1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * ipmi_si.c
4   *
5   * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6   * BT).
7   *
8   * Author: MontaVista Software, Inc.
9   *         Corey Minyard <minyard@mvista.com>
10   *         source@mvista.com
11   *
12   * Copyright 2002 MontaVista Software Inc.
13   * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14   */
15  
16  /*
17   * This file holds the "policy" for the interface to the SMI state
18   * machine.  It does the configuration, handles timers and interrupts,
19   * and drives the real SMI state machine.
20   */
21  
22  #define pr_fmt(fmt) "ipmi_si: " fmt
23  
24  #include <linux/module.h>
25  #include <linux/moduleparam.h>
26  #include <linux/sched.h>
27  #include <linux/seq_file.h>
28  #include <linux/timer.h>
29  #include <linux/errno.h>
30  #include <linux/spinlock.h>
31  #include <linux/slab.h>
32  #include <linux/delay.h>
33  #include <linux/list.h>
34  #include <linux/notifier.h>
35  #include <linux/mutex.h>
36  #include <linux/kthread.h>
37  #include <asm/irq.h>
38  #include <linux/interrupt.h>
39  #include <linux/rcupdate.h>
40  #include <linux/ipmi.h>
41  #include <linux/ipmi_smi.h>
42  #include "ipmi_si.h"
43  #include "ipmi_si_sm.h"
44  #include <linux/string.h>
45  #include <linux/ctype.h>
46  
47  /* Measure times between events in the driver. */
48  #undef DEBUG_TIMING
49  
50  /* Call every 10 ms. */
51  #define SI_TIMEOUT_TIME_USEC	10000
52  #define SI_USEC_PER_JIFFY	(1000000/HZ)
53  #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54  #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
55  				      short timeout */
56  
57  enum si_intf_state {
58  	SI_NORMAL,
59  	SI_GETTING_FLAGS,
60  	SI_GETTING_EVENTS,
61  	SI_CLEARING_FLAGS,
62  	SI_GETTING_MESSAGES,
63  	SI_CHECKING_ENABLES,
64  	SI_SETTING_ENABLES
65  	/* FIXME - add watchdog stuff. */
66  };
67  
68  /* Some BT-specific defines we need here. */
69  #define IPMI_BT_INTMASK_REG		2
70  #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
71  #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
72  
73  /* 'invalid' to allow a firmware-specified interface to be disabled */
74  const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
75  
76  static bool initialized;
77  
78  /*
79   * Indexes into stats[] in smi_info below.
80   */
81  enum si_stat_indexes {
82  	/*
83  	 * Number of times the driver requested a timer while an operation
84  	 * was in progress.
85  	 */
86  	SI_STAT_short_timeouts = 0,
87  
88  	/*
89  	 * Number of times the driver requested a timer while nothing was in
90  	 * progress.
91  	 */
92  	SI_STAT_long_timeouts,
93  
94  	/* Number of times the interface was idle while being polled. */
95  	SI_STAT_idles,
96  
97  	/* Number of interrupts the driver handled. */
98  	SI_STAT_interrupts,
99  
100  	/* Number of time the driver got an ATTN from the hardware. */
101  	SI_STAT_attentions,
102  
103  	/* Number of times the driver requested flags from the hardware. */
104  	SI_STAT_flag_fetches,
105  
106  	/* Number of times the hardware didn't follow the state machine. */
107  	SI_STAT_hosed_count,
108  
109  	/* Number of completed messages. */
110  	SI_STAT_complete_transactions,
111  
112  	/* Number of IPMI events received from the hardware. */
113  	SI_STAT_events,
114  
115  	/* Number of watchdog pretimeouts. */
116  	SI_STAT_watchdog_pretimeouts,
117  
118  	/* Number of asynchronous messages received. */
119  	SI_STAT_incoming_messages,
120  
121  
122  	/* This *must* remain last, add new values above this. */
123  	SI_NUM_STATS
124  };
125  
126  struct smi_info {
127  	int                    si_num;
128  	struct ipmi_smi        *intf;
129  	struct si_sm_data      *si_sm;
130  	const struct si_sm_handlers *handlers;
131  	spinlock_t             si_lock;
132  	struct ipmi_smi_msg    *waiting_msg;
133  	struct ipmi_smi_msg    *curr_msg;
134  	enum si_intf_state     si_state;
135  
136  	/*
137  	 * Used to handle the various types of I/O that can occur with
138  	 * IPMI
139  	 */
140  	struct si_sm_io io;
141  
142  	/*
143  	 * Per-OEM handler, called from handle_flags().  Returns 1
144  	 * when handle_flags() needs to be re-run or 0 indicating it
145  	 * set si_state itself.
146  	 */
147  	int (*oem_data_avail_handler)(struct smi_info *smi_info);
148  
149  	/*
150  	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
151  	 * is set to hold the flags until we are done handling everything
152  	 * from the flags.
153  	 */
154  #define RECEIVE_MSG_AVAIL	0x01
155  #define EVENT_MSG_BUFFER_FULL	0x02
156  #define WDT_PRE_TIMEOUT_INT	0x08
157  #define OEM0_DATA_AVAIL     0x20
158  #define OEM1_DATA_AVAIL     0x40
159  #define OEM2_DATA_AVAIL     0x80
160  #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
161  			     OEM1_DATA_AVAIL | \
162  			     OEM2_DATA_AVAIL)
163  	unsigned char       msg_flags;
164  
165  	/* Does the BMC have an event buffer? */
166  	bool		    has_event_buffer;
167  
168  	/*
169  	 * If set to true, this will request events the next time the
170  	 * state machine is idle.
171  	 */
172  	atomic_t            req_events;
173  
174  	/*
175  	 * If true, run the state machine to completion on every send
176  	 * call.  Generally used after a panic to make sure stuff goes
177  	 * out.
178  	 */
179  	bool                run_to_completion;
180  
181  	/* The timer for this si. */
182  	struct timer_list   si_timer;
183  
184  	/* This flag is set, if the timer can be set */
185  	bool		    timer_can_start;
186  
187  	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
188  	bool		    timer_running;
189  
190  	/* The time (in jiffies) the last timeout occurred at. */
191  	unsigned long       last_timeout_jiffies;
192  
193  	/* Are we waiting for the events, pretimeouts, received msgs? */
194  	atomic_t            need_watch;
195  
196  	/*
197  	 * The driver will disable interrupts when it gets into a
198  	 * situation where it cannot handle messages due to lack of
199  	 * memory.  Once that situation clears up, it will re-enable
200  	 * interrupts.
201  	 */
202  	bool interrupt_disabled;
203  
204  	/*
205  	 * Does the BMC support events?
206  	 */
207  	bool supports_event_msg_buff;
208  
209  	/*
210  	 * Can we disable interrupts the global enables receive irq
211  	 * bit?  There are currently two forms of brokenness, some
212  	 * systems cannot disable the bit (which is technically within
213  	 * the spec but a bad idea) and some systems have the bit
214  	 * forced to zero even though interrupts work (which is
215  	 * clearly outside the spec).  The next bool tells which form
216  	 * of brokenness is present.
217  	 */
218  	bool cannot_disable_irq;
219  
220  	/*
221  	 * Some systems are broken and cannot set the irq enable
222  	 * bit, even if they support interrupts.
223  	 */
224  	bool irq_enable_broken;
225  
226  	/* Is the driver in maintenance mode? */
227  	bool in_maintenance_mode;
228  
229  	/*
230  	 * Did we get an attention that we did not handle?
231  	 */
232  	bool got_attn;
233  
234  	/* From the get device id response... */
235  	struct ipmi_device_id device_id;
236  
237  	/* Have we added the device group to the device? */
238  	bool dev_group_added;
239  
240  	/* Counters and things for the proc filesystem. */
241  	atomic_t stats[SI_NUM_STATS];
242  
243  	struct task_struct *thread;
244  
245  	struct list_head link;
246  };
247  
248  #define smi_inc_stat(smi, stat) \
249  	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
250  #define smi_get_stat(smi, stat) \
251  	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
252  
253  #define IPMI_MAX_INTFS 4
254  static int force_kipmid[IPMI_MAX_INTFS];
255  static int num_force_kipmid;
256  
257  static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
258  static int num_max_busy_us;
259  
260  static bool unload_when_empty = true;
261  
262  static int try_smi_init(struct smi_info *smi);
263  static void cleanup_one_si(struct smi_info *smi_info);
264  static void cleanup_ipmi_si(void);
265  
266  #ifdef DEBUG_TIMING
debug_timestamp(struct smi_info * smi_info,char * msg)267  void debug_timestamp(struct smi_info *smi_info, char *msg)
268  {
269  	struct timespec64 t;
270  
271  	ktime_get_ts64(&t);
272  	dev_dbg(smi_info->io.dev, "**%s: %lld.%9.9ld\n",
273  		msg, t.tv_sec, t.tv_nsec);
274  }
275  #else
276  #define debug_timestamp(smi_info, x)
277  #endif
278  
279  static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)280  static int register_xaction_notifier(struct notifier_block *nb)
281  {
282  	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
283  }
284  
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)285  static void deliver_recv_msg(struct smi_info *smi_info,
286  			     struct ipmi_smi_msg *msg)
287  {
288  	/* Deliver the message to the upper layer. */
289  	ipmi_smi_msg_received(smi_info->intf, msg);
290  }
291  
return_hosed_msg(struct smi_info * smi_info,int cCode)292  static void return_hosed_msg(struct smi_info *smi_info, int cCode)
293  {
294  	struct ipmi_smi_msg *msg = smi_info->curr_msg;
295  
296  	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
297  		cCode = IPMI_ERR_UNSPECIFIED;
298  	/* else use it as is */
299  
300  	/* Make it a response */
301  	msg->rsp[0] = msg->data[0] | 4;
302  	msg->rsp[1] = msg->data[1];
303  	msg->rsp[2] = cCode;
304  	msg->rsp_size = 3;
305  
306  	smi_info->curr_msg = NULL;
307  	deliver_recv_msg(smi_info, msg);
308  }
309  
start_next_msg(struct smi_info * smi_info)310  static enum si_sm_result start_next_msg(struct smi_info *smi_info)
311  {
312  	int              rv;
313  
314  	if (!smi_info->waiting_msg) {
315  		smi_info->curr_msg = NULL;
316  		rv = SI_SM_IDLE;
317  	} else {
318  		int err;
319  
320  		smi_info->curr_msg = smi_info->waiting_msg;
321  		smi_info->waiting_msg = NULL;
322  		debug_timestamp(smi_info, "Start2");
323  		err = atomic_notifier_call_chain(&xaction_notifier_list,
324  				0, smi_info);
325  		if (err & NOTIFY_STOP_MASK) {
326  			rv = SI_SM_CALL_WITHOUT_DELAY;
327  			goto out;
328  		}
329  		err = smi_info->handlers->start_transaction(
330  			smi_info->si_sm,
331  			smi_info->curr_msg->data,
332  			smi_info->curr_msg->data_size);
333  		if (err)
334  			return_hosed_msg(smi_info, err);
335  
336  		rv = SI_SM_CALL_WITHOUT_DELAY;
337  	}
338  out:
339  	return rv;
340  }
341  
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)342  static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
343  {
344  	if (!smi_info->timer_can_start)
345  		return;
346  	smi_info->last_timeout_jiffies = jiffies;
347  	mod_timer(&smi_info->si_timer, new_val);
348  	smi_info->timer_running = true;
349  }
350  
351  /*
352   * Start a new message and (re)start the timer and thread.
