1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * IIO rescale driver
4   *
5   * Copyright (C) 2018 Axentia Technologies AB
6   * Copyright (C) 2022 Liam Beguin <liambeguin@gmail.com>
7   *
8   * Author: Peter Rosin <peda@axentia.se>
9   */
10  
11  #include <linux/err.h>
12  #include <linux/gcd.h>
13  #include <linux/mod_devicetable.h>
14  #include <linux/module.h>
15  #include <linux/platform_device.h>
16  #include <linux/property.h>
17  
18  #include <linux/iio/afe/rescale.h>
19  #include <linux/iio/consumer.h>
20  #include <linux/iio/iio.h>
21  
rescale_process_scale(struct rescale * rescale,int scale_type,int * val,int * val2)22  int rescale_process_scale(struct rescale *rescale, int scale_type,
23  			  int *val, int *val2)
24  {
25  	s64 tmp;
26  	int _val, _val2;
27  	s32 rem, rem2;
28  	u32 mult;
29  	u32 neg;
30  
31  	switch (scale_type) {
32  	case IIO_VAL_INT:
33  		*val *= rescale->numerator;
34  		if (rescale->denominator == 1)
35  			return scale_type;
36  		*val2 = rescale->denominator;
37  		return IIO_VAL_FRACTIONAL;
38  	case IIO_VAL_FRACTIONAL:
39  		/*
40  		 * When the product of both scales doesn't overflow, avoid
41  		 * potential accuracy loss (for in kernel consumers) by
42  		 * keeping a fractional representation.
43  		 */
44  		if (!check_mul_overflow(*val, rescale->numerator, &_val) &&
45  		    !check_mul_overflow(*val2, rescale->denominator, &_val2)) {
46  			*val = _val;
47  			*val2 = _val2;
48  			return IIO_VAL_FRACTIONAL;
49  		}
50  		fallthrough;
51  	case IIO_VAL_FRACTIONAL_LOG2:
52  		tmp = (s64)*val * 1000000000LL;
53  		tmp = div_s64(tmp, rescale->denominator);
54  		tmp *= rescale->numerator;
55  
56  		tmp = div_s64_rem(tmp, 1000000000LL, &rem);
57  		*val = tmp;
58  
59  		if (!rem)
60  			return scale_type;
61  
62  		if (scale_type == IIO_VAL_FRACTIONAL)
63  			tmp = *val2;
64  		else
65  			tmp = ULL(1) << *val2;
66  
67  		rem2 = *val % (int)tmp;
68  		*val = *val / (int)tmp;
69  
70  		*val2 = rem / (int)tmp;
71  		if (rem2)
72  			*val2 += div_s64((s64)rem2 * 1000000000LL, tmp);
73  
74  		return IIO_VAL_INT_PLUS_NANO;
75  	case IIO_VAL_INT_PLUS_NANO:
76  	case IIO_VAL_INT_PLUS_MICRO:
77  		mult = scale_type == IIO_VAL_INT_PLUS_NANO ? 1000000000L : 1000000L;
78  
79  		/*
80  		 * For IIO_VAL_INT_PLUS_{MICRO,NANO} scale types if either *val
81  		 * OR *val2 is negative the schan scale is negative, i.e.
82  		 * *val = 1 and *val2 = -0.5 yields -1.5 not -0.5.
83  		 */
84  		neg = *val < 0 || *val2 < 0;
85  
86  		tmp = (s64)abs(*val) * abs(rescale->numerator);
87  		*val = div_s64_rem(tmp, abs(rescale->denominator), &rem);
88  
89  		tmp = (s64)rem * mult + (s64)abs(*val2) * abs(rescale->numerator);
90  		tmp = div_s64(tmp, abs(rescale->denominator));
91  
92  		*val += div_s64_rem(tmp, mult, val2);
93  
94  		/*
95  		 * If only one of the rescaler elements or the schan scale is
96  		 * negative, the combined scale is negative.
