1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * The input core
4   *
5   * Copyright (c) 1999-2002 Vojtech Pavlik
6   */
7  
8  
9  #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10  
11  #include <linux/init.h>
12  #include <linux/types.h>
13  #include <linux/idr.h>
14  #include <linux/input/mt.h>
15  #include <linux/module.h>
16  #include <linux/slab.h>
17  #include <linux/random.h>
18  #include <linux/major.h>
19  #include <linux/proc_fs.h>
20  #include <linux/sched.h>
21  #include <linux/seq_file.h>
22  #include <linux/pm.h>
23  #include <linux/poll.h>
24  #include <linux/device.h>
25  #include <linux/kstrtox.h>
26  #include <linux/mutex.h>
27  #include <linux/rcupdate.h>
28  #include "input-compat.h"
29  #include "input-core-private.h"
30  #include "input-poller.h"
31  
32  MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33  MODULE_DESCRIPTION("Input core");
34  MODULE_LICENSE("GPL");
35  
36  #define INPUT_MAX_CHAR_DEVICES		1024
37  #define INPUT_FIRST_DYNAMIC_DEV		256
38  static DEFINE_IDA(input_ida);
39  
40  static LIST_HEAD(input_dev_list);
41  static LIST_HEAD(input_handler_list);
42  
43  /*
44   * input_mutex protects access to both input_dev_list and input_handler_list.
45   * This also causes input_[un]register_device and input_[un]register_handler
46   * be mutually exclusive which simplifies locking in drivers implementing
47   * input handlers.
48   */
49  static DEFINE_MUTEX(input_mutex);
50  
51  static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52  
53  static const unsigned int input_max_code[EV_CNT] = {
54  	[EV_KEY] = KEY_MAX,
55  	[EV_REL] = REL_MAX,
56  	[EV_ABS] = ABS_MAX,
57  	[EV_MSC] = MSC_MAX,
58  	[EV_SW] = SW_MAX,
59  	[EV_LED] = LED_MAX,
60  	[EV_SND] = SND_MAX,
61  	[EV_FF] = FF_MAX,
62  };
63  
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)64  static inline int is_event_supported(unsigned int code,
65  				     unsigned long *bm, unsigned int max)
66  {
67  	return code <= max && test_bit(code, bm);
68  }
69  
input_defuzz_abs_event(int value,int old_val,int fuzz)70  static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71  {
72  	if (fuzz) {
73  		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74  			return old_val;
75  
76  		if (value > old_val - fuzz && value < old_val + fuzz)
77  			return (old_val * 3 + value) / 4;
78  
79  		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80  			return (old_val + value) / 2;
81  	}
82  
83  	return value;
84  }
85  
input_start_autorepeat(struct input_dev * dev,int code)86  static void input_start_autorepeat(struct input_dev *dev, int code)
87  {
88  	if (test_bit(EV_REP, dev->evbit) &&
89  	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90  	    dev->timer.function) {
91  		dev->repeat_key = code;
92  		mod_timer(&dev->timer,
93  			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94  	}
95  }
96  
input_stop_autorepeat(struct input_dev * dev)97  static void input_stop_autorepeat(struct input_dev *dev)
98  {
99  	del_timer(&dev->timer);
100  }
101  
102  /*
103   * Pass values first through all filters and then, if event has not been
104   * filtered out, through all open handles. This order is achieved by placing
105   * filters at the head of the list of handles attached to the device, and
106   * placing regular handles at the tail of the list.
107   *
108   * This function is called with dev->event_lock held and interrupts disabled.
109   */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)110  static void input_pass_values(struct input_dev *dev,
111  			      struct input_value *vals, unsigned int count)
112  {
113  	struct input_handle *handle;
114  	struct input_value *v;
115  
116  	lockdep_assert_held(&dev->event_lock);
117  
118  	rcu_read_lock();
119  
120  	handle = rcu_dereference(dev->grab);
121  	if (handle) {
122  		count = handle->handle_events(handle, vals, count);
123  	} else {
124  		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
125  			if (handle->open) {
126  				count = handle->handle_events(handle, vals,
127  							      count);
128  				if (!count)
129  					break;
130  			}
131  	}
132  
133  	rcu_read_unlock();
134  
135  	/* trigger auto repeat for key events */
136  	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137  		for (v = vals; v != vals + count; v++) {
138  			if (v->type == EV_KEY && v->value != 2) {
139  				if (v->value)
140  					input_start_autorepeat(dev, v->code);
141  				else
142  					input_stop_autorepeat(dev);
143  			}
144  		}
145  	}
146  }
147  
148  #define INPUT_IGNORE_EVENT	0
149  #define INPUT_PASS_TO_HANDLERS	1
150  #define INPUT_PASS_TO_DEVICE	2
151  #define INPUT_SLOT		4
152  #define INPUT_FLUSH		8
153  #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
154  
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)155  static int input_handle_abs_event(struct input_dev *dev,
156  				  unsigned int code, int *pval)
157  {
158  	struct input_mt *mt = dev->mt;
159  	bool is_new_slot = false;
160  	bool is_mt_event;
161  	int *pold;
162  
163  	if (code == ABS_MT_SLOT) {
164  		/*
165  		 * "Stage" the event; we'll flush it later, when we
166  		 * get actual touch data.
167  		 */
168  		if (mt && *pval >= 0 && *pval < mt->num_slots)
169  			mt->slot = *pval;
170  
171  		return INPUT_IGNORE_EVENT;
172  	}
173  
174  	is_mt_event = input_is_mt_value(code);
175  
176  	if (!is_mt_event) {
177  		pold = &dev->absinfo[code].value;
178  	} else if (mt) {
179  		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180  		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181  	} else {
182  		/*
183  		 * Bypass filtering for multi-touch events when
184  		 * not employing slots.
185  		 */
186  		pold = NULL;
187  	}
188  
189  	if (pold) {
190  		*pval = input_defuzz_abs_event(*pval, *pold,
191  						dev->absinfo[code].fuzz);
192  		if (*pold == *pval)
193  			return INPUT_IGNORE_EVENT;
194  
195  		*pold = *pval;
196  	}
197  
198  	/* Flush pending "slot" event */
199  	if (is_new_slot) {
200  		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201  		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
202  	}
203  
204  	return INPUT_PASS_TO_HANDLERS;
205  }
206  
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)207  static int input_get_disposition(struct input_dev *dev,
208  			  unsigned int type, unsigned int code, int *pval)
209  {
210  	int disposition = INPUT_IGNORE_EVENT;
211  	int value = *pval;
212  
213  	/* filter-out events from inhibited devices */
214  	if (dev->inhibited)
215  		return INPUT_IGNORE_EVENT;
216  
217  	switch (type) {
218  
219  	case EV_SYN:
220  		switch (code) {
221  		case SYN_CONFIG:
222  			disposition = INPUT_PASS_TO_ALL;
223  			break;
224  
225  		case SYN_REPORT:
226  			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227  			break;
228  		case SYN_MT_REPORT:
229  			disposition = INPUT_PASS_TO_HANDLERS;
230  			break;
231  		}
232  		break;
233  
234  	case EV_KEY:
235  		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
236  
237  			/* auto-repeat bypasses state updates */
238  			if (value == 2) {
239  				disposition = INPUT_PASS_TO_HANDLERS;
240  				break;
241  			}
242  
243  			if (!!test_bit(code, dev->key) != !!value) {
244  
245  				__change_bit(code, dev->key);
246  				disposition = INPUT_PASS_TO_HANDLERS;
247  			}
248  		}
249  		break;
250  
251  	case EV_SW:
252  		if (is_event_supported(code, dev->swbit, SW_MAX) &&
253  		    !!test_bit(code, dev->sw) != !!value) {
254  
255  			__change_bit(code, dev->sw);
256  			disposition = INPUT_PASS_TO_HANDLERS;
257  		}
258  		break;
259  
260  	case EV_ABS:
261  		if (is_event_supported(code, dev->absbit, ABS_MAX))
262  			disposition = input_handle_abs_event(dev, code, &value);
263  
264  		break;
265  
266  	case EV_REL:
267  		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268  			disposition = INPUT_PASS_TO_HANDLERS;
269  
270  		break;
271  
272  	case EV_MSC:
273  		if (is_event_supported(code, dev->mscbit, MSC_MAX))
274  			disposition = INPUT_PASS_TO_ALL;
275  
276  		break;
277  
278  	case EV_LED:
279  		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280  		    !!test_bit(code, dev->led) != !!value) {
281  
282  			__change_bit(code, dev->led);
283  			disposition = INPUT_PASS_TO_ALL;
284  		}
285  		break;
286  
287  	case EV_SND:
288  		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
289  
290  			if (!!test_bit(code, dev->snd) != !!value)
291  				__change_bit(code, dev->snd);
292  			disposition = INPUT_PASS_TO_ALL;
293  		}
294  		break;
295  
296  	case EV_REP:
297  		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298  			dev->rep[code] = value;
299  			disposition = INPUT_PASS_TO_ALL;
300  		}
301  		break;
302  
303  	case EV_FF:
304  		if (value >= 0)
305  			disposition = INPUT_PASS_TO_ALL;
306  		break;
307  
308  	case EV_PWR:
309  		disposition = INPUT_PASS_TO_ALL;
310  		break;
311  	}
312  
313  	*pval = value;
314  	return disposition;
315  }
316  
input_event_dispose(struct input_dev * dev,int disposition,unsigned int type,unsigned int code,int value)317  static void input_event_dispose(struct input_dev *dev, int disposition,
318  				unsigned int type, unsigned int code, int value)
319  {
320  	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321  		dev->event(dev, type, code, value);
322  
323  	if (disposition & INPUT_PASS_TO_HANDLERS) {
324  		struct input_value *v;
325  
326  		if (disposition & INPUT_SLOT) {
327  			v = &dev->vals[dev->num_vals++];
328  			v->type = EV_ABS;
329  			v->code = ABS_MT_SLOT;
330  			v->value = dev->mt->slot;
331  		}
332  
333  		v = &dev->vals[dev->num_vals++];
334  		v->type = type;
335  		v->code = code;
336  		v->value = value;
337  	}
338  
339  	if (disposition & INPUT_FLUSH) {
340  		if (dev->num_vals >= 2)
341  			input_pass_values(dev, dev->vals, dev->num_vals);
342  		dev->num_vals = 0;
343  		/*
344  		 * Reset the timestamp on flush so we won't end up
345  		 * with a stale one. Note we only need to reset the
346  		 * monolithic one as we use its presence when deciding
347  		 * whether to generate a synthetic timestamp.
348  		 */
349  		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350  	} else if (dev->num_vals >= dev->max_vals - 2) {
351  		dev->vals[dev->num_vals++] = input_value_sync;
352  		input_pass_values(dev, dev->vals, dev->num_vals);
353  		dev->num_vals = 0;
354  	}
355  }
356  
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)357  void input_handle_event(struct input_dev *dev,
358  			unsigned int type, unsigned int code, int value)
359  {
360  	int disposition;
361  
362  	lockdep_assert_held(&dev->event_lock);
363  
364  	disposition = input_get_disposition(dev, type, code, &value);
365  	if (disposition != INPUT_IGNORE_EVENT) {
366  		if (type != EV_SYN)
367  			add_input_randomness(type, code, value);
368  
369  		input_event_dispose(dev, disposition, type, code, value);
370  	}
371  }
372  
373  /**
374   * input_event() - report new input event
375   * @dev: device that generated the event
376   * @type: type of the event
377   * @code: event code
378   * @value: value of the event
379   *
380   * This function should be used by drivers implementing various input
381   * devices to report input events. See also input_inject_event().
