/* wait for the pkt to return */
2716  	ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
2717  	if (!ret)
2718  		ret = -ETIMEDOUT;
2719  	else
2720  		ret = lb->result;
2721  
2722  	lb->loopback = 0;
2723  
2724  	return ret;
2725  }
2726  
2727  /**
2728   *	ctrl_xmit - send a packet through an SGE control Tx queue
2729   *	@q: the control queue
2730   *	@skb: the packet
2731   *
2732   *	Send a packet through an SGE control Tx queue.  Packets sent through
2733   *	a control queue must fit entirely as immediate data.
2734   */
ctrl_xmit(struct sge_ctrl_txq * q,struct sk_buff * skb)2735  static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2736  {
2737  	unsigned int ndesc;
2738  	struct fw_wr_hdr *wr;
2739  
2740  	if (unlikely(!is_imm(skb))) {
2741  		WARN_ON(1);
2742  		dev_kfree_skb(skb);
2743  		return NET_XMIT_DROP;
2744  	}
2745  
2746  	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2747  	spin_lock(&q->sendq.lock);
2748  
2749  	if (unlikely(q->full)) {
2750  		skb->priority = ndesc;                  /* save for restart */
2751  		__skb_queue_tail(&q->sendq, skb);
2752  		spin_unlock(&q->sendq.lock);
2753  		return NET_XMIT_CN;
2754  	}
2755  
2756  	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2757  	cxgb4_inline_tx_skb(skb, &q->q, wr);
2758  
2759  	txq_advance(&q->q, ndesc);
2760  	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2761  		ctrlq_check_stop(q, wr);
2762  
2763  	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2764  	spin_unlock(&q->sendq.lock);
2765  
2766  	kfree_skb(skb);
2767  	return NET_XMIT_SUCCESS;
2768  }
2769  
2770  /**
2771   *	restart_ctrlq - restart a suspended control queue
2772   *	@t: pointer to the tasklet associated with this handler
2773   *
2774   *	Resumes transmission on a suspended Tx control queue.
2775   */
restart_ctrlq(struct tasklet_struct * t)2776  static void restart_ctrlq(struct tasklet_struct *t)
2777  {
2778  	struct sk_buff *skb;
2779  	unsigned int written = 0;
2780  	struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
2781  
2782  	spin_lock(&q->sendq.lock);
2783  	reclaim_completed_tx_imm(&q->q);
2784  	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2785  
2786  	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2787  		struct fw_wr_hdr *wr;
2788  		unsigned int ndesc = skb->priority;     /* previously saved */
2789  
2790  		written += ndesc;
2791  		/* Write descriptors and free skbs outside the lock to limit
2792  		 * wait times.  q->full is still set so new skbs will be queued.
2793  		 */
2794  		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2795  		txq_advance(&q->q, ndesc);
2796  		spin_unlock(&q->sendq.lock);
2797  
2798  		cxgb4_inline_tx_skb(skb, &q->q, wr);
2799  		kfree_skb(skb);
2800  
2801  		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2802  			unsigned long old = q->q.stops;
2803  
2804  			ctrlq_check_stop(q, wr);
2805  			if (q->q.stops != old) {          /* suspended anew */
2806  				spin_lock(&q->sendq.lock);
2807  				goto ringdb;
2808  			}
2809  		}
2810  		if (written > 16) {
2811  			cxgb4_ring_tx_db(q->adap, &q->q, written);
2812  			written = 0;
2813  		}
2814  		spin_lock(&q->sendq.lock);
2815  	}
2816  	q->full = 0;
2817  ringdb:
2818  	if (written)
2819  		cxgb4_ring_tx_db(q->adap, &q->q, written);
2820  	spin_unlock(&q->sendq.lock);
2821  }
2822  
2823  /**
2824   *	t4_mgmt_tx - send a management message
2825   *	@adap: the adapter
2826   *	@skb: the packet containing the management message
2827   *
2828   *	Send a management message through control queue 0.
2829   */
t4_mgmt_tx(struct adapter * adap,struct sk_buff * skb)2830  int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2831  {
2832  	int ret;
2833  
2834  	local_bh_disable();
2835  	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2836  	local_bh_enable();
2837  	return ret;
2838  }
2839  
2840  /**
2841   *	is_ofld_imm - check whether a packet can be sent as immediate data
2842   *	@skb: the packet
2843   *
2844   *	Returns true if a packet can be sent as an offload WR with immediate
2845   *	data.
2846   *	FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
2847   *      However, FW_ULPTX_WR commands have a 256 byte immediate only
2848   *      payload limit.
2849   */
is_ofld_imm(const struct sk_buff * skb)2850  static inline int is_ofld_imm(const struct sk_buff *skb)
2851  {
2852  	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2853  	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2854  
2855  	if (unlikely(opcode == FW_ULPTX_WR))
2856  		return skb->len <= MAX_IMM_ULPTX_WR_LEN;
2857  	else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2858  		return skb->len <= SGE_MAX_WR_LEN;
2859  	else
2860  		return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
2861  }
2862  
2863  /**
2864   *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2865   *	@skb: the packet
2866   *
2867   *	Returns the number of flits needed for the given offload packet.
2868   *	These packets are already fully constructed and no additional headers
2869   *	will be added.
2870   */
calc_tx_flits_ofld(const struct sk_buff * skb)2871  static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2872  {
2873  	unsigned int flits, cnt;
2874  
2875  	if (is_ofld_imm(skb))
2876  		return DIV_ROUND_UP(skb->len, 8);
2877  
2878  	flits = skb_transport_offset(skb) / 8U;   /* headers */
2879  	cnt = skb_shinfo(skb)->nr_frags;
2880  	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2881  		cnt++;
2882  	return flits + sgl_len(cnt);
2883  }
2884  
2885  /**
2886   *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2887   *	@q: the queue to stop
2888   *
2889   *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2890   *	inability to map packets.  A periodic timer attempts to restart
2891   *	queues so marked.
2892   */
txq_stop_maperr(struct sge_uld_txq * q)2893  static void txq_stop_maperr(struct sge_uld_txq *q)
2894  {
2895  	q->mapping_err++;
2896  	q->q.stops++;
2897  	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2898  		q->adap->sge.txq_maperr);
2899  }
2900  
2901  /**
2902   *	ofldtxq_stop - stop an offload Tx queue that has become full
2903   *	@q: the queue to stop
2904   *	@wr: the Work Request causing the queue to become full
2905   *
2906   *	Stops an offload Tx queue that has become full and modifies the packet
2907   *	being written to request a wakeup.
2908   */
ofldtxq_stop(struct sge_uld_txq * q,struct fw_wr_hdr * wr)2909  static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2910  {
2911  	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2912  	q->q.stops++;
2913  	q->full = 1;
2914  }
2915  
2916  /**
2917   *	service_ofldq - service/restart a suspended offload queue
2918   *	@q: the offload queue
2919   *
2920   *	Services an offload Tx queue by moving packets from its Pending Send
2921   *	Queue to the Hardware TX ring.  The function starts and ends with the
2922   *	Send Queue locked, but drops the lock while putting the skb at the
2923   *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2924   *	allows more skbs to be added to the Send Queue by other threads.
2925   *	The packet being processed at the head of the Pending Send Queue is
2926   *	left on the queue in case we experience DMA Mapping errors, etc.
2927   *	and need to give up and restart later.
2928   *
2929   *	service_ofldq() can be thought of as a task which opportunistically
2930   *	uses other threads execution contexts.  We use the Offload Queue
2931   *	boolean "service_ofldq_running" to make sure that only one instance
2932   *	is ever running at a time ...
2933   */
service_ofldq(struct sge_uld_txq * q)2934  static void service_ofldq(struct sge_uld_txq *q)
2935  	__must_hold(&q->sendq.lock)
2936  {
2937  	u64 *pos, *before, *end;
2938  	int credits;
2939  	struct sk_buff *skb;
2940  	struct sge_txq *txq;
2941  	unsigned int left;
2942  	unsigned int written = 0;
2943  	unsigned int flits, ndesc;
2944  
2945  	/* If another thread is currently in service_ofldq() processing the
2946  	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2947  	 * that we're doing the work and continue.  Examining/modifying
2948  	 * the Offload Queue boolean "service_ofldq_running" must be done
2949  	 * while holding the Pending Send Queue Lock.
2950  	 */
2951  	if (q->service_ofldq_running)
2952  		return;
2953  	q->service_ofldq_running = true;
2954  
2955  	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2956  		/* We drop the lock while we're working with the skb at the
2957  		 * head of the Pending Send Queue.  This allows more skbs to
2958  		 * be added to the Pending Send Queue while we're working on
2959  		 * this one.  We don't need to lock to guard the TX Ring
2960  		 * updates because only one thread of execution is ever
2961  		 * allowed into service_ofldq() at a time.
2962  		 */
2963  		spin_unlock(&q->sendq.lock);
2964  
2965  		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2966  
2967  		flits = skb->priority;                /* previously saved */
2968  		ndesc = flits_to_desc(flits);
2969  		credits = txq_avail(&q->q) - ndesc;
2970  		BUG_ON(credits < 0);
2971  		if (unlikely(credits < TXQ_STOP_THRES))
2972  			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2973  
2974  		pos = (u64 *)&q->q.desc[q->q.pidx];
2975  		if (is_ofld_imm(skb))
2976  			cxgb4_inline_tx_skb(skb, &q->q, pos);
2977  		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2978  				       (dma_addr_t *)skb->head)) {
2979  			txq_stop_maperr(q);
2980  			spin_lock(&q->sendq.lock);
2981  			break;
2982  		} else {
2983  			int last_desc, hdr_len = skb_transport_offset(skb);
2984  
2985  			/* The WR headers  may not fit within one descriptor.
2986  			 * So we need to deal with wrap-around here.
2987  			 */
2988  			before = (u64 *)pos;
2989  			end = (u64 *)pos + flits;
2990  			txq = &q->q;
2991  			pos = (void *)inline_tx_skb_header(skb, &q->q,
2992  							   (void *)pos,
2993  							   hdr_len);
2994  			if (before > (u64 *)pos) {
2995  				left = (u8 *)end - (u8 *)txq->stat;
2996  				end = (void *)txq->desc + left;
2997  			}
2998  
2999  			/* If current position is already at the end of the
3000  			 * ofld queue, reset the current to point to
3001  			 * start of the queue and update the end ptr as well.
3002  			 */
3003  			if (pos == (u64 *)txq->stat) {
3004  				left = (u8 *)end - (u8 *)txq->stat;
3005  				end = (void *)txq->desc + left;
3006  				pos = (void *)txq->desc;
3007  			}
3008  
3009  			cxgb4_write_sgl(skb, &q->q, (void *)pos,
3010  					end, hdr_len,
3011  					(dma_addr_t *)skb->head);
3012  #ifdef CONFIG_NEED_DMA_MAP_STATE
3013  			skb->dev = q->adap->port[0];
3014  			skb->destructor = deferred_unmap_destructor;
3015  #endif
3016  			last_desc = q->q.pidx + ndesc - 1;
3017  			if (last_desc >= q->q.size)
3018  				last_desc -= q->q.size;
3019  			q->q.sdesc[last_desc].skb = skb;
3020  		}
3021  
3022  		txq_advance(&q->q, ndesc);
3023  		written += ndesc;
3024  		if (unlikely(written > 32)) {
3025  			cxgb4_ring_tx_db(q->adap, &q->q, written);
3026  			written = 0;
3027  		}
3028  
3029  		/* Reacquire the Pending Send Queue Lock so we can unlink the
3030  		 * skb we've just successfully transferred to the TX Ring and
3031  		 * loop for the next skb which may be at the head of the
3032  		 * Pending Send Queue.
