1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * A fairly generic DMA-API to IOMMU-API glue layer.
4   *
5   * Copyright (C) 2014-2015 ARM Ltd.
6   *
7   * based in part on arch/arm/mm/dma-mapping.c:
8   * Copyright (C) 2000-2004 Russell King
9   */
10  
11  #include <linux/acpi_iort.h>
12  #include <linux/atomic.h>
13  #include <linux/crash_dump.h>
14  #include <linux/device.h>
15  #include <linux/dma-direct.h>
16  #include <linux/dma-map-ops.h>
17  #include <linux/gfp.h>
18  #include <linux/huge_mm.h>
19  #include <linux/iommu.h>
20  #include <linux/iommu-dma.h>
21  #include <linux/iova.h>
22  #include <linux/irq.h>
23  #include <linux/list_sort.h>
24  #include <linux/memremap.h>
25  #include <linux/mm.h>
26  #include <linux/mutex.h>
27  #include <linux/of_iommu.h>
28  #include <linux/pci.h>
29  #include <linux/scatterlist.h>
30  #include <linux/spinlock.h>
31  #include <linux/swiotlb.h>
32  #include <linux/vmalloc.h>
33  #include <trace/events/swiotlb.h>
34  
35  #include "dma-iommu.h"
36  #include "iommu-pages.h"
37  
38  struct iommu_dma_msi_page {
39  	struct list_head	list;
40  	dma_addr_t		iova;
41  	phys_addr_t		phys;
42  };
43  
44  enum iommu_dma_cookie_type {
45  	IOMMU_DMA_IOVA_COOKIE,
46  	IOMMU_DMA_MSI_COOKIE,
47  };
48  
49  enum iommu_dma_queue_type {
50  	IOMMU_DMA_OPTS_PER_CPU_QUEUE,
51  	IOMMU_DMA_OPTS_SINGLE_QUEUE,
52  };
53  
54  struct iommu_dma_options {
55  	enum iommu_dma_queue_type qt;
56  	size_t		fq_size;
57  	unsigned int	fq_timeout;
58  };
59  
60  struct iommu_dma_cookie {
61  	enum iommu_dma_cookie_type	type;
62  	union {
63  		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
64  		struct {
65  			struct iova_domain	iovad;
66  			/* Flush queue */
67  			union {
68  				struct iova_fq	*single_fq;
69  				struct iova_fq	__percpu *percpu_fq;
70  			};
71  			/* Number of TLB flushes that have been started */
72  			atomic64_t		fq_flush_start_cnt;
73  			/* Number of TLB flushes that have been finished */
74  			atomic64_t		fq_flush_finish_cnt;
75  			/* Timer to regularily empty the flush queues */
76  			struct timer_list	fq_timer;
77  			/* 1 when timer is active, 0 when not */
78  			atomic_t		fq_timer_on;
79  		};
80  		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
81  		dma_addr_t		msi_iova;
82  	};
83  	struct list_head		msi_page_list;
84  
85  	/* Domain for flush queue callback; NULL if flush queue not in use */
86  	struct iommu_domain		*fq_domain;
87  	/* Options for dma-iommu use */
88  	struct iommu_dma_options	options;
89  	struct mutex			mutex;
90  };
91  
92  static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
93  bool iommu_dma_forcedac __read_mostly;
94  
iommu_dma_forcedac_setup(char * str)95  static int __init iommu_dma_forcedac_setup(char *str)
96  {
97  	int ret = kstrtobool(str, &iommu_dma_forcedac);
98  
99  	if (!ret && iommu_dma_forcedac)
100  		pr_info("Forcing DAC for PCI devices\n");
101  	return ret;
102  }
103  early_param("iommu.forcedac", iommu_dma_forcedac_setup);
104  
105  /* Number of entries per flush queue */
106  #define IOVA_DEFAULT_FQ_SIZE	256
107  #define IOVA_SINGLE_FQ_SIZE	32768
108  
109  /* Timeout (in ms) after which entries are flushed from the queue */
110  #define IOVA_DEFAULT_FQ_TIMEOUT	10
111  #define IOVA_SINGLE_FQ_TIMEOUT	1000
112  
113  /* Flush queue entry for deferred flushing */
114  struct iova_fq_entry {
115  	unsigned long iova_pfn;
116  	unsigned long pages;
117  	struct list_head freelist;
118  	u64 counter; /* Flush counter when this entry was added */
119  };
120  
121  /* Per-CPU flush queue structure */
122  struct iova_fq {
123  	spinlock_t lock;
124  	unsigned int head, tail;
125  	unsigned int mod_mask;
126  	struct iova_fq_entry entries[];
127  };
128  
129  #define fq_ring_for_each(i, fq) \
130  	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
131  
fq_full(struct iova_fq * fq)132  static inline bool fq_full(struct iova_fq *fq)
133  {
134  	assert_spin_locked(&fq->lock);
135  	return (((fq->tail + 1) & fq->mod_mask) == fq->head);
136  }
137  
fq_ring_add(struct iova_fq * fq)138  static inline unsigned int fq_ring_add(struct iova_fq *fq)
139  {
140  	unsigned int idx = fq->tail;
141  
142  	assert_spin_locked(&fq->lock);
143  
144  	fq->tail = (idx + 1) & fq->mod_mask;
145  
146  	return idx;
147  }
148  
fq_ring_free_locked(struct iommu_dma_cookie * cookie,struct iova_fq * fq)149  static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
150  {
151  	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
152  	unsigned int idx;
153  
154  	assert_spin_locked(&fq->lock);
155  
156  	fq_ring_for_each(idx, fq) {
157  
158  		if (fq->entries[idx].counter >= counter)
159  			break;
160  
161  		iommu_put_pages_list(&fq->entries[idx].freelist);
162  		free_iova_fast(&cookie->iovad,
163  			       fq->entries[idx].iova_pfn,
164  			       fq->entries[idx].pages);
165  
166  		fq->head = (fq->head + 1) & fq->mod_mask;
167  	}
168  }
169  
fq_ring_free(struct iommu_dma_cookie * cookie,struct iova_fq * fq)170  static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
171  {
172  	unsigned long flags;
173  
174  	spin_lock_irqsave(&fq->lock, flags);
175  	fq_ring_free_locked(cookie, fq);
176  	spin_unlock_irqrestore(&fq->lock, flags);
177  }
178  
fq_flush_iotlb(struct iommu_dma_cookie * cookie)179  static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
180  {
181  	atomic64_inc(&cookie->fq_flush_start_cnt);
182  	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
183  	atomic64_inc(&cookie->fq_flush_finish_cnt);
184  }
185  
fq_flush_timeout(struct timer_list * t)186  static void fq_flush_timeout(struct timer_list *t)
187  {
188  	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
189  	int cpu;
190  
191  	atomic_set(&cookie->fq_timer_on, 0);
192  	fq_flush_iotlb(cookie);
193  
194  	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
195  		fq_ring_free(cookie, cookie->single_fq);
196  	} else {
197  		for_each_possible_cpu(cpu)
198  			fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
199  	}
200  }
201  
queue_iova(struct iommu_dma_cookie * cookie,unsigned long pfn,unsigned long pages,struct list_head * freelist)202  static void queue_iova(struct iommu_dma_cookie *cookie,
203  		unsigned long pfn, unsigned long pages,
204  		struct list_head *freelist)
205  {
206  	struct iova_fq *fq;
207  	unsigned long flags;
208  	unsigned int idx;
209  
210  	/*
211  	 * Order against the IOMMU driver's pagetable update from unmapping
212  	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
213  	 * from a different CPU before we release the lock below. Full barrier
214  	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
215  	 * written fq state here.