382   *
383   * NOTE: input_event() may be safely used right after input device was
384   * allocated with input_allocate_device(), even before it is registered
385   * with input_register_device(), but the event will not reach any of the
386   * input handlers. Such early invocation of input_event() may be used
387   * to 'seed' initial state of a switch or initial position of absolute
388   * axis, etc.
389   */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)390  void input_event(struct input_dev *dev,
391  		 unsigned int type, unsigned int code, int value)
392  {
393  	unsigned long flags;
394  
395  	if (is_event_supported(type, dev->evbit, EV_MAX)) {
396  
397  		spin_lock_irqsave(&dev->event_lock, flags);
398  		input_handle_event(dev, type, code, value);
399  		spin_unlock_irqrestore(&dev->event_lock, flags);
400  	}
401  }
402  EXPORT_SYMBOL(input_event);
403  
404  /**
405   * input_inject_event() - send input event from input handler
406   * @handle: input handle to send event through
407   * @type: type of the event
408   * @code: event code
409   * @value: value of the event
410   *
411   * Similar to input_event() but will ignore event if device is
412   * "grabbed" and handle injecting event is not the one that owns
413   * the device.
414   */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)415  void input_inject_event(struct input_handle *handle,
416  			unsigned int type, unsigned int code, int value)
417  {
418  	struct input_dev *dev = handle->dev;
419  	struct input_handle *grab;
420  	unsigned long flags;
421  
422  	if (is_event_supported(type, dev->evbit, EV_MAX)) {
423  		spin_lock_irqsave(&dev->event_lock, flags);
424  
425  		rcu_read_lock();
426  		grab = rcu_dereference(dev->grab);
427  		if (!grab || grab == handle)
428  			input_handle_event(dev, type, code, value);
429  		rcu_read_unlock();
430  
431  		spin_unlock_irqrestore(&dev->event_lock, flags);
432  	}
433  }
434  EXPORT_SYMBOL(input_inject_event);
435  
436  /**
437   * input_alloc_absinfo - allocates array of input_absinfo structs
438   * @dev: the input device emitting absolute events
439   *
440   * If the absinfo struct the caller asked for is already allocated, this
441   * functions will not do anything.
442   */
input_alloc_absinfo(struct input_dev * dev)443  void input_alloc_absinfo(struct input_dev *dev)
444  {
445  	if (dev->absinfo)
446  		return;
447  
448  	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
449  	if (!dev->absinfo) {
450  		dev_err(dev->dev.parent ?: &dev->dev,
451  			"%s: unable to allocate memory\n", __func__);
452  		/*
453  		 * We will handle this allocation failure in
454  		 * input_register_device() when we refuse to register input
455  		 * device with ABS bits but without absinfo.
456  		 */
457  	}
458  }
459  EXPORT_SYMBOL(input_alloc_absinfo);
460  
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)461  void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462  			  int min, int max, int fuzz, int flat)
463  {
464  	struct input_absinfo *absinfo;
465  
466  	__set_bit(EV_ABS, dev->evbit);
467  	__set_bit(axis, dev->absbit);
468  
469  	input_alloc_absinfo(dev);
470  	if (!dev->absinfo)
471  		return;
472  
473  	absinfo = &dev->absinfo[axis];
474  	absinfo->minimum = min;
475  	absinfo->maximum = max;
476  	absinfo->fuzz = fuzz;
477  	absinfo->flat = flat;
478  }
479  EXPORT_SYMBOL(input_set_abs_params);
480  
481  /**
482   * input_copy_abs - Copy absinfo from one input_dev to another
483   * @dst: Destination input device to copy the abs settings to
484   * @dst_axis: ABS_* value selecting the destination axis
485   * @src: Source input device to copy the abs settings from
486   * @src_axis: ABS_* value selecting the source axis
487   *
488   * Set absinfo for the selected destination axis by copying it from
489   * the specified source input device's source axis.
490   * This is useful to e.g. setup a pen/stylus input-device for combined
491   * touchscreen/pen hardware where the pen uses the same coordinates as
492   * the touchscreen.
493   */
input_copy_abs(struct input_dev * dst,unsigned int dst_axis,const struct input_dev * src,unsigned int src_axis)494  void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495  		    const struct input_dev *src, unsigned int src_axis)
496  {
497  	/* src must have EV_ABS and src_axis set */
498  	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499  		      test_bit(src_axis, src->absbit))))
500  		return;
501  
502  	/*
503  	 * input_alloc_absinfo() may have failed for the source. Our caller is
504  	 * expected to catch this when registering the input devices, which may
505  	 * happen after the input_copy_abs() call.
506  	 */
507  	if (!src->absinfo)
508  		return;
509  
510  	input_set_capability(dst, EV_ABS, dst_axis);
511  	if (!dst->absinfo)
512  		return;
513  
514  	dst->absinfo[dst_axis] = src->absinfo[src_axis];
515  }
516  EXPORT_SYMBOL(input_copy_abs);
517  
518  /**
519   * input_grab_device - grabs device for exclusive use
520   * @handle: input handle that wants to own the device
521   *
522   * When a device is grabbed by an input handle all events generated by
523   * the device are delivered only to this handle. Also events injected
524   * by other input handles are ignored while device is grabbed.
525   */
input_grab_device(struct input_handle * handle)526  int input_grab_device(struct input_handle *handle)
527  {
528  	struct input_dev *dev = handle->dev;
529  	int retval;
530  
531  	retval = mutex_lock_interruptible(&dev->mutex);
532  	if (retval)
533  		return retval;
534  
535  	if (dev->grab) {
536  		retval = -EBUSY;
537  		goto out;
538  	}
539  
540  	rcu_assign_pointer(dev->grab, handle);
541  
542   out:
543  	mutex_unlock(&dev->mutex);
544  	return retval;
545  }
546  EXPORT_SYMBOL(input_grab_device);
547  
__input_release_device(struct input_handle * handle)548  static void __input_release_device(struct input_handle *handle)
549  {
550  	struct input_dev *dev = handle->dev;
551  	struct input_handle *grabber;
552  
553  	grabber = rcu_dereference_protected(dev->grab,
554  					    lockdep_is_held(&dev->mutex));
555  	if (grabber == handle) {
556  		rcu_assign_pointer(dev->grab, NULL);
557  		/* Make sure input_pass_values() notices that grab is gone */
558  		synchronize_rcu();
559  
560  		list_for_each_entry(handle, &dev->h_list, d_node)
561  			if (handle->open && handle->handler->start)
562  				handle->handler->start(handle);
563  	}
564  }
565  
566  /**
567   * input_release_device - release previously grabbed device
568   * @handle: input handle that owns the device
569   *
570   * Releases previously grabbed device so that other input handles can
571   * start receiving input events. Upon release all handlers attached
572   * to the device have their start() method called so they have a change
573   * to synchronize device state with the rest of the system.
574   */
input_release_device(struct input_handle * handle)575  void input_release_device(struct input_handle *handle)
576  {
577  	struct input_dev *dev = handle->dev;
578  
579  	mutex_lock(&dev->mutex);
580  	__input_release_device(handle);
581  	mutex_unlock(&dev->mutex);
582  }
583  EXPORT_SYMBOL(input_release_device);
584  
585  /**
586   * input_open_device - open input device
587   * @handle: handle through which device is being accessed
588   *
589   * This function should be called by input handlers when they
590   * want to start receive events from given input device.
591   */
input_open_device(struct input_handle * handle)592  int input_open_device(struct input_handle *handle)
593  {
594  	struct input_dev *dev = handle->dev;
595  	int retval;
596  
597  	retval = mutex_lock_interruptible(&dev->mutex);
598  	if (retval)
599  		return retval;
600  
601  	if (dev->going_away) {
602  		retval = -ENODEV;
603  		goto out;
604  	}
605  
606  	handle->open++;
607  
608  	if (dev->users++ || dev->inhibited) {
609  		/*
610  		 * Device is already opened and/or inhibited,
611  		 * so we can exit immediately and report success.
612  		 */
613  		goto out;
614  	}
615  
616  	if (dev->open) {
617  		retval = dev->open(dev);
618  		if (retval) {
619  			dev->users--;
620  			handle->open--;
621  			/*
622  			 * Make sure we are not delivering any more events
623  			 * through this handle
624  			 */
625  			synchronize_rcu();
626  			goto out;
627  		}
628  	}
629  
630  	if (dev->poller)
631  		input_dev_poller_start(dev->poller);
632  
633   out:
634  	mutex_unlock(&dev->mutex);
635  	return retval;
636  }
637  EXPORT_SYMBOL(input_open_device);
638  
input_flush_device(struct input_handle * handle,struct file * file)639  int input_flush_device(struct input_handle *handle, struct file *file)
640  {
641  	struct input_dev *dev = handle->dev;
642  	int retval;
643  
644  	retval = mutex_lock_interruptible(&dev->mutex);
645  	if (retval)
646  		return retval;
647  
648  	if (dev->flush)
649  		retval = dev->flush(dev, file);
650  
651  	mutex_unlock(&dev->mutex);
652  	return retval;
653  }
654  EXPORT_SYMBOL(input_flush_device);
655  
656  /**
657   * input_close_device - close input device
658   * @handle: handle through which device is being accessed
659   *
660   * This function should be called by input handlers when they
661   * want to stop receive events from given input device.
662   */
input_close_device(struct input_handle * handle)663  void input_close_device(struct input_handle *handle)
664  {
665  	struct input_dev *dev = handle->dev;
666  
667  	mutex_lock(&dev->mutex);
668  
669  	__input_release_device(handle);
670  
671  	if (!--dev->users && !dev->inhibited) {
672  		if (dev->poller)
673  			input_dev_poller_stop(dev->poller);
674  		if (dev->close)
675  			dev->close(dev);
676  	}
677  
678  	if (!--handle->open) {
679  		/*
680  		 * synchronize_rcu() makes sure that input_pass_values()
681  		 * completed and that no more input events are delivered
682  		 * through this handle
683  		 */
684  		synchronize_rcu();
685  	}
686  
687  	mutex_unlock(&dev->mutex);
688  }
689  EXPORT_SYMBOL(input_close_device);
690  
691  /*
692   * Simulate keyup events for all keys that are marked as pressed.
693   * The function must be called with dev->event_lock held.
694   */
input_dev_release_keys(struct input_dev * dev)695  static bool input_dev_release_keys(struct input_dev *dev)
696  {
697  	bool need_sync = false;
698  	int code;
699  
700  	lockdep_assert_held(&dev->event_lock);
701  
702  	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
703  		for_each_set_bit(code, dev->key, KEY_CNT) {
704  			input_handle_event(dev, EV_KEY, code, 0);
705  			need_sync = true;
706  		}
707  	}
708  
709  	return need_sync;
710  }
711  
712  /*
713   * Prepare device for unregistering
714   */
input_disconnect_device(struct input_dev * dev)715  static void input_disconnect_device(struct input_dev *dev)
716  {
717  	struct input_handle *handle;
718  
719  	/*
720  	 * Mark device as going away. Note that we take dev->mutex here
721  	 * not to protect access to dev->going_away but rather to ensure
722  	 * that there are no threads in the middle of input_open_device()
723  	 */
724  	mutex_lock(&dev->mutex);
725  	dev->going_away = true;
726  	mutex_unlock(&dev->mutex);
727  
728  	spin_lock_irq(&dev->event_lock);
729  
730  	/*
731  	 * Simulate keyup events for all pressed keys so that handlers
732  	 * are not left with "stuck" keys. The driver may continue
733  	 * generate events even after we done here but they will not
734  	 * reach any handlers.
735  	 */
736  	if (input_dev_release_keys(dev))
737  		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
738  
739  	list_for_each_entry(handle, &dev->h_list, d_node)
740  		handle->open = 0;
741  
742  	spin_unlock_irq(&dev->event_lock);
743  }
744  
745  /**
746   * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
747   * @ke: keymap entry containing scancode to be converted.