353   */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)354  static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
355  			  unsigned int size)
356  {
357  	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
358  
359  	if (smi_info->thread)
360  		wake_up_process(smi_info->thread);
361  
362  	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
363  }
364  
start_check_enables(struct smi_info * smi_info)365  static void start_check_enables(struct smi_info *smi_info)
366  {
367  	unsigned char msg[2];
368  
369  	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
370  	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
371  
372  	start_new_msg(smi_info, msg, 2);
373  	smi_info->si_state = SI_CHECKING_ENABLES;
374  }
375  
start_clear_flags(struct smi_info * smi_info)376  static void start_clear_flags(struct smi_info *smi_info)
377  {
378  	unsigned char msg[3];
379  
380  	/* Make sure the watchdog pre-timeout flag is not set at startup. */
381  	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
382  	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
383  	msg[2] = WDT_PRE_TIMEOUT_INT;
384  
385  	start_new_msg(smi_info, msg, 3);
386  	smi_info->si_state = SI_CLEARING_FLAGS;
387  }
388  
start_getting_msg_queue(struct smi_info * smi_info)389  static void start_getting_msg_queue(struct smi_info *smi_info)
390  {
391  	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
392  	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
393  	smi_info->curr_msg->data_size = 2;
394  
395  	start_new_msg(smi_info, smi_info->curr_msg->data,
396  		      smi_info->curr_msg->data_size);
397  	smi_info->si_state = SI_GETTING_MESSAGES;
398  }
399  
start_getting_events(struct smi_info * smi_info)400  static void start_getting_events(struct smi_info *smi_info)
401  {
402  	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
403  	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
404  	smi_info->curr_msg->data_size = 2;
405  
406  	start_new_msg(smi_info, smi_info->curr_msg->data,
407  		      smi_info->curr_msg->data_size);
408  	smi_info->si_state = SI_GETTING_EVENTS;
409  }
410  
411  /*
412   * When we have a situtaion where we run out of memory and cannot
413   * allocate messages, we just leave them in the BMC and run the system
414   * polled until we can allocate some memory.  Once we have some
415   * memory, we will re-enable the interrupt.
416   *
417   * Note that we cannot just use disable_irq(), since the interrupt may
418   * be shared.
419   */
disable_si_irq(struct smi_info * smi_info)420  static inline bool disable_si_irq(struct smi_info *smi_info)
421  {
422  	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
423  		smi_info->interrupt_disabled = true;
424  		start_check_enables(smi_info);
425  		return true;
426  	}
427  	return false;
428  }
429  
enable_si_irq(struct smi_info * smi_info)430  static inline bool enable_si_irq(struct smi_info *smi_info)
431  {
432  	if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
433  		smi_info->interrupt_disabled = false;
434  		start_check_enables(smi_info);
435  		return true;
436  	}
437  	return false;
438  }
439  
440  /*
441   * Allocate a message.  If unable to allocate, start the interrupt
442   * disable process and return NULL.  If able to allocate but
443   * interrupts are disabled, free the message and return NULL after
444   * starting the interrupt enable process.
445   */
alloc_msg_handle_irq(struct smi_info * smi_info)446  static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
447  {
448  	struct ipmi_smi_msg *msg;
449  
450  	msg = ipmi_alloc_smi_msg();
451  	if (!msg) {
452  		if (!disable_si_irq(smi_info))
453  			smi_info->si_state = SI_NORMAL;
454  	} else if (enable_si_irq(smi_info)) {
455  		ipmi_free_smi_msg(msg);
456  		msg = NULL;
457  	}
458  	return msg;
459  }
460  
handle_flags(struct smi_info * smi_info)461  static void handle_flags(struct smi_info *smi_info)
462  {
463  retry:
464  	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
465  		/* Watchdog pre-timeout */
466  		smi_inc_stat(smi_info, watchdog_pretimeouts);
467  
468  		start_clear_flags(smi_info);
469  		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
470  		ipmi_smi_watchdog_pretimeout(smi_info->intf);
471  	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
472  		/* Messages available. */
473  		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
474  		if (!smi_info->curr_msg)
475  			return;
476  
477  		start_getting_msg_queue(smi_info);
478  	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
479  		/* Events available. */
480  		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
481  		if (!smi_info->curr_msg)
482  			return;
483  
484  		start_getting_events(smi_info);
485  	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
486  		   smi_info->oem_data_avail_handler) {
487  		if (smi_info->oem_data_avail_handler(smi_info))
488  			goto retry;
489  	} else
490  		smi_info->si_state = SI_NORMAL;
491  }
492  
493  /*
494   * Global enables we care about.
495   */
496  #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
497  			     IPMI_BMC_EVT_MSG_INTR)
498  
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)499  static u8 current_global_enables(struct smi_info *smi_info, u8 base,
500  				 bool *irq_on)
501  {
502  	u8 enables = 0;
503  
504  	if (smi_info->supports_event_msg_buff)
505  		enables |= IPMI_BMC_EVT_MSG_BUFF;
506  
507  	if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
508  	     smi_info->cannot_disable_irq) &&
509  	    !smi_info->irq_enable_broken)
510  		enables |= IPMI_BMC_RCV_MSG_INTR;
511  
512  	if (smi_info->supports_event_msg_buff &&
513  	    smi_info->io.irq && !smi_info->interrupt_disabled &&
514  	    !smi_info->irq_enable_broken)
515  		enables |= IPMI_BMC_EVT_MSG_INTR;
516  
517  	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
518  
519  	return enables;
520  }
521  
check_bt_irq(struct smi_info * smi_info,bool irq_on)522  static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
523  {
524  	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
525  
526  	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
527  
528  	if ((bool)irqstate == irq_on)
529  		return;
530  
531  	if (irq_on)
532  		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
533  				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
534  	else
535  		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
536  }
537  
handle_transaction_done(struct smi_info * smi_info)538  static void handle_transaction_done(struct smi_info *smi_info)
539  {
540  	struct ipmi_smi_msg *msg;
541  
542  	debug_timestamp(smi_info, "Done");
543  	switch (smi_info->si_state) {
544  	case SI_NORMAL:
545  		if (!smi_info->curr_msg)
546  			break;
547  
548  		smi_info->curr_msg->rsp_size
549  			= smi_info->handlers->get_result(
550  				smi_info->si_sm,
551  				smi_info->curr_msg->rsp,
552  				IPMI_MAX_MSG_LENGTH);
553  
554  		/*
555  		 * Do this here becase deliver_recv_msg() releases the
556  		 * lock, and a new message can be put in during the
557  		 * time the lock is released.
558  		 */
559  		msg = smi_info->curr_msg;
560  		smi_info->curr_msg = NULL;
561  		deliver_recv_msg(smi_info, msg);
562  		break;
563  
564  	case SI_GETTING_FLAGS:
565  	{
566  		unsigned char msg[4];
567  		unsigned int  len;
568  
569  		/* We got the flags from the SMI, now handle them. */
570  		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
571  		if (msg[2] != 0) {
572  			/* Error fetching flags, just give up for now. */
573  			smi_info->si_state = SI_NORMAL;
574  		} else if (len < 4) {
575  			/*
576  			 * Hmm, no flags.  That's technically illegal, but
577  			 * don't use uninitialized data.
578  			 */
579  			smi_info->si_state = SI_NORMAL;
580  		} else {
581  			smi_info->msg_flags = msg[3];
582  			handle_flags(smi_info);
583  		}
584  		break;
585  	}
586  
587  	case SI_CLEARING_FLAGS:
588  	{
589  		unsigned char msg[3];
590  
591  		/* We cleared the flags. */
592  		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
593  		if (msg[2] != 0) {
594  			/* Error clearing flags */
595  			dev_warn_ratelimited(smi_info->io.dev,
596  				 "Error clearing flags: %2.2x\n", msg[2]);
597  		}
598  		smi_info->si_state = SI_NORMAL;
599  		break;
600  	}
601  
602  	case SI_GETTING_EVENTS:
603  	{
604  		smi_info->curr_msg->rsp_size
605  			= smi_info->handlers->get_result(
606  				smi_info->si_sm,
607  				smi_info->curr_msg->rsp,
608  				IPMI_MAX_MSG_LENGTH);
609  
610  		/*
611  		 * Do this here becase deliver_recv_msg() releases the
612  		 * lock, and a new message can be put in during the
613  		 * time the lock is released.