216  	 */
217  	smp_mb();
218  
219  	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
220  		fq = cookie->single_fq;
221  	else
222  		fq = raw_cpu_ptr(cookie->percpu_fq);
223  
224  	spin_lock_irqsave(&fq->lock, flags);
225  
226  	/*
227  	 * First remove all entries from the flush queue that have already been
228  	 * flushed out on another CPU. This makes the fq_full() check below less
229  	 * likely to be true.
230  	 */
231  	fq_ring_free_locked(cookie, fq);
232  
233  	if (fq_full(fq)) {
234  		fq_flush_iotlb(cookie);
235  		fq_ring_free_locked(cookie, fq);
236  	}
237  
238  	idx = fq_ring_add(fq);
239  
240  	fq->entries[idx].iova_pfn = pfn;
241  	fq->entries[idx].pages    = pages;
242  	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
243  	list_splice(freelist, &fq->entries[idx].freelist);
244  
245  	spin_unlock_irqrestore(&fq->lock, flags);
246  
247  	/* Avoid false sharing as much as possible. */
248  	if (!atomic_read(&cookie->fq_timer_on) &&
249  	    !atomic_xchg(&cookie->fq_timer_on, 1))
250  		mod_timer(&cookie->fq_timer,
251  			  jiffies + msecs_to_jiffies(cookie->options.fq_timeout));
252  }
253  
iommu_dma_free_fq_single(struct iova_fq * fq)254  static void iommu_dma_free_fq_single(struct iova_fq *fq)
255  {
256  	int idx;
257  
258  	fq_ring_for_each(idx, fq)
259  		iommu_put_pages_list(&fq->entries[idx].freelist);
260  	vfree(fq);
261  }
262  
iommu_dma_free_fq_percpu(struct iova_fq __percpu * percpu_fq)263  static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
264  {
265  	int cpu, idx;
266  
267  	/* The IOVAs will be torn down separately, so just free our queued pages */
268  	for_each_possible_cpu(cpu) {
269  		struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
270  
271  		fq_ring_for_each(idx, fq)
272  			iommu_put_pages_list(&fq->entries[idx].freelist);
273  	}
274  
275  	free_percpu(percpu_fq);
276  }
277  
iommu_dma_free_fq(struct iommu_dma_cookie * cookie)278  static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
279  {
280  	if (!cookie->fq_domain)
281  		return;
282  
283  	del_timer_sync(&cookie->fq_timer);
284  	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
285  		iommu_dma_free_fq_single(cookie->single_fq);
286  	else
287  		iommu_dma_free_fq_percpu(cookie->percpu_fq);
288  }
289  
iommu_dma_init_one_fq(struct iova_fq * fq,size_t fq_size)290  static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
291  {
292  	int i;
293  
294  	fq->head = 0;
295  	fq->tail = 0;
296  	fq->mod_mask = fq_size - 1;
297  
298  	spin_lock_init(&fq->lock);
299  
300  	for (i = 0; i < fq_size; i++)
301  		INIT_LIST_HEAD(&fq->entries[i].freelist);
302  }
303  
iommu_dma_init_fq_single(struct iommu_dma_cookie * cookie)304  static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
305  {
306  	size_t fq_size = cookie->options.fq_size;
307  	struct iova_fq *queue;
308  
309  	queue = vmalloc(struct_size(queue, entries, fq_size));
310  	if (!queue)
311  		return -ENOMEM;
312  	iommu_dma_init_one_fq(queue, fq_size);
313  	cookie->single_fq = queue;
314  
315  	return 0;
316  }
317  
iommu_dma_init_fq_percpu(struct iommu_dma_cookie * cookie)318  static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
319  {
320  	size_t fq_size = cookie->options.fq_size;
321  	struct iova_fq __percpu *queue;
322  	int cpu;
323  
324  	queue = __alloc_percpu(struct_size(queue, entries, fq_size),
325  			       __alignof__(*queue));
326  	if (!queue)
327  		return -ENOMEM;
328  
329  	for_each_possible_cpu(cpu)
330  		iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
331  	cookie->percpu_fq = queue;
332  	return 0;
333  }
334  
335  /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)336  int iommu_dma_init_fq(struct iommu_domain *domain)
337  {
338  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
339  	int rc;
340  
341  	if (cookie->fq_domain)
342  		return 0;
343  
344  	atomic64_set(&cookie->fq_flush_start_cnt,  0);
345  	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
346  
347  	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
348  		rc = iommu_dma_init_fq_single(cookie);
349  	else
350  		rc = iommu_dma_init_fq_percpu(cookie);
351  
352  	if (rc) {
353  		pr_warn("iova flush queue initialization failed\n");
354  		return -ENOMEM;
355  	}
356  
357  	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
358  	atomic_set(&cookie->fq_timer_on, 0);
359  	/*
360  	 * Prevent incomplete fq state being observable. Pairs with path from
361  	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
362  	 */
363  	smp_wmb();
364  	WRITE_ONCE(cookie->fq_domain, domain);
365  	return 0;
366  }
367  
cookie_msi_granule(struct iommu_dma_cookie * cookie)368  static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
369  {
370  	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
371  		return cookie->iovad.granule;
372  	return PAGE_SIZE;
373  }
374  
cookie_alloc(enum iommu_dma_cookie_type type)375  static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
376  {
377  	struct iommu_dma_cookie *cookie;
378  
379  	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
380  	if (cookie) {
381  		INIT_LIST_HEAD(&cookie->msi_page_list);
382  		cookie->type = type;
383  	}
384  	return cookie;
385  }
386  
387  /**
388   * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
389   * @domain: IOMMU domain to prepare for DMA-API usage
390   */
iommu_get_dma_cookie(struct iommu_domain * domain)391  int iommu_get_dma_cookie(struct iommu_domain *domain)
392  {
393  	if (domain->iova_cookie)
394  		return -EEXIST;
395  
396  	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
397  	if (!domain->iova_cookie)
398  		return -ENOMEM;
399  
400  	mutex_init(&domain->iova_cookie->mutex);
401  	return 0;
402  }
403  
404  /**
405   * iommu_get_msi_cookie - Acquire just MSI remapping resources
406   * @domain: IOMMU domain to prepare
407   * @base: Start address of IOVA region for MSI mappings
408   *
409   * Users who manage their own IOVA allocation and do not want DMA API support,
410   * but would still like to take advantage of automatic MSI remapping, can use
411   * this to initialise their own domain appropriately. Users should reserve a
412   * contiguous IOVA region, starting at @base, large enough to accommodate the
413   * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
414   * used by the devices attached to @domain.
415   */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)416  int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
417  {
418  	struct iommu_dma_cookie *cookie;
419  
420  	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
421  		return -EINVAL;
422  
423  	if (domain->iova_cookie)
424  		return -EEXIST;
425  
426  	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
427  	if (!cookie)
428  		return -ENOMEM;
429  
430  	cookie->msi_iova = base;
431  	domain->iova_cookie = cookie;
432  	return 0;
433  }
434  EXPORT_SYMBOL(iommu_get_msi_cookie);
435  
436  /**
437   * iommu_put_dma_cookie - Release a domain's DMA mapping resources
438   * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
439   *          iommu_get_msi_cookie()
440   */
iommu_put_dma_cookie(struct iommu_domain * domain)441  void iommu_put_dma_cookie(struct iommu_domain *domain)
442  {
443  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
444  	struct iommu_dma_msi_page *msi, *tmp;
445  
446  	if (!cookie)
447  		return;
448  
449  	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
450  		iommu_dma_free_fq(cookie);
451  		put_iova_domain(&cookie->iovad);
452  	}
453  
454  	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
455  		list_del(&msi->list);
456  		kfree(msi);
457  	}
458  	kfree(cookie);
459  	domain->iova_cookie = NULL;
460  }
461  
462  /**
463   * iommu_dma_get_resv_regions - Reserved region driver helper
464   * @dev: Device from iommu_get_resv_regions()
465   * @list: Reserved region list from iommu_get_resv_regions()
466   *
467   * IOMMU drivers can use this to implement their .get_resv_regions callback
468   * for general non-IOMMU-specific reservations. Currently, this covers GICv3
469   * ITS region reservation on ACPI based ARM platforms that may require HW MSI
470   * reservation.