97  		 */
98  		if (neg ^ ((rescale->numerator < 0) ^ (rescale->denominator < 0))) {
99  			if (*val)
100  				*val = -*val;
101  			else
102  				*val2 = -*val2;
103  		}
104  
105  		return scale_type;
106  	default:
107  		return -EOPNOTSUPP;
108  	}
109  }
110  EXPORT_SYMBOL_NS_GPL(rescale_process_scale, IIO_RESCALE);
111  
rescale_process_offset(struct rescale * rescale,int scale_type,int scale,int scale2,int schan_off,int * val,int * val2)112  int rescale_process_offset(struct rescale *rescale, int scale_type,
113  			   int scale, int scale2, int schan_off,
114  			   int *val, int *val2)
115  {
116  	s64 tmp, tmp2;
117  
118  	switch (scale_type) {
119  	case IIO_VAL_FRACTIONAL:
120  		tmp = (s64)rescale->offset * scale2;
121  		*val = div_s64(tmp, scale) + schan_off;
122  		return IIO_VAL_INT;
123  	case IIO_VAL_INT:
124  		*val = div_s64(rescale->offset, scale) + schan_off;
125  		return IIO_VAL_INT;
126  	case IIO_VAL_FRACTIONAL_LOG2:
127  		tmp = (s64)rescale->offset * (1 << scale2);
128  		*val = div_s64(tmp, scale) + schan_off;
129  		return IIO_VAL_INT;
130  	case IIO_VAL_INT_PLUS_NANO:
131  		tmp = (s64)rescale->offset * 1000000000LL;
132  		tmp2 = ((s64)scale * 1000000000LL) + scale2;
133  		*val = div64_s64(tmp, tmp2) + schan_off;
134  		return IIO_VAL_INT;
135  	case IIO_VAL_INT_PLUS_MICRO:
136  		tmp = (s64)rescale->offset * 1000000LL;
137  		tmp2 = ((s64)scale * 1000000LL) + scale2;
138  		*val = div64_s64(tmp, tmp2) + schan_off;
139  		return IIO_VAL_INT;
140  	default:
141  		return -EOPNOTSUPP;
142  	}
143  }
144  EXPORT_SYMBOL_NS_GPL(rescale_process_offset, IIO_RESCALE);
145  
rescale_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)146  static int rescale_read_raw(struct iio_dev *indio_dev,
147  			    struct iio_chan_spec const *chan,
148  			    int *val, int *val2, long mask)
149  {
150  	struct rescale *rescale = iio_priv(indio_dev);
151  	int scale, scale2;
152  	int schan_off = 0;
153  	int ret;
154  
155  	switch (mask) {
156  	case IIO_CHAN_INFO_RAW:
157  		if (rescale->chan_processed)
158  			/*
159  			 * When only processed channels are supported, we
160  			 * read the processed data and scale it by 1/1
161  			 * augmented with whatever the rescaler has calculated.
162  			 */
163  			return iio_read_channel_processed(rescale->source, val);
164  		else
165  			return iio_read_channel_raw(rescale->source, val);
166  
167  	case IIO_CHAN_INFO_SCALE:
168  		if (rescale->chan_processed) {
169  			/*
170  			 * Processed channels are scaled 1-to-1
171  			 */
172  			*val = 1;
173  			*val2 = 1;
174  			ret = IIO_VAL_FRACTIONAL;
175  		} else {
176  			ret = iio_read_channel_scale(rescale->source, val, val2);
177  		}
178  		return rescale_process_scale(rescale, ret, val, val2);
179  	case IIO_CHAN_INFO_OFFSET:
180  		/*
181  		 * Processed channels are scaled 1-to-1 and source offset is
182  		 * already taken into account.
