1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Sensirion SPS30 particulate matter sensor driver
4   *
5   * Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
6   */
7  
8  #include <linux/crc8.h>
9  #include <linux/delay.h>
10  #include <linux/i2c.h>
11  #include <linux/iio/buffer.h>
12  #include <linux/iio/iio.h>
13  #include <linux/iio/sysfs.h>
14  #include <linux/iio/trigger_consumer.h>
15  #include <linux/iio/triggered_buffer.h>
16  #include <linux/kernel.h>
17  #include <linux/module.h>
18  
19  #include "sps30.h"
20  
21  /* sensor measures reliably up to 3000 ug / m3 */
22  #define SPS30_MAX_PM 3000
23  /* minimum and maximum self cleaning periods in seconds */
24  #define SPS30_AUTO_CLEANING_PERIOD_MIN 0
25  #define SPS30_AUTO_CLEANING_PERIOD_MAX 604800
26  
27  enum {
28  	PM1,
29  	PM2P5,
30  	PM4,
31  	PM10,
32  };
33  
34  enum {
35  	RESET,
36  	MEASURING,
37  };
38  
sps30_float_to_int_clamped(__be32 * fp)39  static s32 sps30_float_to_int_clamped(__be32 *fp)
40  {
41  	int val = be32_to_cpup(fp);
42  	int mantissa = val & GENMASK(22, 0);
43  	/* this is fine since passed float is always non-negative */
44  	int exp = val >> 23;
45  	int fraction, shift;
46  
47  	/* special case 0 */
48  	if (!exp && !mantissa)
49  		return 0;
50  
51  	exp -= 127;
52  	if (exp < 0) {
53  		/* return values ranging from 1 to 99 */
54  		return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp);
55  	}
56  
57  	/* return values ranging from 100 to 300000 */
58  	shift = 23 - exp;
59  	val = (1 << exp) + (mantissa >> shift);
60  	if (val >= SPS30_MAX_PM)
61  		return SPS30_MAX_PM * 100;
62  
63  	fraction = mantissa & GENMASK(shift - 1, 0);
64  
65  	return val * 100 + ((fraction * 100) >> shift);
66  }
67  
sps30_do_meas(struct sps30_state * state,s32 * data,int size)68  static int sps30_do_meas(struct sps30_state *state, s32 *data, int size)
69  {
70  	int i, ret;
71  
72  	if (state->state == RESET) {
73  		ret = state->ops->start_meas(state);
74  		if (ret)
75  			return ret;
76  
77  		state->state = MEASURING;
78  	}
79  
80  	ret = state->ops->read_meas(state, (__be32 *)data, size);
81  	if (ret)
82  		return ret;
83  
84  	for (i = 0; i < size; i++)
85  		data[i] = sps30_float_to_int_clamped((__be32 *)&data[i]);
86  
87  	return 0;
88  }
89  
sps30_do_reset(struct sps30_state * state)90  static int sps30_do_reset(struct sps30_state *state)
91  {
92  	int ret;
93  
94  	ret = state->ops->reset(state);
95  	if (ret)
96  		return ret;
97  
98  	state->state = RESET;
99  
100  	return 0;
101  }
102  
sps30_trigger_handler(int irq,void * p)103  static irqreturn_t sps30_trigger_handler(int irq, void *p)
104  {
105  	struct iio_poll_func *pf = p;
106  	struct iio_dev *indio_dev = pf->indio_dev;
107  	struct sps30_state *state = iio_priv(indio_dev);
108  	int ret;
109  	struct {
110  		s32 data[4]; /* PM1, PM2P5, PM4, PM10 */
111  		s64 ts;
112  	} scan;
113  
114  	mutex_lock(&state->lock);
115  	ret = sps30_do_meas(state, scan.data, ARRAY_SIZE(scan.data));
116  	mutex_unlock(&state->lock);
117  	if (ret)
118  		goto err;
119  
120  	iio_push_to_buffers_with_timestamp(indio_dev, &scan,
121  					   iio_get_time_ns(indio_dev));
122  err:
123  	iio_trigger_notify_done(indio_dev->trig);
124  
125  	return IRQ_HANDLED;
126  }
127  
sps30_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)128  static int sps30_read_raw(struct iio_dev *indio_dev,
129  			  struct iio_chan_spec const *chan,
130  			  int *val, int *val2, long mask)
131  {
132  	struct sps30_state *state = iio_priv(indio_dev);
133  	int data[4], ret = -EINVAL;
134  
135  	switch (mask) {
136  	case IIO_CHAN_INFO_PROCESSED:
137  		switch (chan->type) {
138  		case IIO_MASSCONCENTRATION:
139  			mutex_lock(&state->lock);
140  			/* read up to the number of bytes actually needed */
141  			switch (chan->channel2) {
142  			case IIO_MOD_PM1:
143  				ret = sps30_do_meas(state, data, 1);
144  				break;
145  			case IIO_MOD_PM2P5:
146  				ret = sps30_do_meas(state, data, 2);
147  				break;
148  			case IIO_MOD_PM4:
149  				ret = sps30_do_meas(state, data, 3);
150  				break;
151  			case IIO_MOD_PM10:
152  				ret = sps30_do_meas(state, data, 4);
153  				break;
154  			}
155  			mutex_unlock(&state->lock);
156  			if (ret)
157  				return ret;
158  
159  			*val = data[chan->address] / 100;
160  			*val2 = (data[chan->address] % 100) * 10000;
161  
162  			return IIO_VAL_INT_PLUS_MICRO;
163  		default:
164  			return -EINVAL;
165  		}
166  	case IIO_CHAN_INFO_SCALE:
167  		switch (chan->type) {
168  		case IIO_MASSCONCENTRATION:
169  			switch (chan->channel2) {
170  			case IIO_MOD_PM1:
171  			case IIO_MOD_PM2P5:
172  			case IIO_MOD_PM4:
173  			case IIO_MOD_PM10:
174  				*val = 0;
175  				*val2 = 10000;
176  
177  				return IIO_VAL_INT_PLUS_MICRO;
178  			default:
179  				return -EINVAL;
180  			}
181  		default:
182  			return -EINVAL;
183  		}
184  	}
185  
186  	return -EINVAL;
187  }
188  
start_cleaning_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)189  static ssize_t start_cleaning_store(struct device *dev,
190  				    struct device_attribute *attr,
191  				    const char *buf, size_t len)
192  {
193  	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
194  	struct sps30_state *state = iio_priv(indio_dev);
195  	int val, ret;
196  
197  	if (kstrtoint(buf, 0, &val) || val != 1)
198  		return -EINVAL;
199  
200  	mutex_lock(&state->lock);
201  	ret = state->ops->clean_fan(state);
202  	mutex_unlock(&state->lock);
203  	if (ret)
204  		return ret;
205  
206  	return len;
207  }
208  
cleaning_period_show(struct device * dev,struct device_attribute * attr,char * buf)209  static ssize_t cleaning_period_show(struct device *dev,
210  				    struct device_attribute *attr,
211  				    char *buf)
212  {
213  	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
214  	struct sps30_state *state = iio_priv(indio_dev);
215  	__be32 val;
216  	int ret;
217  
218  	mutex_lock(&state->lock);
219  	ret = state->ops->read_cleaning_period(state, &val);
220  	mutex_unlock(&state->lock);
221  	if (ret)
222  		return ret;
223  
224  	return sysfs_emit(buf, "%d\n", be32_to_cpu(val));
225  }
226  
cleaning_period_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)227  static ssize_t cleaning_period_store(struct device *dev, struct device_attribute *attr,
228  				     const char *buf, size_t len)
229  {
230  	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
231  	struct sps30_state *state = iio_priv(indio_dev);
232  	int val, ret;
233  
234  	if (kstrtoint(buf, 0, &val))
235  		return -EINVAL;
236  
237  	if ((val < SPS30_AUTO_CLEANING_PERIOD_MIN) ||
238  	    (val > SPS30_AUTO_CLEANING_PERIOD_MAX))
239  		return -EINVAL;
240  
241  	mutex_lock(&state->lock);
242  	ret = state->ops->write_cleaning_period(state, cpu_to_be32(val));
243  	if (ret) {
244  		mutex_unlock(&state->lock);
245  		return ret;
246  	}
247  
248  	msleep(20);
249  
250  	/*
251  	 * sensor requires reset in order to return up to date self cleaning
252  	 * period
253  	 */
254  	ret = sps30_do_reset(state);
255  	if (ret)
256  		dev_warn(dev,
257  			 "period changed but reads will return the old value\n");
258  
259  	mutex_unlock(&state->lock);
260  
261  	return len;
262  }
263  