471   */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)472  void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
473  {
474  
475  	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
476  		iort_iommu_get_resv_regions(dev, list);
477  
478  	if (dev->of_node)
479  		of_iommu_get_resv_regions(dev, list);
480  }
481  EXPORT_SYMBOL(iommu_dma_get_resv_regions);
482  
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)483  static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
484  		phys_addr_t start, phys_addr_t end)
485  {
486  	struct iova_domain *iovad = &cookie->iovad;
487  	struct iommu_dma_msi_page *msi_page;
488  	int i, num_pages;
489  
490  	start -= iova_offset(iovad, start);
491  	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
492  
493  	for (i = 0; i < num_pages; i++) {
494  		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
495  		if (!msi_page)
496  			return -ENOMEM;
497  
498  		msi_page->phys = start;
499  		msi_page->iova = start;
500  		INIT_LIST_HEAD(&msi_page->list);
501  		list_add(&msi_page->list, &cookie->msi_page_list);
502  		start += iovad->granule;
503  	}
504  
505  	return 0;
506  }
507  
iommu_dma_ranges_sort(void * priv,const struct list_head * a,const struct list_head * b)508  static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
509  		const struct list_head *b)
510  {
511  	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
512  	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
513  
514  	return res_a->res->start > res_b->res->start;
515  }
516  
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)517  static int iova_reserve_pci_windows(struct pci_dev *dev,
518  		struct iova_domain *iovad)
519  {
520  	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
521  	struct resource_entry *window;
522  	unsigned long lo, hi;
523  	phys_addr_t start = 0, end;
524  
525  	resource_list_for_each_entry(window, &bridge->windows) {
526  		if (resource_type(window->res) != IORESOURCE_MEM)
527  			continue;
528  
529  		lo = iova_pfn(iovad, window->res->start - window->offset);
530  		hi = iova_pfn(iovad, window->res->end - window->offset);
531  		reserve_iova(iovad, lo, hi);
532  	}
533  
534  	/* Get reserved DMA windows from host bridge */
535  	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
536  	resource_list_for_each_entry(window, &bridge->dma_ranges) {
537  		end = window->res->start - window->offset;
538  resv_iova:
539  		if (end > start) {
540  			lo = iova_pfn(iovad, start);
541  			hi = iova_pfn(iovad, end);
542  			reserve_iova(iovad, lo, hi);
543  		} else if (end < start) {
544  			/* DMA ranges should be non-overlapping */
545  			dev_err(&dev->dev,
546  				"Failed to reserve IOVA [%pa-%pa]\n",
547  				&start, &end);
548  			return -EINVAL;
549  		}
550  
551  		start = window->res->end - window->offset + 1;
552  		/* If window is last entry */
553  		if (window->node.next == &bridge->dma_ranges &&
554  		    end != ~(phys_addr_t)0) {
555  			end = ~(phys_addr_t)0;
556  			goto resv_iova;
557  		}
558  	}
559  
560  	return 0;
561  }
562  
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)563  static int iova_reserve_iommu_regions(struct device *dev,
564  		struct iommu_domain *domain)
565  {
566  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
567  	struct iova_domain *iovad = &cookie->iovad;
568  	struct iommu_resv_region *region;
569  	LIST_HEAD(resv_regions);
570  	int ret = 0;
571  
572  	if (dev_is_pci(dev)) {
573  		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
574  		if (ret)
575  			return ret;
576  	}
577  
578  	iommu_get_resv_regions(dev, &resv_regions);
579  	list_for_each_entry(region, &resv_regions, list) {
580  		unsigned long lo, hi;
581  
582  		/* We ARE the software that manages these! */
583  		if (region->type == IOMMU_RESV_SW_MSI)
584  			continue;
585  
586  		lo = iova_pfn(iovad, region->start);
587  		hi = iova_pfn(iovad, region->start + region->length - 1);
588  		reserve_iova(iovad, lo, hi);
589  
590  		if (region->type == IOMMU_RESV_MSI)
591  			ret = cookie_init_hw_msi_region(cookie, region->start,
592  					region->start + region->length);
593  		if (ret)
594  			break;
595  	}
596  	iommu_put_resv_regions(dev, &resv_regions);
597  
598  	return ret;
599  }
600  
dev_is_untrusted(struct device * dev)601  static bool dev_is_untrusted(struct device *dev)
602  {
603  	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
604  }
605  
dev_use_swiotlb(struct device * dev,size_t size,enum dma_data_direction dir)606  static bool dev_use_swiotlb(struct device *dev, size_t size,
607  			    enum dma_data_direction dir)
608  {
609  	return IS_ENABLED(CONFIG_SWIOTLB) &&
610  		(dev_is_untrusted(dev) ||
611  		 dma_kmalloc_needs_bounce(dev, size, dir));
612  }
613  
dev_use_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)614  static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
615  			       int nents, enum dma_data_direction dir)
616  {
617  	struct scatterlist *s;
618  	int i;
619  
620  	if (!IS_ENABLED(CONFIG_SWIOTLB))
621  		return false;
622  
623  	if (dev_is_untrusted(dev))
624  		return true;
625  
626  	/*
627  	 * If kmalloc() buffers are not DMA-safe for this device and
628  	 * direction, check the individual lengths in the sg list. If any
629  	 * element is deemed unsafe, use the swiotlb for bouncing.
630  	 */
631  	if (!dma_kmalloc_safe(dev, dir)) {
632  		for_each_sg(sg, s, nents, i)
633  			if (!dma_kmalloc_size_aligned(s->length))
634  				return true;
635  	}
636  
637  	return false;
638  }
639  
640  /**
641   * iommu_dma_init_options - Initialize dma-iommu options
642   * @options: The options to be initialized
643   * @dev: Device the options are set for
644   *
645   * This allows tuning dma-iommu specific to device properties
646   */
iommu_dma_init_options(struct iommu_dma_options * options,struct device * dev)647  static void iommu_dma_init_options(struct iommu_dma_options *options,
648  				   struct device *dev)
649  {
650  	/* Shadowing IOTLB flushes do better with a single large queue */
651  	if (dev->iommu->shadow_on_flush) {
652  		options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
653  		options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
654  		options->fq_size = IOVA_SINGLE_FQ_SIZE;
655  	} else {
656  		options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
657  		options->fq_size = IOVA_DEFAULT_FQ_SIZE;
658  		options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
659  	}
660  }
661  
662  /**
663   * iommu_dma_init_domain - Initialise a DMA mapping domain
664   * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
665   * @dev: Device the domain is being initialised for
666   *
667   * If the geometry and dma_range_map include address 0, we reserve that page
668   * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
669   * any change which could make prior IOVAs invalid will fail.