748   * @scancode: pointer to the location where converted scancode should
749   *	be stored.
750   *
751   * This function is used to convert scancode stored in &struct keymap_entry
752   * into scalar form understood by legacy keymap handling methods. These
753   * methods expect scancodes to be represented as 'unsigned int'.
754   */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)755  int input_scancode_to_scalar(const struct input_keymap_entry *ke,
756  			     unsigned int *scancode)
757  {
758  	switch (ke->len) {
759  	case 1:
760  		*scancode = *((u8 *)ke->scancode);
761  		break;
762  
763  	case 2:
764  		*scancode = *((u16 *)ke->scancode);
765  		break;
766  
767  	case 4:
768  		*scancode = *((u32 *)ke->scancode);
769  		break;
770  
771  	default:
772  		return -EINVAL;
773  	}
774  
775  	return 0;
776  }
777  EXPORT_SYMBOL(input_scancode_to_scalar);
778  
779  /*
780   * Those routines handle the default case where no [gs]etkeycode() is
781   * defined. In this case, an array indexed by the scancode is used.
782   */
783  
input_fetch_keycode(struct input_dev * dev,unsigned int index)784  static unsigned int input_fetch_keycode(struct input_dev *dev,
785  					unsigned int index)
786  {
787  	switch (dev->keycodesize) {
788  	case 1:
789  		return ((u8 *)dev->keycode)[index];
790  
791  	case 2:
792  		return ((u16 *)dev->keycode)[index];
793  
794  	default:
795  		return ((u32 *)dev->keycode)[index];
796  	}
797  }
798  
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)799  static int input_default_getkeycode(struct input_dev *dev,
800  				    struct input_keymap_entry *ke)
801  {
802  	unsigned int index;
803  	int error;
804  
805  	if (!dev->keycodesize)
806  		return -EINVAL;
807  
808  	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
809  		index = ke->index;
810  	else {
811  		error = input_scancode_to_scalar(ke, &index);
812  		if (error)
813  			return error;
814  	}
815  
816  	if (index >= dev->keycodemax)
817  		return -EINVAL;
818  
819  	ke->keycode = input_fetch_keycode(dev, index);
820  	ke->index = index;
821  	ke->len = sizeof(index);
822  	memcpy(ke->scancode, &index, sizeof(index));
823  
824  	return 0;
825  }
826  
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)827  static int input_default_setkeycode(struct input_dev *dev,
828  				    const struct input_keymap_entry *ke,
829  				    unsigned int *old_keycode)
830  {
831  	unsigned int index;
832  	int error;
833  	int i;
834  
835  	if (!dev->keycodesize)
836  		return -EINVAL;
837  
838  	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
839  		index = ke->index;
840  	} else {
841  		error = input_scancode_to_scalar(ke, &index);
842  		if (error)
843  			return error;
844  	}
845  
846  	if (index >= dev->keycodemax)
847  		return -EINVAL;
848  
849  	if (dev->keycodesize < sizeof(ke->keycode) &&
850  			(ke->keycode >> (dev->keycodesize * 8)))
851  		return -EINVAL;
852  
853  	switch (dev->keycodesize) {
854  		case 1: {
855  			u8 *k = (u8 *)dev->keycode;
856  			*old_keycode = k[index];
857  			k[index] = ke->keycode;
858  			break;
859  		}
860  		case 2: {
861  			u16 *k = (u16 *)dev->keycode;
862  			*old_keycode = k[index];
863  			k[index] = ke->keycode;
864  			break;
865  		}
866  		default: {
867  			u32 *k = (u32 *)dev->keycode;
868  			*old_keycode = k[index];
869  			k[index] = ke->keycode;
870  			break;
871  		}
872  	}
873  
874  	if (*old_keycode <= KEY_MAX) {
875  		__clear_bit(*old_keycode, dev->keybit);
876  		for (i = 0; i < dev->keycodemax; i++) {
877  			if (input_fetch_keycode(dev, i) == *old_keycode) {
878  				__set_bit(*old_keycode, dev->keybit);
879  				/* Setting the bit twice is useless, so break */
880  				break;
881  			}
882  		}
883  	}
884  
885  	__set_bit(ke->keycode, dev->keybit);
886  	return 0;
887  }
888  
889  /**
890   * input_get_keycode - retrieve keycode currently mapped to a given scancode
891   * @dev: input device which keymap is being queried
892   * @ke: keymap entry
893   *
894   * This function should be called by anyone interested in retrieving current
895   * keymap. Presently evdev handlers use it.
896   */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)897  int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
898  {
899  	unsigned long flags;
900  	int retval;
901  
902  	spin_lock_irqsave(&dev->event_lock, flags);
903  	retval = dev->getkeycode(dev, ke);
904  	spin_unlock_irqrestore(&dev->event_lock, flags);
905  
906  	return retval;
907  }
908  EXPORT_SYMBOL(input_get_keycode);
909  
910  /**
911   * input_set_keycode - attribute a keycode to a given scancode
912   * @dev: input device which keymap is being updated
913   * @ke: new keymap entry
914   *
915   * This function should be called by anyone needing to update current
916   * keymap. Presently keyboard and evdev handlers use it.
917   */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)918  int input_set_keycode(struct input_dev *dev,
919  		      const struct input_keymap_entry *ke)
920  {
921  	unsigned long flags;
922  	unsigned int old_keycode;
923  	int retval;
924  
925  	if (ke->keycode > KEY_MAX)
926  		return -EINVAL;
927  
928  	spin_lock_irqsave(&dev->event_lock, flags);
929  
930  	retval = dev->setkeycode(dev, ke, &old_keycode);
931  	if (retval)
932  		goto out;
933  
934  	/* Make sure KEY_RESERVED did not get enabled. */
935  	__clear_bit(KEY_RESERVED, dev->keybit);
936  
937  	/*
938  	 * Simulate keyup event if keycode is not present
939  	 * in the keymap anymore
940  	 */
941  	if (old_keycode > KEY_MAX) {
942  		dev_warn(dev->dev.parent ?: &dev->dev,
943  			 "%s: got too big old keycode %#x\n",
944  			 __func__, old_keycode);
945  	} else if (test_bit(EV_KEY, dev->evbit) &&
946  		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
947  		   __test_and_clear_bit(old_keycode, dev->key)) {
948  		/*
949  		 * We have to use input_event_dispose() here directly instead
950  		 * of input_handle_event() because the key we want to release
951  		 * here is considered no longer supported by the device and
952  		 * input_handle_event() will ignore it.
953  		 */
954  		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
955  				    EV_KEY, old_keycode, 0);
956  		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
957  				    EV_SYN, SYN_REPORT, 1);
958  	}
959  
960   out:
961  	spin_unlock_irqrestore(&dev->event_lock, flags);
962  
963  	return retval;
964  }
965  EXPORT_SYMBOL(input_set_keycode);
966  
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)967  bool input_match_device_id(const struct input_dev *dev,
968  			   const struct input_device_id *id)
969  {
970  	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
971  		if (id->bustype != dev->id.bustype)
972  			return false;
973  
974  	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
975  		if (id->vendor != dev->id.vendor)
976  			return false;
977  
978  	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
979  		if (id->product != dev->id.product)
980  			return false;
981  
982  	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
983  		if (id->version != dev->id.version)
984  			return false;
985  
986  	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
987  	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
988  	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
989  	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
990  	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
991  	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
992  	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
993  	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
994  	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
995  	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
996  		return false;
997  	}
998  
999  	return true;
1000  }
1001  EXPORT_SYMBOL(input_match_device_id);
1002  
input_match_device(struct input_handler * handler,struct input_dev * dev)1003  static const struct input_device_id *input_match_device(struct input_handler *handler,
1004  							struct input_dev *dev)
1005  {
1006  	const struct input_device_id *id;
1007  
1008  	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1009  		if (input_match_device_id(dev, id) &&
1010  		    (!handler->match || handler->match(handler, dev))) {
1011  			return id;
1012  		}
1013  	}
1014  
1015  	return NULL;
1016  }
1017  
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1018  static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1019  {
1020  	const struct input_device_id *id;
1021  	int error;
1022  
1023  	id = input_match_device(handler, dev);
1024  	if (!id)
1025  		return -ENODEV;
1026  
1027  	error = handler->connect(handler, dev, id);
1028  	if (error && error != -ENODEV)
1029  		pr_err("failed to attach handler %s to device %s, error: %d\n",
1030  		       handler->name, kobject_name(&dev->dev.kobj), error);
1031  
1032  	return error;
1033  }
1034  
1035  #ifdef CONFIG_COMPAT
1036  
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1037  static int input_bits_to_string(char *buf, int buf_size,
1038  				unsigned long bits, bool skip_empty)
1039  {
1040  	int len = 0;
1041  
1042  	if (in_compat_syscall()) {
1043  		u32 dword = bits >> 32;
1044  		if (dword || !skip_empty)
1045  			len += snprintf(buf, buf_size, "%x ", dword);
1046  
1047  		dword = bits & 0xffffffffUL;
1048  		if (dword || !skip_empty || len)
1049  			len += snprintf(buf + len, max(buf_size - len, 0),
1050  					"%x", dword);
1051  	} else {
1052  		if (bits || !skip_empty)
1053  			len += snprintf(buf, buf_size, "%lx", bits);
1054  	}
1055  
1056  	return len;
1057  }
1058  
1059  #else /* !CONFIG_COMPAT */
1060  
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1061  static int input_bits_to_string(char *buf, int buf_size,
1062  				unsigned long bits, bool skip_empty)
1063  {
1064  	return bits || !skip_empty ?
1065  		snprintf(buf, buf_size, "%lx", bits) : 0;
1066  }
1067  
1068  #endif
1069  
1070  #ifdef CONFIG_PROC_FS
1071  
1072  static struct proc_dir_entry *proc_bus_input_dir;
1073  static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1074  static int input_devices_state;
1075  
input_wakeup_procfs_readers(void)1076  static inline void input_wakeup_procfs_readers(void)
1077  {
1078  	input_devices_state++;
1079  	wake_up(&input_devices_poll_wait);
1080  }
1081  
1082  struct input_seq_state {
1083  	unsigned short pos;
1084  	bool mutex_acquired;
1085  	int input_devices_state;
1086  };
1087  
input_proc_devices_poll(struct file * file,poll_table * wait)1088  static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1089  {
1090  	struct seq_file *seq = file->private_data;
1091  	struct input_seq_state *state = seq->private;
1092  
1093  	poll_wait(file, &input_devices_poll_wait, wait);
1094  	if (state->input_devices_state != input_devices_state) {
1095  		state->input_devices_state = input_devices_state;
1096  		return EPOLLIN | EPOLLRDNORM;
1097  	}
1098  
1099  	return 0;
1100  }
1101  
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1102  static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1103  {
1104  	struct input_seq_state *state = seq->private;
1105  	int error;
1106  
1107  	error = mutex_lock_interruptible(&input_mutex);
1108  	if (error) {
1109  		state->mutex_acquired = false;
1110  		return ERR_PTR(error);
1111  	}
1112  
1113  	state->mutex_acquired = true;
1114  
1115  	return seq_list_start(&input_dev_list, *pos);
1116  }
1117  
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1118  static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1119  {
1120  	return seq_list_next(v, &input_dev_list, pos);
1121  }
1122  
input_seq_stop(struct seq_file * seq,void * v)1123  static void input_seq_stop(struct seq_file *seq, void *v)
1124  {
1125  	struct input_seq_state *state = seq->private;
1126  
1127  	if (state->mutex_acquired)
1128  		mutex_unlock(&input_mutex);
1129  }
1130  
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1131  static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1132  				   unsigned long *bitmap, int max)
1133  {
1134  	int i;
1135  	bool skip_empty = true;
1136  	char buf[18];
1137  
1138  	seq_printf(seq, "B: %s=", name);
1139  
1140  	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1141  		if (input_bits_to_string(buf, sizeof(buf),
1142  					 bitmap[i], skip_empty)) {
1143  			skip_empty = false;
1144  			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1145  		}
1146  	}
1147  
1148  	/*
1149  	 * If no output was produced print a single 0.
