1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Framework for buffer objects that can be shared across devices/subsystems.
4   *
5   * Copyright(C) 2011 Linaro Limited. All rights reserved.
6   * Author: Sumit Semwal <sumit.semwal@ti.com>
7   *
8   * Many thanks to linaro-mm-sig list, and specially
9   * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10   * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11   * refining of this idea.
12   */
13  
14  #include <linux/fs.h>
15  #include <linux/slab.h>
16  #include <linux/dma-buf.h>
17  #include <linux/dma-fence.h>
18  #include <linux/dma-fence-unwrap.h>
19  #include <linux/anon_inodes.h>
20  #include <linux/export.h>
21  #include <linux/debugfs.h>
22  #include <linux/module.h>
23  #include <linux/seq_file.h>
24  #include <linux/sync_file.h>
25  #include <linux/poll.h>
26  #include <linux/dma-resv.h>
27  #include <linux/mm.h>
28  #include <linux/mount.h>
29  #include <linux/pseudo_fs.h>
30  
31  #include <uapi/linux/dma-buf.h>
32  #include <uapi/linux/magic.h>
33  
34  #include "dma-buf-sysfs-stats.h"
35  
36  static inline int is_dma_buf_file(struct file *);
37  
38  #if IS_ENABLED(CONFIG_DEBUG_FS)
39  static DEFINE_MUTEX(debugfs_list_mutex);
40  static LIST_HEAD(debugfs_list);
41  
__dma_buf_debugfs_list_add(struct dma_buf * dmabuf)42  static void __dma_buf_debugfs_list_add(struct dma_buf *dmabuf)
43  {
44  	mutex_lock(&debugfs_list_mutex);
45  	list_add(&dmabuf->list_node, &debugfs_list);
46  	mutex_unlock(&debugfs_list_mutex);
47  }
48  
__dma_buf_debugfs_list_del(struct dma_buf * dmabuf)49  static void __dma_buf_debugfs_list_del(struct dma_buf *dmabuf)
50  {
51  	if (!dmabuf)
52  		return;
53  
54  	mutex_lock(&debugfs_list_mutex);
55  	list_del(&dmabuf->list_node);
56  	mutex_unlock(&debugfs_list_mutex);
57  }
58  #else
__dma_buf_debugfs_list_add(struct dma_buf * dmabuf)59  static void __dma_buf_debugfs_list_add(struct dma_buf *dmabuf)
60  {
61  }
62  
__dma_buf_debugfs_list_del(struct file * file)63  static void __dma_buf_debugfs_list_del(struct file *file)
64  {
65  }
66  #endif
67  
dmabuffs_dname(struct dentry * dentry,char * buffer,int buflen)68  static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
69  {
70  	struct dma_buf *dmabuf;
71  	char name[DMA_BUF_NAME_LEN];
72  	ssize_t ret = 0;
73  
74  	dmabuf = dentry->d_fsdata;
75  	spin_lock(&dmabuf->name_lock);
76  	if (dmabuf->name)
77  		ret = strscpy(name, dmabuf->name, sizeof(name));
78  	spin_unlock(&dmabuf->name_lock);
79  
80  	return dynamic_dname(buffer, buflen, "/%s:%s",
81  			     dentry->d_name.name, ret > 0 ? name : "");
82  }
83  
dma_buf_release(struct dentry * dentry)84  static void dma_buf_release(struct dentry *dentry)
85  {
86  	struct dma_buf *dmabuf;
87  
88  	dmabuf = dentry->d_fsdata;
89  	if (unlikely(!dmabuf))
90  		return;
91  
92  	BUG_ON(dmabuf->vmapping_counter);
93  
94  	/*
95  	 * If you hit this BUG() it could mean:
96  	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
97  	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
98  	 */
99  	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
100  
101  	dma_buf_stats_teardown(dmabuf);
102  	dmabuf->ops->release(dmabuf);
103  
104  	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
105  		dma_resv_fini(dmabuf->resv);
106  
107  	WARN_ON(!list_empty(&dmabuf->attachments));
108  	module_put(dmabuf->owner);
109  	kfree(dmabuf->name);
110  	kfree(dmabuf);
111  }
112  
dma_buf_file_release(struct inode * inode,struct file * file)113  static int dma_buf_file_release(struct inode *inode, struct file *file)
114  {
115  	if (!is_dma_buf_file(file))
116  		return -EINVAL;
117  
118  	__dma_buf_debugfs_list_del(file->private_data);
119  
120  	return 0;
121  }
122  
123  static const struct dentry_operations dma_buf_dentry_ops = {
124  	.d_dname = dmabuffs_dname,
125  	.d_release = dma_buf_release,
126  };
127  
128  static struct vfsmount *dma_buf_mnt;
129  
dma_buf_fs_init_context(struct fs_context * fc)130  static int dma_buf_fs_init_context(struct fs_context *fc)
131  {
132  	struct pseudo_fs_context *ctx;
133  
134  	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
135  	if (!ctx)
136  		return -ENOMEM;
137  	ctx->dops = &dma_buf_dentry_ops;
138  	return 0;
139  }
140  
141  static struct file_system_type dma_buf_fs_type = {
142  	.name = "dmabuf",
143  	.init_fs_context = dma_buf_fs_init_context,
144  	.kill_sb = kill_anon_super,
145  };
146  
dma_buf_mmap_internal(struct file * file,struct vm_area_struct * vma)147  static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
148  {
149  	struct dma_buf *dmabuf;
150  
151  	if (!is_dma_buf_file(file))
152  		return -EINVAL;
153  
154  	dmabuf = file->private_data;
155  
156  	/* check if buffer supports mmap */
157  	if (!dmabuf->ops->mmap)
158  		return -EINVAL;
159  
160  	/* check for overflowing the buffer's size */
161  	if (vma->vm_pgoff + vma_pages(vma) >
162  	    dmabuf->size >> PAGE_SHIFT)
163  		return -EINVAL;
164  
165  	return dmabuf->ops->mmap(dmabuf, vma);
166  }
167  
dma_buf_llseek(struct file * file,loff_t offset,int whence)168  static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
169  {
170  	struct dma_buf *dmabuf;
171  	loff_t base;
172  
173  	if (!is_dma_buf_file(file))
174  		return -EBADF;
175  
176  	dmabuf = file->private_data;
177  
178  	/* only support discovering the end of the buffer,
179  	   but also allow SEEK_SET to maintain the idiomatic
180  	   SEEK_END(0), SEEK_CUR(0) pattern */
181  	if (whence == SEEK_END)
182  		base = dmabuf->size;
183  	else if (whence == SEEK_SET)
184  		base = 0;
185  	else
186  		return -EINVAL;
187  
188  	if (offset != 0)
189  		return -EINVAL;
190  
191  	return base + offset;
192  }
193  
194  /**
195   * DOC: implicit fence polling
196   *
197   * To support cross-device and cross-driver synchronization of buffer access
198   * implicit fences (represented internally in the kernel with &struct dma_fence)
199   * can be attached to a &dma_buf. The glue for that and a few related things are
200   * provided in the &dma_resv structure.
201   *
202   * Userspace can query the state of these implicitly tracked fences using poll()
203   * and related system calls:
204   *
205   * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
206   *   most recent write or exclusive fence.
207   *
208   * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
209   *   all attached fences, shared and exclusive ones.
210   *
211   * Note that this only signals the completion of the respective fences, i.e. the
212   * DMA transfers are complete. Cache flushing and any other necessary
213   * preparations before CPU access can begin still need to happen.