670   */
iommu_dma_init_domain(struct iommu_domain * domain,struct device * dev)671  static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev)
672  {
673  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
674  	const struct bus_dma_region *map = dev->dma_range_map;
675  	unsigned long order, base_pfn;
676  	struct iova_domain *iovad;
677  	int ret;
678  
679  	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
680  		return -EINVAL;
681  
682  	iovad = &cookie->iovad;
683  
684  	/* Use the smallest supported page size for IOVA granularity */
685  	order = __ffs(domain->pgsize_bitmap);
686  	base_pfn = 1;
687  
688  	/* Check the domain allows at least some access to the device... */
689  	if (map) {
690  		if (dma_range_map_min(map) > domain->geometry.aperture_end ||
691  		    dma_range_map_max(map) < domain->geometry.aperture_start) {
692  			pr_warn("specified DMA range outside IOMMU capability\n");
693  			return -EFAULT;
694  		}
695  	}
696  	/* ...then finally give it a kicking to make sure it fits */
697  	base_pfn = max_t(unsigned long, base_pfn,
698  			 domain->geometry.aperture_start >> order);
699  
700  	/* start_pfn is always nonzero for an already-initialised domain */
701  	mutex_lock(&cookie->mutex);
702  	if (iovad->start_pfn) {
703  		if (1UL << order != iovad->granule ||
704  		    base_pfn != iovad->start_pfn) {
705  			pr_warn("Incompatible range for DMA domain\n");
706  			ret = -EFAULT;
707  			goto done_unlock;
708  		}
709  
710  		ret = 0;
711  		goto done_unlock;
712  	}
713  
714  	init_iova_domain(iovad, 1UL << order, base_pfn);
715  	ret = iova_domain_init_rcaches(iovad);
716  	if (ret)
717  		goto done_unlock;
718  
719  	iommu_dma_init_options(&cookie->options, dev);
720  
721  	/* If the FQ fails we can simply fall back to strict mode */
722  	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
723  	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
724  		domain->type = IOMMU_DOMAIN_DMA;
725  
726  	ret = iova_reserve_iommu_regions(dev, domain);
727  
728  done_unlock:
729  	mutex_unlock(&cookie->mutex);
730  	return ret;
731  }
732  
733  /**
734   * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
735   *                    page flags.
736   * @dir: Direction of DMA transfer
737   * @coherent: Is the DMA master cache-coherent?
738   * @attrs: DMA attributes for the mapping
739   *
740   * Return: corresponding IOMMU API page protection flags
741   */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)742  static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
743  		     unsigned long attrs)
744  {
745  	int prot = coherent ? IOMMU_CACHE : 0;
746  
747  	if (attrs & DMA_ATTR_PRIVILEGED)
748  		prot |= IOMMU_PRIV;
749  
750  	switch (dir) {
751  	case DMA_BIDIRECTIONAL:
752  		return prot | IOMMU_READ | IOMMU_WRITE;
753  	case DMA_TO_DEVICE:
754  		return prot | IOMMU_READ;
755  	case DMA_FROM_DEVICE:
756  		return prot | IOMMU_WRITE;
757  	default:
758  		return 0;
759  	}
760  }
761  
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)762  static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
763  		size_t size, u64 dma_limit, struct device *dev)
764  {
765  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
766  	struct iova_domain *iovad = &cookie->iovad;
767  	unsigned long shift, iova_len, iova;
768  
769  	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
770  		cookie->msi_iova += size;
771  		return cookie->msi_iova - size;
772  	}
773  
774  	shift = iova_shift(iovad);
775  	iova_len = size >> shift;
776  
777  	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
778  
779  	if (domain->geometry.force_aperture)
780  		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
781  
782  	/*
783  	 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
784  	 * DAC reasoning loses relevance with PCIe, but enough hardware and
785  	 * firmware bugs are still lurking out there that it's safest not to
786  	 * venture into the 64-bit space until necessary.
787  	 *
788  	 * If your device goes wrong after seeing the notice then likely either
789  	 * its driver is not setting DMA masks accurately, the hardware has
790  	 * some inherent bug in handling >32-bit addresses, or not all the
791  	 * expected address bits are wired up between the device and the IOMMU.
792  	 */
793  	if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
794  		iova = alloc_iova_fast(iovad, iova_len,
795  				       DMA_BIT_MASK(32) >> shift, false);
796  		if (iova)
797  			goto done;
798  
799  		dev->iommu->pci_32bit_workaround = false;
800  		dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
801  	}
802  
803  	iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
804  done:
805  	return (dma_addr_t)iova << shift;
806  }
807  
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)808  static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
809  		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
810  {
811  	struct iova_domain *iovad = &cookie->iovad;
812  
813  	/* The MSI case is only ever cleaning up its most recent allocation */
814  	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
815  		cookie->msi_iova -= size;
816  	else if (gather && gather->queued)
817  		queue_iova(cookie, iova_pfn(iovad, iova),
818  				size >> iova_shift(iovad),
819  				&gather->freelist);
820  	else
821  		free_iova_fast(iovad, iova_pfn(iovad, iova),
822  				size >> iova_shift(iovad));
823  }
824  
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)825  static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
826  		size_t size)
827  {
828  	struct iommu_domain *domain = iommu_get_dma_domain(dev);
829  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
830  	struct iova_domain *iovad = &cookie->iovad;
831  	size_t iova_off = iova_offset(iovad, dma_addr);
832  	struct iommu_iotlb_gather iotlb_gather;
833  	size_t unmapped;
834  
835  	dma_addr -= iova_off;
836  	size = iova_align(iovad, size + iova_off);
837  	iommu_iotlb_gather_init(&iotlb_gather);
838  	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
839  
840  	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
841  	WARN_ON(unmapped != size);
842  
843  	if (!iotlb_gather.queued)
844  		iommu_iotlb_sync(domain, &iotlb_gather);
845  	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
846  }
847  
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)848  static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
849  		size_t size, int prot, u64 dma_mask)
850  {
851  	struct iommu_domain *domain = iommu_get_dma_domain(dev);
852  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
853  	struct iova_domain *iovad = &cookie->iovad;
854  	size_t iova_off = iova_offset(iovad, phys);
855  	dma_addr_t iova;
856  
857  	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
858  	    iommu_deferred_attach(dev, domain))
859  		return DMA_MAPPING_ERROR;
860  
861  	/* If anyone ever wants this we'd need support in the IOVA allocator */
862  	if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
863  	    "Unsupported alignment constraint\n"))
864  		return DMA_MAPPING_ERROR;
865  
866  	size = iova_align(iovad, size + iova_off);
867  
868  	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
869  	if (!iova)
870  		return DMA_MAPPING_ERROR;
871  
872  	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
873  		iommu_dma_free_iova(cookie, iova, size, NULL);
874  		return DMA_MAPPING_ERROR;
875  	}
876  	return iova + iova_off;
877  }
878  
__iommu_dma_free_pages(struct page ** pages,int count)879  static void __iommu_dma_free_pages(struct page **pages, int count)
880  {
881  	while (count--)
882  		__free_page(pages[count]);
883  	kvfree(pages);
884  }
885  
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)886  static struct page **__iommu_dma_alloc_pages(struct device *dev,
887  		unsigned int count, unsigned long order_mask, gfp_t gfp)
888  {
889  	struct page **pages;
890  	unsigned int i = 0, nid = dev_to_node(dev);
891  
892  	order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
893  	if (!order_mask)
894  		return NULL;
895  
896  	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
897  	if (!pages)
898  		return NULL;
899  
900  	/* IOMMU can map any pages, so himem can also be used here */
901  	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
902  
903  	while (count) {
904  		struct page *page = NULL;
905  		unsigned int order_size;
906  
907  		/*
908  		 * Higher-order allocations are a convenience rather
909  		 * than a necessity, hence using __GFP_NORETRY until
910  		 * falling back to minimum-order allocations.