1150  	 */
1151  	if (skip_empty)
1152  		seq_putc(seq, '0');
1153  
1154  	seq_putc(seq, '\n');
1155  }
1156  
input_devices_seq_show(struct seq_file * seq,void * v)1157  static int input_devices_seq_show(struct seq_file *seq, void *v)
1158  {
1159  	struct input_dev *dev = container_of(v, struct input_dev, node);
1160  	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1161  	struct input_handle *handle;
1162  
1163  	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1164  		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1165  
1166  	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1167  	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1168  	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1169  	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1170  	seq_puts(seq, "H: Handlers=");
1171  
1172  	list_for_each_entry(handle, &dev->h_list, d_node)
1173  		seq_printf(seq, "%s ", handle->name);
1174  	seq_putc(seq, '\n');
1175  
1176  	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1177  
1178  	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1179  	if (test_bit(EV_KEY, dev->evbit))
1180  		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1181  	if (test_bit(EV_REL, dev->evbit))
1182  		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1183  	if (test_bit(EV_ABS, dev->evbit))
1184  		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1185  	if (test_bit(EV_MSC, dev->evbit))
1186  		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1187  	if (test_bit(EV_LED, dev->evbit))
1188  		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1189  	if (test_bit(EV_SND, dev->evbit))
1190  		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1191  	if (test_bit(EV_FF, dev->evbit))
1192  		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1193  	if (test_bit(EV_SW, dev->evbit))
1194  		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1195  
1196  	seq_putc(seq, '\n');
1197  
1198  	kfree(path);
1199  	return 0;
1200  }
1201  
1202  static const struct seq_operations input_devices_seq_ops = {
1203  	.start	= input_devices_seq_start,
1204  	.next	= input_devices_seq_next,
1205  	.stop	= input_seq_stop,
1206  	.show	= input_devices_seq_show,
1207  };
1208  
input_proc_devices_open(struct inode * inode,struct file * file)1209  static int input_proc_devices_open(struct inode *inode, struct file *file)
1210  {
1211  	return seq_open_private(file, &input_devices_seq_ops,
1212  				sizeof(struct input_seq_state));
1213  }
1214  
1215  static const struct proc_ops input_devices_proc_ops = {
1216  	.proc_open	= input_proc_devices_open,
1217  	.proc_poll	= input_proc_devices_poll,
1218  	.proc_read	= seq_read,
1219  	.proc_lseek	= seq_lseek,
1220  	.proc_release	= seq_release_private,
1221  };
1222  
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1223  static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1224  {
1225  	struct input_seq_state *state = seq->private;
1226  	int error;
1227  
1228  	error = mutex_lock_interruptible(&input_mutex);
1229  	if (error) {
1230  		state->mutex_acquired = false;
1231  		return ERR_PTR(error);
1232  	}
1233  
1234  	state->mutex_acquired = true;
1235  	state->pos = *pos;
1236  
1237  	return seq_list_start(&input_handler_list, *pos);
1238  }
1239  
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1240  static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1241  {
1242  	struct input_seq_state *state = seq->private;
1243  
1244  	state->pos = *pos + 1;
1245  	return seq_list_next(v, &input_handler_list, pos);
1246  }
1247  
input_handlers_seq_show(struct seq_file * seq,void * v)1248  static int input_handlers_seq_show(struct seq_file *seq, void *v)
1249  {
1250  	struct input_handler *handler = container_of(v, struct input_handler, node);
1251  	struct input_seq_state *state = seq->private;
1252  
1253  	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1254  	if (handler->filter)
1255  		seq_puts(seq, " (filter)");
1256  	if (handler->legacy_minors)
1257  		seq_printf(seq, " Minor=%d", handler->minor);
1258  	seq_putc(seq, '\n');
1259  
1260  	return 0;
1261  }
1262  
1263  static const struct seq_operations input_handlers_seq_ops = {
1264  	.start	= input_handlers_seq_start,
1265  	.next	= input_handlers_seq_next,
1266  	.stop	= input_seq_stop,
1267  	.show	= input_handlers_seq_show,
1268  };
1269  
input_proc_handlers_open(struct inode * inode,struct file * file)1270  static int input_proc_handlers_open(struct inode *inode, struct file *file)
1271  {
1272  	return seq_open_private(file, &input_handlers_seq_ops,
1273  				sizeof(struct input_seq_state));
1274  }
1275  
1276  static const struct proc_ops input_handlers_proc_ops = {
1277  	.proc_open	= input_proc_handlers_open,
1278  	.proc_read	= seq_read,
1279  	.proc_lseek	= seq_lseek,
1280  	.proc_release	= seq_release_private,
1281  };
1282  
input_proc_init(void)1283  static int __init input_proc_init(void)
1284  {
1285  	struct proc_dir_entry *entry;
1286  
1287  	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1288  	if (!proc_bus_input_dir)
1289  		return -ENOMEM;
1290  
1291  	entry = proc_create("devices", 0, proc_bus_input_dir,
1292  			    &input_devices_proc_ops);
1293  	if (!entry)
1294  		goto fail1;
1295  
1296  	entry = proc_create("handlers", 0, proc_bus_input_dir,
1297  			    &input_handlers_proc_ops);
1298  	if (!entry)
1299  		goto fail2;
1300  
1301  	return 0;
1302  
1303   fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1304   fail1: remove_proc_entry("bus/input", NULL);
1305  	return -ENOMEM;
1306  }
1307  
input_proc_exit(void)1308  static void input_proc_exit(void)
1309  {
1310  	remove_proc_entry("devices", proc_bus_input_dir);
1311  	remove_proc_entry("handlers", proc_bus_input_dir);
1312  	remove_proc_entry("bus/input", NULL);
1313  }
1314  
1315  #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1316  static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1317  static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1318  static inline void input_proc_exit(void) { }
1319  #endif
1320  
1321  #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1322  static ssize_t input_dev_show_##name(struct device *dev,		\
1323  				     struct device_attribute *attr,	\
1324  				     char *buf)				\
1325  {									\
1326  	struct input_dev *input_dev = to_input_dev(dev);		\
1327  									\
1328  	return sysfs_emit(buf, "%s\n",					\
1329  			  input_dev->name ? input_dev->name : "");	\
1330  }									\
1331  static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1332  
1333  INPUT_DEV_STRING_ATTR_SHOW(name);
1334  INPUT_DEV_STRING_ATTR_SHOW(phys);
1335  INPUT_DEV_STRING_ATTR_SHOW(uniq);
1336  
input_print_modalias_bits(char * buf,int size,char name,const unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1337  static int input_print_modalias_bits(char *buf, int size,
1338  				     char name, const unsigned long *bm,
1339  				     unsigned int min_bit, unsigned int max_bit)
1340  {
1341  	int bit = min_bit;
1342  	int len = 0;
1343  
1344  	len += snprintf(buf, max(size, 0), "%c", name);
1345  	for_each_set_bit_from(bit, bm, max_bit)
1346  		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1347  	return len;
1348  }
1349  
input_print_modalias_parts(char * buf,int size,int full_len,const struct input_dev * id)1350  static int input_print_modalias_parts(char *buf, int size, int full_len,
1351  				      const struct input_dev *id)
1352  {
1353  	int len, klen, remainder, space;
1354  
1355  	len = snprintf(buf, max(size, 0),
1356  		       "input:b%04Xv%04Xp%04Xe%04X-",
1357  		       id->id.bustype, id->id.vendor,
1358  		       id->id.product, id->id.version);
1359  
1360  	len += input_print_modalias_bits(buf + len, size - len,
1361  				'e', id->evbit, 0, EV_MAX);
1362  
1363  	/*
1364  	 * Calculate the remaining space in the buffer making sure we
1365  	 * have place for the terminating 0.
1366  	 */
1367  	space = max(size - (len + 1), 0);
1368  
1369  	klen = input_print_modalias_bits(buf + len, size - len,
1370  				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1371  	len += klen;
1372  
1373  	/*
1374  	 * If we have more data than we can fit in the buffer, check
1375  	 * if we can trim key data to fit in the rest. We will indicate
1376  	 * that key data is incomplete by adding "+" sign at the end, like
1377  	 * this: * "k1,2,3,45,+,".
1378  	 *
1379  	 * Note that we shortest key info (if present) is "k+," so we
1380  	 * can only try to trim if key data is longer than that.
1381  	 */
1382  	if (full_len && size < full_len + 1 && klen > 3) {
1383  		remainder = full_len - len;
1384  		/*
1385  		 * We can only trim if we have space for the remainder
1386  		 * and also for at least "k+," which is 3 more characters.
1387  		 */
1388  		if (remainder <= space - 3) {
1389  			/*
1390  			 * We are guaranteed to have 'k' in the buffer, so
1391  			 * we need at least 3 additional bytes for storing
1392  			 * "+," in addition to the remainder.
1393  			 */
1394  			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1395  				if (buf[i] == 'k' || buf[i] == ',') {
1396  					strcpy(buf + i + 1, "+,");
1397  					len = i + 3; /* Not counting '\0' */
1398  					break;
1399  				}
1400  			}
1401  		}
1402  	}
1403  
1404  	len += input_print_modalias_bits(buf + len, size - len,
1405  				'r', id->relbit, 0, REL_MAX);
1406  	len += input_print_modalias_bits(buf + len, size - len,
1407  				'a', id->absbit, 0, ABS_MAX);
1408  	len += input_print_modalias_bits(buf + len, size - len,
1409  				'm', id->mscbit, 0, MSC_MAX);
1410  	len += input_print_modalias_bits(buf + len, size - len,
1411  				'l', id->ledbit, 0, LED_MAX);
1412  	len += input_print_modalias_bits(buf + len, size - len,
1413  				's', id->sndbit, 0, SND_MAX);
1414  	len += input_print_modalias_bits(buf + len, size - len,
1415  				'f', id->ffbit, 0, FF_MAX);
1416  	len += input_print_modalias_bits(buf + len, size - len,
1417  				'w', id->swbit, 0, SW_MAX);
1418  
1419  	return len;
1420  }
1421  
input_print_modalias(char * buf,int size,const struct input_dev * id)1422  static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1423  {
1424  	int full_len;
1425  
1426  	/*
1427  	 * Printing is done in 2 passes: first one figures out total length
1428  	 * needed for the modalias string, second one will try to trim key
1429  	 * data in case when buffer is too small for the entire modalias.
1430  	 * If the buffer is too small regardless, it will fill as much as it
1431  	 * can (without trimming key data) into the buffer and leave it to
1432  	 * the caller to figure out what to do with the result.