614  		 */
615  		msg = smi_info->curr_msg;
616  		smi_info->curr_msg = NULL;
617  		if (msg->rsp[2] != 0) {
618  			/* Error getting event, probably done. */
619  			msg->done(msg);
620  
621  			/* Take off the event flag. */
622  			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623  			handle_flags(smi_info);
624  		} else {
625  			smi_inc_stat(smi_info, events);
626  
627  			/*
628  			 * Do this before we deliver the message
629  			 * because delivering the message releases the
630  			 * lock and something else can mess with the
631  			 * state.
632  			 */
633  			handle_flags(smi_info);
634  
635  			deliver_recv_msg(smi_info, msg);
636  		}
637  		break;
638  	}
639  
640  	case SI_GETTING_MESSAGES:
641  	{
642  		smi_info->curr_msg->rsp_size
643  			= smi_info->handlers->get_result(
644  				smi_info->si_sm,
645  				smi_info->curr_msg->rsp,
646  				IPMI_MAX_MSG_LENGTH);
647  
648  		/*
649  		 * Do this here becase deliver_recv_msg() releases the
650  		 * lock, and a new message can be put in during the
651  		 * time the lock is released.
652  		 */
653  		msg = smi_info->curr_msg;
654  		smi_info->curr_msg = NULL;
655  		if (msg->rsp[2] != 0) {
656  			/* Error getting event, probably done. */
657  			msg->done(msg);
658  
659  			/* Take off the msg flag. */
660  			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661  			handle_flags(smi_info);
662  		} else {
663  			smi_inc_stat(smi_info, incoming_messages);
664  
665  			/*
666  			 * Do this before we deliver the message
667  			 * because delivering the message releases the
668  			 * lock and something else can mess with the
669  			 * state.
670  			 */
671  			handle_flags(smi_info);
672  
673  			deliver_recv_msg(smi_info, msg);
674  		}
675  		break;
676  	}
677  
678  	case SI_CHECKING_ENABLES:
679  	{
680  		unsigned char msg[4];
681  		u8 enables;
682  		bool irq_on;
683  
684  		/* We got the flags from the SMI, now handle them. */
685  		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
686  		if (msg[2] != 0) {
687  			dev_warn_ratelimited(smi_info->io.dev,
688  				"Couldn't get irq info: %x,\n"
689  				"Maybe ok, but ipmi might run very slowly.\n",
690  				msg[2]);
691  			smi_info->si_state = SI_NORMAL;
692  			break;
693  		}
694  		enables = current_global_enables(smi_info, 0, &irq_on);
695  		if (smi_info->io.si_type == SI_BT)
696  			/* BT has its own interrupt enable bit. */
697  			check_bt_irq(smi_info, irq_on);
698  		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
699  			/* Enables are not correct, fix them. */
700  			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
701  			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
702  			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
703  			smi_info->handlers->start_transaction(
704  				smi_info->si_sm, msg, 3);
705  			smi_info->si_state = SI_SETTING_ENABLES;
706  		} else if (smi_info->supports_event_msg_buff) {
707  			smi_info->curr_msg = ipmi_alloc_smi_msg();
708  			if (!smi_info->curr_msg) {
709  				smi_info->si_state = SI_NORMAL;
710  				break;
711  			}
712  			start_getting_events(smi_info);
713  		} else {
714  			smi_info->si_state = SI_NORMAL;
715  		}
716  		break;
717  	}
718  
719  	case SI_SETTING_ENABLES:
720  	{
721  		unsigned char msg[4];
722  
723  		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
724  		if (msg[2] != 0)
725  			dev_warn_ratelimited(smi_info->io.dev,
726  				 "Could not set the global enables: 0x%x.\n",
727  				 msg[2]);
728  
729  		if (smi_info->supports_event_msg_buff) {
730  			smi_info->curr_msg = ipmi_alloc_smi_msg();
731  			if (!smi_info->curr_msg) {
732  				smi_info->si_state = SI_NORMAL;
733  				break;
734  			}
735  			start_getting_events(smi_info);
736  		} else {
737  			smi_info->si_state = SI_NORMAL;
738  		}
739  		break;
740  	}
741  	}
742  }
743  
744  /*
745   * Called on timeouts and events.  Timeouts should pass the elapsed
746   * time, interrupts should pass in zero.  Must be called with
747   * si_lock held and interrupts disabled.
748   */
smi_event_handler(struct smi_info * smi_info,int time)749  static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
750  					   int time)
751  {
752  	enum si_sm_result si_sm_result;
753  
754  restart:
755  	/*
756  	 * There used to be a loop here that waited a little while
757  	 * (around 25us) before giving up.  That turned out to be
758  	 * pointless, the minimum delays I was seeing were in the 300us
759  	 * range, which is far too long to wait in an interrupt.  So
760  	 * we just run until the state machine tells us something
761  	 * happened or it needs a delay.
762  	 */
763  	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
764  	time = 0;
765  	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
766  		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
767  
768  	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
769  		smi_inc_stat(smi_info, complete_transactions);
770  
771  		handle_transaction_done(smi_info);
772  		goto restart;
773  	} else if (si_sm_result == SI_SM_HOSED) {
774  		smi_inc_stat(smi_info, hosed_count);
775  
776  		/*
777  		 * Do the before return_hosed_msg, because that
778  		 * releases the lock.
779  		 */
780  		smi_info->si_state = SI_NORMAL;
781  		if (smi_info->curr_msg != NULL) {
782  			/*
783  			 * If we were handling a user message, format
784  			 * a response to send to the upper layer to
785  			 * tell it about the error.
786  			 */
787  			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
788  		}
789  		goto restart;
790  	}
791  
792  	/*
793  	 * We prefer handling attn over new messages.  But don't do
794  	 * this if there is not yet an upper layer to handle anything.
795  	 */
796  	if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
797  		unsigned char msg[2];
798  
799  		if (smi_info->si_state != SI_NORMAL) {
800  			/*
801  			 * We got an ATTN, but we are doing something else.
802  			 * Handle the ATTN later.
803  			 */
804  			smi_info->got_attn = true;
805  		} else {
806  			smi_info->got_attn = false;
807  			smi_inc_stat(smi_info, attentions);
808  
809  			/*
810  			 * Got a attn, send down a get message flags to see
811  			 * what's causing it.  It would be better to handle
812  			 * this in the upper layer, but due to the way
813  			 * interrupts work with the SMI, that's not really
814  			 * possible.
815  			 */
816  			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
817  			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
818  
819  			start_new_msg(smi_info, msg, 2);
820  			smi_info->si_state = SI_GETTING_FLAGS;
821  			goto restart;
822  		}
823  	}
824  
825  	/* If we are currently idle, try to start the next message. */
826  	if (si_sm_result == SI_SM_IDLE) {
827  		smi_inc_stat(smi_info, idles);
828  
829  		si_sm_result = start_next_msg(smi_info);
830  		if (si_sm_result != SI_SM_IDLE)
831  			goto restart;
832  	}
833  
834  	if ((si_sm_result == SI_SM_IDLE)
835  	    && (atomic_read(&smi_info->req_events))) {
836  		/*
837  		 * We are idle and the upper layer requested that I fetch
838  		 * events, so do so.
839  		 */
840  		atomic_set(&smi_info->req_events, 0);
841  
842  		/*
843  		 * Take this opportunity to check the interrupt and
844  		 * message enable state for the BMC.  The BMC can be
845  		 * asynchronously reset, and may thus get interrupts
846  		 * disable and messages disabled.
847  		 */
848  		if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
849  			start_check_enables(smi_info);
850  		} else {
851  			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
852  			if (!smi_info->curr_msg)
853  				goto out;
854  
855  			start_getting_events(smi_info);
856  		}
857  		goto restart;
858  	}
859  
860  	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
861  		/* Ok it if fails, the timer will just go off. */
862  		if (del_timer(&smi_info->si_timer))
863  			smi_info->timer_running = false;
864  	}
865  
866  out:
867  	return si_sm_result;
868  }
869  
check_start_timer_thread(struct smi_info * smi_info)870  static void check_start_timer_thread(struct smi_info *smi_info)
871  {
872  	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
873  		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
874  
875  		if (smi_info->thread)
876  			wake_up_process(smi_info->thread);
877  
878  		start_next_msg(smi_info);
879  		smi_event_handler(smi_info, 0);
880  	}
881  }
882  
flush_messages(void * send_info)883  static void flush_messages(void *send_info)
884  {
885  	struct smi_info *smi_info = send_info;
886  	enum si_sm_result result;
887  
888  	/*
889  	 * Currently, this function is called only in run-to-completion
890  	 * mode.  This means we are single-threaded, no need for locks.
891  	 */
892  	result = smi_event_handler(smi_info, 0);
893  	while (result != SI_SM_IDLE) {
894  		udelay(SI_SHORT_TIMEOUT_USEC);
895  		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
896  	}
897  }
898  
sender(void * send_info,struct ipmi_smi_msg * msg)899  static void sender(void                *send_info,
900  		   struct ipmi_smi_msg *msg)
901  {
902  	struct smi_info   *smi_info = send_info;
903  	unsigned long     flags;
904  
905  	debug_timestamp(smi_info, "Enqueue");
906  
907  	if (smi_info->run_to_completion) {
908  		/*
909  		 * If we are running to completion, start it.  Upper
910  		 * layer will call flush_messages to clear it out.