911  		 */
912  		for (order_mask &= GENMASK(__fls(count), 0);
913  		     order_mask; order_mask &= ~order_size) {
914  			unsigned int order = __fls(order_mask);
915  			gfp_t alloc_flags = gfp;
916  
917  			order_size = 1U << order;
918  			if (order_mask > order_size)
919  				alloc_flags |= __GFP_NORETRY;
920  			page = alloc_pages_node(nid, alloc_flags, order);
921  			if (!page)
922  				continue;
923  			if (order)
924  				split_page(page, order);
925  			break;
926  		}
927  		if (!page) {
928  			__iommu_dma_free_pages(pages, i);
929  			return NULL;
930  		}
931  		count -= order_size;
932  		while (order_size--)
933  			pages[i++] = page++;
934  	}
935  	return pages;
936  }
937  
938  /*
939   * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
940   * but an IOMMU which supports smaller pages might not map the whole thing.
941   */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,unsigned long attrs)942  static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
943  		size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs)
944  {
945  	struct iommu_domain *domain = iommu_get_dma_domain(dev);
946  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
947  	struct iova_domain *iovad = &cookie->iovad;
948  	bool coherent = dev_is_dma_coherent(dev);
949  	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
950  	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
951  	struct page **pages;
952  	dma_addr_t iova;
953  	ssize_t ret;
954  
955  	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
956  	    iommu_deferred_attach(dev, domain))
957  		return NULL;
958  
959  	min_size = alloc_sizes & -alloc_sizes;
960  	if (min_size < PAGE_SIZE) {
961  		min_size = PAGE_SIZE;
962  		alloc_sizes |= PAGE_SIZE;
963  	} else {
964  		size = ALIGN(size, min_size);
965  	}
966  	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
967  		alloc_sizes = min_size;
968  
969  	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
970  	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
971  					gfp);
972  	if (!pages)
973  		return NULL;
974  
975  	size = iova_align(iovad, size);
976  	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
977  	if (!iova)
978  		goto out_free_pages;
979  
980  	/*
981  	 * Remove the zone/policy flags from the GFP - these are applied to the
982  	 * __iommu_dma_alloc_pages() but are not used for the supporting
983  	 * internal allocations that follow.
984  	 */
985  	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
986  
987  	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
988  		goto out_free_iova;
989  
990  	if (!(ioprot & IOMMU_CACHE)) {
991  		struct scatterlist *sg;
992  		int i;
993  
994  		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
995  			arch_dma_prep_coherent(sg_page(sg), sg->length);
996  	}
997  
998  	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
999  			   gfp);
1000  	if (ret < 0 || ret < size)
1001  		goto out_free_sg;
1002  
1003  	sgt->sgl->dma_address = iova;
1004  	sgt->sgl->dma_length = size;
1005  	return pages;
1006  
1007  out_free_sg:
1008  	sg_free_table(sgt);
1009  out_free_iova:
1010  	iommu_dma_free_iova(cookie, iova, size, NULL);
1011  out_free_pages:
1012  	__iommu_dma_free_pages(pages, count);
1013  	return NULL;
1014  }
1015  
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)1016  static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
1017  		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
1018  {
1019  	struct page **pages;
1020  	struct sg_table sgt;
1021  	void *vaddr;
1022  	pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1023  
1024  	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs);
1025  	if (!pages)
1026  		return NULL;
1027  	*dma_handle = sgt.sgl->dma_address;
1028  	sg_free_table(&sgt);
1029  	vaddr = dma_common_pages_remap(pages, size, prot,
1030  			__builtin_return_address(0));
1031  	if (!vaddr)
1032  		goto out_unmap;
1033  	return vaddr;
1034  
1035  out_unmap:
1036  	__iommu_dma_unmap(dev, *dma_handle, size);
1037  	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1038  	return NULL;
1039  }
1040  
1041  /*
1042   * This is the actual return value from the iommu_dma_alloc_noncontiguous.
1043   *
1044   * The users of the DMA API should only care about the sg_table, but to make
1045   * the DMA-API internal vmaping and freeing easier we stash away the page
1046   * array as well (except for the fallback case).  This can go away any time,
1047   * e.g. when a vmap-variant that takes a scatterlist comes along.
1048   */
1049  struct dma_sgt_handle {
1050  	struct sg_table sgt;
1051  	struct page **pages;
1052  };
1053  #define sgt_handle(sgt) \
1054  	container_of((sgt), struct dma_sgt_handle, sgt)
1055  
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)1056  struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size,
1057  	       enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
1058  {
1059  	struct dma_sgt_handle *sh;
1060  
1061  	sh = kmalloc(sizeof(*sh), gfp);
1062  	if (!sh)
1063  		return NULL;
1064  
1065  	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs);
1066  	if (!sh->pages) {
1067  		kfree(sh);
1068  		return NULL;
1069  	}
1070  	return &sh->sgt;
1071  }
1072  
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)1073  void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
1074  		struct sg_table *sgt, enum dma_data_direction dir)
1075  {
1076  	struct dma_sgt_handle *sh = sgt_handle(sgt);
1077  
1078  	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
1079  	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1080  	sg_free_table(&sh->sgt);
1081  	kfree(sh);
1082  }
1083  
iommu_dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)1084  void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size,
1085  		struct sg_table *sgt)
1086  {
1087  	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1088  
1089  	return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
1090  }
1091  
iommu_dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)1092  int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
1093  		size_t size, struct sg_table *sgt)
1094  {
1095  	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1096  
1097  	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
1098  		return -ENXIO;
1099  	return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
1100  }
1101  
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)1102  void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
1103  		size_t size, enum dma_data_direction dir)
1104  {
1105  	phys_addr_t phys;
1106  
1107  	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1108  		return;
1109  
1110  	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1111  	if (!dev_is_dma_coherent(dev))
1112  		arch_sync_dma_for_cpu(phys, size, dir);
1113  
1114  	swiotlb_sync_single_for_cpu(dev, phys, size, dir);
1115  }
1116  
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)1117  void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
1118  		size_t size, enum dma_data_direction dir)
1119  {
1120  	phys_addr_t phys;
1121  
1122  	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1123  		return;
1124  
1125  	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1126  	swiotlb_sync_single_for_device(dev, phys, size, dir);
1127  
1128  	if (!dev_is_dma_coherent(dev))
1129  		arch_sync_dma_for_device(phys, size, dir);
1130  }
1131  
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1132  void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
1133  		int nelems, enum dma_data_direction dir)
1134  {
1135  	struct scatterlist *sg;
1136  	int i;
1137  
1138  	if (sg_dma_is_swiotlb(sgl))
1139  		for_each_sg(sgl, sg, nelems, i)
1140  			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1141  						      sg->length, dir);
1142  	else if (!dev_is_dma_coherent(dev))
1143  		for_each_sg(sgl, sg, nelems, i)
1144  			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1145  }
1146  
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1147  void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
1148  		int nelems, enum dma_data_direction dir)
1149  {
1150  	struct scatterlist *sg;
1151  	int i;
1152  
1153  	if (sg_dma_is_swiotlb(sgl))
1154  		for_each_sg(sgl, sg, nelems, i)
1155  			iommu_dma_sync_single_for_device(dev,
1156  							 sg_dma_address(sg),
1157  							 sg->length, dir);
1158  	else if (!dev_is_dma_coherent(dev))
1159  		for_each_sg(sgl, sg, nelems, i)
1160  			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1161  }
1162  
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1163  dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1164  	      unsigned long offset, size_t size, enum dma_data_direction dir,
1165  	      unsigned long attrs)
1166  {
1167  	phys_addr_t phys = page_to_phys(page) + offset;
1168  	bool coherent = dev_is_dma_coherent(dev);
1169  	int prot = dma_info_to_prot(dir, coherent, attrs);
1170  	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1171  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1172  	struct iova_domain *iovad = &cookie->iovad;
1173  	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1174  
1175  	/*
1176  	 * If both the physical buffer start address and size are
1177  	 * page aligned, we don't need to use a bounce page.