1433  	 */
1434  	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1435  	return input_print_modalias_parts(buf, size, full_len, id);
1436  }
1437  
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1438  static ssize_t input_dev_show_modalias(struct device *dev,
1439  				       struct device_attribute *attr,
1440  				       char *buf)
1441  {
1442  	struct input_dev *id = to_input_dev(dev);
1443  	ssize_t len;
1444  
1445  	len = input_print_modalias(buf, PAGE_SIZE, id);
1446  	if (len < PAGE_SIZE - 2)
1447  		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1448  
1449  	return min_t(int, len, PAGE_SIZE);
1450  }
1451  static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1452  
1453  static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1454  			      int max, int add_cr);
1455  
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1456  static ssize_t input_dev_show_properties(struct device *dev,
1457  					 struct device_attribute *attr,
1458  					 char *buf)
1459  {
1460  	struct input_dev *input_dev = to_input_dev(dev);
1461  	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1462  				     INPUT_PROP_MAX, true);
1463  	return min_t(int, len, PAGE_SIZE);
1464  }
1465  static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1466  
1467  static int input_inhibit_device(struct input_dev *dev);
1468  static int input_uninhibit_device(struct input_dev *dev);
1469  
inhibited_show(struct device * dev,struct device_attribute * attr,char * buf)1470  static ssize_t inhibited_show(struct device *dev,
1471  			      struct device_attribute *attr,
1472  			      char *buf)
1473  {
1474  	struct input_dev *input_dev = to_input_dev(dev);
1475  
1476  	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1477  }
1478  
inhibited_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1479  static ssize_t inhibited_store(struct device *dev,
1480  			       struct device_attribute *attr, const char *buf,
1481  			       size_t len)
1482  {
1483  	struct input_dev *input_dev = to_input_dev(dev);
1484  	ssize_t rv;
1485  	bool inhibited;
1486  
1487  	if (kstrtobool(buf, &inhibited))
1488  		return -EINVAL;
1489  
1490  	if (inhibited)
1491  		rv = input_inhibit_device(input_dev);
1492  	else
1493  		rv = input_uninhibit_device(input_dev);
1494  
1495  	if (rv != 0)
1496  		return rv;
1497  
1498  	return len;
1499  }
1500  
1501  static DEVICE_ATTR_RW(inhibited);
1502  
1503  static struct attribute *input_dev_attrs[] = {
1504  	&dev_attr_name.attr,
1505  	&dev_attr_phys.attr,
1506  	&dev_attr_uniq.attr,
1507  	&dev_attr_modalias.attr,
1508  	&dev_attr_properties.attr,
1509  	&dev_attr_inhibited.attr,
1510  	NULL
1511  };
1512  
1513  static const struct attribute_group input_dev_attr_group = {
1514  	.attrs	= input_dev_attrs,
1515  };
1516  
1517  #define INPUT_DEV_ID_ATTR(name)						\
1518  static ssize_t input_dev_show_id_##name(struct device *dev,		\
1519  					struct device_attribute *attr,	\
1520  					char *buf)			\
1521  {									\
1522  	struct input_dev *input_dev = to_input_dev(dev);		\
1523  	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1524  }									\
1525  static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1526  
1527  INPUT_DEV_ID_ATTR(bustype);
1528  INPUT_DEV_ID_ATTR(vendor);
1529  INPUT_DEV_ID_ATTR(product);
1530  INPUT_DEV_ID_ATTR(version);
1531  
1532  static struct attribute *input_dev_id_attrs[] = {
1533  	&dev_attr_bustype.attr,
1534  	&dev_attr_vendor.attr,
1535  	&dev_attr_product.attr,
1536  	&dev_attr_version.attr,
1537  	NULL
1538  };
1539  
1540  static const struct attribute_group input_dev_id_attr_group = {
1541  	.name	= "id",
1542  	.attrs	= input_dev_id_attrs,
1543  };
1544  
input_print_bitmap(char * buf,int buf_size,const unsigned long * bitmap,int max,int add_cr)1545  static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1546  			      int max, int add_cr)
1547  {
1548  	int i;
1549  	int len = 0;
1550  	bool skip_empty = true;
1551  
1552  	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1553  		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1554  					    bitmap[i], skip_empty);
1555  		if (len) {
1556  			skip_empty = false;
1557  			if (i > 0)
1558  				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1559  		}
1560  	}
1561  
1562  	/*
1563  	 * If no output was produced print a single 0.
1564  	 */
1565  	if (len == 0)
1566  		len = snprintf(buf, buf_size, "%d", 0);
1567  
1568  	if (add_cr)
1569  		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1570  
1571  	return len;
1572  }
1573  
1574  #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1575  static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1576  				       struct device_attribute *attr,	\
1577  				       char *buf)			\
1578  {									\
1579  	struct input_dev *input_dev = to_input_dev(dev);		\
1580  	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1581  				     input_dev->bm##bit, ev##_MAX,	\
1582  				     true);				\
1583  	return min_t(int, len, PAGE_SIZE);				\
1584  }									\
1585  static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1586  
1587  INPUT_DEV_CAP_ATTR(EV, ev);
1588  INPUT_DEV_CAP_ATTR(KEY, key);
1589  INPUT_DEV_CAP_ATTR(REL, rel);
1590  INPUT_DEV_CAP_ATTR(ABS, abs);
1591  INPUT_DEV_CAP_ATTR(MSC, msc);
1592  INPUT_DEV_CAP_ATTR(LED, led);
1593  INPUT_DEV_CAP_ATTR(SND, snd);
1594  INPUT_DEV_CAP_ATTR(FF, ff);
1595  INPUT_DEV_CAP_ATTR(SW, sw);
1596  
1597  static struct attribute *input_dev_caps_attrs[] = {
1598  	&dev_attr_ev.attr,
1599  	&dev_attr_key.attr,
1600  	&dev_attr_rel.attr,
1601  	&dev_attr_abs.attr,
1602  	&dev_attr_msc.attr,
1603  	&dev_attr_led.attr,
1604  	&dev_attr_snd.attr,
1605  	&dev_attr_ff.attr,
1606  	&dev_attr_sw.attr,
1607  	NULL
1608  };
1609  
1610  static const struct attribute_group input_dev_caps_attr_group = {
1611  	.name	= "capabilities",
1612  	.attrs	= input_dev_caps_attrs,
1613  };
1614  
1615  static const struct attribute_group *input_dev_attr_groups[] = {
1616  	&input_dev_attr_group,
1617  	&input_dev_id_attr_group,
1618  	&input_dev_caps_attr_group,
1619  	&input_poller_attribute_group,
1620  	NULL
1621  };
1622  
input_dev_release(struct device * device)1623  static void input_dev_release(struct device *device)
1624  {
1625  	struct input_dev *dev = to_input_dev(device);
1626  
1627  	input_ff_destroy(dev);
1628  	input_mt_destroy_slots(dev);
1629  	kfree(dev->poller);
1630  	kfree(dev->absinfo);
1631  	kfree(dev->vals);
1632  	kfree(dev);
1633  
1634  	module_put(THIS_MODULE);
1635  }
1636  
1637  /*
1638   * Input uevent interface - loading event handlers based on
1639   * device bitfields.
1640   */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,const unsigned long * bitmap,int max)1641  static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1642  				   const char *name, const unsigned long *bitmap, int max)
1643  {
1644  	int len;
1645  
1646  	if (add_uevent_var(env, "%s", name))
1647  		return -ENOMEM;
1648  
1649  	len = input_print_bitmap(&env->buf[env->buflen - 1],
1650  				 sizeof(env->buf) - env->buflen,
1651  				 bitmap, max, false);
1652  	if (len >= (sizeof(env->buf) - env->buflen))
1653  		return -ENOMEM;
1654  
1655  	env->buflen += len;
1656  	return 0;
1657  }
1658  
1659  /*
1660   * This is a pretty gross hack. When building uevent data the driver core
1661   * may try adding more environment variables to kobj_uevent_env without
1662   * telling us, so we have no idea how much of the buffer we can use to
1663   * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1664   * reduce amount of memory we will use for the modalias environment variable.
1665   *
1666   * The potential additions are:
1667   *
1668   * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1669   * HOME=/ (6 bytes)
1670   * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1671   *
1672   * 68 bytes total. Allow extra buffer - 96 bytes
1673   */
1674  #define UEVENT_ENV_EXTRA_LEN	96
1675  
input_add_uevent_modalias_var(struct kobj_uevent_env * env,const struct input_dev * dev)1676  static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1677  					 const struct input_dev *dev)
1678  {
1679  	int len;
1680  
1681  	if (add_uevent_var(env, "MODALIAS="))
1682  		return -ENOMEM;
1683  
1684  	len = input_print_modalias(&env->buf[env->buflen - 1],
1685  				   (int)sizeof(env->buf) - env->buflen -
1686  					UEVENT_ENV_EXTRA_LEN,
1687  				   dev);
1688  	if (len >= ((int)sizeof(env->buf) - env->buflen -
1689  					UEVENT_ENV_EXTRA_LEN))
1690  		return -ENOMEM;
1691  
1692  	env->buflen += len;
1693  	return 0;
1694  }
1695  
1696  #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1697  	do {								\
1698  		int err = add_uevent_var(env, fmt, val);		\
1699  		if (err)						\
1700  			return err;					\
1701  	} while (0)
1702  
1703  #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1704  	do {								\
1705  		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1706  		if (err)						\
1707  			return err;					\
1708  	} while (0)
1709  
1710  #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1711  	do {								\
1712  		int err = input_add_uevent_modalias_var(env, dev);	\
1713  		if (err)						\
1714  			return err;					\
1715  	} while (0)
1716  
input_dev_uevent(const struct device * device,struct kobj_uevent_env * env)1717  static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1718  {
1719  	const struct input_dev *dev = to_input_dev(device);
1720  
1721  	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1722  				dev->id.bustype, dev->id.vendor,
1723  				dev->id.product, dev->id.version);
1724  	if (dev->name)
1725  		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1726  	if (dev->phys)
1727  		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1728  	if (dev->uniq)
1729  		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1730  
1731  	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1732  
1733  	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1734  	if (test_bit(EV_KEY, dev->evbit))
1735  		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1736  	if (test_bit(EV_REL, dev->evbit))
1737  		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1738  	if (test_bit(EV_ABS, dev->evbit))
1739  		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1740  	if (test_bit(EV_MSC, dev->evbit))
1741  		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1742  	if (test_bit(EV_LED, dev->evbit))
1743  		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1744  	if (test_bit(EV_SND, dev->evbit))
1745  		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1746  	if (test_bit(EV_FF, dev->evbit))
1747  		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1748  	if (test_bit(EV_SW, dev->evbit))
1749  		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1750  
1751  	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1752  
1753  	return 0;
1754  }
1755  
1756  #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1757  	do {								\
1758  		int i;							\
1759  		bool active;						\
1760  									\
1761  		if (!test_bit(EV_##type, dev->evbit))			\
1762  			break;						\
1763  									\
1764  		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1765  			active = test_bit(i, dev->bits);		\
1766  			if (!active && !on)				\
1767  				continue;				\
1768  									\
1769  			dev->event(dev, EV_##type, i, on ? active : 0);	\
1770  		}							\
1771  	} while (0)
1772  
input_dev_toggle(struct input_dev * dev,bool activate)1773  static void input_dev_toggle(struct input_dev *dev, bool activate)
1774  {
1775  	if (!dev->event)
1776  		return;
1777  
1778  	INPUT_DO_TOGGLE(dev, LED, led, activate);
1779  	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1780  
1781  	if (activate && test_bit(EV_REP, dev->evbit)) {
1782  		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1783  		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1784  	}
1785  }
1786  
1787  /**
1788   * input_reset_device() - reset/restore the state of input device
1789   * @dev: input device whose state needs to be reset
1790   *
1791   * This function tries to reset the state of an opened input device and
1792   * bring internal state and state if the hardware in sync with each other.
1793   * We mark all keys as released, restore LED state, repeat rate, etc.