911  		 */
912  		smi_info->waiting_msg = msg;
913  		return;
914  	}
915  
916  	spin_lock_irqsave(&smi_info->si_lock, flags);
917  	/*
918  	 * The following two lines don't need to be under the lock for
919  	 * the lock's sake, but they do need SMP memory barriers to
920  	 * avoid getting things out of order.  We are already claiming
921  	 * the lock, anyway, so just do it under the lock to avoid the
922  	 * ordering problem.
923  	 */
924  	BUG_ON(smi_info->waiting_msg);
925  	smi_info->waiting_msg = msg;
926  	check_start_timer_thread(smi_info);
927  	spin_unlock_irqrestore(&smi_info->si_lock, flags);
928  }
929  
set_run_to_completion(void * send_info,bool i_run_to_completion)930  static void set_run_to_completion(void *send_info, bool i_run_to_completion)
931  {
932  	struct smi_info   *smi_info = send_info;
933  
934  	smi_info->run_to_completion = i_run_to_completion;
935  	if (i_run_to_completion)
936  		flush_messages(smi_info);
937  }
938  
939  /*
940   * Use -1 as a special constant to tell that we are spinning in kipmid
941   * looking for something and not delaying between checks
942   */
943  #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,ktime_t * busy_until)944  static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
945  					 const struct smi_info *smi_info,
946  					 ktime_t *busy_until)
947  {
948  	unsigned int max_busy_us = 0;
949  
950  	if (smi_info->si_num < num_max_busy_us)
951  		max_busy_us = kipmid_max_busy_us[smi_info->si_num];
952  	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
953  		*busy_until = IPMI_TIME_NOT_BUSY;
954  	else if (*busy_until == IPMI_TIME_NOT_BUSY) {
955  		*busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
956  	} else {
957  		if (unlikely(ktime_get() > *busy_until)) {
958  			*busy_until = IPMI_TIME_NOT_BUSY;
959  			return false;
960  		}
961  	}
962  	return true;
963  }
964  
965  
966  /*
967   * A busy-waiting loop for speeding up IPMI operation.
968   *
969   * Lousy hardware makes this hard.  This is only enabled for systems
970   * that are not BT and do not have interrupts.  It starts spinning
971   * when an operation is complete or until max_busy tells it to stop
972   * (if that is enabled).  See the paragraph on kimid_max_busy_us in
973   * Documentation/driver-api/ipmi.rst for details.
974   */
ipmi_thread(void * data)975  static int ipmi_thread(void *data)
976  {
977  	struct smi_info *smi_info = data;
978  	unsigned long flags;
979  	enum si_sm_result smi_result;
980  	ktime_t busy_until = IPMI_TIME_NOT_BUSY;
981  
982  	set_user_nice(current, MAX_NICE);
983  	while (!kthread_should_stop()) {
984  		int busy_wait;
985  
986  		spin_lock_irqsave(&(smi_info->si_lock), flags);
987  		smi_result = smi_event_handler(smi_info, 0);
988  
989  		/*
990  		 * If the driver is doing something, there is a possible
991  		 * race with the timer.  If the timer handler see idle,
992  		 * and the thread here sees something else, the timer
993  		 * handler won't restart the timer even though it is
994  		 * required.  So start it here if necessary.
995  		 */
996  		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
997  			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
998  
999  		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1000  		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1001  						  &busy_until);
1002  		if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1003  			; /* do nothing */
1004  		} else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1005  			/*
1006  			 * In maintenance mode we run as fast as
1007  			 * possible to allow firmware updates to
1008  			 * complete as fast as possible, but normally
1009  			 * don't bang on the scheduler.
1010  			 */
1011  			if (smi_info->in_maintenance_mode)
1012  				schedule();
1013  			else
1014  				usleep_range(100, 200);
1015  		} else if (smi_result == SI_SM_IDLE) {
1016  			if (atomic_read(&smi_info->need_watch)) {
1017  				schedule_timeout_interruptible(100);
1018  			} else {
1019  				/* Wait to be woken up when we are needed. */
1020  				__set_current_state(TASK_INTERRUPTIBLE);
1021  				schedule();
1022  			}
1023  		} else {
1024  			schedule_timeout_interruptible(1);
1025  		}
1026  	}
1027  	return 0;
1028  }
1029  
1030  
poll(void * send_info)1031  static void poll(void *send_info)
1032  {
1033  	struct smi_info *smi_info = send_info;
1034  	unsigned long flags = 0;
1035  	bool run_to_completion = smi_info->run_to_completion;
1036  
1037  	/*
1038  	 * Make sure there is some delay in the poll loop so we can
1039  	 * drive time forward and timeout things.
1040  	 */
1041  	udelay(10);
1042  	if (!run_to_completion)
1043  		spin_lock_irqsave(&smi_info->si_lock, flags);
1044  	smi_event_handler(smi_info, 10);
1045  	if (!run_to_completion)
1046  		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1047  }
1048  
request_events(void * send_info)1049  static void request_events(void *send_info)
1050  {
1051  	struct smi_info *smi_info = send_info;
1052  
1053  	if (!smi_info->has_event_buffer)
1054  		return;
1055  
1056  	atomic_set(&smi_info->req_events, 1);
1057  }
1058  
set_need_watch(void * send_info,unsigned int watch_mask)1059  static void set_need_watch(void *send_info, unsigned int watch_mask)
1060  {
1061  	struct smi_info *smi_info = send_info;
1062  	unsigned long flags;
1063  	int enable;
1064  
1065  	enable = !!watch_mask;
1066  
1067  	atomic_set(&smi_info->need_watch, enable);
1068  	spin_lock_irqsave(&smi_info->si_lock, flags);
1069  	check_start_timer_thread(smi_info);
1070  	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1071  }
1072  
smi_timeout(struct timer_list * t)1073  static void smi_timeout(struct timer_list *t)
1074  {
1075  	struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1076  	enum si_sm_result smi_result;
1077  	unsigned long     flags;
1078  	unsigned long     jiffies_now;
1079  	long              time_diff;
1080  	long		  timeout;
1081  
1082  	spin_lock_irqsave(&(smi_info->si_lock), flags);
1083  	debug_timestamp(smi_info, "Timer");
1084  
1085  	jiffies_now = jiffies;
1086  	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1087  		     * SI_USEC_PER_JIFFY);
1088  	smi_result = smi_event_handler(smi_info, time_diff);
1089  
1090  	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1091  		/* Running with interrupts, only do long timeouts. */
1092  		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093  		smi_inc_stat(smi_info, long_timeouts);
1094  		goto do_mod_timer;
1095  	}
1096  
1097  	/*
1098  	 * If the state machine asks for a short delay, then shorten
1099  	 * the timer timeout.
1100  	 */
1101  	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102  		smi_inc_stat(smi_info, short_timeouts);
1103  		timeout = jiffies + 1;
1104  	} else {
1105  		smi_inc_stat(smi_info, long_timeouts);
1106  		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107  	}
1108  
1109  do_mod_timer:
1110  	if (smi_result != SI_SM_IDLE)
1111  		smi_mod_timer(smi_info, timeout);
1112  	else
1113  		smi_info->timer_running = false;
1114  	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1115  }
1116  
ipmi_si_irq_handler(int irq,void * data)1117  irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1118  {
1119  	struct smi_info *smi_info = data;
1120  	unsigned long   flags;
1121  
1122  	if (smi_info->io.si_type == SI_BT)
1123  		/* We need to clear the IRQ flag for the BT interface. */
1124  		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1125  				     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1126  				     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1127  
1128  	spin_lock_irqsave(&(smi_info->si_lock), flags);
1129  
1130  	smi_inc_stat(smi_info, interrupts);
1131  
1132  	debug_timestamp(smi_info, "Interrupt");
1133  
1134  	smi_event_handler(smi_info, 0);
1135  	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1136  	return IRQ_HANDLED;
1137  }
1138  
smi_start_processing(void * send_info,struct ipmi_smi * intf)1139  static int smi_start_processing(void            *send_info,
1140  				struct ipmi_smi *intf)
1141  {
1142  	struct smi_info *new_smi = send_info;
1143  	int             enable = 0;
1144  
1145  	new_smi->intf = intf;
1146  
1147  	/* Set up the timer that drives the interface. */
1148  	timer_setup(&new_smi->si_timer, smi_timeout, 0);
1149  	new_smi->timer_can_start = true;
1150  	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1151  
1152  	/* Try to claim any interrupts. */
1153  	if (new_smi->io.irq_setup) {
1154  		new_smi->io.irq_handler_data = new_smi;
1155  		new_smi->io.irq_setup(&new_smi->io);
1156  	}
1157  
1158  	/*
1159  	 * Check if the user forcefully enabled the daemon.
1160  	 */
1161  	if (new_smi->si_num < num_force_kipmid)
1162  		enable = force_kipmid[new_smi->si_num];
1163  	/*
1164  	 * The BT interface is efficient enough to not need a thread,
1165  	 * and there is no need for a thread if we have interrupts.