1178  	 */
1179  	if (dev_use_swiotlb(dev, size, dir) &&
1180  	    iova_offset(iovad, phys | size)) {
1181  		if (!is_swiotlb_active(dev)) {
1182  			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1183  			return DMA_MAPPING_ERROR;
1184  		}
1185  
1186  		trace_swiotlb_bounced(dev, phys, size);
1187  
1188  		phys = swiotlb_tbl_map_single(dev, phys, size,
1189  					      iova_mask(iovad), dir, attrs);
1190  
1191  		if (phys == DMA_MAPPING_ERROR)
1192  			return DMA_MAPPING_ERROR;
1193  
1194  		/*
1195  		 * Untrusted devices should not see padding areas with random
1196  		 * leftover kernel data, so zero the pre- and post-padding.
1197  		 * swiotlb_tbl_map_single() has initialized the bounce buffer
1198  		 * proper to the contents of the original memory buffer.
1199  		 */
1200  		if (dev_is_untrusted(dev)) {
1201  			size_t start, virt = (size_t)phys_to_virt(phys);
1202  
1203  			/* Pre-padding */
1204  			start = iova_align_down(iovad, virt);
1205  			memset((void *)start, 0, virt - start);
1206  
1207  			/* Post-padding */
1208  			start = virt + size;
1209  			memset((void *)start, 0,
1210  			       iova_align(iovad, start) - start);
1211  		}
1212  	}
1213  
1214  	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1215  		arch_sync_dma_for_device(phys, size, dir);
1216  
1217  	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1218  	if (iova == DMA_MAPPING_ERROR)
1219  		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1220  	return iova;
1221  }
1222  
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1223  void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1224  		size_t size, enum dma_data_direction dir, unsigned long attrs)
1225  {
1226  	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1227  	phys_addr_t phys;
1228  
1229  	phys = iommu_iova_to_phys(domain, dma_handle);
1230  	if (WARN_ON(!phys))
1231  		return;
1232  
1233  	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1234  		arch_sync_dma_for_cpu(phys, size, dir);
1235  
1236  	__iommu_dma_unmap(dev, dma_handle, size);
1237  
1238  	swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1239  }
1240  
1241  /*
1242   * Prepare a successfully-mapped scatterlist to give back to the caller.
1243   *
1244   * At this point the segments are already laid out by iommu_dma_map_sg() to
1245   * avoid individually crossing any boundaries, so we merely need to check a
1246   * segment's start address to avoid concatenating across one.
1247   */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)1248  static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1249  		dma_addr_t dma_addr)
1250  {
1251  	struct scatterlist *s, *cur = sg;
1252  	unsigned long seg_mask = dma_get_seg_boundary(dev);
1253  	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1254  	int i, count = 0;
1255  
1256  	for_each_sg(sg, s, nents, i) {
1257  		/* Restore this segment's original unaligned fields first */
1258  		dma_addr_t s_dma_addr = sg_dma_address(s);
1259  		unsigned int s_iova_off = sg_dma_address(s);
1260  		unsigned int s_length = sg_dma_len(s);
1261  		unsigned int s_iova_len = s->length;
1262  
1263  		sg_dma_address(s) = DMA_MAPPING_ERROR;
1264  		sg_dma_len(s) = 0;
1265  
1266  		if (sg_dma_is_bus_address(s)) {
1267  			if (i > 0)
1268  				cur = sg_next(cur);
1269  
1270  			sg_dma_unmark_bus_address(s);
1271  			sg_dma_address(cur) = s_dma_addr;
1272  			sg_dma_len(cur) = s_length;
1273  			sg_dma_mark_bus_address(cur);
1274  			count++;
1275  			cur_len = 0;
1276  			continue;
1277  		}
1278  
1279  		s->offset += s_iova_off;
1280  		s->length = s_length;
1281  
1282  		/*
1283  		 * Now fill in the real DMA data. If...
1284  		 * - there is a valid output segment to append to
1285  		 * - and this segment starts on an IOVA page boundary
1286  		 * - but doesn't fall at a segment boundary
1287  		 * - and wouldn't make the resulting output segment too long
1288  		 */
1289  		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1290  		    (max_len - cur_len >= s_length)) {
1291  			/* ...then concatenate it with the previous one */
1292  			cur_len += s_length;
1293  		} else {
1294  			/* Otherwise start the next output segment */
1295  			if (i > 0)
1296  				cur = sg_next(cur);
1297  			cur_len = s_length;
1298  			count++;
1299  
1300  			sg_dma_address(cur) = dma_addr + s_iova_off;
1301  		}
1302  
1303  		sg_dma_len(cur) = cur_len;
1304  		dma_addr += s_iova_len;
1305  
1306  		if (s_length + s_iova_off < s_iova_len)
1307  			cur_len = 0;
1308  	}
1309  	return count;
1310  }
1311  
1312  /*
1313   * If mapping failed, then just restore the original list,
1314   * but making sure the DMA fields are invalidated.
1315   */
__invalidate_sg(struct scatterlist * sg,int nents)1316  static void __invalidate_sg(struct scatterlist *sg, int nents)
1317  {
1318  	struct scatterlist *s;
1319  	int i;
1320  
1321  	for_each_sg(sg, s, nents, i) {
1322  		if (sg_dma_is_bus_address(s)) {
1323  			sg_dma_unmark_bus_address(s);
1324  		} else {
1325  			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1326  				s->offset += sg_dma_address(s);
1327  			if (sg_dma_len(s))
1328  				s->length = sg_dma_len(s);
1329  		}
1330  		sg_dma_address(s) = DMA_MAPPING_ERROR;
1331  		sg_dma_len(s) = 0;
1332  	}
1333  }
1334  
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1335  static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1336  		int nents, enum dma_data_direction dir, unsigned long attrs)
1337  {
1338  	struct scatterlist *s;
1339  	int i;
1340  
1341  	for_each_sg(sg, s, nents, i)
1342  		iommu_dma_unmap_page(dev, sg_dma_address(s),
1343  				sg_dma_len(s), dir, attrs);
1344  }
1345  
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1346  static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1347  		int nents, enum dma_data_direction dir, unsigned long attrs)
1348  {
1349  	struct scatterlist *s;
1350  	int i;
1351  
1352  	sg_dma_mark_swiotlb(sg);
1353  
1354  	for_each_sg(sg, s, nents, i) {
1355  		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1356  				s->offset, s->length, dir, attrs);
1357  		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1358  			goto out_unmap;
1359  		sg_dma_len(s) = s->length;
1360  	}
1361  
1362  	return nents;
1363  
1364  out_unmap:
1365  	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1366  	return -EIO;
1367  }
1368  
1369  /*
1370   * The DMA API client is passing in a scatterlist which could describe
1371   * any old buffer layout, but the IOMMU API requires everything to be
1372   * aligned to IOMMU pages. Hence the need for this complicated bit of
1373   * impedance-matching, to be able to hand off a suitably-aligned list,
1374   * but still preserve the original offsets and sizes for the caller.