1794   */
input_reset_device(struct input_dev * dev)1795  void input_reset_device(struct input_dev *dev)
1796  {
1797  	unsigned long flags;
1798  
1799  	mutex_lock(&dev->mutex);
1800  	spin_lock_irqsave(&dev->event_lock, flags);
1801  
1802  	input_dev_toggle(dev, true);
1803  	if (input_dev_release_keys(dev))
1804  		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1805  
1806  	spin_unlock_irqrestore(&dev->event_lock, flags);
1807  	mutex_unlock(&dev->mutex);
1808  }
1809  EXPORT_SYMBOL(input_reset_device);
1810  
input_inhibit_device(struct input_dev * dev)1811  static int input_inhibit_device(struct input_dev *dev)
1812  {
1813  	mutex_lock(&dev->mutex);
1814  
1815  	if (dev->inhibited)
1816  		goto out;
1817  
1818  	if (dev->users) {
1819  		if (dev->close)
1820  			dev->close(dev);
1821  		if (dev->poller)
1822  			input_dev_poller_stop(dev->poller);
1823  	}
1824  
1825  	spin_lock_irq(&dev->event_lock);
1826  	input_mt_release_slots(dev);
1827  	input_dev_release_keys(dev);
1828  	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1829  	input_dev_toggle(dev, false);
1830  	spin_unlock_irq(&dev->event_lock);
1831  
1832  	dev->inhibited = true;
1833  
1834  out:
1835  	mutex_unlock(&dev->mutex);
1836  	return 0;
1837  }
1838  
input_uninhibit_device(struct input_dev * dev)1839  static int input_uninhibit_device(struct input_dev *dev)
1840  {
1841  	int ret = 0;
1842  
1843  	mutex_lock(&dev->mutex);
1844  
1845  	if (!dev->inhibited)
1846  		goto out;
1847  
1848  	if (dev->users) {
1849  		if (dev->open) {
1850  			ret = dev->open(dev);
1851  			if (ret)
1852  				goto out;
1853  		}
1854  		if (dev->poller)
1855  			input_dev_poller_start(dev->poller);
1856  	}
1857  
1858  	dev->inhibited = false;
1859  	spin_lock_irq(&dev->event_lock);
1860  	input_dev_toggle(dev, true);
1861  	spin_unlock_irq(&dev->event_lock);
1862  
1863  out:
1864  	mutex_unlock(&dev->mutex);
1865  	return ret;
1866  }
1867  
input_dev_suspend(struct device * dev)1868  static int input_dev_suspend(struct device *dev)
1869  {
1870  	struct input_dev *input_dev = to_input_dev(dev);
1871  
1872  	spin_lock_irq(&input_dev->event_lock);
1873  
1874  	/*
1875  	 * Keys that are pressed now are unlikely to be
1876  	 * still pressed when we resume.
1877  	 */
1878  	if (input_dev_release_keys(input_dev))
1879  		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1880  
1881  	/* Turn off LEDs and sounds, if any are active. */
1882  	input_dev_toggle(input_dev, false);
1883  
1884  	spin_unlock_irq(&input_dev->event_lock);
1885  
1886  	return 0;
1887  }
1888  
input_dev_resume(struct device * dev)1889  static int input_dev_resume(struct device *dev)
1890  {
1891  	struct input_dev *input_dev = to_input_dev(dev);
1892  
1893  	spin_lock_irq(&input_dev->event_lock);
1894  
1895  	/* Restore state of LEDs and sounds, if any were active. */
1896  	input_dev_toggle(input_dev, true);
1897  
1898  	spin_unlock_irq(&input_dev->event_lock);
1899  
1900  	return 0;
1901  }
1902  
input_dev_freeze(struct device * dev)1903  static int input_dev_freeze(struct device *dev)
1904  {
1905  	struct input_dev *input_dev = to_input_dev(dev);
1906  
1907  	spin_lock_irq(&input_dev->event_lock);
1908  
1909  	/*
1910  	 * Keys that are pressed now are unlikely to be
1911  	 * still pressed when we resume.
1912  	 */
1913  	if (input_dev_release_keys(input_dev))
1914  		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1915  
1916  	spin_unlock_irq(&input_dev->event_lock);
1917  
1918  	return 0;
1919  }
1920  
input_dev_poweroff(struct device * dev)1921  static int input_dev_poweroff(struct device *dev)
1922  {
1923  	struct input_dev *input_dev = to_input_dev(dev);
1924  
1925  	spin_lock_irq(&input_dev->event_lock);
1926  
1927  	/* Turn off LEDs and sounds, if any are active. */
1928  	input_dev_toggle(input_dev, false);
1929  
1930  	spin_unlock_irq(&input_dev->event_lock);
1931  
1932  	return 0;
1933  }
1934  
1935  static const struct dev_pm_ops input_dev_pm_ops = {
1936  	.suspend	= input_dev_suspend,
1937  	.resume		= input_dev_resume,
1938  	.freeze		= input_dev_freeze,
1939  	.poweroff	= input_dev_poweroff,
1940  	.restore	= input_dev_resume,
1941  };
1942  
1943  static const struct device_type input_dev_type = {
1944  	.groups		= input_dev_attr_groups,
1945  	.release	= input_dev_release,
1946  	.uevent		= input_dev_uevent,
1947  	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1948  };
1949  
input_devnode(const struct device * dev,umode_t * mode)1950  static char *input_devnode(const struct device *dev, umode_t *mode)
1951  {
1952  	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1953  }
1954  
1955  const struct class input_class = {
1956  	.name		= "input",
1957  	.devnode	= input_devnode,
1958  };
1959  EXPORT_SYMBOL_GPL(input_class);
1960  
1961  /**
1962   * input_allocate_device - allocate memory for new input device
1963   *
1964   * Returns prepared struct input_dev or %NULL.
1965   *
1966   * NOTE: Use input_free_device() to free devices that have not been
1967   * registered; input_unregister_device() should be used for already
1968   * registered devices.
1969   */
input_allocate_device(void)1970  struct input_dev *input_allocate_device(void)
1971  {
1972  	static atomic_t input_no = ATOMIC_INIT(-1);
1973  	struct input_dev *dev;
1974  
1975  	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1976  	if (!dev)
1977  		return NULL;
1978  
1979  	/*
1980  	 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1981  	 * see input_estimate_events_per_packet(). We will tune the number
1982  	 * when we register the device.
1983  	 */
1984  	dev->max_vals = 10;
1985  	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1986  	if (!dev->vals) {
1987  		kfree(dev);
1988  		return NULL;
1989  	}
1990  
1991  	mutex_init(&dev->mutex);
1992  	spin_lock_init(&dev->event_lock);
1993  	timer_setup(&dev->timer, NULL, 0);
1994  	INIT_LIST_HEAD(&dev->h_list);
1995  	INIT_LIST_HEAD(&dev->node);
1996  
1997  	dev->dev.type = &input_dev_type;
1998  	dev->dev.class = &input_class;
1999  	device_initialize(&dev->dev);
2000  	/*
2001  	 * From this point on we can no longer simply "kfree(dev)", we need
2002  	 * to use input_free_device() so that device core properly frees its
2003  	 * resources associated with the input device.
2004  	 */
2005  
2006  	dev_set_name(&dev->dev, "input%lu",
2007  		     (unsigned long)atomic_inc_return(&input_no));
2008  
2009  	__module_get(THIS_MODULE);
2010  
2011  	return dev;
2012  }
2013  EXPORT_SYMBOL(input_allocate_device);
2014  
2015  struct input_devres {
2016  	struct input_dev *input;
2017  };
2018  
devm_input_device_match(struct device * dev,void * res,void * data)2019  static int devm_input_device_match(struct device *dev, void *res, void *data)
2020  {
2021  	struct input_devres *devres = res;
2022  
2023  	return devres->input == data;
2024  }
2025  
devm_input_device_release(struct device * dev,void * res)2026  static void devm_input_device_release(struct device *dev, void *res)
2027  {
2028  	struct input_devres *devres = res;
2029  	struct input_dev *input = devres->input;
2030  
2031  	dev_dbg(dev, "%s: dropping reference to %s\n",
2032  		__func__, dev_name(&input->dev));
2033  	input_put_device(input);
2034  }
2035  
2036  /**
2037   * devm_input_allocate_device - allocate managed input device
2038   * @dev: device owning the input device being created
2039   *
2040   * Returns prepared struct input_dev or %NULL.
2041   *
2042   * Managed input devices do not need to be explicitly unregistered or
2043   * freed as it will be done automatically when owner device unbinds from
2044   * its driver (or binding fails). Once managed input device is allocated,
2045   * it is ready to be set up and registered in the same fashion as regular
2046   * input device. There are no special devm_input_device_[un]register()
2047   * variants, regular ones work with both managed and unmanaged devices,
2048   * should you need them. In most cases however, managed input device need
2049   * not be explicitly unregistered or freed.
2050   *
2051   * NOTE: the owner device is set up as parent of input device and users
2052   * should not override it.
2053   */
devm_input_allocate_device(struct device * dev)2054  struct input_dev *devm_input_allocate_device(struct device *dev)
2055  {
2056  	struct input_dev *input;
2057  	struct input_devres *devres;
2058  
2059  	devres = devres_alloc(devm_input_device_release,
2060  			      sizeof(*devres), GFP_KERNEL);
2061  	if (!devres)
2062  		return NULL;
2063  
2064  	input = input_allocate_device();
2065  	if (!input) {
2066  		devres_free(devres);
2067  		return NULL;
2068  	}
2069  
2070  	input->dev.parent = dev;
2071  	input->devres_managed = true;
2072  
2073  	devres->input = input;
2074  	devres_add(dev, devres);
2075  
2076  	return input;
2077  }
2078  EXPORT_SYMBOL(devm_input_allocate_device);
2079  
2080  /**
2081   * input_free_device - free memory occupied by input_dev structure
2082   * @dev: input device to free
2083   *
2084   * This function should only be used if input_register_device()
2085   * was not called yet or if it failed. Once device was registered
2086   * use input_unregister_device() and memory will be freed once last
2087   * reference to the device is dropped.
2088   *
2089   * Device should be allocated by input_allocate_device().
2090   *
2091   * NOTE: If there are references to the input device then memory
2092   * will not be freed until last reference is dropped.
2093   */
input_free_device(struct input_dev * dev)2094  void input_free_device(struct input_dev *dev)
2095  {
2096  	if (dev) {
2097  		if (dev->devres_managed)
2098  			WARN_ON(devres_destroy(dev->dev.parent,
2099  						devm_input_device_release,
2100  						devm_input_device_match,
2101  						dev));
2102  		input_put_device(dev);
2103  	}
2104  }
2105  EXPORT_SYMBOL(input_free_device);
2106  
2107  /**
2108   * input_set_timestamp - set timestamp for input events
2109   * @dev: input device to set timestamp for
2110   * @timestamp: the time at which the event has occurred
2111   *   in CLOCK_MONOTONIC
2112   *
2113   * This function is intended to provide to the input system a more
2114   * accurate time of when an event actually occurred. The driver should
2115   * call this function as soon as a timestamp is acquired ensuring
2116   * clock conversions in input_set_timestamp are done correctly.
2117   *
2118   * The system entering suspend state between timestamp acquisition and
2119   * calling input_set_timestamp can result in inaccurate conversions.
2120   */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)2121  void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2122  {
2123  	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2124  	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2125  	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2126  							   TK_OFFS_BOOT);
2127  }
2128  EXPORT_SYMBOL(input_set_timestamp);
2129  
2130  /**
2131   * input_get_timestamp - get timestamp for input events
2132   * @dev: input device to get timestamp from
2133   *
2134   * A valid timestamp is a timestamp of non-zero value.
2135   */
input_get_timestamp(struct input_dev * dev)2136  ktime_t *input_get_timestamp(struct input_dev *dev)
2137  {
2138  	const ktime_t invalid_timestamp = ktime_set(0, 0);
2139  
2140  	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2141  		input_set_timestamp(dev, ktime_get());
2142  
2143  	return dev->timestamp;
2144  }
2145  EXPORT_SYMBOL(input_get_timestamp);
2146  
2147  /**
2148   * input_set_capability - mark device as capable of a certain event
2149   * @dev: device that is capable of emitting or accepting event
2150   * @type: type of the event (EV_KEY, EV_REL, etc...)