cleaning_period_available_show(struct device * dev,struct device_attribute * attr,char * buf)264  static ssize_t cleaning_period_available_show(struct device *dev,
265  					      struct device_attribute *attr,
266  					      char *buf)
267  {
268  	return sysfs_emit(buf, "[%d %d %d]\n",
269  			  SPS30_AUTO_CLEANING_PERIOD_MIN, 1,
270  			  SPS30_AUTO_CLEANING_PERIOD_MAX);
271  }
272  
273  static IIO_DEVICE_ATTR_WO(start_cleaning, 0);
274  static IIO_DEVICE_ATTR_RW(cleaning_period, 0);
275  static IIO_DEVICE_ATTR_RO(cleaning_period_available, 0);
276  
277  static struct attribute *sps30_attrs[] = {
278  	&iio_dev_attr_start_cleaning.dev_attr.attr,
279  	&iio_dev_attr_cleaning_period.dev_attr.attr,
280  	&iio_dev_attr_cleaning_period_available.dev_attr.attr,
281  	NULL
282  };
283  
284  static const struct attribute_group sps30_attr_group = {
285  	.attrs = sps30_attrs,
286  };
287  
288  static const struct iio_info sps30_info = {
289  	.attrs = &sps30_attr_group,
290  	.read_raw = sps30_read_raw,
291  };
292  
293  #define SPS30_CHAN(_index, _mod) { \
294  	.type = IIO_MASSCONCENTRATION, \
295  	.modified = 1, \
296  	.channel2 = IIO_MOD_ ## _mod, \
297  	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
298  	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
299  	.address = _mod, \
300  	.scan_index = _index, \
301  	.scan_type = { \
302  		.sign = 'u', \
303  		.realbits = 19, \
304  		.storagebits = 32, \
305  		.endianness = IIO_CPU, \
306  	}, \
307  }
308  
309  static const struct iio_chan_spec sps30_channels[] = {
310  	SPS30_CHAN(0, PM1),
311  	SPS30_CHAN(1, PM2P5),
312  	SPS30_CHAN(2, PM4),
313  	SPS30_CHAN(3, PM10),
314  	IIO_CHAN_SOFT_TIMESTAMP(4),
315  };
316  
sps30_devm_stop_meas(void * data)317  static void sps30_devm_stop_meas(void *data)
318  {
319  	struct sps30_state *state = data;
320  
321  	if (state->state == MEASURING)
322  		state->ops->stop_meas(state);
323  }
324  
325  static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 };
326  
sps30_probe(struct device * dev,const char * name,void * priv,const struct sps30_ops * ops)327  int sps30_probe(struct device *dev, const char *name, void *priv, const struct sps30_ops *ops)
328  {
329  	struct iio_dev *indio_dev;
330  	struct sps30_state *state;
331  	int ret;
332  
333  	indio_dev = devm_iio_device_alloc(dev, sizeof(*state));
334  	if (!indio_dev)
335  		return -ENOMEM;
336  
337  	dev_set_drvdata(dev, indio_dev);
338  
339  	state = iio_priv(indio_dev);
340  	state->dev = dev;
341  	state->priv = priv;
342  	state->ops = ops;
343  	mutex_init(&state->lock);
344  
345  	indio_dev->info = &sps30_info;
346  	indio_dev->name = name;
347  	indio_dev->channels = sps30_channels;
348  	indio_dev->num_channels = ARRAY_SIZE(sps30_channels);
349  	indio_dev->modes = INDIO_DIRECT_MODE;
350  	indio_dev->available_scan_masks = sps30_scan_masks;
351  
352  	ret = sps30_do_reset(state);
353  	if (ret) {
354  		dev_err(dev, "failed to reset device\n");
355  		return ret;
356  	}
357  
358  	ret = state->ops->show_info(state);
359  	if (ret) {
360  		dev_err(dev, "failed to read device info\n");
361  		return ret;
362  	}
363  
364  	ret = devm_add_action_or_reset(dev, sps30_devm_stop_meas, state);
365  	if (ret)
366  		return ret;
367  
368  	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
369  					      sps30_trigger_handler, NULL);
370  	if (ret)
371  		return ret;
372  
373  	return devm_iio_device_register(dev, indio_dev);
374  }
375  EXPORT_SYMBOL_NS_GPL(sps30_probe, IIO_SPS30);
376  
377  MODULE_AUTHOR("Tomasz Duszynski <tduszyns@gmail.com>");
378  MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver");
379  MODULE_LICENSE("GPL v2");
380