183  		 *
184  		 * In other cases, real world measurement are expressed as:
185  		 *
186  		 *	schan_scale * (raw + schan_offset)
187  		 *
188  		 * Given that the rescaler parameters are applied recursively:
189  		 *
190  		 *	rescaler_scale * (schan_scale * (raw + schan_offset) +
191  		 *		rescaler_offset)
192  		 *
193  		 * Or,
194  		 *
195  		 *	(rescaler_scale * schan_scale) * (raw +
196  		 *		(schan_offset +	rescaler_offset / schan_scale)
197  		 *
198  		 * Thus, reusing the original expression the parameters exposed
199  		 * to userspace are:
200  		 *
201  		 *	scale = schan_scale * rescaler_scale
202  		 *	offset = schan_offset + rescaler_offset / schan_scale
203  		 */
204  		if (rescale->chan_processed) {
205  			*val = rescale->offset;
206  			return IIO_VAL_INT;
207  		}
208  
209  		if (iio_channel_has_info(rescale->source->channel,
210  					 IIO_CHAN_INFO_OFFSET)) {
211  			ret = iio_read_channel_offset(rescale->source,
212  						      &schan_off, NULL);
213  			if (ret != IIO_VAL_INT)
214  				return ret < 0 ? ret : -EOPNOTSUPP;
215  		}
216  
217  		if (iio_channel_has_info(rescale->source->channel,
218  					 IIO_CHAN_INFO_SCALE)) {
219  			ret = iio_read_channel_scale(rescale->source, &scale, &scale2);
220  			return rescale_process_offset(rescale, ret, scale, scale2,
221  						      schan_off, val, val2);
222  		}
223  
224  		/*
225  		 * If we get here we have no scale so scale 1:1 but apply
226  		 * rescaler and offset, if any.
227  		 */
228  		return rescale_process_offset(rescale, IIO_VAL_FRACTIONAL, 1, 1,
229  					      schan_off, val, val2);
230  	default:
231  		return -EINVAL;
232  	}
233  }
234  
rescale_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)235  static int rescale_read_avail(struct iio_dev *indio_dev,
236  			      struct iio_chan_spec const *chan,
237  			      const int **vals, int *type, int *length,
238  			      long mask)
239  {
240  	struct rescale *rescale = iio_priv(indio_dev);
241  
242  	switch (mask) {
243  	case IIO_CHAN_INFO_RAW:
244  		*type = IIO_VAL_INT;
245  		return iio_read_avail_channel_raw(rescale->source,
246  						  vals, length);
247  	default:
248  		return -EINVAL;
249  	}
250  }
251  
252  static const struct iio_info rescale_info = {
253  	.read_raw = rescale_read_raw,
254  	.read_avail = rescale_read_avail,
255  };
256  
rescale_read_ext_info(struct iio_dev * indio_dev,uintptr_t private,struct iio_chan_spec const * chan,char * buf)257  static ssize_t rescale_read_ext_info(struct iio_dev *indio_dev,
258  				     uintptr_t private,
259  				     struct iio_chan_spec const *chan,
260  				     char *buf)
261  {
262  	struct rescale *rescale = iio_priv(indio_dev);
263  
264  	return iio_read_channel_ext_info(rescale->source,
265  					 rescale->ext_info[private].name,
266  					 buf);
267  }
268  
rescale_write_ext_info(struct iio_dev * indio_dev,uintptr_t private,struct iio_chan_spec const * chan,const char * buf,size_t len)269  static ssize_t rescale_write_ext_info(struct iio_dev *indio_dev,
270  				      uintptr_t private,
271  				      struct iio_chan_spec const *chan,
272  				      const char *buf, size_t len)
273  {
274  	struct rescale *rescale = iio_priv(indio_dev);
275  
276  	return iio_write_channel_ext_info(rescale->source,
277  					  rescale->ext_info[private].name,
278  					  buf, len);
279  }
280  
rescale_configure_channel(struct device * dev,struct rescale * rescale)281  static int rescale_configure_channel(struct device *dev,
282  				     struct rescale *rescale)
283  {
284  	struct iio_chan_spec *chan = &rescale->chan;
285  	struct iio_chan_spec const *schan = rescale->source->channel;
286  
287  	chan->indexed = 1;
288  	chan->output = schan->output;
289  	chan->ext_info = rescale->ext_info;
290  	chan->type = rescale->cfg->type;
291  
292  	if (iio_channel_has_info(schan, IIO_CHAN_INFO_RAW) &&
293  	    (iio_channel_has_info(schan, IIO_CHAN_INFO_SCALE) ||
294  	     iio_channel_has_info(schan, IIO_CHAN_INFO_OFFSET))) {
295  		dev_info(dev, "using raw+scale/offset source channel\n");
296  	} else if (iio_channel_has_info(schan, IIO_CHAN_INFO_PROCESSED)) {
297  		dev_info(dev, "using processed channel\n");
298  		rescale->chan_processed = true;
299  	} else {
300  		dev_err(dev, "source channel is not supported\n");
301  		return -EINVAL;
302  	}
303  
304  	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
305  		BIT(IIO_CHAN_INFO_SCALE);
306  
307  	if (rescale->offset)
308  		chan->info_mask_separate |= BIT(IIO_CHAN_INFO_OFFSET);
309  
310  	/*
311  	 * Using .read_avail() is fringe to begin with and makes no sense
312  	 * whatsoever for processed channels, so we make sure that this cannot
313  	 * be called on a processed channel.