214   *
215   * As an alternative to poll(), the set of fences on DMA buffer can be
216   * exported as a &sync_file using &dma_buf_sync_file_export.
217   */
218  
dma_buf_poll_cb(struct dma_fence * fence,struct dma_fence_cb * cb)219  static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
220  {
221  	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
222  	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
223  	unsigned long flags;
224  
225  	spin_lock_irqsave(&dcb->poll->lock, flags);
226  	wake_up_locked_poll(dcb->poll, dcb->active);
227  	dcb->active = 0;
228  	spin_unlock_irqrestore(&dcb->poll->lock, flags);
229  	dma_fence_put(fence);
230  	/* Paired with get_file in dma_buf_poll */
231  	fput(dmabuf->file);
232  }
233  
dma_buf_poll_add_cb(struct dma_resv * resv,bool write,struct dma_buf_poll_cb_t * dcb)234  static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
235  				struct dma_buf_poll_cb_t *dcb)
236  {
237  	struct dma_resv_iter cursor;
238  	struct dma_fence *fence;
239  	int r;
240  
241  	dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
242  				fence) {
243  		dma_fence_get(fence);
244  		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
245  		if (!r)
246  			return true;
247  		dma_fence_put(fence);
248  	}
249  
250  	return false;
251  }
252  
dma_buf_poll(struct file * file,poll_table * poll)253  static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
254  {
255  	struct dma_buf *dmabuf;
256  	struct dma_resv *resv;
257  	__poll_t events;
258  
259  	dmabuf = file->private_data;
260  	if (!dmabuf || !dmabuf->resv)
261  		return EPOLLERR;
262  
263  	resv = dmabuf->resv;
264  
265  	poll_wait(file, &dmabuf->poll, poll);
266  
267  	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
268  	if (!events)
269  		return 0;
270  
271  	dma_resv_lock(resv, NULL);
272  
273  	if (events & EPOLLOUT) {
274  		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
275  
276  		/* Check that callback isn't busy */
277  		spin_lock_irq(&dmabuf->poll.lock);
278  		if (dcb->active)
279  			events &= ~EPOLLOUT;
280  		else
281  			dcb->active = EPOLLOUT;
282  		spin_unlock_irq(&dmabuf->poll.lock);
283  
284  		if (events & EPOLLOUT) {
285  			/* Paired with fput in dma_buf_poll_cb */
286  			get_file(dmabuf->file);
287  
288  			if (!dma_buf_poll_add_cb(resv, true, dcb))
289  				/* No callback queued, wake up any other waiters */
290  				dma_buf_poll_cb(NULL, &dcb->cb);
291  			else
292  				events &= ~EPOLLOUT;
293  		}
294  	}
295  
296  	if (events & EPOLLIN) {
297  		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
298  
299  		/* Check that callback isn't busy */
300  		spin_lock_irq(&dmabuf->poll.lock);
301  		if (dcb->active)
302  			events &= ~EPOLLIN;
303  		else
304  			dcb->active = EPOLLIN;
305  		spin_unlock_irq(&dmabuf->poll.lock);
306  
307  		if (events & EPOLLIN) {
308  			/* Paired with fput in dma_buf_poll_cb */
309  			get_file(dmabuf->file);
310  
311  			if (!dma_buf_poll_add_cb(resv, false, dcb))
312  				/* No callback queued, wake up any other waiters */
313  				dma_buf_poll_cb(NULL, &dcb->cb);
314  			else
315  				events &= ~EPOLLIN;
316  		}
317  	}
318  
319  	dma_resv_unlock(resv);
320  	return events;
321  }
322  
323  /**
324   * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
325   * It could support changing the name of the dma-buf if the same
326   * piece of memory is used for multiple purpose between different devices.
327   *
328   * @dmabuf: [in]     dmabuf buffer that will be renamed.
329   * @buf:    [in]     A piece of userspace memory that contains the name of
330   *                   the dma-buf.
331   *
332   * Returns 0 on success. If the dma-buf buffer is already attached to
333   * devices, return -EBUSY.
334   *
335   */
dma_buf_set_name(struct dma_buf * dmabuf,const char __user * buf)336  static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
337  {
338  	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
339  
340  	if (IS_ERR(name))
341  		return PTR_ERR(name);
342  
343  	spin_lock(&dmabuf->name_lock);
344  	kfree(dmabuf->name);
345  	dmabuf->name = name;
346  	spin_unlock(&dmabuf->name_lock);
347  
348  	return 0;
349  }
350  
351  #if IS_ENABLED(CONFIG_SYNC_FILE)
dma_buf_export_sync_file(struct dma_buf * dmabuf,void __user * user_data)352  static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
353  				     void __user *user_data)
354  {
355  	struct dma_buf_export_sync_file arg;
356  	enum dma_resv_usage usage;
357  	struct dma_fence *fence = NULL;
358  	struct sync_file *sync_file;
359  	int fd, ret;
360  
361  	if (copy_from_user(&arg, user_data, sizeof(arg)))
362  		return -EFAULT;
363  
364  	if (arg.flags & ~DMA_BUF_SYNC_RW)
365  		return -EINVAL;
366  
367  	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
368  		return -EINVAL;
369  
370  	fd = get_unused_fd_flags(O_CLOEXEC);
371  	if (fd < 0)
372  		return fd;
373  
374  	usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
375  	ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
376  	if (ret)
377  		goto err_put_fd;
378  
379  	if (!fence)
380  		fence = dma_fence_get_stub();
381  
382  	sync_file = sync_file_create(fence);
383  
384  	dma_fence_put(fence);
385  
386  	if (!sync_file) {
387  		ret = -ENOMEM;
388  		goto err_put_fd;
389  	}
390  
391  	arg.fd = fd;
392  	if (copy_to_user(user_data, &arg, sizeof(arg))) {
393  		ret = -EFAULT;
394  		goto err_put_file;
395  	}
396  
397  	fd_install(fd, sync_file->file);
398  
399  	return 0;
400  
401  err_put_file:
402  	fput(sync_file->file);
403  err_put_fd:
404  	put_unused_fd(fd);
405  	return ret;
406  }
407  
dma_buf_import_sync_file(struct dma_buf * dmabuf,const void __user * user_data)408  static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
409  				     const void __user *user_data)
410  {
411  	struct dma_buf_import_sync_file arg;
412  	struct dma_fence *fence, *f;
413  	enum dma_resv_usage usage;
414  	struct dma_fence_unwrap iter;
415  	unsigned int num_fences;
416  	int ret = 0;
417  
418  	if (copy_from_user(&arg, user_data, sizeof(arg)))
419  		return -EFAULT;
420  
421  	if (arg.flags & ~DMA_BUF_SYNC_RW)
422  		return -EINVAL;
423  
424  	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
425  		return -EINVAL;
426  
427  	fence = sync_file_get_fence(arg.fd);
428  	if (!fence)
429  		return -EINVAL;
430  
431  	usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
432  						   DMA_RESV_USAGE_READ;
433  