2151   * @code: event code
2152   *
2153   * In addition to setting up corresponding bit in appropriate capability
2154   * bitmap the function also adjusts dev->evbit.
2155   */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)2156  void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2157  {
2158  	if (type < EV_CNT && input_max_code[type] &&
2159  	    code > input_max_code[type]) {
2160  		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2161  		       type);
2162  		dump_stack();
2163  		return;
2164  	}
2165  
2166  	switch (type) {
2167  	case EV_KEY:
2168  		__set_bit(code, dev->keybit);
2169  		break;
2170  
2171  	case EV_REL:
2172  		__set_bit(code, dev->relbit);
2173  		break;
2174  
2175  	case EV_ABS:
2176  		input_alloc_absinfo(dev);
2177  		__set_bit(code, dev->absbit);
2178  		break;
2179  
2180  	case EV_MSC:
2181  		__set_bit(code, dev->mscbit);
2182  		break;
2183  
2184  	case EV_SW:
2185  		__set_bit(code, dev->swbit);
2186  		break;
2187  
2188  	case EV_LED:
2189  		__set_bit(code, dev->ledbit);
2190  		break;
2191  
2192  	case EV_SND:
2193  		__set_bit(code, dev->sndbit);
2194  		break;
2195  
2196  	case EV_FF:
2197  		__set_bit(code, dev->ffbit);
2198  		break;
2199  
2200  	case EV_PWR:
2201  		/* do nothing */
2202  		break;
2203  
2204  	default:
2205  		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2206  		dump_stack();
2207  		return;
2208  	}
2209  
2210  	__set_bit(type, dev->evbit);
2211  }
2212  EXPORT_SYMBOL(input_set_capability);
2213  
input_estimate_events_per_packet(struct input_dev * dev)2214  static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2215  {
2216  	int mt_slots;
2217  	int i;
2218  	unsigned int events;
2219  
2220  	if (dev->mt) {
2221  		mt_slots = dev->mt->num_slots;
2222  	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2223  		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2224  			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2225  		mt_slots = clamp(mt_slots, 2, 32);
2226  	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2227  		mt_slots = 2;
2228  	} else {
2229  		mt_slots = 0;
2230  	}
2231  
2232  	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2233  
2234  	if (test_bit(EV_ABS, dev->evbit))
2235  		for_each_set_bit(i, dev->absbit, ABS_CNT)
2236  			events += input_is_mt_axis(i) ? mt_slots : 1;
2237  
2238  	if (test_bit(EV_REL, dev->evbit))
2239  		events += bitmap_weight(dev->relbit, REL_CNT);
2240  
2241  	/* Make room for KEY and MSC events */
2242  	events += 7;
2243  
2244  	return events;
2245  }
2246  
2247  #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2248  	do {								\
2249  		if (!test_bit(EV_##type, dev->evbit))			\
2250  			memset(dev->bits##bit, 0,			\
2251  				sizeof(dev->bits##bit));		\
2252  	} while (0)
2253  
input_cleanse_bitmasks(struct input_dev * dev)2254  static void input_cleanse_bitmasks(struct input_dev *dev)
2255  {
2256  	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2257  	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2258  	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2259  	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2260  	INPUT_CLEANSE_BITMASK(dev, LED, led);
2261  	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2262  	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2263  	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2264  }
2265  
__input_unregister_device(struct input_dev * dev)2266  static void __input_unregister_device(struct input_dev *dev)
2267  {
2268  	struct input_handle *handle, *next;
2269  
2270  	input_disconnect_device(dev);
2271  
2272  	mutex_lock(&input_mutex);
2273  
2274  	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2275  		handle->handler->disconnect(handle);
2276  	WARN_ON(!list_empty(&dev->h_list));
2277  
2278  	del_timer_sync(&dev->timer);
2279  	list_del_init(&dev->node);
2280  
2281  	input_wakeup_procfs_readers();
2282  
2283  	mutex_unlock(&input_mutex);
2284  
2285  	device_del(&dev->dev);
2286  }
2287  
devm_input_device_unregister(struct device * dev,void * res)2288  static void devm_input_device_unregister(struct device *dev, void *res)
2289  {
2290  	struct input_devres *devres = res;
2291  	struct input_dev *input = devres->input;
2292  
2293  	dev_dbg(dev, "%s: unregistering device %s\n",
2294  		__func__, dev_name(&input->dev));
2295  	__input_unregister_device(input);
2296  }
2297  
2298  /*
2299   * Generate software autorepeat event. Note that we take
2300   * dev->event_lock here to avoid racing with input_event
2301   * which may cause keys get "stuck".
2302   */
input_repeat_key(struct timer_list * t)2303  static void input_repeat_key(struct timer_list *t)
2304  {
2305  	struct input_dev *dev = from_timer(dev, t, timer);
2306  	unsigned long flags;
2307  
2308  	spin_lock_irqsave(&dev->event_lock, flags);
2309  
2310  	if (!dev->inhibited &&
2311  	    test_bit(dev->repeat_key, dev->key) &&
2312  	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2313  
2314  		input_set_timestamp(dev, ktime_get());
2315  		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2316  		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2317  
2318  		if (dev->rep[REP_PERIOD])
2319  			mod_timer(&dev->timer, jiffies +
2320  					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2321  	}
2322  
2323  	spin_unlock_irqrestore(&dev->event_lock, flags);
2324  }
2325  
2326  /**
2327   * input_enable_softrepeat - enable software autorepeat
2328   * @dev: input device
2329   * @delay: repeat delay
2330   * @period: repeat period
2331   *
2332   * Enable software autorepeat on the input device.
2333   */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2334  void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2335  {
2336  	dev->timer.function = input_repeat_key;
2337  	dev->rep[REP_DELAY] = delay;
2338  	dev->rep[REP_PERIOD] = period;
2339  }
2340  EXPORT_SYMBOL(input_enable_softrepeat);
2341  
input_device_enabled(struct input_dev * dev)2342  bool input_device_enabled(struct input_dev *dev)
2343  {
2344  	lockdep_assert_held(&dev->mutex);
2345  
2346  	return !dev->inhibited && dev->users > 0;
2347  }
2348  EXPORT_SYMBOL_GPL(input_device_enabled);
2349  
input_device_tune_vals(struct input_dev * dev)2350  static int input_device_tune_vals(struct input_dev *dev)
2351  {
2352  	struct input_value *vals;
2353  	unsigned int packet_size;
2354  	unsigned int max_vals;
2355  
2356  	packet_size = input_estimate_events_per_packet(dev);
2357  	if (dev->hint_events_per_packet < packet_size)
2358  		dev->hint_events_per_packet = packet_size;
2359  
2360  	max_vals = dev->hint_events_per_packet + 2;
2361  	if (dev->max_vals >= max_vals)
2362  		return 0;
2363  
2364  	vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2365  	if (!vals)
2366  		return -ENOMEM;
2367  
2368  	spin_lock_irq(&dev->event_lock);
2369  	dev->max_vals = max_vals;
2370  	swap(dev->vals, vals);
2371  	spin_unlock_irq(&dev->event_lock);
2372  
2373  	/* Because of swap() above, this frees the old vals memory */
2374  	kfree(vals);
2375  
2376  	return 0;
2377  }
2378  
2379  /**
2380   * input_register_device - register device with input core
2381   * @dev: device to be registered
2382   *
2383   * This function registers device with input core. The device must be
2384   * allocated with input_allocate_device() and all it's capabilities
2385   * set up before registering.
2386   * If function fails the device must be freed with input_free_device().
2387   * Once device has been successfully registered it can be unregistered
2388   * with input_unregister_device(); input_free_device() should not be
2389   * called in this case.
2390   *
2391   * Note that this function is also used to register managed input devices
2392   * (ones allocated with devm_input_allocate_device()). Such managed input
2393   * devices need not be explicitly unregistered or freed, their tear down
2394   * is controlled by the devres infrastructure. It is also worth noting
2395   * that tear down of managed input devices is internally a 2-step process:
2396   * registered managed input device is first unregistered, but stays in
2397   * memory and can still handle input_event() calls (although events will
2398   * not be delivered anywhere). The freeing of managed input device will
2399   * happen later, when devres stack is unwound to the point where device
2400   * allocation was made.
2401   */
input_register_device(struct input_dev * dev)2402  int input_register_device(struct input_dev *dev)
2403  {
2404  	struct input_devres *devres = NULL;
2405  	struct input_handler *handler;
2406  	const char *path;
2407  	int error;
2408  
2409  	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2410  		dev_err(&dev->dev,
2411  			"Absolute device without dev->absinfo, refusing to register\n");
2412  		return -EINVAL;
2413  	}
2414  
2415  	if (dev->devres_managed) {
2416  		devres = devres_alloc(devm_input_device_unregister,
2417  				      sizeof(*devres), GFP_KERNEL);
2418  		if (!devres)
2419  			return -ENOMEM;
2420  
2421  		devres->input = dev;
2422  	}
2423  
2424  	/* Every input device generates EV_SYN/SYN_REPORT events. */
2425  	__set_bit(EV_SYN, dev->evbit);
2426  
2427  	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2428  	__clear_bit(KEY_RESERVED, dev->keybit);
2429  
2430  	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2431  	input_cleanse_bitmasks(dev);
2432  
2433  	error = input_device_tune_vals(dev);
2434  	if (error)
2435  		goto err_devres_free;
2436  
2437  	/*
2438  	 * If delay and period are pre-set by the driver, then autorepeating
2439  	 * is handled by the driver itself and we don't do it in input.c.
2440  	 */
2441  	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2442  		input_enable_softrepeat(dev, 250, 33);
2443  
2444  	if (!dev->getkeycode)
2445  		dev->getkeycode = input_default_getkeycode;
2446  
2447  	if (!dev->setkeycode)
2448  		dev->setkeycode = input_default_setkeycode;
2449  
2450  	if (dev->poller)
2451  		input_dev_poller_finalize(dev->poller);
2452  
2453  	error = device_add(&dev->dev);
2454  	if (error)
2455  		goto err_devres_free;
2456  
2457  	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2458  	pr_info("%s as %s\n",
2459  		dev->name ? dev->name : "Unspecified device",
2460  		path ? path : "N/A");
2461  	kfree(path);
2462  
2463  	error = mutex_lock_interruptible(&input_mutex);
2464  	if (error)
2465  		goto err_device_del;
2466  
2467  	list_add_tail(&dev->node, &input_dev_list);
2468  
2469  	list_for_each_entry(handler, &input_handler_list, node)
2470  		input_attach_handler(dev, handler);
2471  
2472  	input_wakeup_procfs_readers();
2473  
2474  	mutex_unlock(&input_mutex);
2475  
2476  	if (dev->devres_managed) {
2477  		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2478  			__func__, dev_name(&dev->dev));
2479  		devres_add(dev->dev.parent, devres);
2480  	}
2481  	return 0;
2482  
2483  err_device_del:
2484  	device_del(&dev->dev);
2485  err_devres_free:
2486  	devres_free(devres);
2487  	return error;
2488  }
2489  EXPORT_SYMBOL(input_register_device);
2490  
2491  /**
2492   * input_unregister_device - unregister previously registered device
2493   * @dev: device to be unregistered
2494   *
2495   * This function unregisters an input device. Once device is unregistered
2496   * the caller should not try to access it as it may get freed at any moment.
2497   */
input_unregister_device(struct input_dev * dev)2498  void input_unregister_device(struct input_dev *dev)
2499  {
2500  	if (dev->devres_managed) {
2501  		WARN_ON(devres_destroy(dev->dev.parent,
2502  					devm_input_device_unregister,
2503  					devm_input_device_match,
2504  					dev));
2505  		__input_unregister_device(dev);
2506  		/*
2507  		 * We do not do input_put_device() here because it will be done
2508  		 * when 2nd devres fires up.