314  	 */
315  	if (iio_channel_has_available(schan, IIO_CHAN_INFO_RAW) &&
316  	    !rescale->chan_processed)
317  		chan->info_mask_separate_available |= BIT(IIO_CHAN_INFO_RAW);
318  
319  	return 0;
320  }
321  
rescale_current_sense_amplifier_props(struct device * dev,struct rescale * rescale)322  static int rescale_current_sense_amplifier_props(struct device *dev,
323  						 struct rescale *rescale)
324  {
325  	u32 sense;
326  	u32 gain_mult = 1;
327  	u32 gain_div = 1;
328  	u32 factor;
329  	int ret;
330  
331  	ret = device_property_read_u32(dev, "sense-resistor-micro-ohms",
332  				       &sense);
333  	if (ret) {
334  		dev_err(dev, "failed to read the sense resistance: %d\n", ret);
335  		return ret;
336  	}
337  
338  	device_property_read_u32(dev, "sense-gain-mult", &gain_mult);
339  	device_property_read_u32(dev, "sense-gain-div", &gain_div);
340  
341  	/*
342  	 * Calculate the scaling factor, 1 / (gain * sense), or
343  	 * gain_div / (gain_mult * sense), while trying to keep the
344  	 * numerator/denominator from overflowing.
345  	 */
346  	factor = gcd(sense, 1000000);
347  	rescale->numerator = 1000000 / factor;
348  	rescale->denominator = sense / factor;
349  
350  	factor = gcd(rescale->numerator, gain_mult);
351  	rescale->numerator /= factor;
352  	rescale->denominator *= gain_mult / factor;
353  
354  	factor = gcd(rescale->denominator, gain_div);
355  	rescale->numerator *= gain_div / factor;
356  	rescale->denominator /= factor;
357  
358  	return 0;
359  }
360  
rescale_current_sense_shunt_props(struct device * dev,struct rescale * rescale)361  static int rescale_current_sense_shunt_props(struct device *dev,
362  					     struct rescale *rescale)
363  {
364  	u32 shunt;
365  	u32 factor;
366  	int ret;
367  
368  	ret = device_property_read_u32(dev, "shunt-resistor-micro-ohms",
369  				       &shunt);
370  	if (ret) {
371  		dev_err(dev, "failed to read the shunt resistance: %d\n", ret);
372  		return ret;
373  	}
374  
375  	factor = gcd(shunt, 1000000);
376  	rescale->numerator = 1000000 / factor;
377  	rescale->denominator = shunt / factor;
378  
379  	return 0;
380  }
381  
rescale_voltage_divider_props(struct device * dev,struct rescale * rescale)382  static int rescale_voltage_divider_props(struct device *dev,
383  					 struct rescale *rescale)
384  {
385  	int ret;
386  	u32 factor;
387  
388  	ret = device_property_read_u32(dev, "output-ohms",
389  				       &rescale->denominator);
390  	if (ret) {
391  		dev_err(dev, "failed to read output-ohms: %d\n", ret);
392  		return ret;
393  	}
394  
395  	ret = device_property_read_u32(dev, "full-ohms",
396  				       &rescale->numerator);
397  	if (ret) {
398  		dev_err(dev, "failed to read full-ohms: %d\n", ret);
399  		return ret;
400  	}
401  
402  	factor = gcd(rescale->numerator, rescale->denominator);
403  	rescale->numerator /= factor;
404  	rescale->denominator /= factor;
405  
406  	return 0;
407  }
408  
rescale_temp_sense_rtd_props(struct device * dev,struct rescale * rescale)409  static int rescale_temp_sense_rtd_props(struct device *dev,