434  	num_fences = 0;
435  	dma_fence_unwrap_for_each(f, &iter, fence)
436  		++num_fences;
437  
438  	if (num_fences > 0) {
439  		dma_resv_lock(dmabuf->resv, NULL);
440  
441  		ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
442  		if (!ret) {
443  			dma_fence_unwrap_for_each(f, &iter, fence)
444  				dma_resv_add_fence(dmabuf->resv, f, usage);
445  		}
446  
447  		dma_resv_unlock(dmabuf->resv);
448  	}
449  
450  	dma_fence_put(fence);
451  
452  	return ret;
453  }
454  #endif
455  
dma_buf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)456  static long dma_buf_ioctl(struct file *file,
457  			  unsigned int cmd, unsigned long arg)
458  {
459  	struct dma_buf *dmabuf;
460  	struct dma_buf_sync sync;
461  	enum dma_data_direction direction;
462  	int ret;
463  
464  	dmabuf = file->private_data;
465  
466  	switch (cmd) {
467  	case DMA_BUF_IOCTL_SYNC:
468  		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
469  			return -EFAULT;
470  
471  		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
472  			return -EINVAL;
473  
474  		switch (sync.flags & DMA_BUF_SYNC_RW) {
475  		case DMA_BUF_SYNC_READ:
476  			direction = DMA_FROM_DEVICE;
477  			break;
478  		case DMA_BUF_SYNC_WRITE:
479  			direction = DMA_TO_DEVICE;
480  			break;
481  		case DMA_BUF_SYNC_RW:
482  			direction = DMA_BIDIRECTIONAL;
483  			break;
484  		default:
485  			return -EINVAL;
486  		}
487  
488  		if (sync.flags & DMA_BUF_SYNC_END)
489  			ret = dma_buf_end_cpu_access(dmabuf, direction);
490  		else
491  			ret = dma_buf_begin_cpu_access(dmabuf, direction);
492  
493  		return ret;
494  
495  	case DMA_BUF_SET_NAME_A:
496  	case DMA_BUF_SET_NAME_B:
497  		return dma_buf_set_name(dmabuf, (const char __user *)arg);
498  
499  #if IS_ENABLED(CONFIG_SYNC_FILE)
500  	case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
501  		return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
502  	case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
503  		return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
504  #endif
505  
506  	default:
507  		return -ENOTTY;
508  	}
509  }
510  
dma_buf_show_fdinfo(struct seq_file * m,struct file * file)511  static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
512  {
513  	struct dma_buf *dmabuf = file->private_data;
514  
515  	seq_printf(m, "size:\t%zu\n", dmabuf->size);
516  	/* Don't count the temporary reference taken inside procfs seq_show */
517  	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
518  	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
519  	spin_lock(&dmabuf->name_lock);
520  	if (dmabuf->name)
521  		seq_printf(m, "name:\t%s\n", dmabuf->name);
522  	spin_unlock(&dmabuf->name_lock);
523  }
524  
525  static const struct file_operations dma_buf_fops = {
526  	.release	= dma_buf_file_release,
527  	.mmap		= dma_buf_mmap_internal,
528  	.llseek		= dma_buf_llseek,
529  	.poll		= dma_buf_poll,
530  	.unlocked_ioctl	= dma_buf_ioctl,
531  	.compat_ioctl	= compat_ptr_ioctl,
532  	.show_fdinfo	= dma_buf_show_fdinfo,
533  };
534  
535  /*
536   * is_dma_buf_file - Check if struct file* is associated with dma_buf
537   */
is_dma_buf_file(struct file * file)538  static inline int is_dma_buf_file(struct file *file)
539  {
540  	return file->f_op == &dma_buf_fops;
541  }
542  
dma_buf_getfile(size_t size,int flags)543  static struct file *dma_buf_getfile(size_t size, int flags)
544  {
545  	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
546  	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
547  	struct file *file;
548  
549  	if (IS_ERR(inode))
550  		return ERR_CAST(inode);
551  
552  	inode->i_size = size;
553  	inode_set_bytes(inode, size);
554  
555  	/*
556  	 * The ->i_ino acquired from get_next_ino() is not unique thus
557  	 * not suitable for using it as dentry name by dmabuf stats.
558  	 * Override ->i_ino with the unique and dmabuffs specific
559  	 * value.
560  	 */
561  	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
562  	flags &= O_ACCMODE | O_NONBLOCK;
563  	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
564  				 flags, &dma_buf_fops);
565  	if (IS_ERR(file))
566  		goto err_alloc_file;
567  
568  	return file;
569  
570  err_alloc_file:
571  	iput(inode);
572  	return file;
573  }
574  
575  /**
576   * DOC: dma buf device access
577   *
578   * For device DMA access to a shared DMA buffer the usual sequence of operations
579   * is fairly simple:
580   *
581   * 1. The exporter defines his exporter instance using
582   *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
583   *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
584   *    as a file descriptor by calling dma_buf_fd().
585   *
586   * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
587   *    to share with: First the file descriptor is converted to a &dma_buf using
588   *    dma_buf_get(). Then the buffer is attached to the device using
589   *    dma_buf_attach().
590   *
591   *    Up to this stage the exporter is still free to migrate or reallocate the
592   *    backing storage.
593   *
594   * 3. Once the buffer is attached to all devices userspace can initiate DMA
595   *    access to the shared buffer. In the kernel this is done by calling
596   *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
597   *
598   * 4. Once a driver is done with a shared buffer it needs to call
599   *    dma_buf_detach() (after cleaning up any mappings) and then release the
600   *    reference acquired with dma_buf_get() by calling dma_buf_put().
601   *
602   * For the detailed semantics exporters are expected to implement see
603   * &dma_buf_ops.
604   */
605  
606  /**
607   * dma_buf_export - Creates a new dma_buf, and associates an anon file
608   * with this buffer, so it can be exported.
609   * Also connect the allocator specific data and ops to the buffer.
610   * Additionally, provide a name string for exporter; useful in debugging.
611   *
612   * @exp_info:	[in]	holds all the export related information provided
613   *			by the exporter. see &struct dma_buf_export_info
614   *			for further details.
615   *
616   * Returns, on success, a newly created struct dma_buf object, which wraps the
617   * supplied private data and operations for struct dma_buf_ops. On either
618   * missing ops, or error in allocating struct dma_buf, will return negative
619   * error.
620   *
621   * For most cases the easiest way to create @exp_info is through the
622   * %DEFINE_DMA_BUF_EXPORT_INFO macro.