1166  	 */
1167  	else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1168  		enable = 1;
1169  
1170  	if (enable) {
1171  		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1172  					      "kipmi%d", new_smi->si_num);
1173  		if (IS_ERR(new_smi->thread)) {
1174  			dev_notice(new_smi->io.dev,
1175  				   "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1176  				   PTR_ERR(new_smi->thread));
1177  			new_smi->thread = NULL;
1178  		}
1179  	}
1180  
1181  	return 0;
1182  }
1183  
get_smi_info(void * send_info,struct ipmi_smi_info * data)1184  static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1185  {
1186  	struct smi_info *smi = send_info;
1187  
1188  	data->addr_src = smi->io.addr_source;
1189  	data->dev = smi->io.dev;
1190  	data->addr_info = smi->io.addr_info;
1191  	get_device(smi->io.dev);
1192  
1193  	return 0;
1194  }
1195  
set_maintenance_mode(void * send_info,bool enable)1196  static void set_maintenance_mode(void *send_info, bool enable)
1197  {
1198  	struct smi_info   *smi_info = send_info;
1199  
1200  	if (!enable)
1201  		atomic_set(&smi_info->req_events, 0);
1202  	smi_info->in_maintenance_mode = enable;
1203  }
1204  
1205  static void shutdown_smi(void *send_info);
1206  static const struct ipmi_smi_handlers handlers = {
1207  	.owner                  = THIS_MODULE,
1208  	.start_processing       = smi_start_processing,
1209  	.shutdown               = shutdown_smi,
1210  	.get_smi_info		= get_smi_info,
1211  	.sender			= sender,
1212  	.request_events		= request_events,
1213  	.set_need_watch		= set_need_watch,
1214  	.set_maintenance_mode   = set_maintenance_mode,
1215  	.set_run_to_completion  = set_run_to_completion,
1216  	.flush_messages		= flush_messages,
1217  	.poll			= poll,
1218  };
1219  
1220  static LIST_HEAD(smi_infos);
1221  static DEFINE_MUTEX(smi_infos_lock);
1222  static int smi_num; /* Used to sequence the SMIs */
1223  
1224  static const char * const addr_space_to_str[] = { "i/o", "mem" };
1225  
1226  module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1227  MODULE_PARM_DESC(force_kipmid,
1228  		 "Force the kipmi daemon to be enabled (1) or disabled(0).  Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1229  module_param(unload_when_empty, bool, 0);
1230  MODULE_PARM_DESC(unload_when_empty,
1231  		 "Unload the module if no interfaces are specified or found, default is 1.  Setting to 0 is useful for hot add of devices using hotmod.");
1232  module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1233  MODULE_PARM_DESC(kipmid_max_busy_us,
1234  		 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1235  
ipmi_irq_finish_setup(struct si_sm_io * io)1236  void ipmi_irq_finish_setup(struct si_sm_io *io)
1237  {
1238  	if (io->si_type == SI_BT)
1239  		/* Enable the interrupt in the BT interface. */
1240  		io->outputb(io, IPMI_BT_INTMASK_REG,
1241  			    IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1242  }
1243  
ipmi_irq_start_cleanup(struct si_sm_io * io)1244  void ipmi_irq_start_cleanup(struct si_sm_io *io)
1245  {
1246  	if (io->si_type == SI_BT)
1247  		/* Disable the interrupt in the BT interface. */
1248  		io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1249  }
1250  
std_irq_cleanup(struct si_sm_io * io)1251  static void std_irq_cleanup(struct si_sm_io *io)
1252  {
1253  	ipmi_irq_start_cleanup(io);
1254  	free_irq(io->irq, io->irq_handler_data);
1255  }
1256  
ipmi_std_irq_setup(struct si_sm_io * io)1257  int ipmi_std_irq_setup(struct si_sm_io *io)
1258  {
1259  	int rv;
1260  
1261  	if (!io->irq)
1262  		return 0;
1263  
1264  	rv = request_irq(io->irq,
1265  			 ipmi_si_irq_handler,
1266  			 IRQF_SHARED,
1267  			 SI_DEVICE_NAME,
1268  			 io->irq_handler_data);
1269  	if (rv) {
1270  		dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1271  			 SI_DEVICE_NAME, io->irq);
1272  		io->irq = 0;
1273  	} else {
1274  		io->irq_cleanup = std_irq_cleanup;
1275  		ipmi_irq_finish_setup(io);
1276  		dev_info(io->dev, "Using irq %d\n", io->irq);
1277  	}
1278  
1279  	return rv;
1280  }
1281  
wait_for_msg_done(struct smi_info * smi_info)1282  static int wait_for_msg_done(struct smi_info *smi_info)
1283  {
1284  	enum si_sm_result     smi_result;
1285  
1286  	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1287  	for (;;) {
1288  		if (smi_result == SI_SM_CALL_WITH_DELAY ||
1289  		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1290  			schedule_timeout_uninterruptible(1);
1291  			smi_result = smi_info->handlers->event(
1292  				smi_info->si_sm, jiffies_to_usecs(1));
1293  		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1294  			smi_result = smi_info->handlers->event(
1295  				smi_info->si_sm, 0);
1296  		} else
1297  			break;
1298  	}
1299  	if (smi_result == SI_SM_HOSED)
1300  		/*
1301  		 * We couldn't get the state machine to run, so whatever's at
1302  		 * the port is probably not an IPMI SMI interface.
1303  		 */
1304  		return -ENODEV;
1305  
1306  	return 0;
1307  }
1308  
try_get_dev_id(struct smi_info * smi_info)1309  static int try_get_dev_id(struct smi_info *smi_info)
1310  {
1311  	unsigned char         msg[2];
1312  	unsigned char         *resp;
1313  	unsigned long         resp_len;
1314  	int                   rv = 0;
1315  	unsigned int          retry_count = 0;
1316  
1317  	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1318  	if (!resp)
1319  		return -ENOMEM;
1320  
1321  	/*
1322  	 * Do a Get Device ID command, since it comes back with some
1323  	 * useful info.
1324  	 */
1325  	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1326  	msg[1] = IPMI_GET_DEVICE_ID_CMD;
1327  
1328  retry:
1329  	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1330  
1331  	rv = wait_for_msg_done(smi_info);
1332  	if (rv)
1333  		goto out;
1334  
1335  	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1336  						  resp, IPMI_MAX_MSG_LENGTH);
1337  
1338  	/* Check and record info from the get device id, in case we need it. */
1339  	rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1340  			resp + 2, resp_len - 2, &smi_info->device_id);
1341  	if (rv) {
1342  		/* record completion code */
1343  		unsigned char cc = *(resp + 2);
1344  
1345  		if (cc != IPMI_CC_NO_ERROR &&
1346  		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1347  			dev_warn_ratelimited(smi_info->io.dev,
1348  			    "BMC returned 0x%2.2x, retry get bmc device id\n",
1349  			    cc);
1350  			goto retry;
1351  		}
1352  	}
1353  
1354  out:
1355  	kfree(resp);
1356  	return rv;
1357  }
1358  
get_global_enables(struct smi_info * smi_info,u8 * enables)1359  static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1360  {
1361  	unsigned char         msg[3];
1362  	unsigned char         *resp;
1363  	unsigned long         resp_len;
1364  	int                   rv;
1365  
1366  	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1367  	if (!resp)
1368  		return -ENOMEM;
1369  
1370  	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1371  	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1372  	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1373  
1374  	rv = wait_for_msg_done(smi_info);
1375  	if (rv) {
1376  		dev_warn(smi_info->io.dev,
1377  			 "Error getting response from get global enables command: %d\n",
1378  			 rv);
1379  		goto out;
1380  	}
1381  
1382  	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1383  						  resp, IPMI_MAX_MSG_LENGTH);
1384  
1385  	if (resp_len < 4 ||
1386  			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1387  			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1388  			resp[2] != 0) {
1389  		dev_warn(smi_info->io.dev,
1390  			 "Invalid return from get global enables command: %ld %x %x %x\n",
1391  			 resp_len, resp[0], resp[1], resp[2]);
1392  		rv = -EINVAL;
1393  		goto out;
1394  	} else {
1395  		*enables = resp[3];
1396  	}
1397  
1398  out:
1399  	kfree(resp);
1400  	return rv;
1401  }
1402  
1403  /*
1404   * Returns 1 if it gets an error from the command.
1405   */
set_global_enables(struct smi_info * smi_info,u8 enables)1406  static int set_global_enables(struct smi_info *smi_info, u8 enables)
1407  {
1408  	unsigned char         msg[3];
1409  	unsigned char         *resp;
1410  	unsigned long         resp_len;
1411  	int                   rv;
1412  
1413  	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1414  	if (!resp)
1415  		return -ENOMEM;
1416  
1417  	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1418  	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1419  	msg[2] = enables;
1420  	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1421  
1422  	rv = wait_for_msg_done(smi_info);
1423  	if (rv) {
1424  		dev_warn(smi_info->io.dev,
1425  			 "Error getting response from set global enables command: %d\n",
1426  			 rv);
1427  		goto out;
1428  	}
1429  
1430  	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1431  						  resp, IPMI_MAX_MSG_LENGTH);
1432  
1433  	if (resp_len < 3 ||
1434  			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1435  			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1436  		dev_warn(smi_info->io.dev,
1437  			 "Invalid return from set global enables command: %ld %x %x\n",
1438  			 resp_len, resp[0], resp[1]);
1439  		rv = -EINVAL;
1440  		goto out;
1441  	}
1442  
1443  	if (resp[2] != 0)
1444  		rv = 1;
1445  
1446  out:
1447  	kfree(resp);
1448  	return rv;
1449  }
1450  
1451  /*
1452   * Some BMCs do not support clearing the receive irq bit in the global
1453   * enables (even if they don't support interrupts on the BMC).  Check
1454   * for this and handle it properly.
1455   */
check_clr_rcv_irq(struct smi_info * smi_info)1456  static void check_clr_rcv_irq(struct smi_info *smi_info)
1457  {
1458  	u8 enables = 0;
1459  	int rv;
1460  
1461  	rv = get_global_enables(smi_info, &enables);
1462  	if (!rv) {
1463  		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1464  			/* Already clear, should work ok. */
1465  			return;
1466  
1467  		enables &= ~IPMI_BMC_RCV_MSG_INTR;
1468  		rv = set_global_enables(smi_info, enables);
1469  	}
1470  
1471  	if (rv < 0) {
1472  		dev_err(smi_info->io.dev,
1473  			"Cannot check clearing the rcv irq: %d\n", rv);
1474  		return;
1475  	}
1476  
1477  	if (rv) {
1478  		/*
1479  		 * An error when setting the event buffer bit means
1480  		 * clearing the bit is not supported.