3033  		 */
3034  		spin_lock(&q->sendq.lock);
3035  		__skb_unlink(skb, &q->sendq);
3036  		if (is_ofld_imm(skb))
3037  			kfree_skb(skb);
3038  	}
3039  	if (likely(written))
3040  		cxgb4_ring_tx_db(q->adap, &q->q, written);
3041  
3042  	/*Indicate that no thread is processing the Pending Send Queue
3043  	 * currently.
3044  	 */
3045  	q->service_ofldq_running = false;
3046  }
3047  
3048  /**
3049   *	ofld_xmit - send a packet through an offload queue
3050   *	@q: the Tx offload queue
3051   *	@skb: the packet
3052   *
3053   *	Send an offload packet through an SGE offload queue.
3054   */
ofld_xmit(struct sge_uld_txq * q,struct sk_buff * skb)3055  static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
3056  {
3057  	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
3058  	spin_lock(&q->sendq.lock);
3059  
3060  	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
3061  	 * that results in this new skb being the only one on the queue, start
3062  	 * servicing it.  If there are other skbs already on the list, then
3063  	 * either the queue is currently being processed or it's been stopped
3064  	 * for some reason and it'll be restarted at a later time.  Restart
3065  	 * paths are triggered by events like experiencing a DMA Mapping Error
3066  	 * or filling the Hardware TX Ring.
3067  	 */
3068  	__skb_queue_tail(&q->sendq, skb);
3069  	if (q->sendq.qlen == 1)
3070  		service_ofldq(q);
3071  
3072  	spin_unlock(&q->sendq.lock);
3073  	return NET_XMIT_SUCCESS;
3074  }
3075  
3076  /**
3077   *	restart_ofldq - restart a suspended offload queue
3078   *	@t: pointer to the tasklet associated with this handler
3079   *
3080   *	Resumes transmission on a suspended Tx offload queue.
3081   */
restart_ofldq(struct tasklet_struct * t)3082  static void restart_ofldq(struct tasklet_struct *t)
3083  {
3084  	struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
3085  
3086  	spin_lock(&q->sendq.lock);
3087  	q->full = 0;            /* the queue actually is completely empty now */
3088  	service_ofldq(q);
3089  	spin_unlock(&q->sendq.lock);
3090  }
3091  
3092  /**
3093   *	skb_txq - return the Tx queue an offload packet should use
3094   *	@skb: the packet
3095   *
3096   *	Returns the Tx queue an offload packet should use as indicated by bits
3097   *	1-15 in the packet's queue_mapping.
3098   */
skb_txq(const struct sk_buff * skb)3099  static inline unsigned int skb_txq(const struct sk_buff *skb)
3100  {
3101  	return skb->queue_mapping >> 1;
3102  }
3103  
3104  /**
3105   *	is_ctrl_pkt - return whether an offload packet is a control packet
3106   *	@skb: the packet
3107   *
3108   *	Returns whether an offload packet should use an OFLD or a CTRL
3109   *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
3110   */
is_ctrl_pkt(const struct sk_buff * skb)3111  static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
3112  {
3113  	return skb->queue_mapping & 1;
3114  }
3115  
uld_send(struct adapter * adap,struct sk_buff * skb,unsigned int tx_uld_type)3116  static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
3117  			   unsigned int tx_uld_type)
3118  {
3119  	struct sge_uld_txq_info *txq_info;
3120  	struct sge_uld_txq *txq;
3121  	unsigned int idx = skb_txq(skb);
3122  
3123  	if (unlikely(is_ctrl_pkt(skb))) {
3124  		/* Single ctrl queue is a requirement for LE workaround path */
3125  		if (adap->tids.nsftids)
3126  			idx = 0;
3127  		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
3128  	}
3129  
3130  	txq_info = adap->sge.uld_txq_info[tx_uld_type];
3131  	if (unlikely(!txq_info)) {
3132  		WARN_ON(true);
3133  		kfree_skb(skb);
3134  		return NET_XMIT_DROP;
3135  	}
3136  
3137  	txq = &txq_info->uldtxq[idx];
3138  	return ofld_xmit(txq, skb);
3139  }
3140  
3141  /**
3142   *	t4_ofld_send - send an offload packet
3143   *	@adap: the adapter
3144   *	@skb: the packet
3145   *
3146   *	Sends an offload packet.  We use the packet queue_mapping to select the
3147   *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3148   *	should be sent as regular or control, bits 1-15 select the queue.
3149   */
t4_ofld_send(struct adapter * adap,struct sk_buff * skb)3150  int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
3151  {
3152  	int ret;
3153  
3154  	local_bh_disable();
3155  	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
3156  	local_bh_enable();
3157  	return ret;
3158  }
3159  
3160  /**
3161   *	cxgb4_ofld_send - send an offload packet
3162   *	@dev: the net device
3163   *	@skb: the packet
3164   *
3165   *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
3166   *	intended for ULDs.
3167   */
cxgb4_ofld_send(struct net_device * dev,struct sk_buff * skb)3168  int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
3169  {
3170  	return t4_ofld_send(netdev2adap(dev), skb);
3171  }
3172  EXPORT_SYMBOL(cxgb4_ofld_send);
3173  
inline_tx_header(const void * src,const struct sge_txq * q,void * pos,int length)3174  static void *inline_tx_header(const void *src,
3175  			      const struct sge_txq *q,
3176  			      void *pos, int length)
3177  {
3178  	int left = (void *)q->stat - pos;
3179  	u64 *p;
3180  
3181  	if (likely(length <= left)) {
3182  		memcpy(pos, src, length);
3183  		pos += length;
3184  	} else {
3185  		memcpy(pos, src, left);
3186  		memcpy(q->desc, src + left, length - left);
3187  		pos = (void *)q->desc + (length - left);
3188  	}
3189  	/* 0-pad to multiple of 16 */
3190  	p = PTR_ALIGN(pos, 8);
3191  	if ((uintptr_t)p & 8) {
3192  		*p = 0;
3193  		return p + 1;
3194  	}
3195  	return p;
3196  }
3197  
3198  /**
3199   *      ofld_xmit_direct - copy a WR into offload queue
3200   *      @q: the Tx offload queue
3201   *      @src: location of WR
3202   *      @len: WR length
3203   *
3204   *      Copy an immediate WR into an uncontended SGE offload queue.
3205   */
ofld_xmit_direct(struct sge_uld_txq * q,const void * src,unsigned int len)3206  static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3207  			    unsigned int len)
3208  {
3209  	unsigned int ndesc;
3210  	int credits;
3211  	u64 *pos;
3212  
3213  	/* Use the lower limit as the cut-off */
3214  	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3215  		WARN_ON(1);
3216  		return NET_XMIT_DROP;
3217  	}
3218  
3219  	/* Don't return NET_XMIT_CN here as the current
3220  	 * implementation doesn't queue the request
3221  	 * using an skb when the following conditions not met
3222  	 */
3223  	if (!spin_trylock(&q->sendq.lock))
3224  		return NET_XMIT_DROP;
3225  
3226  	if (q->full || !skb_queue_empty(&q->sendq) ||
3227  	    q->service_ofldq_running) {
3228  		spin_unlock(&q->sendq.lock);
3229  		return NET_XMIT_DROP;
3230  	}
3231  	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3232  	credits = txq_avail(&q->q) - ndesc;
3233  	pos = (u64 *)&q->q.desc[q->q.pidx];
3234  
3235  	/* ofldtxq_stop modifies WR header in-situ */
3236  	inline_tx_header(src, &q->q, pos, len);
3237  	if (unlikely(credits < TXQ_STOP_THRES))
3238  		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3239  	txq_advance(&q->q, ndesc);
3240  	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3241  
3242  	spin_unlock(&q->sendq.lock);
3243  	return NET_XMIT_SUCCESS;
3244  }
3245  
cxgb4_immdata_send(struct net_device * dev,unsigned int idx,const void * src,unsigned int len)3246  int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3247  		       const void *src, unsigned int len)
3248  {
3249  	struct sge_uld_txq_info *txq_info;
3250  	struct sge_uld_txq *txq;
3251  	struct adapter *adap;
3252  	int ret;
3253  
3254  	adap = netdev2adap(dev);
3255  
3256  	local_bh_disable();
3257  	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3258  	if (unlikely(!txq_info)) {
3259  		WARN_ON(true);
3260  		local_bh_enable();
3261  		return NET_XMIT_DROP;
3262  	}
3263  	txq = &txq_info->uldtxq[idx];
3264  
3265  	ret = ofld_xmit_direct(txq, src, len);
3266  	local_bh_enable();
3267  	return net_xmit_eval(ret);
3268  }
3269  EXPORT_SYMBOL(cxgb4_immdata_send);
3270  
3271  /**
3272   *	t4_crypto_send - send crypto packet
3273   *	@adap: the adapter
3274   *	@skb: the packet
3275   *
3276   *	Sends crypto packet.  We use the packet queue_mapping to select the
3277   *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3278   *	should be sent as regular or control, bits 1-15 select the queue.
3279   */
t4_crypto_send(struct adapter * adap,struct sk_buff * skb)3280  static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3281  {
3282  	int ret;
3283  
3284  	local_bh_disable();
3285  	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3286  	local_bh_enable();
3287  	return ret;
3288  }
3289  
3290  /**
3291   *	cxgb4_crypto_send - send crypto packet
3292   *	@dev: the net device
3293   *	@skb: the packet
3294   *
3295   *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3296   *	intended for ULDs.
3297   */
cxgb4_crypto_send(struct net_device * dev,struct sk_buff * skb)3298  int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3299  {
3300  	return t4_crypto_send(netdev2adap(dev), skb);
3301  }
3302  EXPORT_SYMBOL(cxgb4_crypto_send);
3303  
copy_frags(struct sk_buff * skb,const struct pkt_gl * gl,unsigned int offset)3304  static inline void copy_frags(struct sk_buff *skb,
3305  			      const struct pkt_gl *gl, unsigned int offset)
3306  {
3307  	int i;
3308  
3309  	/* usually there's just one frag */
3310  	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3311  			     gl->frags[0].offset + offset,
3312  			     gl->frags[0].size - offset);
3313  	skb_shinfo(skb)->nr_frags = gl->nfrags;
3314  	for (i = 1; i < gl->nfrags; i++)
3315  		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3316  				     gl->frags[i].offset,
3317  				     gl->frags[i].size);
3318  
3319  	/* get a reference to the last page, we don't own it */
3320  	get_page(gl->frags[gl->nfrags - 1].page);
3321  }
3322  
3323  /**
3324   *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3325   *	@gl: the gather list
3326   *	@skb_len: size of sk_buff main body if it carries fragments
3327   *	@pull_len: amount of data to move to the sk_buff's main body
3328   *
3329   *	Builds an sk_buff from the given packet gather list.  Returns the
3330   *	sk_buff or %NULL if sk_buff allocation failed.