410  					struct rescale *rescale)
411  {
412  	u32 factor;
413  	u32 alpha;
414  	u32 iexc;
415  	u32 tmp;
416  	int ret;
417  	u32 r0;
418  
419  	ret = device_property_read_u32(dev, "excitation-current-microamp",
420  				       &iexc);
421  	if (ret) {
422  		dev_err(dev, "failed to read excitation-current-microamp: %d\n",
423  			ret);
424  		return ret;
425  	}
426  
427  	ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
428  	if (ret) {
429  		dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n",
430  			ret);
431  		return ret;
432  	}
433  
434  	ret = device_property_read_u32(dev, "r-naught-ohms", &r0);
435  	if (ret) {
436  		dev_err(dev, "failed to read r-naught-ohms: %d\n", ret);
437  		return ret;
438  	}
439  
440  	tmp = r0 * iexc * alpha / 1000000;
441  	factor = gcd(tmp, 1000000);
442  	rescale->numerator = 1000000 / factor;
443  	rescale->denominator = tmp / factor;
444  
445  	rescale->offset = -1 * ((r0 * iexc) / 1000);
446  
447  	return 0;
448  }
449  
rescale_temp_transducer_props(struct device * dev,struct rescale * rescale)450  static int rescale_temp_transducer_props(struct device *dev,
451  					 struct rescale *rescale)
452  {
453  	s32 offset = 0;
454  	s32 sense = 1;
455  	s32 alpha;
456  	int ret;
457  
458  	device_property_read_u32(dev, "sense-offset-millicelsius", &offset);
459  	device_property_read_u32(dev, "sense-resistor-ohms", &sense);
460  	ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
461  	if (ret) {
462  		dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n", ret);
463  		return ret;
464  	}
465  
466  	rescale->numerator = 1000000;
467  	rescale->denominator = alpha * sense;
468  
469  	rescale->offset = div_s64((s64)offset * rescale->denominator,
470  				  rescale->numerator);
471  
472  	return 0;
473  }
474  
475  enum rescale_variant {
476  	CURRENT_SENSE_AMPLIFIER,
477  	CURRENT_SENSE_SHUNT,
478  	VOLTAGE_DIVIDER,
479  	TEMP_SENSE_RTD,
480  	TEMP_TRANSDUCER,
481  };
482  
483  static const struct rescale_cfg rescale_cfg[] = {
484  	[CURRENT_SENSE_AMPLIFIER] = {
485  		.type = IIO_CURRENT,
486  		.props = rescale_current_sense_amplifier_props,
487  	},
488  	[CURRENT_SENSE_SHUNT] = {
489  		.type = IIO_CURRENT,
490  		.props = rescale_current_sense_shunt_props,
491  	},
492  	[VOLTAGE_DIVIDER] = {
493  		.type = IIO_VOLTAGE,
494  		.props = rescale_voltage_divider_props,
495  	},
496  	[TEMP_SENSE_RTD] = {
497  		.type = IIO_TEMP,
498  		.props = rescale_temp_sense_rtd_props,
499  	},
500  	[TEMP_TRANSDUCER] = {
501  		.type = IIO_TEMP,
502  		.props = rescale_temp_transducer_props,
503  	},
504  };
505  
506  static const struct of_device_id rescale_match[] = {
507  	{ .compatible = "current-sense-amplifier",
508  	  .data = &rescale_cfg[CURRENT_SENSE_AMPLIFIER], },
509  	{ .compatible = "current-sense-shunt",
510  	  .data = &rescale_cfg[CURRENT_SENSE_SHUNT], },
511  	{ .compatible = "voltage-divider",
512  	  .data = &rescale_cfg[VOLTAGE_DIVIDER], },