1481  		 */
1482  		dev_warn(smi_info->io.dev,
1483  			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1484  		smi_info->cannot_disable_irq = true;
1485  	}
1486  }
1487  
1488  /*
1489   * Some BMCs do not support setting the interrupt bits in the global
1490   * enables even if they support interrupts.  Clearly bad, but we can
1491   * compensate.
1492   */
check_set_rcv_irq(struct smi_info * smi_info)1493  static void check_set_rcv_irq(struct smi_info *smi_info)
1494  {
1495  	u8 enables = 0;
1496  	int rv;
1497  
1498  	if (!smi_info->io.irq)
1499  		return;
1500  
1501  	rv = get_global_enables(smi_info, &enables);
1502  	if (!rv) {
1503  		enables |= IPMI_BMC_RCV_MSG_INTR;
1504  		rv = set_global_enables(smi_info, enables);
1505  	}
1506  
1507  	if (rv < 0) {
1508  		dev_err(smi_info->io.dev,
1509  			"Cannot check setting the rcv irq: %d\n", rv);
1510  		return;
1511  	}
1512  
1513  	if (rv) {
1514  		/*
1515  		 * An error when setting the event buffer bit means
1516  		 * setting the bit is not supported.
1517  		 */
1518  		dev_warn(smi_info->io.dev,
1519  			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1520  		smi_info->cannot_disable_irq = true;
1521  		smi_info->irq_enable_broken = true;
1522  	}
1523  }
1524  
try_enable_event_buffer(struct smi_info * smi_info)1525  static int try_enable_event_buffer(struct smi_info *smi_info)
1526  {
1527  	unsigned char         msg[3];
1528  	unsigned char         *resp;
1529  	unsigned long         resp_len;
1530  	int                   rv = 0;
1531  
1532  	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1533  	if (!resp)
1534  		return -ENOMEM;
1535  
1536  	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1537  	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1538  	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1539  
1540  	rv = wait_for_msg_done(smi_info);
1541  	if (rv) {
1542  		pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1543  		goto out;
1544  	}
1545  
1546  	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1547  						  resp, IPMI_MAX_MSG_LENGTH);
1548  
1549  	if (resp_len < 4 ||
1550  			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1551  			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1552  			resp[2] != 0) {
1553  		pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1554  		rv = -EINVAL;
1555  		goto out;
1556  	}
1557  
1558  	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1559  		/* buffer is already enabled, nothing to do. */
1560  		smi_info->supports_event_msg_buff = true;
1561  		goto out;
1562  	}
1563  
1564  	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1565  	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1566  	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1567  	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1568  
1569  	rv = wait_for_msg_done(smi_info);
1570  	if (rv) {
1571  		pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1572  		goto out;
1573  	}
1574  
1575  	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1576  						  resp, IPMI_MAX_MSG_LENGTH);
1577  
1578  	if (resp_len < 3 ||
1579  			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1580  			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1581  		pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1582  		rv = -EINVAL;
1583  		goto out;
1584  	}
1585  
1586  	if (resp[2] != 0)
1587  		/*
1588  		 * An error when setting the event buffer bit means
1589  		 * that the event buffer is not supported.
1590  		 */
1591  		rv = -ENOENT;
1592  	else
1593  		smi_info->supports_event_msg_buff = true;
1594  
1595  out:
1596  	kfree(resp);
1597  	return rv;
1598  }
1599  
1600  #define IPMI_SI_ATTR(name) \
1601  static ssize_t name##_show(struct device *dev,			\
1602  			   struct device_attribute *attr,		\
1603  			   char *buf)					\
1604  {									\
1605  	struct smi_info *smi_info = dev_get_drvdata(dev);		\
1606  									\
1607  	return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name));	\
1608  }									\
1609  static DEVICE_ATTR_RO(name)
1610  
type_show(struct device * dev,struct device_attribute * attr,char * buf)1611  static ssize_t type_show(struct device *dev,
1612  			 struct device_attribute *attr,
1613  			 char *buf)
1614  {
1615  	struct smi_info *smi_info = dev_get_drvdata(dev);
1616  
1617  	return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_type]);
1618  }
1619  static DEVICE_ATTR_RO(type);
1620  
interrupts_enabled_show(struct device * dev,struct device_attribute * attr,char * buf)1621  static ssize_t interrupts_enabled_show(struct device *dev,
1622  				       struct device_attribute *attr,
1623  				       char *buf)
1624  {
1625  	struct smi_info *smi_info = dev_get_drvdata(dev);
1626  	int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1627  
1628  	return sysfs_emit(buf, "%d\n", enabled);
1629  }
1630  static DEVICE_ATTR_RO(interrupts_enabled);
1631  
1632  IPMI_SI_ATTR(short_timeouts);
1633  IPMI_SI_ATTR(long_timeouts);
1634  IPMI_SI_ATTR(idles);
1635  IPMI_SI_ATTR(interrupts);
1636  IPMI_SI_ATTR(attentions);
1637  IPMI_SI_ATTR(flag_fetches);
1638  IPMI_SI_ATTR(hosed_count);
1639  IPMI_SI_ATTR(complete_transactions);
1640  IPMI_SI_ATTR(events);
1641  IPMI_SI_ATTR(watchdog_pretimeouts);
1642  IPMI_SI_ATTR(incoming_messages);
1643  
params_show(struct device * dev,struct device_attribute * attr,char * buf)1644  static ssize_t params_show(struct device *dev,
1645  			   struct device_attribute *attr,
1646  			   char *buf)
1647  {
1648  	struct smi_info *smi_info = dev_get_drvdata(dev);
1649  
1650  	return sysfs_emit(buf,
1651  			"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1652  			si_to_str[smi_info->io.si_type],
1653  			addr_space_to_str[smi_info->io.addr_space],
1654  			smi_info->io.addr_data,
1655  			smi_info->io.regspacing,
1656  			smi_info->io.regsize,
1657  			smi_info->io.regshift,
1658  			smi_info->io.irq,
1659  			smi_info->io.slave_addr);
1660  }
1661  static DEVICE_ATTR_RO(params);
1662  
1663  static struct attribute *ipmi_si_dev_attrs[] = {
1664  	&dev_attr_type.attr,
1665  	&dev_attr_interrupts_enabled.attr,
1666  	&dev_attr_short_timeouts.attr,
1667  	&dev_attr_long_timeouts.attr,
1668  	&dev_attr_idles.attr,
1669  	&dev_attr_interrupts.attr,
1670  	&dev_attr_attentions.attr,
1671  	&dev_attr_flag_fetches.attr,
1672  	&dev_attr_hosed_count.attr,
1673  	&dev_attr_complete_transactions.attr,
1674  	&dev_attr_events.attr,
1675  	&dev_attr_watchdog_pretimeouts.attr,
1676  	&dev_attr_incoming_messages.attr,
1677  	&dev_attr_params.attr,
1678  	NULL
1679  };
1680  
1681  static const struct attribute_group ipmi_si_dev_attr_group = {
1682  	.attrs		= ipmi_si_dev_attrs,
1683  };
1684  
1685  /*
1686   * oem_data_avail_to_receive_msg_avail
1687   * @info - smi_info structure with msg_flags set
1688   *
1689   * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1690   * Returns 1 indicating need to re-run handle_flags().
1691   */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)1692  static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1693  {
1694  	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1695  			       RECEIVE_MSG_AVAIL);
1696  	return 1;
1697  }
1698  
1699  /*
1700   * setup_dell_poweredge_oem_data_handler
1701   * @info - smi_info.device_id must be populated
1702   *
1703   * Systems that match, but have firmware version < 1.40 may assert
1704   * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1705   * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1706   * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1707   * as RECEIVE_MSG_AVAIL instead.
1708   *
1709   * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1710   * assert the OEM[012] bits, and if it did, the driver would have to
1711   * change to handle that properly, we don't actually check for the
1712   * firmware version.
1713   * Device ID = 0x20                BMC on PowerEdge 8G servers
1714   * Device Revision = 0x80
1715   * Firmware Revision1 = 0x01       BMC version 1.40
1716   * Firmware Revision2 = 0x40       BCD encoded
1717   * IPMI Version = 0x51             IPMI 1.5
1718   * Manufacturer ID = A2 02 00      Dell IANA
1719   *
1720   * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1721   * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1722   *
1723   */
1724  #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1725  #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1726  #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1727  #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)1728  static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1729  {
1730  	struct ipmi_device_id *id = &smi_info->device_id;
1731  	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1732  		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1733  		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1734  		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1735  			smi_info->oem_data_avail_handler =
1736  				oem_data_avail_to_receive_msg_avail;
1737  		} else if (ipmi_version_major(id) < 1 ||
1738  			   (ipmi_version_major(id) == 1 &&
1739  			    ipmi_version_minor(id) < 5)) {
1740  			smi_info->oem_data_avail_handler =
1741  				oem_data_avail_to_receive_msg_avail;
1742  		}
1743  	}
1744  }
1745  
1746  #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)1747  static void return_hosed_msg_badsize(struct smi_info *smi_info)
1748  {
1749  	struct ipmi_smi_msg *msg = smi_info->curr_msg;
1750  
1751  	/* Make it a response */
1752  	msg->rsp[0] = msg->data[0] | 4;
1753  	msg->rsp[1] = msg->data[1];
1754  	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1755  	msg->rsp_size = 3;
1756  	smi_info->curr_msg = NULL;
1757  	deliver_recv_msg(smi_info, msg);
1758  }
1759  
1760  /*
1761   * dell_poweredge_bt_xaction_handler
1762   * @info - smi_info.device_id must be populated
1763   *
1764   * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1765   * not respond to a Get SDR command if the length of the data
1766   * requested is exactly 0x3A, which leads to command timeouts and no
1767   * data returned.  This intercepts such commands, and causes userspace
1768   * callers to try again with a different-sized buffer, which succeeds.