2509  		 */
2510  	} else {
2511  		__input_unregister_device(dev);
2512  		input_put_device(dev);
2513  	}
2514  }
2515  EXPORT_SYMBOL(input_unregister_device);
2516  
input_handler_check_methods(const struct input_handler * handler)2517  static int input_handler_check_methods(const struct input_handler *handler)
2518  {
2519  	int count = 0;
2520  
2521  	if (handler->filter)
2522  		count++;
2523  	if (handler->events)
2524  		count++;
2525  	if (handler->event)
2526  		count++;
2527  
2528  	if (count > 1) {
2529  		pr_err("%s: only one event processing method can be defined (%s)\n",
2530  		       __func__, handler->name);
2531  		return -EINVAL;
2532  	}
2533  
2534  	return 0;
2535  }
2536  
2537  /**
2538   * input_register_handler - register a new input handler
2539   * @handler: handler to be registered
2540   *
2541   * This function registers a new input handler (interface) for input
2542   * devices in the system and attaches it to all input devices that
2543   * are compatible with the handler.
2544   */
input_register_handler(struct input_handler * handler)2545  int input_register_handler(struct input_handler *handler)
2546  {
2547  	struct input_dev *dev;
2548  	int error;
2549  
2550  	error = input_handler_check_methods(handler);
2551  	if (error)
2552  		return error;
2553  
2554  	INIT_LIST_HEAD(&handler->h_list);
2555  
2556  	error = mutex_lock_interruptible(&input_mutex);
2557  	if (error)
2558  		return error;
2559  
2560  	list_add_tail(&handler->node, &input_handler_list);
2561  
2562  	list_for_each_entry(dev, &input_dev_list, node)
2563  		input_attach_handler(dev, handler);
2564  
2565  	input_wakeup_procfs_readers();
2566  
2567  	mutex_unlock(&input_mutex);
2568  	return 0;
2569  }
2570  EXPORT_SYMBOL(input_register_handler);
2571  
2572  /**
2573   * input_unregister_handler - unregisters an input handler
2574   * @handler: handler to be unregistered
2575   *
2576   * This function disconnects a handler from its input devices and
2577   * removes it from lists of known handlers.
2578   */
input_unregister_handler(struct input_handler * handler)2579  void input_unregister_handler(struct input_handler *handler)
2580  {
2581  	struct input_handle *handle, *next;
2582  
2583  	mutex_lock(&input_mutex);
2584  
2585  	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2586  		handler->disconnect(handle);
2587  	WARN_ON(!list_empty(&handler->h_list));
2588  
2589  	list_del_init(&handler->node);
2590  
2591  	input_wakeup_procfs_readers();
2592  
2593  	mutex_unlock(&input_mutex);
2594  }
2595  EXPORT_SYMBOL(input_unregister_handler);
2596  
2597  /**
2598   * input_handler_for_each_handle - handle iterator
2599   * @handler: input handler to iterate
2600   * @data: data for the callback
2601   * @fn: function to be called for each handle
2602   *
2603   * Iterate over @bus's list of devices, and call @fn for each, passing
2604   * it @data and stop when @fn returns a non-zero value. The function is
2605   * using RCU to traverse the list and therefore may be using in atomic
2606   * contexts. The @fn callback is invoked from RCU critical section and
2607   * thus must not sleep.
2608   */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2609  int input_handler_for_each_handle(struct input_handler *handler, void *data,
2610  				  int (*fn)(struct input_handle *, void *))
2611  {
2612  	struct input_handle *handle;
2613  	int retval = 0;
2614  
2615  	rcu_read_lock();
2616  
2617  	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2618  		retval = fn(handle, data);
2619  		if (retval)
2620  			break;
2621  	}
2622  
2623  	rcu_read_unlock();
2624  
2625  	return retval;
2626  }
2627  EXPORT_SYMBOL(input_handler_for_each_handle);
2628  
2629  /*
2630   * An implementation of input_handle's handle_events() method that simply
2631   * invokes handler->event() method for each event one by one.
2632   */
input_handle_events_default(struct input_handle * handle,struct input_value * vals,unsigned int count)2633  static unsigned int input_handle_events_default(struct input_handle *handle,
2634  						struct input_value *vals,
2635  						unsigned int count)
2636  {
2637  	struct input_handler *handler = handle->handler;
2638  	struct input_value *v;
2639  
2640  	for (v = vals; v != vals + count; v++)
2641  		handler->event(handle, v->type, v->code, v->value);
2642  
2643  	return count;
2644  }
2645  
2646  /*
2647   * An implementation of input_handle's handle_events() method that invokes
2648   * handler->filter() method for each event one by one and removes events
2649   * that were filtered out from the "vals" array.
2650   */
input_handle_events_filter(struct input_handle * handle,struct input_value * vals,unsigned int count)2651  static unsigned int input_handle_events_filter(struct input_handle *handle,
2652  					       struct input_value *vals,
2653  					       unsigned int count)
2654  {
2655  	struct input_handler *handler = handle->handler;
2656  	struct input_value *end = vals;
2657  	struct input_value *v;
2658  
2659  	for (v = vals; v != vals + count; v++) {
2660  		if (handler->filter(handle, v->type, v->code, v->value))
2661  			continue;
2662  		if (end != v)
2663  			*end = *v;
2664  		end++;
2665  	}
2666  
2667  	return end - vals;
2668  }
2669  
2670  /*
2671   * An implementation of input_handle's handle_events() method that does nothing.
2672   */
input_handle_events_null(struct input_handle * handle,struct input_value * vals,unsigned int count)2673  static unsigned int input_handle_events_null(struct input_handle *handle,
2674  					     struct input_value *vals,
2675  					     unsigned int count)
2676  {
2677  	return count;
2678  }
2679  
2680  /*
2681   * Sets up appropriate handle->event_handler based on the input_handler
2682   * associated with the handle.
2683   */
input_handle_setup_event_handler(struct input_handle * handle)2684  static void input_handle_setup_event_handler(struct input_handle *handle)
2685  {
2686  	struct input_handler *handler = handle->handler;
2687  
2688  	if (handler->filter)
2689  		handle->handle_events = input_handle_events_filter;
2690  	else if (handler->event)
2691  		handle->handle_events = input_handle_events_default;
2692  	else if (handler->events)
2693  		handle->handle_events = handler->events;
2694  	else
2695  		handle->handle_events = input_handle_events_null;
2696  }
2697  
2698  /**
2699   * input_register_handle - register a new input handle
2700   * @handle: handle to register
2701   *
2702   * This function puts a new input handle onto device's
2703   * and handler's lists so that events can flow through
2704   * it once it is opened using input_open_device().
2705   *
2706   * This function is supposed to be called from handler's
2707   * connect() method.
2708   */
input_register_handle(struct input_handle * handle)2709  int input_register_handle(struct input_handle *handle)
2710  {
2711  	struct input_handler *handler = handle->handler;
2712  	struct input_dev *dev = handle->dev;
2713  	int error;
2714  
2715  	input_handle_setup_event_handler(handle);
2716  	/*
2717  	 * We take dev->mutex here to prevent race with
2718  	 * input_release_device().
2719  	 */
2720  	error = mutex_lock_interruptible(&dev->mutex);
2721  	if (error)
2722  		return error;
2723  
2724  	/*
2725  	 * Filters go to the head of the list, normal handlers
2726  	 * to the tail.
2727  	 */
2728  	if (handler->filter)
2729  		list_add_rcu(&handle->d_node, &dev->h_list);
2730  	else
2731  		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2732  
2733  	mutex_unlock(&dev->mutex);
2734  
2735  	/*
2736  	 * Since we are supposed to be called from ->connect()
2737  	 * which is mutually exclusive with ->disconnect()
2738  	 * we can't be racing with input_unregister_handle()
2739  	 * and so separate lock is not needed here.
2740  	 */
2741  	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2742  
2743  	if (handler->start)
2744  		handler->start(handle);
2745  
2746  	return 0;
2747  }
2748  EXPORT_SYMBOL(input_register_handle);
2749  
2750  /**
2751   * input_unregister_handle - unregister an input handle
2752   * @handle: handle to unregister
2753   *
2754   * This function removes input handle from device's
2755   * and handler's lists.
2756   *
2757   * This function is supposed to be called from handler's
2758   * disconnect() method.
2759   */
input_unregister_handle(struct input_handle * handle)2760  void input_unregister_handle(struct input_handle *handle)
2761  {
2762  	struct input_dev *dev = handle->dev;
2763  
2764  	list_del_rcu(&handle->h_node);
2765  
2766  	/*
2767  	 * Take dev->mutex to prevent race with input_release_device().
2768  	 */
2769  	mutex_lock(&dev->mutex);
2770  	list_del_rcu(&handle->d_node);
2771  	mutex_unlock(&dev->mutex);
2772  
2773  	synchronize_rcu();
2774  }
2775  EXPORT_SYMBOL(input_unregister_handle);
2776  
2777  /**
2778   * input_get_new_minor - allocates a new input minor number
2779   * @legacy_base: beginning or the legacy range to be searched
2780   * @legacy_num: size of legacy range
2781   * @allow_dynamic: whether we can also take ID from the dynamic range
2782   *
2783   * This function allocates a new device minor for from input major namespace.
2784   * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2785   * parameters and whether ID can be allocated from dynamic range if there are
2786   * no free IDs in legacy range.
2787   */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2788  int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2789  			bool allow_dynamic)
2790  {
2791  	/*
2792  	 * This function should be called from input handler's ->connect()
2793  	 * methods, which are serialized with input_mutex, so no additional
2794  	 * locking is needed here.
2795  	 */
2796  	if (legacy_base >= 0) {
2797  		int minor = ida_alloc_range(&input_ida, legacy_base,
2798  					    legacy_base + legacy_num - 1,
2799  					    GFP_KERNEL);
2800  		if (minor >= 0 || !allow_dynamic)
2801  			return minor;
2802  	}
2803  
2804  	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2805  			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2806  }
2807  EXPORT_SYMBOL(input_get_new_minor);
2808  
2809  /**
2810   * input_free_minor - release previously allocated minor
2811   * @minor: minor to be released
2812   *
2813   * This function releases previously allocated input minor so that it can be
2814   * reused later.
2815   */
input_free_minor(unsigned int minor)2816  void input_free_minor(unsigned int minor)
2817  {
2818  	ida_free(&input_ida, minor);
2819  }
2820  EXPORT_SYMBOL(input_free_minor);
2821  
input_init(void)2822  static int __init input_init(void)
2823  {
2824  	int err;
2825  
2826  	err = class_register(&input_class);
2827  	if (err) {
2828  		pr_err("unable to register input_dev class\n");
2829  		return err;
2830  	}
2831  
2832  	err = input_proc_init();
2833  	if (err)
2834  		goto fail1;
2835  
2836  	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2837  				     INPUT_MAX_CHAR_DEVICES, "input");
2838  	if (err) {
2839  		pr_err("unable to register char major %d", INPUT_MAJOR);
2840  		goto fail2;
2841  	}
2842  
2843  	return 0;
2844  
2845   fail2:	input_proc_exit();
2846   fail1:	class_unregister(&input_class);
2847  	return err;
2848  }
2849  
input_exit(void)2850  static void __exit input_exit(void)
2851  {
2852  	input_proc_exit();
2853  	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2854  				 INPUT_MAX_CHAR_DEVICES);
2855  	class_unregister(&input_class);
2856  }
2857  
2858  subsys_initcall(input_init);
2859  module_exit(input_exit);
2860