3331   */
cxgb4_pktgl_to_skb(const struct pkt_gl * gl,unsigned int skb_len,unsigned int pull_len)3332  struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3333  				   unsigned int skb_len, unsigned int pull_len)
3334  {
3335  	struct sk_buff *skb;
3336  
3337  	/*
3338  	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3339  	 * size, which is expected since buffers are at least PAGE_SIZEd.
3340  	 * In this case packets up to RX_COPY_THRES have only one fragment.
3341  	 */
3342  	if (gl->tot_len <= RX_COPY_THRES) {
3343  		skb = dev_alloc_skb(gl->tot_len);
3344  		if (unlikely(!skb))
3345  			goto out;
3346  		__skb_put(skb, gl->tot_len);
3347  		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3348  	} else {
3349  		skb = dev_alloc_skb(skb_len);
3350  		if (unlikely(!skb))
3351  			goto out;
3352  		__skb_put(skb, pull_len);
3353  		skb_copy_to_linear_data(skb, gl->va, pull_len);
3354  
3355  		copy_frags(skb, gl, pull_len);
3356  		skb->len = gl->tot_len;
3357  		skb->data_len = skb->len - pull_len;
3358  		skb->truesize += skb->data_len;
3359  	}
3360  out:	return skb;
3361  }
3362  EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3363  
3364  /**
3365   *	t4_pktgl_free - free a packet gather list
3366   *	@gl: the gather list
3367   *
3368   *	Releases the pages of a packet gather list.  We do not own the last
3369   *	page on the list and do not free it.
3370   */
t4_pktgl_free(const struct pkt_gl * gl)3371  static void t4_pktgl_free(const struct pkt_gl *gl)
3372  {
3373  	int n;
3374  	const struct page_frag *p;
3375  
3376  	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3377  		put_page(p->page);
3378  }
3379  
3380  /*
3381   * Process an MPS trace packet.  Give it an unused protocol number so it won't
3382   * be delivered to anyone and send it to the stack for capture.
3383   */
handle_trace_pkt(struct adapter * adap,const struct pkt_gl * gl)3384  static noinline int handle_trace_pkt(struct adapter *adap,
3385  				     const struct pkt_gl *gl)
3386  {
3387  	struct sk_buff *skb;
3388  
3389  	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3390  	if (unlikely(!skb)) {
3391  		t4_pktgl_free(gl);
3392  		return 0;
3393  	}
3394  
3395  	if (is_t4(adap->params.chip))
3396  		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3397  	else
3398  		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3399  
3400  	skb_reset_mac_header(skb);
3401  	skb->protocol = htons(0xffff);
3402  	skb->dev = adap->port[0];
3403  	netif_receive_skb(skb);
3404  	return 0;
3405  }
3406  
3407  /**
3408   * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3409   * @adap: the adapter
3410   * @hwtstamps: time stamp structure to update
3411   * @sgetstamp: 60bit iqe timestamp
3412   *
3413   * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3414   * which is in Core Clock ticks into ktime_t and assign it
3415   **/
cxgb4_sgetim_to_hwtstamp(struct adapter * adap,struct skb_shared_hwtstamps * hwtstamps,u64 sgetstamp)3416  static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3417  				     struct skb_shared_hwtstamps *hwtstamps,
3418  				     u64 sgetstamp)
3419  {
3420  	u64 ns;
3421  	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3422  
3423  	ns = div_u64(tmp, adap->params.vpd.cclk);
3424  
3425  	memset(hwtstamps, 0, sizeof(*hwtstamps));
3426  	hwtstamps->hwtstamp = ns_to_ktime(ns);
3427  }
3428  
do_gro(struct sge_eth_rxq * rxq,const struct pkt_gl * gl,const struct cpl_rx_pkt * pkt,unsigned long tnl_hdr_len)3429  static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3430  		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3431  {
3432  	struct adapter *adapter = rxq->rspq.adap;
3433  	struct sge *s = &adapter->sge;
3434  	struct port_info *pi;
3435  	int ret;
3436  	struct sk_buff *skb;
3437  
3438  	skb = napi_get_frags(&rxq->rspq.napi);
3439  	if (unlikely(!skb)) {
3440  		t4_pktgl_free(gl);
3441  		rxq->stats.rx_drops++;
3442  		return;
3443  	}
3444  
3445  	copy_frags(skb, gl, s->pktshift);
3446  	if (tnl_hdr_len)
3447  		skb->csum_level = 1;
3448  	skb->len = gl->tot_len - s->pktshift;
3449  	skb->data_len = skb->len;
3450  	skb->truesize += skb->data_len;
3451  	skb->ip_summed = CHECKSUM_UNNECESSARY;
3452  	skb_record_rx_queue(skb, rxq->rspq.idx);
3453  	pi = netdev_priv(skb->dev);
3454  	if (pi->rxtstamp)
3455  		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3456  					 gl->sgetstamp);
3457  	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3458  		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3459  			     PKT_HASH_TYPE_L3);
3460  
3461  	if (unlikely(pkt->vlan_ex)) {
3462  		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3463  		rxq->stats.vlan_ex++;
3464  	}
3465  	ret = napi_gro_frags(&rxq->rspq.napi);
3466  	if (ret == GRO_HELD)
3467  		rxq->stats.lro_pkts++;
3468  	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3469  		rxq->stats.lro_merged++;
3470  	rxq->stats.pkts++;
3471  	rxq->stats.rx_cso++;
3472  }
3473  
3474  enum {
3475  	RX_NON_PTP_PKT = 0,
3476  	RX_PTP_PKT_SUC = 1,
3477  	RX_PTP_PKT_ERR = 2
3478  };
3479  
3480  /**
3481   *     t4_systim_to_hwstamp - read hardware time stamp
3482   *     @adapter: the adapter
3483   *     @skb: the packet
3484   *
3485   *     Read Time Stamp from MPS packet and insert in skb which
3486   *     is forwarded to PTP application
3487   */
t4_systim_to_hwstamp(struct adapter * adapter,struct sk_buff * skb)3488  static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3489  					 struct sk_buff *skb)
3490  {
3491  	struct skb_shared_hwtstamps *hwtstamps;
3492  	struct cpl_rx_mps_pkt *cpl = NULL;
3493  	unsigned char *data;
3494  	int offset;
3495  
3496  	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3497  	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3498  	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3499  		return RX_PTP_PKT_ERR;
3500  
3501  	data = skb->data + sizeof(*cpl);
3502  	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3503  	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3504  	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3505  		return RX_PTP_PKT_ERR;
3506  
3507  	hwtstamps = skb_hwtstamps(skb);
3508  	memset(hwtstamps, 0, sizeof(*hwtstamps));
3509  	hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3510  
3511  	return RX_PTP_PKT_SUC;
3512  }
3513  
3514  /**
3515   *     t4_rx_hststamp - Recv PTP Event Message
3516   *     @adapter: the adapter
3517   *     @rsp: the response queue descriptor holding the RX_PKT message
3518   *     @rxq: the response queue holding the RX_PKT message
3519   *     @skb: the packet
3520   *
3521   *     PTP enabled and MPS packet, read HW timestamp
3522   */
t4_rx_hststamp(struct adapter * adapter,const __be64 * rsp,struct sge_eth_rxq * rxq,struct sk_buff * skb)3523  static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3524  			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3525  {
3526  	int ret;
3527  
3528  	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3529  		     !is_t4(adapter->params.chip))) {
3530  		ret = t4_systim_to_hwstamp(adapter, skb);
3531  		if (ret == RX_PTP_PKT_ERR) {
3532  			kfree_skb(skb);
3533  			rxq->stats.rx_drops++;
3534  		}
3535  		return ret;
3536  	}
3537  	return RX_NON_PTP_PKT;
3538  }
3539  
3540  /**
3541   *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3542   *      @adapter: the adapter
3543   *      @skb: the packet
3544   *      @dev: the ingress net device
3545   *
3546   *      Read hardware timestamp for the loopback PTP Tx event message
3547   */
t4_tx_hststamp(struct adapter * adapter,struct sk_buff * skb,struct net_device * dev)3548  static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3549  			  struct net_device *dev)
3550  {
3551  	struct port_info *pi = netdev_priv(dev);
3552  
3553  	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3554  		cxgb4_ptp_read_hwstamp(adapter, pi);
3555  		kfree_skb(skb);
3556  		return 0;
3557  	}
3558  	return 1;
3559  }
3560  
3561  /**
3562   *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3563   *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3564   *	@rsp: Response Entry pointer into Response Queue
3565   *	@gl: Gather List pointer
3566   *
3567   *	For adapters which support the SGE Doorbell Queue Timer facility,
3568   *	we configure the Ethernet TX Queues to send CIDX Updates to the
3569   *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3570   *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3571   *	potentially, higher CPU Interrupt load, but allows us to respond
3572   *	much more quickly to the CIDX Updates.  This is important for
3573   *	Upper Layer Software which isn't willing to have a large amount
3574   *	of TX Data outstanding before receiving DMA Completions.
3575   */
t4_tx_completion_handler(struct sge_rspq * rspq,const __be64 * rsp,const struct pkt_gl * gl)3576  static void t4_tx_completion_handler(struct sge_rspq *rspq,
3577  				     const __be64 *rsp,
3578  				     const struct pkt_gl *gl)
3579  {
3580  	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3581  	struct port_info *pi = netdev_priv(rspq->netdev);
3582  	struct adapter *adapter = rspq->adap;
3583  	struct sge *s = &adapter->sge;
3584  	struct sge_eth_txq *txq;
3585  
3586  	/* skip RSS header */
3587  	rsp++;
3588  
3589  	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3590  	 */
3591  	if (unlikely(opcode == CPL_FW4_MSG &&
3592  		     ((const struct cpl_fw4_msg *)rsp)->type ==
3593  							FW_TYPE_RSSCPL)) {
3594  		rsp++;
3595  		opcode = ((const struct rss_header *)rsp)->opcode;
3596  		rsp++;
3597  	}
3598  
3599  	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3600  		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3601  			__func__, opcode);
3602  		return;
3603  	}
3604  
3605  	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3606  
3607  	/* We've got the Hardware Consumer Index Update in the Egress Update
3608  	 * message. These Egress Update messages will be our sole CIDX Updates
3609  	 * we get since we don't want to chew up PCIe bandwidth for both Ingress
3610  	 * Messages and Status Page writes.  However, The code which manages
3611  	 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
3612  	 * stored in the Status Page at the end of the TX Queue.  It's easiest
3613  	 * to simply copy the CIDX Update value from the Egress Update message
3614  	 * to the Status Page.  Also note that no Endian issues need to be
3615  	 * considered here since both are Big Endian and we're just copying
3616  	 * bytes consistently ...