623   */
dma_buf_export(const struct dma_buf_export_info * exp_info)624  struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
625  {
626  	struct dma_buf *dmabuf;
627  	struct dma_resv *resv = exp_info->resv;
628  	struct file *file;
629  	size_t alloc_size = sizeof(struct dma_buf);
630  	int ret;
631  
632  	if (WARN_ON(!exp_info->priv || !exp_info->ops
633  		    || !exp_info->ops->map_dma_buf
634  		    || !exp_info->ops->unmap_dma_buf
635  		    || !exp_info->ops->release))
636  		return ERR_PTR(-EINVAL);
637  
638  	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
639  		    (exp_info->ops->pin || exp_info->ops->unpin)))
640  		return ERR_PTR(-EINVAL);
641  
642  	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
643  		return ERR_PTR(-EINVAL);
644  
645  	if (!try_module_get(exp_info->owner))
646  		return ERR_PTR(-ENOENT);
647  
648  	file = dma_buf_getfile(exp_info->size, exp_info->flags);
649  	if (IS_ERR(file)) {
650  		ret = PTR_ERR(file);
651  		goto err_module;
652  	}
653  
654  	if (!exp_info->resv)
655  		alloc_size += sizeof(struct dma_resv);
656  	else
657  		/* prevent &dma_buf[1] == dma_buf->resv */
658  		alloc_size += 1;
659  	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
660  	if (!dmabuf) {
661  		ret = -ENOMEM;
662  		goto err_file;
663  	}
664  
665  	dmabuf->priv = exp_info->priv;
666  	dmabuf->ops = exp_info->ops;
667  	dmabuf->size = exp_info->size;
668  	dmabuf->exp_name = exp_info->exp_name;
669  	dmabuf->owner = exp_info->owner;
670  	spin_lock_init(&dmabuf->name_lock);
671  	init_waitqueue_head(&dmabuf->poll);
672  	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
673  	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
674  	INIT_LIST_HEAD(&dmabuf->attachments);
675  
676  	if (!resv) {
677  		dmabuf->resv = (struct dma_resv *)&dmabuf[1];
678  		dma_resv_init(dmabuf->resv);
679  	} else {
680  		dmabuf->resv = resv;
681  	}
682  
683  	ret = dma_buf_stats_setup(dmabuf, file);
684  	if (ret)
685  		goto err_dmabuf;
686  
687  	file->private_data = dmabuf;
688  	file->f_path.dentry->d_fsdata = dmabuf;
689  	dmabuf->file = file;
690  
691  	__dma_buf_debugfs_list_add(dmabuf);
692  
693  	return dmabuf;
694  
695  err_dmabuf:
696  	if (!resv)
697  		dma_resv_fini(dmabuf->resv);
698  	kfree(dmabuf);
699  err_file:
700  	fput(file);
701  err_module:
702  	module_put(exp_info->owner);
703  	return ERR_PTR(ret);
704  }
705  EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
706  
707  /**
708   * dma_buf_fd - returns a file descriptor for the given struct dma_buf
709   * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
710   * @flags:      [in]    flags to give to fd
711   *
712   * On success, returns an associated 'fd'. Else, returns error.
713   */
dma_buf_fd(struct dma_buf * dmabuf,int flags)714  int dma_buf_fd(struct dma_buf *dmabuf, int flags)
715  {
716  	int fd;
717  
718  	if (!dmabuf || !dmabuf->file)
719  		return -EINVAL;
720  
721  	fd = get_unused_fd_flags(flags);
722  	if (fd < 0)
723  		return fd;
724  
725  	fd_install(fd, dmabuf->file);
726  
727  	return fd;
728  }
729  EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
730  
731  /**
732   * dma_buf_get - returns the struct dma_buf related to an fd
733   * @fd:	[in]	fd associated with the struct dma_buf to be returned
734   *
735   * On success, returns the struct dma_buf associated with an fd; uses
736   * file's refcounting done by fget to increase refcount. returns ERR_PTR
737   * otherwise.
738   */
dma_buf_get(int fd)739  struct dma_buf *dma_buf_get(int fd)
740  {
741  	struct file *file;
742  
743  	file = fget(fd);
744  
745  	if (!file)
746  		return ERR_PTR(-EBADF);
747  
748  	if (!is_dma_buf_file(file)) {
749  		fput(file);
750  		return ERR_PTR(-EINVAL);
751  	}
752  
753  	return file->private_data;
754  }
755  EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
756  
757  /**
758   * dma_buf_put - decreases refcount of the buffer
759   * @dmabuf:	[in]	buffer to reduce refcount of
760   *
761   * Uses file's refcounting done implicitly by fput().
762   *
763   * If, as a result of this call, the refcount becomes 0, the 'release' file
764   * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
765   * in turn, and frees the memory allocated for dmabuf when exported.
766   */
dma_buf_put(struct dma_buf * dmabuf)767  void dma_buf_put(struct dma_buf *dmabuf)
768  {
769  	if (WARN_ON(!dmabuf || !dmabuf->file))
770  		return;
771  
772  	fput(dmabuf->file);
773  }
774  EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
775  
mangle_sg_table(struct sg_table * sg_table)776  static void mangle_sg_table(struct sg_table *sg_table)
777  {
778  #ifdef CONFIG_DMABUF_DEBUG
779  	int i;
780  	struct scatterlist *sg;
781  
782  	/* To catch abuse of the underlying struct page by importers mix
783  	 * up the bits, but take care to preserve the low SG_ bits to
784  	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
785  	 * before passing the sgt back to the exporter. */
786  	for_each_sgtable_sg(sg_table, sg, i)
787  		sg->page_link ^= ~0xffUL;
788  #endif
789  
790  }
__map_dma_buf(struct dma_buf_attachment * attach,enum dma_data_direction direction)791  static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
792  				       enum dma_data_direction direction)
793  {
794  	struct sg_table *sg_table;
795  	signed long ret;
796  
797  	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
798  	if (IS_ERR_OR_NULL(sg_table))
799  		return sg_table;
800  
801  	if (!dma_buf_attachment_is_dynamic(attach)) {
802  		ret = dma_resv_wait_timeout(attach->dmabuf->resv,
803  					    DMA_RESV_USAGE_KERNEL, true,
804  					    MAX_SCHEDULE_TIMEOUT);
805  		if (ret < 0) {
806  			attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
807  							   direction);
808  			return ERR_PTR(ret);
809  		}
810  	}
811  
812  	mangle_sg_table(sg_table);
813  	return sg_table;
814  }
815  
816  /**
817   * DOC: locking convention
818   *
819   * In order to avoid deadlock situations between dma-buf exports and importers,
820   * all dma-buf API users must follow the common dma-buf locking convention.
821   *
822   * Convention for importers
823   *
824   * 1. Importers must hold the dma-buf reservation lock when calling these
825   *    functions:
826   *
827   *     - dma_buf_pin()
828   *     - dma_buf_unpin()
829   *     - dma_buf_map_attachment()
830   *     - dma_buf_unmap_attachment()
831   *     - dma_buf_vmap()
832   *     - dma_buf_vunmap()
833   *
834   * 2. Importers must not hold the dma-buf reservation lock when calling these
835   *    functions:
836   *
837   *     - dma_buf_attach()
838   *     - dma_buf_dynamic_attach()
839   *     - dma_buf_detach()
840   *     - dma_buf_export()
841   *     - dma_buf_fd()
842   *     - dma_buf_get()
843   *     - dma_buf_put()
844   *     - dma_buf_mmap()
845   *     - dma_buf_begin_cpu_access()
846   *     - dma_buf_end_cpu_access()
847   *     - dma_buf_map_attachment_unlocked()
848   *     - dma_buf_unmap_attachment_unlocked()
849   *     - dma_buf_vmap_unlocked()
850   *     - dma_buf_vunmap_unlocked()
851   *
852   * Convention for exporters
853   *
854   * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
855   *    reservation and exporter can take the lock:
856   *
857   *     - &dma_buf_ops.attach()
858   *     - &dma_buf_ops.detach()
859   *     - &dma_buf_ops.release()
860   *     - &dma_buf_ops.begin_cpu_access()
861   *     - &dma_buf_ops.end_cpu_access()
862   *     - &dma_buf_ops.mmap()
863   *
864   * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
865   *    reservation and exporter can't take the lock:
866   *
867   *     - &dma_buf_ops.pin()
868   *     - &dma_buf_ops.unpin()
869   *     - &dma_buf_ops.map_dma_buf()
870   *     - &dma_buf_ops.unmap_dma_buf()
871   *     - &dma_buf_ops.vmap()
872   *     - &dma_buf_ops.vunmap()
873   *
874   * 3. Exporters must hold the dma-buf reservation lock when calling these
875   *    functions:
876   *
877   *     - dma_buf_move_notify()
878   */
879  
880  /**
881   * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
882   * @dmabuf:		[in]	buffer to attach device to.