1769   */
1770  
1771  #define STORAGE_NETFN 0x0A
1772  #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)1773  static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1774  					     unsigned long unused,
1775  					     void *in)
1776  {
1777  	struct smi_info *smi_info = in;
1778  	unsigned char *data = smi_info->curr_msg->data;
1779  	unsigned int size   = smi_info->curr_msg->data_size;
1780  	if (size >= 8 &&
1781  	    (data[0]>>2) == STORAGE_NETFN &&
1782  	    data[1] == STORAGE_CMD_GET_SDR &&
1783  	    data[7] == 0x3A) {
1784  		return_hosed_msg_badsize(smi_info);
1785  		return NOTIFY_STOP;
1786  	}
1787  	return NOTIFY_DONE;
1788  }
1789  
1790  static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1791  	.notifier_call	= dell_poweredge_bt_xaction_handler,
1792  };
1793  
1794  /*
1795   * setup_dell_poweredge_bt_xaction_handler
1796   * @info - smi_info.device_id must be filled in already
1797   *
1798   * Fills in smi_info.device_id.start_transaction_pre_hook
1799   * when we know what function to use there.
1800   */
1801  static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)1802  setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1803  {
1804  	struct ipmi_device_id *id = &smi_info->device_id;
1805  	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1806  	    smi_info->io.si_type == SI_BT)
1807  		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1808  }
1809  
1810  /*
1811   * setup_oem_data_handler
1812   * @info - smi_info.device_id must be filled in already
1813   *
1814   * Fills in smi_info.device_id.oem_data_available_handler
1815   * when we know what function to use there.
1816   */
1817  
setup_oem_data_handler(struct smi_info * smi_info)1818  static void setup_oem_data_handler(struct smi_info *smi_info)
1819  {
1820  	setup_dell_poweredge_oem_data_handler(smi_info);
1821  }
1822  
setup_xaction_handlers(struct smi_info * smi_info)1823  static void setup_xaction_handlers(struct smi_info *smi_info)
1824  {
1825  	setup_dell_poweredge_bt_xaction_handler(smi_info);
1826  }
1827  
check_for_broken_irqs(struct smi_info * smi_info)1828  static void check_for_broken_irqs(struct smi_info *smi_info)
1829  {
1830  	check_clr_rcv_irq(smi_info);
1831  	check_set_rcv_irq(smi_info);
1832  }
1833  
stop_timer_and_thread(struct smi_info * smi_info)1834  static inline void stop_timer_and_thread(struct smi_info *smi_info)
1835  {
1836  	if (smi_info->thread != NULL) {
1837  		kthread_stop(smi_info->thread);
1838  		smi_info->thread = NULL;
1839  	}
1840  
1841  	smi_info->timer_can_start = false;
1842  	del_timer_sync(&smi_info->si_timer);
1843  }
1844  
find_dup_si(struct smi_info * info)1845  static struct smi_info *find_dup_si(struct smi_info *info)
1846  {
1847  	struct smi_info *e;
1848  
1849  	list_for_each_entry(e, &smi_infos, link) {
1850  		if (e->io.addr_space != info->io.addr_space)
1851  			continue;
1852  		if (e->io.addr_data == info->io.addr_data) {
1853  			/*
1854  			 * This is a cheap hack, ACPI doesn't have a defined
1855  			 * slave address but SMBIOS does.  Pick it up from
1856  			 * any source that has it available.
1857  			 */
1858  			if (info->io.slave_addr && !e->io.slave_addr)
1859  				e->io.slave_addr = info->io.slave_addr;
1860  			return e;
1861  		}
1862  	}
1863  
1864  	return NULL;
1865  }
1866  
ipmi_si_add_smi(struct si_sm_io * io)1867  int ipmi_si_add_smi(struct si_sm_io *io)
1868  {
1869  	int rv = 0;
1870  	struct smi_info *new_smi, *dup;
1871  
1872  	/*
1873  	 * If the user gave us a hard-coded device at the same
1874  	 * address, they presumably want us to use it and not what is
1875  	 * in the firmware.
1876  	 */
1877  	if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1878  	    ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1879  		dev_info(io->dev,
1880  			 "Hard-coded device at this address already exists");
1881  		return -ENODEV;
1882  	}
1883  
1884  	if (!io->io_setup) {
1885  		if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1886  		    io->addr_space == IPMI_IO_ADDR_SPACE) {
1887  			io->io_setup = ipmi_si_port_setup;
1888  		} else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1889  			io->io_setup = ipmi_si_mem_setup;
1890  		} else {
1891  			return -EINVAL;
1892  		}
1893  	}
1894  
1895  	new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1896  	if (!new_smi)
1897  		return -ENOMEM;
1898  	spin_lock_init(&new_smi->si_lock);
1899  
1900  	new_smi->io = *io;
1901  
1902  	mutex_lock(&smi_infos_lock);
1903  	dup = find_dup_si(new_smi);
1904  	if (dup) {
1905  		if (new_smi->io.addr_source == SI_ACPI &&
1906  		    dup->io.addr_source == SI_SMBIOS) {
1907  			/* We prefer ACPI over SMBIOS. */
1908  			dev_info(dup->io.dev,
1909  				 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1910  				 si_to_str[new_smi->io.si_type]);
1911  			cleanup_one_si(dup);
1912  		} else {
1913  			dev_info(new_smi->io.dev,
1914  				 "%s-specified %s state machine: duplicate\n",
1915  				 ipmi_addr_src_to_str(new_smi->io.addr_source),
1916  				 si_to_str[new_smi->io.si_type]);
1917  			rv = -EBUSY;
1918  			kfree(new_smi);
1919  			goto out_err;
1920  		}
1921  	}
1922  
1923  	pr_info("Adding %s-specified %s state machine\n",
1924  		ipmi_addr_src_to_str(new_smi->io.addr_source),
1925  		si_to_str[new_smi->io.si_type]);
1926  
1927  	list_add_tail(&new_smi->link, &smi_infos);
1928  
1929  	if (initialized)
1930  		rv = try_smi_init(new_smi);
1931  out_err:
1932  	mutex_unlock(&smi_infos_lock);
1933  	return rv;
1934  }
1935  
1936  /*
1937   * Try to start up an interface.  Must be called with smi_infos_lock
1938   * held, primarily to keep smi_num consistent, we only one to do these
1939   * one at a time.
1940   */
try_smi_init(struct smi_info * new_smi)1941  static int try_smi_init(struct smi_info *new_smi)
1942  {
1943  	int rv = 0;
1944  	int i;
1945  
1946  	pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1947  		ipmi_addr_src_to_str(new_smi->io.addr_source),
1948  		si_to_str[new_smi->io.si_type],
1949  		addr_space_to_str[new_smi->io.addr_space],
1950  		new_smi->io.addr_data,
1951  		new_smi->io.slave_addr, new_smi->io.irq);
1952  
1953  	switch (new_smi->io.si_type) {
1954  	case SI_KCS:
1955  		new_smi->handlers = &kcs_smi_handlers;
1956  		break;
1957  
1958  	case SI_SMIC:
1959  		new_smi->handlers = &smic_smi_handlers;
1960  		break;
1961  
1962  	case SI_BT:
1963  		new_smi->handlers = &bt_smi_handlers;
1964  		break;
1965  
1966  	default:
1967  		/* No support for anything else yet. */
1968  		rv = -EIO;
1969  		goto out_err;
1970  	}
1971  
1972  	new_smi->si_num = smi_num;
1973  
1974  	/* Do this early so it's available for logs. */
1975  	if (!new_smi->io.dev) {
1976  		pr_err("IPMI interface added with no device\n");
1977  		rv = -EIO;
1978  		goto out_err;
1979  	}
1980  
1981  	/* Allocate the state machine's data and initialize it. */
1982  	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1983  	if (!new_smi->si_sm) {
1984  		rv = -ENOMEM;
1985  		goto out_err;
1986  	}
1987  	new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1988  							   &new_smi->io);
1989  
1990  	/* Now that we know the I/O size, we can set up the I/O. */
1991  	rv = new_smi->io.io_setup(&new_smi->io);
1992  	if (rv) {
1993  		dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1994  		goto out_err;
1995  	}
1996  
1997  	/* Do low-level detection first. */
1998  	if (new_smi->handlers->detect(new_smi->si_sm)) {
1999  		if (new_smi->io.addr_source)
2000  			dev_err(new_smi->io.dev,
2001  				"Interface detection failed\n");
2002  		rv = -ENODEV;
2003  		goto out_err;
2004  	}
2005  
2006  	/*
2007  	 * Attempt a get device id command.  If it fails, we probably
2008  	 * don't have a BMC here.
2009  	 */
2010  	rv = try_get_dev_id(new_smi);
2011  	if (rv) {
2012  		if (new_smi->io.addr_source)
2013  			dev_err(new_smi->io.dev,
2014  			       "There appears to be no BMC at this location\n");
2015  		goto out_err;
2016  	}
2017  
2018  	setup_oem_data_handler(new_smi);
2019  	setup_xaction_handlers(new_smi);
2020  	check_for_broken_irqs(new_smi);
2021  
2022  	new_smi->waiting_msg = NULL;
2023  	new_smi->curr_msg = NULL;
2024  	atomic_set(&new_smi->req_events, 0);
2025  	new_smi->run_to_completion = false;
2026  	for (i = 0; i < SI_NUM_STATS; i++)
2027  		atomic_set(&new_smi->stats[i], 0);
2028  
2029  	new_smi->interrupt_disabled = true;
2030  	atomic_set(&new_smi->need_watch, 0);
2031  
2032  	rv = try_enable_event_buffer(new_smi);
2033  	if (rv == 0)
2034  		new_smi->has_event_buffer = true;
2035  
2036  	/*
2037  	 * Start clearing the flags before we enable interrupts or the
2038  	 * timer to avoid racing with the timer.