3617  	 */
3618  	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3619  		struct cpl_sge_egr_update *egr;
3620  
3621  		egr = (struct cpl_sge_egr_update *)rsp;
3622  		WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
3623  	}
3624  
3625  	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3626  }
3627  
cxgb4_validate_lb_pkt(struct port_info * pi,const struct pkt_gl * si)3628  static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
3629  {
3630  	struct adapter *adap = pi->adapter;
3631  	struct cxgb4_ethtool_lb_test *lb;
3632  	struct sge *s = &adap->sge;
3633  	struct net_device *netdev;
3634  	u8 *data;
3635  	int i;
3636  
3637  	netdev = adap->port[pi->port_id];
3638  	lb = &pi->ethtool_lb;
3639  	data = si->va + s->pktshift;
3640  
3641  	i = ETH_ALEN;
3642  	if (!ether_addr_equal(data + i, netdev->dev_addr))
3643  		return -1;
3644  
3645  	i += ETH_ALEN;
3646  	if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
3647  		lb->result = -EIO;
3648  
3649  	complete(&lb->completion);
3650  	return 0;
3651  }
3652  
3653  /**
3654   *	t4_ethrx_handler - process an ingress ethernet packet
3655   *	@q: the response queue that received the packet
3656   *	@rsp: the response queue descriptor holding the RX_PKT message
3657   *	@si: the gather list of packet fragments
3658   *
3659   *	Process an ingress ethernet packet and deliver it to the stack.
3660   */
t4_ethrx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * si)3661  int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3662  		     const struct pkt_gl *si)
3663  {
3664  	bool csum_ok;
3665  	struct sk_buff *skb;
3666  	const struct cpl_rx_pkt *pkt;
3667  	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3668  	struct adapter *adapter = q->adap;
3669  	struct sge *s = &q->adap->sge;
3670  	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3671  			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3672  	u16 err_vec, tnl_hdr_len = 0;
3673  	struct port_info *pi;
3674  	int ret = 0;
3675  
3676  	pi = netdev_priv(q->netdev);
3677  	/* If we're looking at TX Queue CIDX Update, handle that separately
3678  	 * and return.
3679  	 */
3680  	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3681  		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3682  		t4_tx_completion_handler(q, rsp, si);
3683  		return 0;
3684  	}
3685  
3686  	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3687  		return handle_trace_pkt(q->adap, si);
3688  
3689  	pkt = (const struct cpl_rx_pkt *)rsp;
3690  	/* Compressed error vector is enabled for T6 only */
3691  	if (q->adap->params.tp.rx_pkt_encap) {
3692  		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3693  		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3694  	} else {
3695  		err_vec = be16_to_cpu(pkt->err_vec);
3696  	}
3697  
3698  	csum_ok = pkt->csum_calc && !err_vec &&
3699  		  (q->netdev->features & NETIF_F_RXCSUM);
3700  
3701  	if (err_vec)
3702  		rxq->stats.bad_rx_pkts++;
3703  
3704  	if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
3705  		ret = cxgb4_validate_lb_pkt(pi, si);
3706  		if (!ret)
3707  			return 0;
3708  	}
3709  
3710  	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3711  	     tnl_hdr_len) &&
3712  	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3713  		do_gro(rxq, si, pkt, tnl_hdr_len);
3714  		return 0;
3715  	}
3716  
3717  	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3718  	if (unlikely(!skb)) {
3719  		t4_pktgl_free(si);
3720  		rxq->stats.rx_drops++;
3721  		return 0;
3722  	}
3723  
3724  	/* Handle PTP Event Rx packet */
3725  	if (unlikely(pi->ptp_enable)) {
3726  		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3727  		if (ret == RX_PTP_PKT_ERR)
3728  			return 0;
3729  	}
3730  	if (likely(!ret))
3731  		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3732  
3733  	/* Handle the PTP Event Tx Loopback packet */
3734  	if (unlikely(pi->ptp_enable && !ret &&
3735  		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3736  		     cxgb4_ptp_is_ptp_rx(skb))) {
3737  		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3738  			return 0;
3739  	}
3740  
3741  	skb->protocol = eth_type_trans(skb, q->netdev);
3742  	skb_record_rx_queue(skb, q->idx);
3743  	if (skb->dev->features & NETIF_F_RXHASH)
3744  		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3745  			     PKT_HASH_TYPE_L3);
3746  
3747  	rxq->stats.pkts++;
3748  
3749  	if (pi->rxtstamp)
3750  		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3751  					 si->sgetstamp);
3752  	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3753  		if (!pkt->ip_frag) {
3754  			skb->ip_summed = CHECKSUM_UNNECESSARY;
3755  			rxq->stats.rx_cso++;
3756  		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3757  			__sum16 c = (__force __sum16)pkt->csum;
3758  			skb->csum = csum_unfold(c);
3759  
3760  			if (tnl_hdr_len) {
3761  				skb->ip_summed = CHECKSUM_UNNECESSARY;
3762  				skb->csum_level = 1;
3763  			} else {
3764  				skb->ip_summed = CHECKSUM_COMPLETE;
3765  			}
3766  			rxq->stats.rx_cso++;
3767  		}
3768  	} else {
3769  		skb_checksum_none_assert(skb);
3770  #ifdef CONFIG_CHELSIO_T4_FCOE
3771  #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3772  			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3773  
3774  		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3775  			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3776  			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3777  				if (q->adap->params.tp.rx_pkt_encap)
3778  					csum_ok = err_vec &
3779  						  T6_COMPR_RXERR_SUM_F;
3780  				else
3781  					csum_ok = err_vec & RXERR_CSUM_F;
3782  				if (!csum_ok)
3783  					skb->ip_summed = CHECKSUM_UNNECESSARY;
3784  			}
3785  		}
3786  
3787  #undef CPL_RX_PKT_FLAGS
3788  #endif /* CONFIG_CHELSIO_T4_FCOE */
3789  	}
3790  
3791  	if (unlikely(pkt->vlan_ex)) {
3792  		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3793  		rxq->stats.vlan_ex++;
3794  	}
3795  	skb_mark_napi_id(skb, &q->napi);
3796  	netif_receive_skb(skb);
3797  	return 0;
3798  }
3799  
3800  /**
3801   *	restore_rx_bufs - put back a packet's Rx buffers
3802   *	@si: the packet gather list
3803   *	@q: the SGE free list
3804   *	@frags: number of FL buffers to restore
3805   *
3806   *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3807   *	have already been unmapped and are left unmapped, we mark them so to
3808   *	prevent further unmapping attempts.
3809   *
3810   *	This function undoes a series of @unmap_rx_buf calls when we find out
3811   *	that the current packet can't be processed right away afterall and we
3812   *	need to come back to it later.  This is a very rare event and there's
3813   *	no effort to make this particularly efficient.
3814   */
restore_rx_bufs(const struct pkt_gl * si,struct sge_fl * q,int frags)3815  static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3816  			    int frags)
3817  {
3818  	struct rx_sw_desc *d;
3819  
3820  	while (frags--) {
3821  		if (q->cidx == 0)
3822  			q->cidx = q->size - 1;
3823  		else
3824  			q->cidx--;
3825  		d = &q->sdesc[q->cidx];
3826  		d->page = si->frags[frags].page;
3827  		d->dma_addr |= RX_UNMAPPED_BUF;
3828  		q->avail++;
3829  	}
3830  }
3831  
3832  /**
3833   *	is_new_response - check if a response is newly written
3834   *	@r: the response descriptor
3835   *	@q: the response queue
3836   *
3837   *	Returns true if a response descriptor contains a yet unprocessed
3838   *	response.
3839   */
is_new_response(const struct rsp_ctrl * r,const struct sge_rspq * q)3840  static inline bool is_new_response(const struct rsp_ctrl *r,
3841  				   const struct sge_rspq *q)
3842  {
3843  	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3844  }
3845  
3846  /**
3847   *	rspq_next - advance to the next entry in a response queue
3848   *	@q: the queue
3849   *
3850   *	Updates the state of a response queue to advance it to the next entry.
3851   */
rspq_next(struct sge_rspq * q)3852  static inline void rspq_next(struct sge_rspq *q)
3853  {
3854  	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3855  	if (unlikely(++q->cidx == q->size)) {
3856  		q->cidx = 0;
3857  		q->gen ^= 1;
3858  		q->cur_desc = q->desc;
3859  	}
3860  }
3861  
3862  /**
3863   *	process_responses - process responses from an SGE response queue
3864   *	@q: the ingress queue to process
3865   *	@budget: how many responses can be processed in this round
3866   *
3867   *	Process responses from an SGE response queue up to the supplied budget.
3868   *	Responses include received packets as well as control messages from FW
3869   *	or HW.
3870   *
3871   *	Additionally choose the interrupt holdoff time for the next interrupt
3872   *	on this queue.  If the system is under memory shortage use a fairly
3873   *	long delay to help recovery.
3874   */
process_responses(struct sge_rspq * q,int budget)3875  static int process_responses(struct sge_rspq *q, int budget)
3876  {
3877  	int ret, rsp_type;
3878  	int budget_left = budget;
3879  	const struct rsp_ctrl *rc;
3880  	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3881  	struct adapter *adapter = q->adap;
3882  	struct sge *s = &adapter->sge;
3883  
3884  	while (likely(budget_left)) {
3885  		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3886  		if (!is_new_response(rc, q)) {
3887  			if (q->flush_handler)
3888  				q->flush_handler(q);
3889  			break;
3890  		}
3891  
3892  		dma_rmb();
3893  		rsp_type = RSPD_TYPE_G(rc->type_gen);
3894  		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3895  			struct page_frag *fp;
3896  			struct pkt_gl si;
3897  			const struct rx_sw_desc *rsd;
3898  			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3899  
3900  			if (len & RSPD_NEWBUF_F) {
3901  				if (likely(q->offset > 0)) {
3902  					free_rx_bufs(q->adap, &rxq->fl, 1);
3903  					q->offset = 0;
3904  				}
3905  				len = RSPD_LEN_G(len);
3906  			}
3907  			si.tot_len = len;
3908  
3909  			/* gather packet fragments */
3910  			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3911  				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3912  				bufsz = get_buf_size(adapter, rsd);
3913  				fp->page = rsd->page;
3914  				fp->offset = q->offset;
3915  				fp->size = min(bufsz, len);
3916  				len -= fp->size;
3917  				if (!len)
3918  					break;
3919  				unmap_rx_buf(q->adap, &rxq->fl);
3920  			}
3921  
3922  			si.sgetstamp = SGE_TIMESTAMP_G(
3923  					be64_to_cpu(rc->last_flit));
3924  			/*
3925  			 * Last buffer remains mapped so explicitly make it
3926  			 * coherent for CPU access.