1375   */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1376  int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1377  		enum dma_data_direction dir, unsigned long attrs)
1378  {
1379  	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1380  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1381  	struct iova_domain *iovad = &cookie->iovad;
1382  	struct scatterlist *s, *prev = NULL;
1383  	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1384  	struct pci_p2pdma_map_state p2pdma_state = {};
1385  	enum pci_p2pdma_map_type map;
1386  	dma_addr_t iova;
1387  	size_t iova_len = 0;
1388  	unsigned long mask = dma_get_seg_boundary(dev);
1389  	ssize_t ret;
1390  	int i;
1391  
1392  	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1393  		ret = iommu_deferred_attach(dev, domain);
1394  		if (ret)
1395  			goto out;
1396  	}
1397  
1398  	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1399  		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1400  
1401  	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1402  		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1403  
1404  	/*
1405  	 * Work out how much IOVA space we need, and align the segments to
1406  	 * IOVA granules for the IOMMU driver to handle. With some clever
1407  	 * trickery we can modify the list in-place, but reversibly, by
1408  	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1409  	 */
1410  	for_each_sg(sg, s, nents, i) {
1411  		size_t s_iova_off = iova_offset(iovad, s->offset);
1412  		size_t s_length = s->length;
1413  		size_t pad_len = (mask - iova_len + 1) & mask;
1414  
1415  		if (is_pci_p2pdma_page(sg_page(s))) {
1416  			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1417  			switch (map) {
1418  			case PCI_P2PDMA_MAP_BUS_ADDR:
1419  				/*
1420  				 * iommu_map_sg() will skip this segment as
1421  				 * it is marked as a bus address,
1422  				 * __finalise_sg() will copy the dma address
1423  				 * into the output segment.
1424  				 */
1425  				continue;
1426  			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1427  				/*
1428  				 * Mapping through host bridge should be
1429  				 * mapped with regular IOVAs, thus we
1430  				 * do nothing here and continue below.
1431  				 */
1432  				break;
1433  			default:
1434  				ret = -EREMOTEIO;
1435  				goto out_restore_sg;
1436  			}
1437  		}
1438  
1439  		sg_dma_address(s) = s_iova_off;
1440  		sg_dma_len(s) = s_length;
1441  		s->offset -= s_iova_off;
1442  		s_length = iova_align(iovad, s_length + s_iova_off);
1443  		s->length = s_length;
1444  
1445  		/*
1446  		 * Due to the alignment of our single IOVA allocation, we can
1447  		 * depend on these assumptions about the segment boundary mask:
1448  		 * - If mask size >= IOVA size, then the IOVA range cannot
1449  		 *   possibly fall across a boundary, so we don't care.
1450  		 * - If mask size < IOVA size, then the IOVA range must start
1451  		 *   exactly on a boundary, therefore we can lay things out
1452  		 *   based purely on segment lengths without needing to know
1453  		 *   the actual addresses beforehand.
1454  		 * - The mask must be a power of 2, so pad_len == 0 if
1455  		 *   iova_len == 0, thus we cannot dereference prev the first
1456  		 *   time through here (i.e. before it has a meaningful value).
1457  		 */
1458  		if (pad_len && pad_len < s_length - 1) {
1459  			prev->length += pad_len;
1460  			iova_len += pad_len;
1461  		}
1462  
1463  		iova_len += s_length;
1464  		prev = s;
1465  	}
1466  
1467  	if (!iova_len)
1468  		return __finalise_sg(dev, sg, nents, 0);
1469  
1470  	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1471  	if (!iova) {
1472  		ret = -ENOMEM;
1473  		goto out_restore_sg;
1474  	}
1475  
1476  	/*
1477  	 * We'll leave any physical concatenation to the IOMMU driver's
1478  	 * implementation - it knows better than we do.
1479  	 */
1480  	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1481  	if (ret < 0 || ret < iova_len)
1482  		goto out_free_iova;
1483  
1484  	return __finalise_sg(dev, sg, nents, iova);
1485  
1486  out_free_iova:
1487  	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1488  out_restore_sg:
1489  	__invalidate_sg(sg, nents);
1490  out:
1491  	if (ret != -ENOMEM && ret != -EREMOTEIO)
1492  		return -EINVAL;
1493  	return ret;
1494  }
1495  
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1496  void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1497  		enum dma_data_direction dir, unsigned long attrs)
1498  {
1499  	dma_addr_t end = 0, start;
1500  	struct scatterlist *tmp;
1501  	int i;
1502  
1503  	if (sg_dma_is_swiotlb(sg)) {
1504  		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1505  		return;
1506  	}
1507  
1508  	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1509  		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1510  
1511  	/*
1512  	 * The scatterlist segments are mapped into a single
1513  	 * contiguous IOVA allocation, the start and end points
1514  	 * just have to be determined.
1515  	 */
1516  	for_each_sg(sg, tmp, nents, i) {
1517  		if (sg_dma_is_bus_address(tmp)) {
1518  			sg_dma_unmark_bus_address(tmp);
1519  			continue;
1520  		}
1521  
1522  		if (sg_dma_len(tmp) == 0)
1523  			break;
1524  
1525  		start = sg_dma_address(tmp);
1526  		break;
1527  	}
1528  
1529  	nents -= i;
1530  	for_each_sg(tmp, tmp, nents, i) {
1531  		if (sg_dma_is_bus_address(tmp)) {
1532  			sg_dma_unmark_bus_address(tmp);
1533  			continue;
1534  		}
1535  
1536  		if (sg_dma_len(tmp) == 0)
1537  			break;
1538  
1539  		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1540  	}
1541  
1542  	if (end)
1543  		__iommu_dma_unmap(dev, start, end - start);
1544  }
1545  
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1546  dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1547  		size_t size, enum dma_data_direction dir, unsigned long attrs)
1548  {
1549  	return __iommu_dma_map(dev, phys, size,
1550  			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1551  			dma_get_mask(dev));
1552  }
1553  
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1554  void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1555  		size_t size, enum dma_data_direction dir, unsigned long attrs)
1556  {
1557  	__iommu_dma_unmap(dev, handle, size);
1558  }
1559  
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1560  static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1561  {
1562  	size_t alloc_size = PAGE_ALIGN(size);
1563  	int count = alloc_size >> PAGE_SHIFT;
1564  	struct page *page = NULL, **pages = NULL;
1565  
1566  	/* Non-coherent atomic allocation? Easy */
1567  	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1568  	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1569  		return;
1570  
1571  	if (is_vmalloc_addr(cpu_addr)) {
1572  		/*
1573  		 * If it the address is remapped, then it's either non-coherent
1574  		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1575  		 */
1576  		pages = dma_common_find_pages(cpu_addr);
1577  		if (!pages)
1578  			page = vmalloc_to_page(cpu_addr);
1579  		dma_common_free_remap(cpu_addr, alloc_size);
1580  	} else {
1581  		/* Lowmem means a coherent atomic or CMA allocation */
1582  		page = virt_to_page(cpu_addr);
1583  	}
1584  
1585  	if (pages)
1586  		__iommu_dma_free_pages(pages, count);
1587  	if (page)
1588  		dma_free_contiguous(dev, page, alloc_size);
1589  }
1590  
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1591  void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1592  		dma_addr_t handle, unsigned long attrs)
1593  {
1594  	__iommu_dma_unmap(dev, handle, size);
1595  	__iommu_dma_free(dev, size, cpu_addr);
1596  }
1597  
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1598  static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1599  		struct page **pagep, gfp_t gfp, unsigned long attrs)
1600  {
1601  	bool coherent = dev_is_dma_coherent(dev);
1602  	size_t alloc_size = PAGE_ALIGN(size);
1603  	int node = dev_to_node(dev);
1604  	struct page *page = NULL;
1605  	void *cpu_addr;
1606  
1607  	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1608  	if (!page)
1609  		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1610  	if (!page)
1611  		return NULL;
1612  
1613  	if (!coherent || PageHighMem(page)) {