883   * @dev:		[in]	device to be attached.
884   * @importer_ops:	[in]	importer operations for the attachment
885   * @importer_priv:	[in]	importer private pointer for the attachment
886   *
887   * Returns struct dma_buf_attachment pointer for this attachment. Attachments
888   * must be cleaned up by calling dma_buf_detach().
889   *
890   * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
891   * functionality.
892   *
893   * Returns:
894   *
895   * A pointer to newly created &dma_buf_attachment on success, or a negative
896   * error code wrapped into a pointer on failure.
897   *
898   * Note that this can fail if the backing storage of @dmabuf is in a place not
899   * accessible to @dev, and cannot be moved to a more suitable place. This is
900   * indicated with the error code -EBUSY.
901   */
902  struct dma_buf_attachment *
dma_buf_dynamic_attach(struct dma_buf * dmabuf,struct device * dev,const struct dma_buf_attach_ops * importer_ops,void * importer_priv)903  dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
904  		       const struct dma_buf_attach_ops *importer_ops,
905  		       void *importer_priv)
906  {
907  	struct dma_buf_attachment *attach;
908  	int ret;
909  
910  	if (WARN_ON(!dmabuf || !dev))
911  		return ERR_PTR(-EINVAL);
912  
913  	if (WARN_ON(importer_ops && !importer_ops->move_notify))
914  		return ERR_PTR(-EINVAL);
915  
916  	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
917  	if (!attach)
918  		return ERR_PTR(-ENOMEM);
919  
920  	attach->dev = dev;
921  	attach->dmabuf = dmabuf;
922  	if (importer_ops)
923  		attach->peer2peer = importer_ops->allow_peer2peer;
924  	attach->importer_ops = importer_ops;
925  	attach->importer_priv = importer_priv;
926  
927  	if (dmabuf->ops->attach) {
928  		ret = dmabuf->ops->attach(dmabuf, attach);
929  		if (ret)
930  			goto err_attach;
931  	}
932  	dma_resv_lock(dmabuf->resv, NULL);
933  	list_add(&attach->node, &dmabuf->attachments);
934  	dma_resv_unlock(dmabuf->resv);
935  
936  	/* When either the importer or the exporter can't handle dynamic
937  	 * mappings we cache the mapping here to avoid issues with the
938  	 * reservation object lock.
939  	 */
940  	if (dma_buf_attachment_is_dynamic(attach) !=
941  	    dma_buf_is_dynamic(dmabuf)) {
942  		struct sg_table *sgt;
943  
944  		dma_resv_lock(attach->dmabuf->resv, NULL);
945  		if (dma_buf_is_dynamic(attach->dmabuf)) {
946  			ret = dmabuf->ops->pin(attach);
947  			if (ret)
948  				goto err_unlock;
949  		}
950  
951  		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
952  		if (!sgt)
953  			sgt = ERR_PTR(-ENOMEM);
954  		if (IS_ERR(sgt)) {
955  			ret = PTR_ERR(sgt);
956  			goto err_unpin;
957  		}
958  		dma_resv_unlock(attach->dmabuf->resv);
959  		attach->sgt = sgt;
960  		attach->dir = DMA_BIDIRECTIONAL;
961  	}
962  
963  	return attach;
964  
965  err_attach:
966  	kfree(attach);
967  	return ERR_PTR(ret);
968  
969  err_unpin:
970  	if (dma_buf_is_dynamic(attach->dmabuf))
971  		dmabuf->ops->unpin(attach);
972  
973  err_unlock:
974  	dma_resv_unlock(attach->dmabuf->resv);
975  
976  	dma_buf_detach(dmabuf, attach);
977  	return ERR_PTR(ret);
978  }
979  EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
980  
981  /**
982   * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
983   * @dmabuf:	[in]	buffer to attach device to.
984   * @dev:	[in]	device to be attached.
985   *
986   * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
987   * mapping.
988   */
dma_buf_attach(struct dma_buf * dmabuf,struct device * dev)989  struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
990  					  struct device *dev)
991  {
992  	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
993  }
994  EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
995  
__unmap_dma_buf(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)996  static void __unmap_dma_buf(struct dma_buf_attachment *attach,
997  			    struct sg_table *sg_table,
998  			    enum dma_data_direction direction)
999  {
1000  	/* uses XOR, hence this unmangles */
1001  	mangle_sg_table(sg_table);
1002  
1003  	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
1004  }
1005  
1006  /**
1007   * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
1008   * @dmabuf:	[in]	buffer to detach from.
1009   * @attach:	[in]	attachment to be detached; is free'd after this call.
1010   *
1011   * Clean up a device attachment obtained by calling dma_buf_attach().
1012   *
1013   * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1014   */
dma_buf_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attach)1015  void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1016  {
1017  	if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1018  		return;
1019  
1020  	dma_resv_lock(dmabuf->resv, NULL);
1021  
1022  	if (attach->sgt) {
1023  
1024  		__unmap_dma_buf(attach, attach->sgt, attach->dir);
1025  
1026  		if (dma_buf_is_dynamic(attach->dmabuf))
1027  			dmabuf->ops->unpin(attach);
1028  	}
1029  	list_del(&attach->node);
1030  
1031  	dma_resv_unlock(dmabuf->resv);
1032  
1033  	if (dmabuf->ops->detach)
1034  		dmabuf->ops->detach(dmabuf, attach);
1035  
1036  	kfree(attach);
1037  }
1038  EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
1039  
1040  /**
1041   * dma_buf_pin - Lock down the DMA-buf
1042   * @attach:	[in]	attachment which should be pinned
1043   *
1044   * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1045   * call this, and only for limited use cases like scanout and not for temporary
1046   * pin operations. It is not permitted to allow userspace to pin arbitrary
1047   * amounts of buffers through this interface.
1048   *
1049   * Buffers must be unpinned by calling dma_buf_unpin().
1050   *
1051   * Returns:
1052   * 0 on success, negative error code on failure.
1053   */
dma_buf_pin(struct dma_buf_attachment * attach)1054  int dma_buf_pin(struct dma_buf_attachment *attach)
1055  {
1056  	struct dma_buf *dmabuf = attach->dmabuf;
1057  	int ret = 0;
1058  
1059  	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1060  
1061  	dma_resv_assert_held(dmabuf->resv);
1062  
1063  	if (dmabuf->ops->pin)
1064  		ret = dmabuf->ops->pin(attach);
1065  
1066  	return ret;
1067  }
1068  EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
1069  
1070  /**
1071   * dma_buf_unpin - Unpin a DMA-buf
1072   * @attach:	[in]	attachment which should be unpinned
1073   *
1074   * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1075   * any mapping of @attach again and inform the importer through
1076   * &dma_buf_attach_ops.move_notify.
1077   */
dma_buf_unpin(struct dma_buf_attachment * attach)1078  void dma_buf_unpin(struct dma_buf_attachment *attach)
1079  {
1080  	struct dma_buf *dmabuf = attach->dmabuf;
1081  
1082  	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1083  
1084  	dma_resv_assert_held(dmabuf->resv);
1085  
1086  	if (dmabuf->ops->unpin)
1087  		dmabuf->ops->unpin(attach);
1088  }
1089  EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1090  
1091  /**
1092   * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1093   * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1094   * dma_buf_ops.