3927  			 */
3928  			dma_sync_single_for_cpu(q->adap->pdev_dev,
3929  						get_buf_addr(rsd),
3930  						fp->size, DMA_FROM_DEVICE);
3931  
3932  			si.va = page_address(si.frags[0].page) +
3933  				si.frags[0].offset;
3934  			prefetch(si.va);
3935  
3936  			si.nfrags = frags + 1;
3937  			ret = q->handler(q, q->cur_desc, &si);
3938  			if (likely(ret == 0))
3939  				q->offset += ALIGN(fp->size, s->fl_align);
3940  			else
3941  				restore_rx_bufs(&si, &rxq->fl, frags);
3942  		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3943  			ret = q->handler(q, q->cur_desc, NULL);
3944  		} else {
3945  			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3946  		}
3947  
3948  		if (unlikely(ret)) {
3949  			/* couldn't process descriptor, back off for recovery */
3950  			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3951  			break;
3952  		}
3953  
3954  		rspq_next(q);
3955  		budget_left--;
3956  	}
3957  
3958  	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3959  		__refill_fl(q->adap, &rxq->fl);
3960  	return budget - budget_left;
3961  }
3962  
3963  /**
3964   *	napi_rx_handler - the NAPI handler for Rx processing
3965   *	@napi: the napi instance
3966   *	@budget: how many packets we can process in this round
3967   *
3968   *	Handler for new data events when using NAPI.  This does not need any
3969   *	locking or protection from interrupts as data interrupts are off at
3970   *	this point and other adapter interrupts do not interfere (the latter
3971   *	in not a concern at all with MSI-X as non-data interrupts then have
3972   *	a separate handler).
3973   */
napi_rx_handler(struct napi_struct * napi,int budget)3974  static int napi_rx_handler(struct napi_struct *napi, int budget)
3975  {
3976  	unsigned int params;
3977  	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3978  	int work_done;
3979  	u32 val;
3980  
3981  	work_done = process_responses(q, budget);
3982  	if (likely(work_done < budget)) {
3983  		int timer_index;
3984  
3985  		napi_complete_done(napi, work_done);
3986  		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3987  
3988  		if (q->adaptive_rx) {
3989  			if (work_done > max(timer_pkt_quota[timer_index],
3990  					    MIN_NAPI_WORK))
3991  				timer_index = (timer_index + 1);
3992  			else
3993  				timer_index = timer_index - 1;
3994  
3995  			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3996  			q->next_intr_params =
3997  					QINTR_TIMER_IDX_V(timer_index) |
3998  					QINTR_CNT_EN_V(0);
3999  			params = q->next_intr_params;
4000  		} else {
4001  			params = q->next_intr_params;
4002  			q->next_intr_params = q->intr_params;
4003  		}
4004  	} else
4005  		params = QINTR_TIMER_IDX_V(7);
4006  
4007  	val = CIDXINC_V(work_done) | SEINTARM_V(params);
4008  
4009  	/* If we don't have access to the new User GTS (T5+), use the old
4010  	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4011  	 */
4012  	if (unlikely(q->bar2_addr == NULL)) {
4013  		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
4014  			     val | INGRESSQID_V((u32)q->cntxt_id));
4015  	} else {
4016  		writel(val | INGRESSQID_V(q->bar2_qid),
4017  		       q->bar2_addr + SGE_UDB_GTS);
4018  		wmb();
4019  	}
4020  	return work_done;
4021  }
4022  
cxgb4_ethofld_restart(struct tasklet_struct * t)4023  void cxgb4_ethofld_restart(struct tasklet_struct *t)
4024  {
4025  	struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
4026  						     qresume_tsk);
4027  	int pktcount;
4028  
4029  	spin_lock(&eosw_txq->lock);
4030  	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
4031  	if (pktcount < 0)
4032  		pktcount += eosw_txq->ndesc;
4033  
4034  	if (pktcount) {
4035  		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
4036  					 eosw_txq, pktcount);
4037  		eosw_txq->inuse -= pktcount;
4038  	}
4039  
4040  	/* There may be some packets waiting for completions. So,
4041  	 * attempt to send these packets now.
4042  	 */
4043  	ethofld_xmit(eosw_txq->netdev, eosw_txq);
4044  	spin_unlock(&eosw_txq->lock);
4045  }
4046  
4047  /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
4048   * @q: the response queue that received the packet
4049   * @rsp: the response queue descriptor holding the CPL message
4050   * @si: the gather list of packet fragments
4051   *
4052   * Process a ETHOFLD Tx completion. Increment the cidx here, but
4053   * free up the descriptors in a tasklet later.
4054   */
cxgb4_ethofld_rx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * si)4055  int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
4056  			     const struct pkt_gl *si)
4057  {
4058  	u8 opcode = ((const struct rss_header *)rsp)->opcode;
4059  
4060  	/* skip RSS header */
4061  	rsp++;
4062  
4063  	if (opcode == CPL_FW4_ACK) {
4064  		const struct cpl_fw4_ack *cpl;
4065  		struct sge_eosw_txq *eosw_txq;
4066  		struct eotid_entry *entry;
4067  		struct sk_buff *skb;
4068  		u32 hdr_len, eotid;
4069  		u8 flits, wrlen16;
4070  		int credits;
4071  
4072  		cpl = (const struct cpl_fw4_ack *)rsp;
4073  		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
4074  			q->adap->tids.eotid_base;
4075  		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
4076  		if (!entry)
4077  			goto out_done;
4078  
4079  		eosw_txq = (struct sge_eosw_txq *)entry->data;
4080  		if (!eosw_txq)
4081  			goto out_done;
4082  
4083  		spin_lock(&eosw_txq->lock);
4084  		credits = cpl->credits;
4085  		while (credits > 0) {
4086  			skb = eosw_txq->desc[eosw_txq->cidx].skb;
4087  			if (!skb)
4088  				break;
4089  
4090  			if (unlikely((eosw_txq->state ==
4091  				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
4092  				      eosw_txq->state ==
4093  				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
4094  				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
4095  				flits = DIV_ROUND_UP(skb->len, 8);
4096  				if (eosw_txq->state ==
4097  				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
4098  					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
4099  				else
4100  					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
4101  				complete(&eosw_txq->completion);
4102  			} else {
4103  				hdr_len = eth_get_headlen(eosw_txq->netdev,
4104  							  skb->data,
4105  							  skb_headlen(skb));
4106  				flits = ethofld_calc_tx_flits(q->adap, skb,
4107  							      hdr_len);
4108  			}
4109  			eosw_txq_advance_index(&eosw_txq->cidx, 1,
4110  					       eosw_txq->ndesc);
4111  			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
4112  			credits -= wrlen16;
4113  		}
4114  
4115  		eosw_txq->cred += cpl->credits;
4116  		eosw_txq->ncompl--;
4117  
4118  		spin_unlock(&eosw_txq->lock);
4119  
4120  		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
4121  		 * if there were packets waiting for completion.
4122  		 */
4123  		tasklet_schedule(&eosw_txq->qresume_tsk);
4124  	}
4125  
4126  out_done:
4127  	return 0;
4128  }
4129  
4130  /*
4131   * The MSI-X interrupt handler for an SGE response queue.
4132   */
t4_sge_intr_msix(int irq,void * cookie)4133  irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
4134  {
4135  	struct sge_rspq *q = cookie;
4136  
4137  	napi_schedule(&q->napi);
4138  	return IRQ_HANDLED;
4139  }
4140  
4141  /*
4142   * Process the indirect interrupt entries in the interrupt queue and kick off
4143   * NAPI for each queue that has generated an entry.
4144   */
process_intrq(struct adapter * adap)4145  static unsigned int process_intrq(struct adapter *adap)
4146  {
4147  	unsigned int credits;
4148  	const struct rsp_ctrl *rc;
4149  	struct sge_rspq *q = &adap->sge.intrq;
4150  	u32 val;
4151  
4152  	spin_lock(&adap->sge.intrq_lock);
4153  	for (credits = 0; ; credits++) {
4154  		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
4155  		if (!is_new_response(rc, q))
4156  			break;
4157  
4158  		dma_rmb();
4159  		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
4160  			unsigned int qid = ntohl(rc->pldbuflen_qid);
4161  
4162  			qid -= adap->sge.ingr_start;
4163  			napi_schedule(&adap->sge.ingr_map[qid]->napi);
4164  		}
4165  
4166  		rspq_next(q);
4167  	}
4168  
4169  	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
4170  
4171  	/* If we don't have access to the new User GTS (T5+), use the old
4172  	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4173  	 */
4174  	if (unlikely(q->bar2_addr == NULL)) {
4175  		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
4176  			     val | INGRESSQID_V(q->cntxt_id));
4177  	} else {
4178  		writel(val | INGRESSQID_V(q->bar2_qid),
4179  		       q->bar2_addr + SGE_UDB_GTS);
4180  		wmb();
4181  	}
4182  	spin_unlock(&adap->sge.intrq_lock);
4183  	return credits;
4184  }
4185  
4186  /*
4187   * The MSI interrupt handler, which handles data events from SGE response queues
4188   * as well as error and other async events as they all use the same MSI vector.
4189   */
t4_intr_msi(int irq,void * cookie)4190  static irqreturn_t t4_intr_msi(int irq, void *cookie)
4191  {
4192  	struct adapter *adap = cookie;
4193  
4194  	if (adap->flags & CXGB4_MASTER_PF)
4195  		t4_slow_intr_handler(adap);
4196  	process_intrq(adap);
4197  	return IRQ_HANDLED;
4198  }
4199  
4200  /*
4201   * Interrupt handler for legacy INTx interrupts.
4202   * Handles data events from SGE response queues as well as error and other
4203   * async events as they all use the same interrupt line.
4204   */
t4_intr_intx(int irq,void * cookie)4205  static irqreturn_t t4_intr_intx(int irq, void *cookie)
4206  {
4207  	struct adapter *adap = cookie;
4208  
4209  	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
4210  	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
4211  	    process_intrq(adap))
4212  		return IRQ_HANDLED;
4213  	return IRQ_NONE;             /* probably shared interrupt */
4214  }
4215  
4216  /**
4217   *	t4_intr_handler - select the top-level interrupt handler
4218   *	@adap: the adapter
4219   *
4220   *	Selects the top-level interrupt handler based on the type of interrupts
4221   *	(MSI-X, MSI, or INTx).
4222   */
t4_intr_handler(struct adapter * adap)4223  irq_handler_t t4_intr_handler(struct adapter *adap)
4224  {
4225  	if (adap->flags & CXGB4_USING_MSIX)
4226  		return t4_sge_intr_msix;
4227  	if (adap->flags & CXGB4_USING_MSI)
4228  		return t4_intr_msi;
4229  	return t4_intr_intx;
4230  }
4231  
sge_rx_timer_cb(struct timer_list * t)4232  static void sge_rx_timer_cb(struct timer_list *t)
4233  {
4234  	unsigned long m;
4235  	unsigned int i;
4236  	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
4237  	struct sge *s = &adap->sge;
4238  
4239  	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4240  		for (m = s->starving_fl[i]; m; m &= m - 1) {
4241  			struct sge_eth_rxq *rxq;
4242  			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
4243  			struct sge_fl *fl = s->egr_map[id];
4244  
4245  			clear_bit(id, s->starving_fl);
4246  			smp_mb__after_atomic();
4247  
4248  			if (fl_starving(adap, fl)) {
4249  				rxq = container_of(fl, struct sge_eth_rxq, fl);
4250  				if (napi_schedule(&rxq->rspq.napi))
4251  					fl->starving++;
4252  				else
4253  					set_bit(id, s->starving_fl);
4254  			}
4255  		}
4256  	/* The remainder of the SGE RX Timer Callback routine is dedicated to
4257  	 * global Master PF activities like checking for chip ingress stalls,
4258  	 * etc.