2039  	 */
2040  	start_clear_flags(new_smi);
2041  
2042  	/*
2043  	 * IRQ is defined to be set when non-zero.  req_events will
2044  	 * cause a global flags check that will enable interrupts.
2045  	 */
2046  	if (new_smi->io.irq) {
2047  		new_smi->interrupt_disabled = false;
2048  		atomic_set(&new_smi->req_events, 1);
2049  	}
2050  
2051  	dev_set_drvdata(new_smi->io.dev, new_smi);
2052  	rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2053  	if (rv) {
2054  		dev_err(new_smi->io.dev,
2055  			"Unable to add device attributes: error %d\n",
2056  			rv);
2057  		goto out_err;
2058  	}
2059  	new_smi->dev_group_added = true;
2060  
2061  	rv = ipmi_register_smi(&handlers,
2062  			       new_smi,
2063  			       new_smi->io.dev,
2064  			       new_smi->io.slave_addr);
2065  	if (rv) {
2066  		dev_err(new_smi->io.dev,
2067  			"Unable to register device: error %d\n",
2068  			rv);
2069  		goto out_err;
2070  	}
2071  
2072  	/* Don't increment till we know we have succeeded. */
2073  	smi_num++;
2074  
2075  	dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2076  		 si_to_str[new_smi->io.si_type]);
2077  
2078  	WARN_ON(new_smi->io.dev->init_name != NULL);
2079  
2080   out_err:
2081  	if (rv && new_smi->io.io_cleanup) {
2082  		new_smi->io.io_cleanup(&new_smi->io);
2083  		new_smi->io.io_cleanup = NULL;
2084  	}
2085  
2086  	if (rv && new_smi->si_sm) {
2087  		kfree(new_smi->si_sm);
2088  		new_smi->si_sm = NULL;
2089  	}
2090  
2091  	return rv;
2092  }
2093  
init_ipmi_si(void)2094  static int __init init_ipmi_si(void)
2095  {
2096  	struct smi_info *e;
2097  	enum ipmi_addr_src type = SI_INVALID;
2098  
2099  	if (initialized)
2100  		return 0;
2101  
2102  	ipmi_hardcode_init();
2103  
2104  	pr_info("IPMI System Interface driver\n");
2105  
2106  	ipmi_si_platform_init();
2107  
2108  	ipmi_si_pci_init();
2109  
2110  	ipmi_si_parisc_init();
2111  
2112  	/* We prefer devices with interrupts, but in the case of a machine
2113  	   with multiple BMCs we assume that there will be several instances
2114  	   of a given type so if we succeed in registering a type then also
2115  	   try to register everything else of the same type */
2116  	mutex_lock(&smi_infos_lock);
2117  	list_for_each_entry(e, &smi_infos, link) {
2118  		/* Try to register a device if it has an IRQ and we either
2119  		   haven't successfully registered a device yet or this
2120  		   device has the same type as one we successfully registered */
2121  		if (e->io.irq && (!type || e->io.addr_source == type)) {
2122  			if (!try_smi_init(e)) {
2123  				type = e->io.addr_source;
2124  			}
2125  		}
2126  	}
2127  
2128  	/* type will only have been set if we successfully registered an si */
2129  	if (type)
2130  		goto skip_fallback_noirq;
2131  
2132  	/* Fall back to the preferred device */
2133  
2134  	list_for_each_entry(e, &smi_infos, link) {
2135  		if (!e->io.irq && (!type || e->io.addr_source == type)) {
2136  			if (!try_smi_init(e)) {
2137  				type = e->io.addr_source;
2138  			}
2139  		}
2140  	}
2141  
2142  skip_fallback_noirq:
2143  	initialized = true;
2144  	mutex_unlock(&smi_infos_lock);
2145  
2146  	if (type)
2147  		return 0;
2148  
2149  	mutex_lock(&smi_infos_lock);
2150  	if (unload_when_empty && list_empty(&smi_infos)) {
2151  		mutex_unlock(&smi_infos_lock);
2152  		cleanup_ipmi_si();
2153  		pr_warn("Unable to find any System Interface(s)\n");
2154  		return -ENODEV;
2155  	} else {
2156  		mutex_unlock(&smi_infos_lock);
2157  		return 0;
2158  	}
2159  }
2160  module_init(init_ipmi_si);
2161  
wait_msg_processed(struct smi_info * smi_info)2162  static void wait_msg_processed(struct smi_info *smi_info)
2163  {
2164  	unsigned long jiffies_now;
2165  	long time_diff;
2166  
2167  	while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2168  		jiffies_now = jiffies;
2169  		time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
2170  		     * SI_USEC_PER_JIFFY);
2171  		smi_event_handler(smi_info, time_diff);
2172  		schedule_timeout_uninterruptible(1);
2173  	}
2174  }
2175  
shutdown_smi(void * send_info)2176  static void shutdown_smi(void *send_info)
2177  {
2178  	struct smi_info *smi_info = send_info;
2179  
2180  	if (smi_info->dev_group_added) {
2181  		device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2182  		smi_info->dev_group_added = false;
2183  	}
2184  	if (smi_info->io.dev)
2185  		dev_set_drvdata(smi_info->io.dev, NULL);
2186  
2187  	/*
2188  	 * Make sure that interrupts, the timer and the thread are
2189  	 * stopped and will not run again.
2190  	 */
2191  	smi_info->interrupt_disabled = true;
2192  	if (smi_info->io.irq_cleanup) {
2193  		smi_info->io.irq_cleanup(&smi_info->io);
2194  		smi_info->io.irq_cleanup = NULL;
2195  	}
2196  	stop_timer_and_thread(smi_info);
2197  
2198  	/*
2199  	 * Wait until we know that we are out of any interrupt
2200  	 * handlers might have been running before we freed the
2201  	 * interrupt.
2202  	 */
2203  	synchronize_rcu();
2204  
2205  	/*
2206  	 * Timeouts are stopped, now make sure the interrupts are off
2207  	 * in the BMC.  Note that timers and CPU interrupts are off,
2208  	 * so no need for locks.
2209  	 */
2210  	wait_msg_processed(smi_info);
2211  
2212  	if (smi_info->handlers)
2213  		disable_si_irq(smi_info);
2214  
2215  	wait_msg_processed(smi_info);
2216  
2217  	if (smi_info->handlers)
2218  		smi_info->handlers->cleanup(smi_info->si_sm);
2219  
2220  	if (smi_info->io.io_cleanup) {
2221  		smi_info->io.io_cleanup(&smi_info->io);
2222  		smi_info->io.io_cleanup = NULL;
2223  	}
2224  
2225  	kfree(smi_info->si_sm);
2226  	smi_info->si_sm = NULL;
2227  
2228  	smi_info->intf = NULL;
2229  }
2230  
2231  /*
2232   * Must be called with smi_infos_lock held, to serialize the
2233   * smi_info->intf check.
2234   */
cleanup_one_si(struct smi_info * smi_info)2235  static void cleanup_one_si(struct smi_info *smi_info)
2236  {
2237  	if (!smi_info)
2238  		return;
2239  
2240  	list_del(&smi_info->link);
2241  	ipmi_unregister_smi(smi_info->intf);
2242  	kfree(smi_info);
2243  }
2244  
ipmi_si_remove_by_dev(struct device * dev)2245  void ipmi_si_remove_by_dev(struct device *dev)
2246  {
2247  	struct smi_info *e;
2248  
2249  	mutex_lock(&smi_infos_lock);
2250  	list_for_each_entry(e, &smi_infos, link) {
2251  		if (e->io.dev == dev) {
2252  			cleanup_one_si(e);
2253  			break;
2254  		}
2255  	}
2256  	mutex_unlock(&smi_infos_lock);
2257  }
2258  
ipmi_si_remove_by_data(int addr_space,enum si_type si_type,unsigned long addr)2259  struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2260  				      unsigned long addr)
2261  {
2262  	/* remove */
2263  	struct smi_info *e, *tmp_e;
2264  	struct device *dev = NULL;
2265  
2266  	mutex_lock(&smi_infos_lock);
2267  	list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2268  		if (e->io.addr_space != addr_space)
2269  			continue;
2270  		if (e->io.si_type != si_type)
2271  			continue;
2272  		if (e->io.addr_data == addr) {
2273  			dev = get_device(e->io.dev);
2274  			cleanup_one_si(e);
2275  		}
2276  	}
2277  	mutex_unlock(&smi_infos_lock);
2278  
2279  	return dev;
2280  }
2281  
cleanup_ipmi_si(void)2282  static void cleanup_ipmi_si(void)
2283  {
2284  	struct smi_info *e, *tmp_e;
2285  
2286  	if (!initialized)
2287  		return;
2288  
2289  	ipmi_si_pci_shutdown();
2290  
2291  	ipmi_si_parisc_shutdown();
2292  
2293  	ipmi_si_platform_shutdown();
2294  
2295  	mutex_lock(&smi_infos_lock);
2296  	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2297  		cleanup_one_si(e);
2298  	mutex_unlock(&smi_infos_lock);
2299  
2300  	ipmi_si_hardcode_exit();
2301  	ipmi_si_hotmod_exit();
2302  }
2303  module_exit(cleanup_ipmi_si);
2304  
2305  MODULE_ALIAS("platform:dmi-ipmi-si");
2306  MODULE_LICENSE("GPL");
2307  MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2308  MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
2309