1095   * @attach:	[in]	attachment whose scatterlist is to be returned
1096   * @direction:	[in]	direction of DMA transfer
1097   *
1098   * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1099   * on error. May return -EINTR if it is interrupted by a signal.
1100   *
1101   * On success, the DMA addresses and lengths in the returned scatterlist are
1102   * PAGE_SIZE aligned.
1103   *
1104   * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1105   * the underlying backing storage is pinned for as long as a mapping exists,
1106   * therefore users/importers should not hold onto a mapping for undue amounts of
1107   * time.
1108   *
1109   * Important: Dynamic importers must wait for the exclusive fence of the struct
1110   * dma_resv attached to the DMA-BUF first.
1111   */
dma_buf_map_attachment(struct dma_buf_attachment * attach,enum dma_data_direction direction)1112  struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1113  					enum dma_data_direction direction)
1114  {
1115  	struct sg_table *sg_table;
1116  	int r;
1117  
1118  	might_sleep();
1119  
1120  	if (WARN_ON(!attach || !attach->dmabuf))
1121  		return ERR_PTR(-EINVAL);
1122  
1123  	dma_resv_assert_held(attach->dmabuf->resv);
1124  
1125  	if (attach->sgt) {
1126  		/*
1127  		 * Two mappings with different directions for the same
1128  		 * attachment are not allowed.
1129  		 */
1130  		if (attach->dir != direction &&
1131  		    attach->dir != DMA_BIDIRECTIONAL)
1132  			return ERR_PTR(-EBUSY);
1133  
1134  		return attach->sgt;
1135  	}
1136  
1137  	if (dma_buf_is_dynamic(attach->dmabuf)) {
1138  		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1139  			r = attach->dmabuf->ops->pin(attach);
1140  			if (r)
1141  				return ERR_PTR(r);
1142  		}
1143  	}
1144  
1145  	sg_table = __map_dma_buf(attach, direction);
1146  	if (!sg_table)
1147  		sg_table = ERR_PTR(-ENOMEM);
1148  
1149  	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1150  	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1151  		attach->dmabuf->ops->unpin(attach);
1152  
1153  	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1154  		attach->sgt = sg_table;
1155  		attach->dir = direction;
1156  	}
1157  
1158  #ifdef CONFIG_DMA_API_DEBUG
1159  	if (!IS_ERR(sg_table)) {
1160  		struct scatterlist *sg;
1161  		u64 addr;
1162  		int len;
1163  		int i;
1164  
1165  		for_each_sgtable_dma_sg(sg_table, sg, i) {
1166  			addr = sg_dma_address(sg);
1167  			len = sg_dma_len(sg);
1168  			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1169  				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1170  					 __func__, addr, len);
1171  			}
1172  		}
1173  	}
1174  #endif /* CONFIG_DMA_API_DEBUG */
1175  	return sg_table;
1176  }
1177  EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1178  
1179  /**
1180   * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1181   * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1182   * dma_buf_ops.
1183   * @attach:	[in]	attachment whose scatterlist is to be returned
1184   * @direction:	[in]	direction of DMA transfer
1185   *
1186   * Unlocked variant of dma_buf_map_attachment().
1187   */
1188  struct sg_table *
dma_buf_map_attachment_unlocked(struct dma_buf_attachment * attach,enum dma_data_direction direction)1189  dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1190  				enum dma_data_direction direction)
1191  {
1192  	struct sg_table *sg_table;
1193  
1194  	might_sleep();
1195  
1196  	if (WARN_ON(!attach || !attach->dmabuf))
1197  		return ERR_PTR(-EINVAL);
1198  
1199  	dma_resv_lock(attach->dmabuf->resv, NULL);
1200  	sg_table = dma_buf_map_attachment(attach, direction);
1201  	dma_resv_unlock(attach->dmabuf->resv);
1202  
1203  	return sg_table;
1204  }
1205  EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF);
1206  
1207  /**
1208   * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1209   * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1210   * dma_buf_ops.
1211   * @attach:	[in]	attachment to unmap buffer from
1212   * @sg_table:	[in]	scatterlist info of the buffer to unmap
1213   * @direction:  [in]    direction of DMA transfer
1214   *
1215   * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1216   */
dma_buf_unmap_attachment(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)1217  void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1218  				struct sg_table *sg_table,
1219  				enum dma_data_direction direction)
1220  {
1221  	might_sleep();
1222  
1223  	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1224  		return;
1225  
1226  	dma_resv_assert_held(attach->dmabuf->resv);
1227  
1228  	if (attach->sgt == sg_table)
1229  		return;
1230  
1231  	__unmap_dma_buf(attach, sg_table, direction);
1232  
1233  	if (dma_buf_is_dynamic(attach->dmabuf) &&
1234  	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1235  		dma_buf_unpin(attach);
1236  }
1237  EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1238  
1239  /**
1240   * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1241   * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1242   * dma_buf_ops.
1243   * @attach:	[in]	attachment to unmap buffer from
1244   * @sg_table:	[in]	scatterlist info of the buffer to unmap
1245   * @direction:	[in]	direction of DMA transfer
1246   *
1247   * Unlocked variant of dma_buf_unmap_attachment().
1248   */
dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)1249  void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1250  				       struct sg_table *sg_table,
1251  				       enum dma_data_direction direction)
1252  {
1253  	might_sleep();
1254  
1255  	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1256  		return;
1257  
1258  	dma_resv_lock(attach->dmabuf->resv, NULL);
1259  	dma_buf_unmap_attachment(attach, sg_table, direction);
1260  	dma_resv_unlock(attach->dmabuf->resv);
1261  }
1262  EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF);
1263  
1264  /**
1265   * dma_buf_move_notify - notify attachments that DMA-buf is moving
1266   *
1267   * @dmabuf:	[in]	buffer which is moving
1268   *
1269   * Informs all attachments that they need to destroy and recreate all their
1270   * mappings.
1271   */
dma_buf_move_notify(struct dma_buf * dmabuf)1272  void dma_buf_move_notify(struct dma_buf *dmabuf)
1273  {
1274  	struct dma_buf_attachment *attach;
1275  
1276  	dma_resv_assert_held(dmabuf->resv);
1277  
1278  	list_for_each_entry(attach, &dmabuf->attachments, node)
1279  		if (attach->importer_ops)
1280  			attach->importer_ops->move_notify(attach);
1281  }
1282  EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1283  
1284  /**
1285   * DOC: cpu access
1286   *
1287   * There are multiple reasons for supporting CPU access to a dma buffer object:
1288   *
1289   * - Fallback operations in the kernel, for example when a device is connected
1290   *   over USB and the kernel needs to shuffle the data around first before
1291   *   sending it away. Cache coherency is handled by bracketing any transactions
1292   *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1293   *   access.
1294   *
1295   *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1296   *   vmap interface is introduced. Note that on very old 32-bit architectures
1297   *   vmalloc space might be limited and result in vmap calls failing.
1298   *
1299   *   Interfaces::
1300   *
1301   *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1302   *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1303   *
1304   *   The vmap call can fail if there is no vmap support in the exporter, or if
1305   *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1306   *   count for all vmap access and calls down into the exporter's vmap function
1307   *   only when no vmapping exists, and only unmaps it once. Protection against
1308   *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1309   *
1310   * - For full compatibility on the importer side with existing userspace
1311   *   interfaces, which might already support mmap'ing buffers. This is needed in
1312   *   many processing pipelines (e.g. feeding a software rendered image into a
1313   *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1314   *   framework already supported this and for DMA buffer file descriptors to
1315   *   replace ION buffers mmap support was needed.