4259  	 */
4260  	if (!(adap->flags & CXGB4_MASTER_PF))
4261  		goto done;
4262  
4263  	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4264  
4265  done:
4266  	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4267  }
4268  
sge_tx_timer_cb(struct timer_list * t)4269  static void sge_tx_timer_cb(struct timer_list *t)
4270  {
4271  	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4272  	struct sge *s = &adap->sge;
4273  	unsigned long m, period;
4274  	unsigned int i, budget;
4275  
4276  	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4277  		for (m = s->txq_maperr[i]; m; m &= m - 1) {
4278  			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4279  			struct sge_uld_txq *txq = s->egr_map[id];
4280  
4281  			clear_bit(id, s->txq_maperr);
4282  			tasklet_schedule(&txq->qresume_tsk);
4283  		}
4284  
4285  	if (!is_t4(adap->params.chip)) {
4286  		struct sge_eth_txq *q = &s->ptptxq;
4287  		int avail;
4288  
4289  		spin_lock(&adap->ptp_lock);
4290  		avail = reclaimable(&q->q);
4291  
4292  		if (avail) {
4293  			free_tx_desc(adap, &q->q, avail, false);
4294  			q->q.in_use -= avail;
4295  		}
4296  		spin_unlock(&adap->ptp_lock);
4297  	}
4298  
4299  	budget = MAX_TIMER_TX_RECLAIM;
4300  	i = s->ethtxq_rover;
4301  	do {
4302  		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4303  						       budget);
4304  		if (!budget)
4305  			break;
4306  
4307  		if (++i >= s->ethqsets)
4308  			i = 0;
4309  	} while (i != s->ethtxq_rover);
4310  	s->ethtxq_rover = i;
4311  
4312  	if (budget == 0) {
4313  		/* If we found too many reclaimable packets schedule a timer
4314  		 * in the near future to continue where we left off.
4315  		 */
4316  		period = 2;
4317  	} else {
4318  		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4319  		 * at the normal period.
4320  		 */
4321  		period = TX_QCHECK_PERIOD;
4322  	}
4323  
4324  	mod_timer(&s->tx_timer, jiffies + period);
4325  }
4326  
4327  /**
4328   *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4329   *	@adapter: the adapter
4330   *	@qid: the SGE Queue ID
4331   *	@qtype: the SGE Queue Type (Egress or Ingress)
4332   *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4333   *
4334   *	Returns the BAR2 address for the SGE Queue Registers associated with
4335   *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4336   *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4337   *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4338   *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4339   */
bar2_address(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,unsigned int * pbar2_qid)4340  static void __iomem *bar2_address(struct adapter *adapter,
4341  				  unsigned int qid,
4342  				  enum t4_bar2_qtype qtype,
4343  				  unsigned int *pbar2_qid)
4344  {
4345  	u64 bar2_qoffset;
4346  	int ret;
4347  
4348  	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4349  				&bar2_qoffset, pbar2_qid);
4350  	if (ret)
4351  		return NULL;
4352  
4353  	return adapter->bar2 + bar2_qoffset;
4354  }
4355  
4356  /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4357   * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4358   */
t4_sge_alloc_rxq(struct adapter * adap,struct sge_rspq * iq,bool fwevtq,struct net_device * dev,int intr_idx,struct sge_fl * fl,rspq_handler_t hnd,rspq_flush_handler_t flush_hnd,int cong)4359  int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4360  		     struct net_device *dev, int intr_idx,
4361  		     struct sge_fl *fl, rspq_handler_t hnd,
4362  		     rspq_flush_handler_t flush_hnd, int cong)
4363  {
4364  	int ret, flsz = 0;
4365  	struct fw_iq_cmd c;
4366  	struct sge *s = &adap->sge;
4367  	struct port_info *pi = netdev_priv(dev);
4368  	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4369  
4370  	/* Size needs to be multiple of 16, including status entry. */
4371  	iq->size = roundup(iq->size, 16);
4372  
4373  	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4374  			      &iq->phys_addr, NULL, 0,
4375  			      dev_to_node(adap->pdev_dev));
4376  	if (!iq->desc)
4377  		return -ENOMEM;
4378  
4379  	memset(&c, 0, sizeof(c));
4380  	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4381  			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4382  			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4383  	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4384  				 FW_LEN16(c));
4385  	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4386  		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4387  		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4388  		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4389  		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4390  							-intr_idx - 1));
4391  	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4392  		FW_IQ_CMD_IQGTSMODE_F |
4393  		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4394  		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4395  	c.iqsize = htons(iq->size);
4396  	c.iqaddr = cpu_to_be64(iq->phys_addr);
4397  	if (cong >= 0)
4398  		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4399  				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4400  							:  FW_IQ_IQTYPE_OFLD));
4401  
4402  	if (fl) {
4403  		unsigned int chip_ver =
4404  			CHELSIO_CHIP_VERSION(adap->params.chip);
4405  
4406  		/* Allocate the ring for the hardware free list (with space
4407  		 * for its status page) along with the associated software
4408  		 * descriptor ring.  The free list size needs to be a multiple
4409  		 * of the Egress Queue Unit and at least 2 Egress Units larger
4410  		 * than the SGE's Egress Congrestion Threshold
4411  		 * (fl_starve_thres - 1).
4412  		 */
4413  		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4414  			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4415  		fl->size = roundup(fl->size, 8);
4416  		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4417  				      sizeof(struct rx_sw_desc), &fl->addr,
4418  				      &fl->sdesc, s->stat_len,
4419  				      dev_to_node(adap->pdev_dev));
4420  		if (!fl->desc)
4421  			goto fl_nomem;
4422  
4423  		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4424  		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4425  					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4426  					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4427  					     FW_IQ_CMD_FL0PADEN_F);
4428  		if (cong >= 0)
4429  			c.iqns_to_fl0congen |=
4430  				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4431  				      FW_IQ_CMD_FL0CONGCIF_F |
4432  				      FW_IQ_CMD_FL0CONGEN_F);
4433  		/* In T6, for egress queue type FL there is internal overhead
4434  		 * of 16B for header going into FLM module.  Hence the maximum
4435  		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4436  		 * doesn't coalesce fetch requests if more than 64 bytes of
4437  		 * Free List pointers are provided, so we use a 128-byte Fetch
4438  		 * Burst Minimum there (T6 implements coalescing so we can use
4439  		 * the smaller 64-byte value there).
4440  		 */
4441  		c.fl0dcaen_to_fl0cidxfthresh =
4442  			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4443  						   FETCHBURSTMIN_128B_X :
4444  						   FETCHBURSTMIN_64B_T6_X) |
4445  			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4446  						   FETCHBURSTMAX_512B_X :
4447  						   FETCHBURSTMAX_256B_X));
4448  		c.fl0size = htons(flsz);
4449  		c.fl0addr = cpu_to_be64(fl->addr);
4450  	}
4451  
4452  	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4453  	if (ret)
4454  		goto err;
4455  
4456  	netif_napi_add(dev, &iq->napi, napi_rx_handler);
4457  	iq->cur_desc = iq->desc;
4458  	iq->cidx = 0;
4459  	iq->gen = 1;
4460  	iq->next_intr_params = iq->intr_params;
4461  	iq->cntxt_id = ntohs(c.iqid);
4462  	iq->abs_id = ntohs(c.physiqid);
4463  	iq->bar2_addr = bar2_address(adap,
4464  				     iq->cntxt_id,
4465  				     T4_BAR2_QTYPE_INGRESS,
4466  				     &iq->bar2_qid);
4467  	iq->size--;                           /* subtract status entry */
4468  	iq->netdev = dev;
4469  	iq->handler = hnd;
4470  	iq->flush_handler = flush_hnd;
4471  
4472  	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4473  	skb_queue_head_init(&iq->lro_mgr.lroq);
4474  
4475  	/* set offset to -1 to distinguish ingress queues without FL */
4476  	iq->offset = fl ? 0 : -1;
4477  
4478  	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4479  
4480  	if (fl) {
4481  		fl->cntxt_id = ntohs(c.fl0id);
4482  		fl->avail = fl->pend_cred = 0;
4483  		fl->pidx = fl->cidx = 0;
4484  		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4485  		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4486  
4487  		/* Note, we must initialize the BAR2 Free List User Doorbell
4488  		 * information before refilling the Free List!
4489  		 */
4490  		fl->bar2_addr = bar2_address(adap,
4491  					     fl->cntxt_id,
4492  					     T4_BAR2_QTYPE_EGRESS,
4493  					     &fl->bar2_qid);
4494  		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4495  	}
4496  
4497  	/* For T5 and later we attempt to set up the Congestion Manager values
4498  	 * of the new RX Ethernet Queue.  This should really be handled by
4499  	 * firmware because it's more complex than any host driver wants to
4500  	 * get involved with and it's different per chip and this is almost
4501  	 * certainly wrong.  Firmware would be wrong as well, but it would be
4502  	 * a lot easier to fix in one place ...  For now we do something very
4503  	 * simple (and hopefully less wrong).
4504  	 */
4505  	if (!is_t4(adap->params.chip) && cong >= 0) {
4506  		u32 param, val, ch_map = 0;
4507  		int i;
4508  		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4509  
4510  		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4511  			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4512  			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4513  		if (cong == 0) {
4514  			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4515  		} else {
4516  			val =
4517  			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4518  			for (i = 0; i < 4; i++) {
4519  				if (cong & (1 << i))
4520  					ch_map |= 1 << (i << cng_ch_bits_log);
4521  			}
4522  			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4523  		}
4524  		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4525  				    &param, &val);
4526  		if (ret)
4527  			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4528  				 " Manager Context for Ingress Queue %d: %d\n",
4529  				 iq->cntxt_id, -ret);
4530  	}
4531  
4532  	return 0;
4533  
4534  fl_nomem:
4535  	ret = -ENOMEM;
4536  err:
4537  	if (iq->desc) {
4538  		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4539  				  iq->desc, iq->phys_addr);
4540  		iq->desc = NULL;
4541  	}
4542  	if (fl && fl->desc) {
4543  		kfree(fl->sdesc);
4544  		fl->sdesc = NULL;
4545  		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4546  				  fl->desc, fl->addr);
4547  		fl->desc = NULL;
4548  	}
4549  	return ret;
4550  }
4551  
init_txq(struct adapter * adap,struct sge_txq * q,unsigned int id)4552  static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4553  {
4554  	q->cntxt_id = id;
4555  	q->bar2_addr = bar2_address(adap,
4556  				    q->cntxt_id,
4557  				    T4_BAR2_QTYPE_EGRESS,
4558  				    &q->bar2_qid);
4559  	q->in_use = 0;
4560  	q->cidx = q->pidx = 0;
4561  	q->stops = q->restarts = 0;
4562  	q->stat = (void *)&q->desc[q->size];
4563  	spin_lock_init(&q->db_lock);
4564  	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4565  }
4566  
4567  /**
4568   *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4569   *	@adap: the adapter
4570   *	@txq: the SGE Ethernet TX Queue to initialize
4571   *	@dev: the Linux Network Device
4572   *	@netdevq: the corresponding Linux TX Queue
4573   *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4574   *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4575   */
t4_sge_alloc_eth_txq(struct adapter * adap,struct sge_eth_txq * txq,struct net_device * dev,struct netdev_queue * netdevq,unsigned int iqid,u8 dbqt)4576  int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4577  			 struct net_device *dev, struct netdev_queue *netdevq,
4578  			 unsigned int iqid, u8 dbqt)
4579  {
4580  	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4581  	struct port_info *pi = netdev_priv(dev);
4582  	struct sge *s = &adap->sge;
4583  	struct fw_eq_eth_cmd c;
4584  	int ret, nentries;
4585  
4586  	/* Add status entries */
4587  	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4588  
4589  	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4590  			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4591  			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4592  			netdev_queue_numa_node_read(netdevq));
4593  	if (!txq->q.desc)
4594  		return -ENOMEM;
4595  
4596  	memset(&c, 0, sizeof(c));
4597  	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4598  			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4599  			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4600  			    FW_EQ_ETH_CMD_VFN_V(0));
4601  	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4602  				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4603  
4604  	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4605  	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4606  	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4607  	 * write the CIDX Updates into the Status Page at the end of the
4608  	 * TX Queue.