513  	{ .compatible = "temperature-sense-rtd",
514  	  .data = &rescale_cfg[TEMP_SENSE_RTD], },
515  	{ .compatible = "temperature-transducer",
516  	  .data = &rescale_cfg[TEMP_TRANSDUCER], },
517  	{ /* sentinel */ }
518  };
519  MODULE_DEVICE_TABLE(of, rescale_match);
520  
rescale_probe(struct platform_device * pdev)521  static int rescale_probe(struct platform_device *pdev)
522  {
523  	struct device *dev = &pdev->dev;
524  	struct iio_dev *indio_dev;
525  	struct iio_channel *source;
526  	struct rescale *rescale;
527  	int sizeof_ext_info;
528  	int sizeof_priv;
529  	int i;
530  	int ret;
531  
532  	source = devm_iio_channel_get(dev, NULL);
533  	if (IS_ERR(source))
534  		return dev_err_probe(dev, PTR_ERR(source),
535  				     "failed to get source channel\n");
536  
537  	sizeof_ext_info = iio_get_channel_ext_info_count(source);
538  	if (sizeof_ext_info) {
539  		sizeof_ext_info += 1; /* one extra entry for the sentinel */
540  		sizeof_ext_info *= sizeof(*rescale->ext_info);
541  	}
542  
543  	sizeof_priv = sizeof(*rescale) + sizeof_ext_info;
544  
545  	indio_dev = devm_iio_device_alloc(dev, sizeof_priv);
546  	if (!indio_dev)
547  		return -ENOMEM;
548  
549  	rescale = iio_priv(indio_dev);
550  
551  	rescale->cfg = device_get_match_data(dev);
552  	rescale->numerator = 1;
553  	rescale->denominator = 1;
554  	rescale->offset = 0;
555  
556  	ret = rescale->cfg->props(dev, rescale);
557  	if (ret)
558  		return ret;
559  
560  	if (!rescale->numerator || !rescale->denominator) {
561  		dev_err(dev, "invalid scaling factor.\n");
562  		return -EINVAL;
563  	}
564  
565  	platform_set_drvdata(pdev, indio_dev);
566  
567  	rescale->source = source;
568  
569  	indio_dev->name = dev_name(dev);
570  	indio_dev->info = &rescale_info;
571  	indio_dev->modes = INDIO_DIRECT_MODE;
572  	indio_dev->channels = &rescale->chan;
573  	indio_dev->num_channels = 1;
574  	if (sizeof_ext_info) {
575  		rescale->ext_info = devm_kmemdup(dev,
576  						 source->channel->ext_info,
577  						 sizeof_ext_info, GFP_KERNEL);
578  		if (!rescale->ext_info)
579  			return -ENOMEM;
580  
581  		for (i = 0; rescale->ext_info[i].name; ++i) {
582  			struct iio_chan_spec_ext_info *ext_info =
583  				&rescale->ext_info[i];
584  
585  			if (source->channel->ext_info[i].read)
586  				ext_info->read = rescale_read_ext_info;
587  			if (source->channel->ext_info[i].write)
588  				ext_info->write = rescale_write_ext_info;
589  			ext_info->private = i;
590  		}
591  	}
592  
593  	ret = rescale_configure_channel(dev, rescale);
594  	if (ret)
595  		return ret;
596  
597  	return devm_iio_device_register(dev, indio_dev);
598  }
599  
600  static struct platform_driver rescale_driver = {
601  	.probe = rescale_probe,
602  	.driver = {
603  		.name = "iio-rescale",
604  		.of_match_table = rescale_match,
605  	},
606  };
607  module_platform_driver(rescale_driver);
608  
609  MODULE_DESCRIPTION("IIO rescale driver");
610  MODULE_AUTHOR("Peter Rosin <peda@axentia.se>");
611  MODULE_LICENSE("GPL v2");
612