1316   *
1317   *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1318   *   fd. But like for CPU access there's a need to bracket the actual access,
1319   *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1320   *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1321   *   be restarted.
1322   *
1323   *   Some systems might need some sort of cache coherency management e.g. when
1324   *   CPU and GPU domains are being accessed through dma-buf at the same time.
1325   *   To circumvent this problem there are begin/end coherency markers, that
1326   *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1327   *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1328   *   sequence would be used like following:
1329   *
1330   *     - mmap dma-buf fd
1331   *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1332   *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1333   *       want (with the new data being consumed by say the GPU or the scanout
1334   *       device)
1335   *     - munmap once you don't need the buffer any more
1336   *
1337   *    For correctness and optimal performance, it is always required to use
1338   *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1339   *    mapped address. Userspace cannot rely on coherent access, even when there
1340   *    are systems where it just works without calling these ioctls.
1341   *
1342   * - And as a CPU fallback in userspace processing pipelines.
1343   *
1344   *   Similar to the motivation for kernel cpu access it is again important that
1345   *   the userspace code of a given importing subsystem can use the same
1346   *   interfaces with a imported dma-buf buffer object as with a native buffer
1347   *   object. This is especially important for drm where the userspace part of
1348   *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1349   *   use a different way to mmap a buffer rather invasive.
1350   *
1351   *   The assumption in the current dma-buf interfaces is that redirecting the
1352   *   initial mmap is all that's needed. A survey of some of the existing
1353   *   subsystems shows that no driver seems to do any nefarious thing like
1354   *   syncing up with outstanding asynchronous processing on the device or
1355   *   allocating special resources at fault time. So hopefully this is good
1356   *   enough, since adding interfaces to intercept pagefaults and allow pte
1357   *   shootdowns would increase the complexity quite a bit.
1358   *
1359   *   Interface::
1360   *
1361   *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1362   *		       unsigned long);
1363   *
1364   *   If the importing subsystem simply provides a special-purpose mmap call to
1365   *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1366   *   equally achieve that for a dma-buf object.
1367   */
1368  
__dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1369  static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1370  				      enum dma_data_direction direction)
1371  {
1372  	bool write = (direction == DMA_BIDIRECTIONAL ||
1373  		      direction == DMA_TO_DEVICE);
1374  	struct dma_resv *resv = dmabuf->resv;
1375  	long ret;
1376  
1377  	/* Wait on any implicit rendering fences */
1378  	ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1379  				    true, MAX_SCHEDULE_TIMEOUT);
1380  	if (ret < 0)
1381  		return ret;
1382  
1383  	return 0;
1384  }
1385  
1386  /**
1387   * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1388   * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1389   * preparations. Coherency is only guaranteed in the specified range for the
1390   * specified access direction.
1391   * @dmabuf:	[in]	buffer to prepare cpu access for.
1392   * @direction:	[in]	direction of access.
1393   *
1394   * After the cpu access is complete the caller should call
1395   * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1396   * it guaranteed to be coherent with other DMA access.
1397   *
1398   * This function will also wait for any DMA transactions tracked through
1399   * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1400   * synchronization this function will only ensure cache coherency, callers must
1401   * ensure synchronization with such DMA transactions on their own.
1402   *
1403   * Can return negative error values, returns 0 on success.
1404   */
dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1405  int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1406  			     enum dma_data_direction direction)
1407  {
1408  	int ret = 0;
1409  
1410  	if (WARN_ON(!dmabuf))
1411  		return -EINVAL;
1412  
1413  	might_lock(&dmabuf->resv->lock.base);
1414  
1415  	if (dmabuf->ops->begin_cpu_access)
1416  		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1417  
1418  	/* Ensure that all fences are waited upon - but we first allow
1419  	 * the native handler the chance to do so more efficiently if it
1420  	 * chooses. A double invocation here will be reasonably cheap no-op.
1421  	 */
1422  	if (ret == 0)
1423  		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1424  
1425  	return ret;
1426  }
1427  EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1428  
1429  /**
1430   * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1431   * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1432   * actions. Coherency is only guaranteed in the specified range for the
1433   * specified access direction.
1434   * @dmabuf:	[in]	buffer to complete cpu access for.
1435   * @direction:	[in]	direction of access.
1436   *
1437   * This terminates CPU access started with dma_buf_begin_cpu_access().
1438   *
1439   * Can return negative error values, returns 0 on success.
1440   */
dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1441  int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1442  			   enum dma_data_direction direction)
1443  {
1444  	int ret = 0;
1445  
1446  	WARN_ON(!dmabuf);
1447  
1448  	might_lock(&dmabuf->resv->lock.base);
1449  
1450  	if (dmabuf->ops->end_cpu_access)
1451  		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1452  
1453  	return ret;
1454  }
1455  EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1456  
1457  
1458  /**
1459   * dma_buf_mmap - Setup up a userspace mmap with the given vma
1460   * @dmabuf:	[in]	buffer that should back the vma
1461   * @vma:	[in]	vma for the mmap
1462   * @pgoff:	[in]	offset in pages where this mmap should start within the
1463   *			dma-buf buffer.
1464   *
1465   * This function adjusts the passed in vma so that it points at the file of the
1466   * dma_buf operation. It also adjusts the starting pgoff and does bounds
1467   * checking on the size of the vma. Then it calls the exporters mmap function to
1468   * set up the mapping.
1469   *
1470   * Can return negative error values, returns 0 on success.
1471   */
dma_buf_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma,unsigned long pgoff)1472  int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1473  		 unsigned long pgoff)
1474  {
1475  	if (WARN_ON(!dmabuf || !vma))
1476  		return -EINVAL;
1477  
1478  	/* check if buffer supports mmap */
1479  	if (!dmabuf->ops->mmap)
1480  		return -EINVAL;
1481  
1482  	/* check for offset overflow */
1483  	if (pgoff + vma_pages(vma) < pgoff)
1484  		return -EOVERFLOW;
1485  
1486  	/* check for overflowing the buffer's size */
1487  	if (pgoff + vma_pages(vma) >
1488  	    dmabuf->size >> PAGE_SHIFT)
1489  		return -EINVAL;
1490  
1491  	/* readjust the vma */
1492  	vma_set_file(vma, dmabuf->file);
1493  	vma->vm_pgoff = pgoff;
1494  
1495  	return dmabuf->ops->mmap(dmabuf, vma);
1496  }
1497  EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1498  
1499  /**
1500   * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1501   * address space. Same restrictions as for vmap and friends apply.
1502   * @dmabuf:	[in]	buffer to vmap
1503   * @map:	[out]	returns the vmap pointer
1504   *
1505   * This call may fail due to lack of virtual mapping address space.
1506   * These calls are optional in drivers. The intended use for them
1507   * is for mapping objects linear in kernel space for high use objects.
1508   *
1509   * To ensure coherency users must call dma_buf_begin_cpu_access() and
1510   * dma_buf_end_cpu_access() around any cpu access performed through this
1511   * mapping.
1512   *
1513   * Returns 0 on success, or a negative errno code otherwise.