4609  	 */
4610  	c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ?
4611  				      FW_EQ_ETH_CMD_AUTOEQUIQE_F :
4612  				      FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
4613  				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4614  
4615  	c.fetchszm_to_iqid =
4616  		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ?
4617  						 HOSTFCMODE_INGRESS_QUEUE_X :
4618  						 HOSTFCMODE_STATUS_PAGE_X) |
4619  		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4620  		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4621  
4622  	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4623  	c.dcaen_to_eqsize =
4624  		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4625  					    ? FETCHBURSTMIN_64B_X
4626  					    : FETCHBURSTMIN_64B_T6_X) |
4627  		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4628  		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4629  		      FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) |
4630  		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4631  
4632  	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4633  
4634  	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4635  	 * currently configured Timer Index.  THis can be changed later via an
4636  	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4637  	 * Doorbell Queue mode is currently automatically enabled in the
4638  	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4639  	 */
4640  	if (dbqt)
4641  		c.timeren_timerix =
4642  			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4643  				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4644  
4645  	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4646  	if (ret) {
4647  		kfree(txq->q.sdesc);
4648  		txq->q.sdesc = NULL;
4649  		dma_free_coherent(adap->pdev_dev,
4650  				  nentries * sizeof(struct tx_desc),
4651  				  txq->q.desc, txq->q.phys_addr);
4652  		txq->q.desc = NULL;
4653  		return ret;
4654  	}
4655  
4656  	txq->q.q_type = CXGB4_TXQ_ETH;
4657  	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4658  	txq->txq = netdevq;
4659  	txq->tso = 0;
4660  	txq->uso = 0;
4661  	txq->tx_cso = 0;
4662  	txq->vlan_ins = 0;
4663  	txq->mapping_err = 0;
4664  	txq->dbqt = dbqt;
4665  
4666  	return 0;
4667  }
4668  
t4_sge_alloc_ctrl_txq(struct adapter * adap,struct sge_ctrl_txq * txq,struct net_device * dev,unsigned int iqid,unsigned int cmplqid)4669  int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4670  			  struct net_device *dev, unsigned int iqid,
4671  			  unsigned int cmplqid)
4672  {
4673  	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4674  	struct port_info *pi = netdev_priv(dev);
4675  	struct sge *s = &adap->sge;
4676  	struct fw_eq_ctrl_cmd c;
4677  	int ret, nentries;
4678  
4679  	/* Add status entries */
4680  	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4681  
4682  	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4683  				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4684  				 NULL, 0, dev_to_node(adap->pdev_dev));
4685  	if (!txq->q.desc)
4686  		return -ENOMEM;
4687  
4688  	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4689  			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4690  			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4691  			    FW_EQ_CTRL_CMD_VFN_V(0));
4692  	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4693  				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4694  	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4695  	c.physeqid_pkd = htonl(0);
4696  	c.fetchszm_to_iqid =
4697  		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4698  		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4699  		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4700  	c.dcaen_to_eqsize =
4701  		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4702  					     ? FETCHBURSTMIN_64B_X
4703  					     : FETCHBURSTMIN_64B_T6_X) |
4704  		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4705  		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4706  		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4707  	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4708  
4709  	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4710  	if (ret) {
4711  		dma_free_coherent(adap->pdev_dev,
4712  				  nentries * sizeof(struct tx_desc),
4713  				  txq->q.desc, txq->q.phys_addr);
4714  		txq->q.desc = NULL;
4715  		return ret;
4716  	}
4717  
4718  	txq->q.q_type = CXGB4_TXQ_CTRL;
4719  	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4720  	txq->adap = adap;
4721  	skb_queue_head_init(&txq->sendq);
4722  	tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
4723  	txq->full = 0;
4724  	return 0;
4725  }
4726  
t4_sge_mod_ctrl_txq(struct adapter * adap,unsigned int eqid,unsigned int cmplqid)4727  int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4728  			unsigned int cmplqid)
4729  {
4730  	u32 param, val;
4731  
4732  	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4733  		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4734  		 FW_PARAMS_PARAM_YZ_V(eqid));
4735  	val = cmplqid;
4736  	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4737  }
4738  
t4_sge_alloc_ofld_txq(struct adapter * adap,struct sge_txq * q,struct net_device * dev,u32 cmd,u32 iqid)4739  static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4740  				 struct net_device *dev, u32 cmd, u32 iqid)
4741  {
4742  	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4743  	struct port_info *pi = netdev_priv(dev);
4744  	struct sge *s = &adap->sge;
4745  	struct fw_eq_ofld_cmd c;
4746  	u32 fb_min, nentries;
4747  	int ret;
4748  
4749  	/* Add status entries */
4750  	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4751  	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4752  			     sizeof(struct tx_sw_desc), &q->phys_addr,
4753  			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4754  	if (!q->desc)
4755  		return -ENOMEM;
4756  
4757  	if (chip_ver <= CHELSIO_T5)
4758  		fb_min = FETCHBURSTMIN_64B_X;
4759  	else
4760  		fb_min = FETCHBURSTMIN_64B_T6_X;
4761  
4762  	memset(&c, 0, sizeof(c));
4763  	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4764  			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4765  			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4766  			    FW_EQ_OFLD_CMD_VFN_V(0));
4767  	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4768  				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4769  	c.fetchszm_to_iqid =
4770  		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4771  		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4772  		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4773  	c.dcaen_to_eqsize =
4774  		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4775  		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4776  		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4777  		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4778  	c.eqaddr = cpu_to_be64(q->phys_addr);
4779  
4780  	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4781  	if (ret) {
4782  		kfree(q->sdesc);
4783  		q->sdesc = NULL;
4784  		dma_free_coherent(adap->pdev_dev,
4785  				  nentries * sizeof(struct tx_desc),
4786  				  q->desc, q->phys_addr);
4787  		q->desc = NULL;
4788  		return ret;
4789  	}
4790  
4791  	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4792  	return 0;
4793  }
4794  
t4_sge_alloc_uld_txq(struct adapter * adap,struct sge_uld_txq * txq,struct net_device * dev,unsigned int iqid,unsigned int uld_type)4795  int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4796  			 struct net_device *dev, unsigned int iqid,
4797  			 unsigned int uld_type)
4798  {
4799  	u32 cmd = FW_EQ_OFLD_CMD;
4800  	int ret;
4801  
4802  	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4803  		cmd = FW_EQ_CTRL_CMD;
4804  
4805  	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4806  	if (ret)
4807  		return ret;
4808  
4809  	txq->q.q_type = CXGB4_TXQ_ULD;
4810  	txq->adap = adap;
4811  	skb_queue_head_init(&txq->sendq);
4812  	tasklet_setup(&txq->qresume_tsk, restart_ofldq);
4813  	txq->full = 0;
4814  	txq->mapping_err = 0;
4815  	return 0;
4816  }
4817  
t4_sge_alloc_ethofld_txq(struct adapter * adap,struct sge_eohw_txq * txq,struct net_device * dev,u32 iqid)4818  int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4819  			     struct net_device *dev, u32 iqid)
4820  {
4821  	int ret;
4822  
4823  	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4824  	if (ret)
4825  		return ret;
4826  
4827  	txq->q.q_type = CXGB4_TXQ_ULD;
4828  	spin_lock_init(&txq->lock);
4829  	txq->adap = adap;
4830  	txq->tso = 0;
4831  	txq->uso = 0;
4832  	txq->tx_cso = 0;
4833  	txq->vlan_ins = 0;
4834  	txq->mapping_err = 0;
4835  	return 0;
4836  }
4837  
free_txq(struct adapter * adap,struct sge_txq * q)4838  void free_txq(struct adapter *adap, struct sge_txq *q)
4839  {
4840  	struct sge *s = &adap->sge;
4841  
4842  	dma_free_coherent(adap->pdev_dev,
4843  			  q->size * sizeof(struct tx_desc) + s->stat_len,
4844  			  q->desc, q->phys_addr);
4845  	q->cntxt_id = 0;
4846  	q->sdesc = NULL;
4847  	q->desc = NULL;
4848  }
4849  
free_rspq_fl(struct adapter * adap,struct sge_rspq * rq,struct sge_fl * fl)4850  void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4851  		  struct sge_fl *fl)
4852  {
4853  	struct sge *s = &adap->sge;
4854  	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4855  
4856  	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4857  	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4858  		   rq->cntxt_id, fl_id, 0xffff);
4859  	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4860  			  rq->desc, rq->phys_addr);
4861  	netif_napi_del(&rq->napi);
4862  	rq->netdev = NULL;
4863  	rq->cntxt_id = rq->abs_id = 0;
4864  	rq->desc = NULL;
4865  
4866  	if (fl) {
4867  		free_rx_bufs(adap, fl, fl->avail);
4868  		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4869  				  fl->desc, fl->addr);
4870  		kfree(fl->sdesc);
4871  		fl->sdesc = NULL;
4872  		fl->cntxt_id = 0;
4873  		fl->desc = NULL;
4874  	}
4875  }
4876  
4877  /**
4878   *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4879   *      @adap: the adapter
4880   *      @n: number of queues
4881   *      @q: pointer to first queue
4882   *
4883   *      Release the resources of a consecutive block of offload Rx queues.
4884   */
t4_free_ofld_rxqs(struct adapter * adap,int n,struct sge_ofld_rxq * q)4885  void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4886  {
4887  	for ( ; n; n--, q++)
4888  		if (q->rspq.desc)
4889  			free_rspq_fl(adap, &q->rspq,
4890  				     q->fl.size ? &q->fl : NULL);
4891  }
4892  
t4_sge_free_ethofld_txq(struct adapter * adap,struct sge_eohw_txq * txq)4893  void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4894  {
4895  	if (txq->q.desc) {
4896  		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4897  				txq->q.cntxt_id);
4898  		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4899  		kfree(txq->q.sdesc);
4900  		free_txq(adap, &txq->q);
4901  	}
4902  }
4903  
4904  /**
4905   *	t4_free_sge_resources - free SGE resources
4906   *	@adap: the adapter
4907   *
4908   *	Frees resources used by the SGE queue sets.