1614  		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1615  
1616  		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1617  				prot, __builtin_return_address(0));
1618  		if (!cpu_addr)
1619  			goto out_free_pages;
1620  
1621  		if (!coherent)
1622  			arch_dma_prep_coherent(page, size);
1623  	} else {
1624  		cpu_addr = page_address(page);
1625  	}
1626  
1627  	*pagep = page;
1628  	memset(cpu_addr, 0, alloc_size);
1629  	return cpu_addr;
1630  out_free_pages:
1631  	dma_free_contiguous(dev, page, alloc_size);
1632  	return NULL;
1633  }
1634  
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1635  void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
1636  		gfp_t gfp, unsigned long attrs)
1637  {
1638  	bool coherent = dev_is_dma_coherent(dev);
1639  	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1640  	struct page *page = NULL;
1641  	void *cpu_addr;
1642  
1643  	gfp |= __GFP_ZERO;
1644  
1645  	if (gfpflags_allow_blocking(gfp) &&
1646  	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1647  		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1648  	}
1649  
1650  	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1651  	    !gfpflags_allow_blocking(gfp) && !coherent)
1652  		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1653  					       gfp, NULL);
1654  	else
1655  		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1656  	if (!cpu_addr)
1657  		return NULL;
1658  
1659  	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1660  			dev->coherent_dma_mask);
1661  	if (*handle == DMA_MAPPING_ERROR) {
1662  		__iommu_dma_free(dev, size, cpu_addr);
1663  		return NULL;
1664  	}
1665  
1666  	return cpu_addr;
1667  }
1668  
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1669  int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1670  		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1671  		unsigned long attrs)
1672  {
1673  	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1674  	unsigned long pfn, off = vma->vm_pgoff;
1675  	int ret;
1676  
1677  	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1678  
1679  	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1680  		return ret;
1681  
1682  	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1683  		return -ENXIO;
1684  
1685  	if (is_vmalloc_addr(cpu_addr)) {
1686  		struct page **pages = dma_common_find_pages(cpu_addr);
1687  
1688  		if (pages)
1689  			return vm_map_pages(vma, pages, nr_pages);
1690  		pfn = vmalloc_to_pfn(cpu_addr);
1691  	} else {
1692  		pfn = page_to_pfn(virt_to_page(cpu_addr));
1693  	}
1694  
1695  	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1696  			       vma->vm_end - vma->vm_start,
1697  			       vma->vm_page_prot);
1698  }
1699  
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1700  int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1701  		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1702  		unsigned long attrs)
1703  {
1704  	struct page *page;
1705  	int ret;
1706  
1707  	if (is_vmalloc_addr(cpu_addr)) {
1708  		struct page **pages = dma_common_find_pages(cpu_addr);
1709  
1710  		if (pages) {
1711  			return sg_alloc_table_from_pages(sgt, pages,
1712  					PAGE_ALIGN(size) >> PAGE_SHIFT,
1713  					0, size, GFP_KERNEL);
1714  		}
1715  
1716  		page = vmalloc_to_page(cpu_addr);
1717  	} else {
1718  		page = virt_to_page(cpu_addr);
1719  	}
1720  
1721  	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1722  	if (!ret)
1723  		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1724  	return ret;
1725  }
1726  
iommu_dma_get_merge_boundary(struct device * dev)1727  unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1728  {
1729  	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1730  
1731  	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1732  }
1733  
iommu_dma_opt_mapping_size(void)1734  size_t iommu_dma_opt_mapping_size(void)
1735  {
1736  	return iova_rcache_range();
1737  }
1738  
iommu_dma_max_mapping_size(struct device * dev)1739  size_t iommu_dma_max_mapping_size(struct device *dev)
1740  {
1741  	if (dev_is_untrusted(dev))
1742  		return swiotlb_max_mapping_size(dev);
1743  
1744  	return SIZE_MAX;
1745  }
1746  
iommu_setup_dma_ops(struct device * dev)1747  void iommu_setup_dma_ops(struct device *dev)
1748  {
1749  	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1750  
1751  	if (dev_is_pci(dev))
1752  		dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac;
1753  
1754  	dev->dma_iommu = iommu_is_dma_domain(domain);
1755  	if (dev->dma_iommu && iommu_dma_init_domain(domain, dev))
1756  		goto out_err;
1757  
1758  	return;
1759  out_err:
1760  	pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1761  		dev_name(dev));
1762  	dev->dma_iommu = false;
1763  }
1764  
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1765  static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1766  		phys_addr_t msi_addr, struct iommu_domain *domain)
1767  {
1768  	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1769  	struct iommu_dma_msi_page *msi_page;
1770  	dma_addr_t iova;
1771  	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1772  	size_t size = cookie_msi_granule(cookie);
1773  
1774  	msi_addr &= ~(phys_addr_t)(size - 1);
1775  	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1776  		if (msi_page->phys == msi_addr)
1777  			return msi_page;
1778  
1779  	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1780  	if (!msi_page)
1781  		return NULL;
1782  
1783  	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1784  	if (!iova)
1785  		goto out_free_page;
1786  
1787  	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1788  		goto out_free_iova;
1789  
1790  	INIT_LIST_HEAD(&msi_page->list);
1791  	msi_page->phys = msi_addr;
1792  	msi_page->iova = iova;
1793  	list_add(&msi_page->list, &cookie->msi_page_list);
1794  	return msi_page;
1795  
1796  out_free_iova:
1797  	iommu_dma_free_iova(cookie, iova, size, NULL);
1798  out_free_page:
1799  	kfree(msi_page);
1800  	return NULL;
1801  }
1802  
1803  /**
1804   * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1805   * @desc: MSI descriptor, will store the MSI page
1806   * @msi_addr: MSI target address to be mapped
1807   *
1808   * Return: 0 on success or negative error code if the mapping failed.
1809   */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)1810  int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1811  {
1812  	struct device *dev = msi_desc_to_dev(desc);
1813  	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1814  	struct iommu_dma_msi_page *msi_page;
1815  	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1816  
1817  	if (!domain || !domain->iova_cookie) {
1818  		desc->iommu_cookie = NULL;
1819  		return 0;
1820  	}
1821  
1822  	/*
1823  	 * In fact the whole prepare operation should already be serialised by
1824  	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1825  	 * on its own, so consider this locking as failsafe documentation...
1826  	 */
1827  	mutex_lock(&msi_prepare_lock);
1828  	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1829  	mutex_unlock(&msi_prepare_lock);
1830  
1831  	msi_desc_set_iommu_cookie(desc, msi_page);
1832  
1833  	if (!msi_page)
1834  		return -ENOMEM;
1835  	return 0;
1836  }
1837  
1838  /**
1839   * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1840   * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1841   * @msg: MSI message containing target physical address
1842   */
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1843  void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1844  {
1845  	struct device *dev = msi_desc_to_dev(desc);
1846  	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1847  	const struct iommu_dma_msi_page *msi_page;
1848  
1849  	msi_page = msi_desc_get_iommu_cookie(desc);
1850  
1851  	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1852  		return;
1853  
1854  	msg->address_hi = upper_32_bits(msi_page->iova);
1855  	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1856  	msg->address_lo += lower_32_bits(msi_page->iova);
1857  }
1858  
iommu_dma_init(void)1859  static int iommu_dma_init(void)
1860  {
1861  	if (is_kdump_kernel())
1862  		static_branch_enable(&iommu_deferred_attach_enabled);
1863  
1864  	return iova_cache_get();
1865  }
1866  arch_initcall(iommu_dma_init);
1867