1514   */
dma_buf_vmap(struct dma_buf * dmabuf,struct iosys_map * map)1515  int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1516  {
1517  	struct iosys_map ptr;
1518  	int ret;
1519  
1520  	iosys_map_clear(map);
1521  
1522  	if (WARN_ON(!dmabuf))
1523  		return -EINVAL;
1524  
1525  	dma_resv_assert_held(dmabuf->resv);
1526  
1527  	if (!dmabuf->ops->vmap)
1528  		return -EINVAL;
1529  
1530  	if (dmabuf->vmapping_counter) {
1531  		dmabuf->vmapping_counter++;
1532  		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1533  		*map = dmabuf->vmap_ptr;
1534  		return 0;
1535  	}
1536  
1537  	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1538  
1539  	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1540  	if (WARN_ON_ONCE(ret))
1541  		return ret;
1542  
1543  	dmabuf->vmap_ptr = ptr;
1544  	dmabuf->vmapping_counter = 1;
1545  
1546  	*map = dmabuf->vmap_ptr;
1547  
1548  	return 0;
1549  }
1550  EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1551  
1552  /**
1553   * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1554   * address space. Same restrictions as for vmap and friends apply.
1555   * @dmabuf:	[in]	buffer to vmap
1556   * @map:	[out]	returns the vmap pointer
1557   *
1558   * Unlocked version of dma_buf_vmap()
1559   *
1560   * Returns 0 on success, or a negative errno code otherwise.
1561   */
dma_buf_vmap_unlocked(struct dma_buf * dmabuf,struct iosys_map * map)1562  int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1563  {
1564  	int ret;
1565  
1566  	iosys_map_clear(map);
1567  
1568  	if (WARN_ON(!dmabuf))
1569  		return -EINVAL;
1570  
1571  	dma_resv_lock(dmabuf->resv, NULL);
1572  	ret = dma_buf_vmap(dmabuf, map);
1573  	dma_resv_unlock(dmabuf->resv);
1574  
1575  	return ret;
1576  }
1577  EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF);
1578  
1579  /**
1580   * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1581   * @dmabuf:	[in]	buffer to vunmap
1582   * @map:	[in]	vmap pointer to vunmap
1583   */
dma_buf_vunmap(struct dma_buf * dmabuf,struct iosys_map * map)1584  void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1585  {
1586  	if (WARN_ON(!dmabuf))
1587  		return;
1588  
1589  	dma_resv_assert_held(dmabuf->resv);
1590  
1591  	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1592  	BUG_ON(dmabuf->vmapping_counter == 0);
1593  	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1594  
1595  	if (--dmabuf->vmapping_counter == 0) {
1596  		if (dmabuf->ops->vunmap)
1597  			dmabuf->ops->vunmap(dmabuf, map);
1598  		iosys_map_clear(&dmabuf->vmap_ptr);
1599  	}
1600  }
1601  EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1602  
1603  /**
1604   * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1605   * @dmabuf:	[in]	buffer to vunmap
1606   * @map:	[in]	vmap pointer to vunmap
1607   */
dma_buf_vunmap_unlocked(struct dma_buf * dmabuf,struct iosys_map * map)1608  void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1609  {
1610  	if (WARN_ON(!dmabuf))
1611  		return;
1612  
1613  	dma_resv_lock(dmabuf->resv, NULL);
1614  	dma_buf_vunmap(dmabuf, map);
1615  	dma_resv_unlock(dmabuf->resv);
1616  }
1617  EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF);
1618  
1619  #ifdef CONFIG_DEBUG_FS
dma_buf_debug_show(struct seq_file * s,void * unused)1620  static int dma_buf_debug_show(struct seq_file *s, void *unused)
1621  {
1622  	struct dma_buf *buf_obj;
1623  	struct dma_buf_attachment *attach_obj;
1624  	int count = 0, attach_count;
1625  	size_t size = 0;
1626  	int ret;
1627  
1628  	ret = mutex_lock_interruptible(&debugfs_list_mutex);
1629  
1630  	if (ret)
1631  		return ret;
1632  
1633  	seq_puts(s, "\nDma-buf Objects:\n");
1634  	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1635  		   "size", "flags", "mode", "count", "ino");
1636  
1637  	list_for_each_entry(buf_obj, &debugfs_list, list_node) {
1638  
1639  		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1640  		if (ret)
1641  			goto error_unlock;
1642  
1643  
1644  		spin_lock(&buf_obj->name_lock);
1645  		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1646  				buf_obj->size,
1647  				buf_obj->file->f_flags, buf_obj->file->f_mode,
1648  				file_count(buf_obj->file),
1649  				buf_obj->exp_name,
1650  				file_inode(buf_obj->file)->i_ino,
1651  				buf_obj->name ?: "<none>");
1652  		spin_unlock(&buf_obj->name_lock);
1653  
1654  		dma_resv_describe(buf_obj->resv, s);
1655  
1656  		seq_puts(s, "\tAttached Devices:\n");
1657  		attach_count = 0;
1658  
1659  		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1660  			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1661  			attach_count++;
1662  		}
1663  		dma_resv_unlock(buf_obj->resv);
1664  
1665  		seq_printf(s, "Total %d devices attached\n\n",
1666  				attach_count);
1667  
1668  		count++;
1669  		size += buf_obj->size;
1670  	}
1671  
1672  	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1673  
1674  	mutex_unlock(&debugfs_list_mutex);
1675  	return 0;
1676  
1677  error_unlock:
1678  	mutex_unlock(&debugfs_list_mutex);
1679  	return ret;
1680  }
1681  
1682  DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1683  
1684  static struct dentry *dma_buf_debugfs_dir;
1685  
dma_buf_init_debugfs(void)1686  static int dma_buf_init_debugfs(void)
1687  {
1688  	struct dentry *d;
1689  	int err = 0;
1690  
1691  	d = debugfs_create_dir("dma_buf", NULL);
1692  	if (IS_ERR(d))
1693  		return PTR_ERR(d);
1694  
1695  	dma_buf_debugfs_dir = d;
1696  
1697  	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1698  				NULL, &dma_buf_debug_fops);
1699  	if (IS_ERR(d)) {
1700  		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1701  		debugfs_remove_recursive(dma_buf_debugfs_dir);
1702  		dma_buf_debugfs_dir = NULL;
1703  		err = PTR_ERR(d);
1704  	}
1705  
1706  	return err;
1707  }
1708  
dma_buf_uninit_debugfs(void)1709  static void dma_buf_uninit_debugfs(void)
1710  {
1711  	debugfs_remove_recursive(dma_buf_debugfs_dir);
1712  }
1713  #else
dma_buf_init_debugfs(void)1714  static inline int dma_buf_init_debugfs(void)
1715  {
1716  	return 0;
1717  }
dma_buf_uninit_debugfs(void)1718  static inline void dma_buf_uninit_debugfs(void)
1719  {
1720  }
1721  #endif
1722  
dma_buf_init(void)1723  static int __init dma_buf_init(void)
1724  {
1725  	int ret;
1726  
1727  	ret = dma_buf_init_sysfs_statistics();
1728  	if (ret)
1729  		return ret;
1730  
1731  	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1732  	if (IS_ERR(dma_buf_mnt))
1733  		return PTR_ERR(dma_buf_mnt);
1734  
1735  	dma_buf_init_debugfs();
1736  	return 0;
1737  }
1738  subsys_initcall(dma_buf_init);
1739  
dma_buf_deinit(void)1740  static void __exit dma_buf_deinit(void)
1741  {
1742  	dma_buf_uninit_debugfs();
1743  	kern_unmount(dma_buf_mnt);
1744  	dma_buf_uninit_sysfs_statistics();
1745  }
1746  __exitcall(dma_buf_deinit);
1747