4909   */
t4_free_sge_resources(struct adapter * adap)4910  void t4_free_sge_resources(struct adapter *adap)
4911  {
4912  	int i;
4913  	struct sge_eth_rxq *eq;
4914  	struct sge_eth_txq *etq;
4915  
4916  	/* stop all Rx queues in order to start them draining */
4917  	for (i = 0; i < adap->sge.ethqsets; i++) {
4918  		eq = &adap->sge.ethrxq[i];
4919  		if (eq->rspq.desc)
4920  			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4921  				   FW_IQ_TYPE_FL_INT_CAP,
4922  				   eq->rspq.cntxt_id,
4923  				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4924  				   0xffff);
4925  	}
4926  
4927  	/* clean up Ethernet Tx/Rx queues */
4928  	for (i = 0; i < adap->sge.ethqsets; i++) {
4929  		eq = &adap->sge.ethrxq[i];
4930  		if (eq->rspq.desc)
4931  			free_rspq_fl(adap, &eq->rspq,
4932  				     eq->fl.size ? &eq->fl : NULL);
4933  		if (eq->msix) {
4934  			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4935  			eq->msix = NULL;
4936  		}
4937  
4938  		etq = &adap->sge.ethtxq[i];
4939  		if (etq->q.desc) {
4940  			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4941  				       etq->q.cntxt_id);
4942  			__netif_tx_lock_bh(etq->txq);
4943  			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4944  			__netif_tx_unlock_bh(etq->txq);
4945  			kfree(etq->q.sdesc);
4946  			free_txq(adap, &etq->q);
4947  		}
4948  	}
4949  
4950  	/* clean up control Tx queues */
4951  	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4952  		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4953  
4954  		if (cq->q.desc) {
4955  			tasklet_kill(&cq->qresume_tsk);
4956  			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4957  					cq->q.cntxt_id);
4958  			__skb_queue_purge(&cq->sendq);
4959  			free_txq(adap, &cq->q);
4960  		}
4961  	}
4962  
4963  	if (adap->sge.fw_evtq.desc) {
4964  		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4965  		if (adap->sge.fwevtq_msix_idx >= 0)
4966  			cxgb4_free_msix_idx_in_bmap(adap,
4967  						    adap->sge.fwevtq_msix_idx);
4968  	}
4969  
4970  	if (adap->sge.nd_msix_idx >= 0)
4971  		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4972  
4973  	if (adap->sge.intrq.desc)
4974  		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4975  
4976  	if (!is_t4(adap->params.chip)) {
4977  		etq = &adap->sge.ptptxq;
4978  		if (etq->q.desc) {
4979  			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4980  				       etq->q.cntxt_id);
4981  			spin_lock_bh(&adap->ptp_lock);
4982  			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4983  			spin_unlock_bh(&adap->ptp_lock);
4984  			kfree(etq->q.sdesc);
4985  			free_txq(adap, &etq->q);
4986  		}
4987  	}
4988  
4989  	/* clear the reverse egress queue map */
4990  	memset(adap->sge.egr_map, 0,
4991  	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4992  }
4993  
t4_sge_start(struct adapter * adap)4994  void t4_sge_start(struct adapter *adap)
4995  {
4996  	adap->sge.ethtxq_rover = 0;
4997  	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4998  	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4999  }
5000  
5001  /**
5002   *	t4_sge_stop - disable SGE operation
5003   *	@adap: the adapter
5004   *
5005   *	Stop tasklets and timers associated with the DMA engine.  Note that
5006   *	this is effective only if measures have been taken to disable any HW
5007   *	events that may restart them.
5008   */
t4_sge_stop(struct adapter * adap)5009  void t4_sge_stop(struct adapter *adap)
5010  {
5011  	int i;
5012  	struct sge *s = &adap->sge;
5013  
5014  	if (s->rx_timer.function)
5015  		del_timer_sync(&s->rx_timer);
5016  	if (s->tx_timer.function)
5017  		del_timer_sync(&s->tx_timer);
5018  
5019  	if (is_offload(adap)) {
5020  		struct sge_uld_txq_info *txq_info;
5021  
5022  		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
5023  		if (txq_info) {
5024  			struct sge_uld_txq *txq = txq_info->uldtxq;
5025  
5026  			for_each_ofldtxq(&adap->sge, i) {
5027  				if (txq->q.desc)
5028  					tasklet_kill(&txq->qresume_tsk);
5029  			}
5030  		}
5031  	}
5032  
5033  	if (is_pci_uld(adap)) {
5034  		struct sge_uld_txq_info *txq_info;
5035  
5036  		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
5037  		if (txq_info) {
5038  			struct sge_uld_txq *txq = txq_info->uldtxq;
5039  
5040  			for_each_ofldtxq(&adap->sge, i) {
5041  				if (txq->q.desc)
5042  					tasklet_kill(&txq->qresume_tsk);
5043  			}
5044  		}
5045  	}
5046  
5047  	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
5048  		struct sge_ctrl_txq *cq = &s->ctrlq[i];
5049  
5050  		if (cq->q.desc)
5051  			tasklet_kill(&cq->qresume_tsk);
5052  	}
5053  }
5054  
5055  /**
5056   *	t4_sge_init_soft - grab core SGE values needed by SGE code
5057   *	@adap: the adapter
5058   *
5059   *	We need to grab the SGE operating parameters that we need to have
5060   *	in order to do our job and make sure we can live with them.
5061   */
5062  
t4_sge_init_soft(struct adapter * adap)5063  static int t4_sge_init_soft(struct adapter *adap)
5064  {
5065  	struct sge *s = &adap->sge;
5066  	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
5067  	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
5068  	u32 ingress_rx_threshold;
5069  
5070  	/*
5071  	 * Verify that CPL messages are going to the Ingress Queue for
5072  	 * process_responses() and that only packet data is going to the
5073  	 * Free Lists.
5074  	 */
5075  	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
5076  	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
5077  		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
5078  		return -EINVAL;
5079  	}
5080  
5081  	/*
5082  	 * Validate the Host Buffer Register Array indices that we want to
5083  	 * use ...
5084  	 *
5085  	 * XXX Note that we should really read through the Host Buffer Size
5086  	 * XXX register array and find the indices of the Buffer Sizes which
5087  	 * XXX meet our needs!
5088  	 */
5089  	#define READ_FL_BUF(x) \
5090  		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
5091  
5092  	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
5093  	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
5094  	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
5095  	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
5096  
5097  	/* We only bother using the Large Page logic if the Large Page Buffer
5098  	 * is larger than our Page Size Buffer.
5099  	 */
5100  	if (fl_large_pg <= fl_small_pg)
5101  		fl_large_pg = 0;
5102  
5103  	#undef READ_FL_BUF
5104  
5105  	/* The Page Size Buffer must be exactly equal to our Page Size and the
5106  	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
5107  	 */
5108  	if (fl_small_pg != PAGE_SIZE ||
5109  	    (fl_large_pg & (fl_large_pg-1)) != 0) {
5110  		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
5111  			fl_small_pg, fl_large_pg);
5112  		return -EINVAL;
5113  	}
5114  	if (fl_large_pg)
5115  		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
5116  
5117  	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
5118  	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
5119  		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
5120  			fl_small_mtu, fl_large_mtu);
5121  		return -EINVAL;
5122  	}
5123  
5124  	/*
5125  	 * Retrieve our RX interrupt holdoff timer values and counter
5126  	 * threshold values from the SGE parameters.
5127  	 */
5128  	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
5129  	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
5130  	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
5131  	s->timer_val[0] = core_ticks_to_us(adap,
5132  		TIMERVALUE0_G(timer_value_0_and_1));
5133  	s->timer_val[1] = core_ticks_to_us(adap,
5134  		TIMERVALUE1_G(timer_value_0_and_1));
5135  	s->timer_val[2] = core_ticks_to_us(adap,
5136  		TIMERVALUE2_G(timer_value_2_and_3));
5137  	s->timer_val[3] = core_ticks_to_us(adap,
5138  		TIMERVALUE3_G(timer_value_2_and_3));
5139  	s->timer_val[4] = core_ticks_to_us(adap,
5140  		TIMERVALUE4_G(timer_value_4_and_5));
5141  	s->timer_val[5] = core_ticks_to_us(adap,
5142  		TIMERVALUE5_G(timer_value_4_and_5));
5143  
5144  	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
5145  	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
5146  	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
5147  	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
5148  	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
5149  
5150  	return 0;
5151  }
5152  
5153  /**
5154   *     t4_sge_init - initialize SGE
5155   *     @adap: the adapter
5156   *
5157   *     Perform low-level SGE code initialization needed every time after a
5158   *     chip reset.
5159   */
t4_sge_init(struct adapter * adap)5160  int t4_sge_init(struct adapter *adap)
5161  {
5162  	struct sge *s = &adap->sge;
5163  	u32 sge_control, sge_conm_ctrl;
5164  	int ret, egress_threshold;
5165  
5166  	/*
5167  	 * Ingress Padding Boundary and Egress Status Page Size are set up by
5168  	 * t4_fixup_host_params().
5169  	 */
5170  	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
5171  	s->pktshift = PKTSHIFT_G(sge_control);
5172  	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
5173  
5174  	s->fl_align = t4_fl_pkt_align(adap);
5175  	ret = t4_sge_init_soft(adap);
5176  	if (ret < 0)
5177  		return ret;
5178  
5179  	/*
5180  	 * A FL with <= fl_starve_thres buffers is starving and a periodic
5181  	 * timer will attempt to refill it.  This needs to be larger than the
5182  	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
5183  	 * stuck waiting for new packets while the SGE is waiting for us to
5184  	 * give it more Free List entries.  (Note that the SGE's Egress
5185  	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
5186  	 * there was only a single field to control this.  For T5 there's the
5187  	 * original field which now only applies to Unpacked Mode Free List
5188  	 * buffers and a new field which only applies to Packed Mode Free List
5189  	 * buffers.
5190  	 */
5191  	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
5192  	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
5193  	case CHELSIO_T4:
5194  		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
5195  		break;
5196  	case CHELSIO_T5:
5197  		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5198  		break;
5199  	case CHELSIO_T6:
5200  		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5201  		break;
5202  	default:
5203  		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
5204  			CHELSIO_CHIP_VERSION(adap->params.chip));
5205  		return -EINVAL;
5206  	}
5207  	s->fl_starve_thres = 2*egress_threshold + 1;
5208  
5209  	t4_idma_monitor_init(adap, &s->idma_monitor);
5210  
5211  	/* Set up timers used for recuring callbacks to process RX and TX
5212  	 * administrative tasks.
5213  	 */
5214  	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
5215  	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
5216  
5217  	spin_lock_init(&s->intrq_lock);
5218  
5219  	return 0;
5220  }
5221