1  #include <linux/gfp.h>
2  #include <linux/initrd.h>
3  #include <linux/ioport.h>
4  #include <linux/swap.h>
5  #include <linux/memblock.h>
6  #include <linux/swapfile.h>
7  #include <linux/swapops.h>
8  #include <linux/kmemleak.h>
9  #include <linux/sched/task.h>
10  #include <linux/execmem.h>
11  
12  #include <asm/set_memory.h>
13  #include <asm/cpu_device_id.h>
14  #include <asm/e820/api.h>
15  #include <asm/init.h>
16  #include <asm/page.h>
17  #include <asm/page_types.h>
18  #include <asm/sections.h>
19  #include <asm/setup.h>
20  #include <asm/tlbflush.h>
21  #include <asm/tlb.h>
22  #include <asm/proto.h>
23  #include <asm/dma.h>		/* for MAX_DMA_PFN */
24  #include <asm/kaslr.h>
25  #include <asm/hypervisor.h>
26  #include <asm/cpufeature.h>
27  #include <asm/pti.h>
28  #include <asm/text-patching.h>
29  #include <asm/memtype.h>
30  #include <asm/paravirt.h>
31  
32  /*
33   * We need to define the tracepoints somewhere, and tlb.c
34   * is only compiled when SMP=y.
35   */
36  #include <trace/events/tlb.h>
37  
38  #include "mm_internal.h"
39  
40  /*
41   * Tables translating between page_cache_type_t and pte encoding.
42   *
43   * The default values are defined statically as minimal supported mode;
44   * WC and WT fall back to UC-.  pat_init() updates these values to support
45   * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
46   * for the details.  Note, __early_ioremap() used during early boot-time
47   * takes pgprot_t (pte encoding) and does not use these tables.
48   *
49   *   Index into __cachemode2pte_tbl[] is the cachemode.
50   *
51   *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52   *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53   */
54  static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55  	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
56  	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
57  	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
58  	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
59  	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
60  	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
61  };
62  
cachemode2protval(enum page_cache_mode pcm)63  unsigned long cachemode2protval(enum page_cache_mode pcm)
64  {
65  	if (likely(pcm == 0))
66  		return 0;
67  	return __cachemode2pte_tbl[pcm];
68  }
69  EXPORT_SYMBOL(cachemode2protval);
70  
71  static uint8_t __pte2cachemode_tbl[8] = {
72  	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
73  	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74  	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
75  	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
76  	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77  	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78  	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79  	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
80  };
81  
82  /*
83   * Check that the write-protect PAT entry is set for write-protect.
84   * To do this without making assumptions how PAT has been set up (Xen has
85   * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86   * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87   * bits will select a cache mode of WP or better), and then translate the
88   * protection bits back into the cache mode using __pte2cm_idx() and the
89   * __pte2cachemode_tbl[] array. This will return the really used cache mode.
90   */
x86_has_pat_wp(void)91  bool x86_has_pat_wp(void)
92  {
93  	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
94  
95  	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
96  }
97  
pgprot2cachemode(pgprot_t pgprot)98  enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
99  {
100  	unsigned long masked;
101  
102  	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103  	if (likely(masked == 0))
104  		return 0;
105  	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
106  }
107  
108  static unsigned long __initdata pgt_buf_start;
109  static unsigned long __initdata pgt_buf_end;
110  static unsigned long __initdata pgt_buf_top;
111  
112  static unsigned long min_pfn_mapped;
113  
114  static bool __initdata can_use_brk_pgt = true;
115  
116  /*
117   * Pages returned are already directly mapped.
118   *
119   * Changing that is likely to break Xen, see commit:
120   *
121   *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
122   *
123   * for detailed information.
124   */
alloc_low_pages(unsigned int num)125  __ref void *alloc_low_pages(unsigned int num)
126  {
127  	unsigned long pfn;
128  	int i;
129  
130  	if (after_bootmem) {
131  		unsigned int order;
132  
133  		order = get_order((unsigned long)num << PAGE_SHIFT);
134  		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
135  	}
136  
137  	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
138  		unsigned long ret = 0;
139  
140  		if (min_pfn_mapped < max_pfn_mapped) {
141  			ret = memblock_phys_alloc_range(
142  					PAGE_SIZE * num, PAGE_SIZE,
143  					min_pfn_mapped << PAGE_SHIFT,
144  					max_pfn_mapped << PAGE_SHIFT);
145  		}
146  		if (!ret && can_use_brk_pgt)
147  			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
148  
149  		if (!ret)
150  			panic("alloc_low_pages: can not alloc memory");
151  
152  		pfn = ret >> PAGE_SHIFT;
153  	} else {
154  		pfn = pgt_buf_end;
155  		pgt_buf_end += num;
156  	}
157  
158  	for (i = 0; i < num; i++) {
159  		void *adr;
160  
161  		adr = __va((pfn + i) << PAGE_SHIFT);
162  		clear_page(adr);
163  	}
164  
165  	return __va(pfn << PAGE_SHIFT);
166  }
167  
168  /*
169   * By default need to be able to allocate page tables below PGD firstly for
170   * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
171   * With KASLR memory randomization, depending on the machine e820 memory and the
172   * PUD alignment, twice that many pages may be needed when KASLR memory
173   * randomization is enabled.
174   */
175  
176  #ifndef CONFIG_X86_5LEVEL
177  #define INIT_PGD_PAGE_TABLES    3
178  #else
179  #define INIT_PGD_PAGE_TABLES    4
180  #endif
181  
182  #ifndef CONFIG_RANDOMIZE_MEMORY
183  #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
184  #else
185  #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
186  #endif
187  
188  #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
189  RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)190  void  __init early_alloc_pgt_buf(void)
191  {
192  	unsigned long tables = INIT_PGT_BUF_SIZE;
193  	phys_addr_t base;
194  
195  	base = __pa(extend_brk(tables, PAGE_SIZE));
196  
197  	pgt_buf_start = base >> PAGE_SHIFT;
198  	pgt_buf_end = pgt_buf_start;
199  	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
200  }
201  
202  int after_bootmem;
203  
204  early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
205  
206  struct map_range {
207  	unsigned long start;
208  	unsigned long end;
209  	unsigned page_size_mask;
210  };
211  
212  static int page_size_mask;
213  
214  /*
215   * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
216   * enable and PPro Global page enable), so that any CPU's that boot
217   * up after us can get the correct flags. Invoked on the boot CPU.
218   */
cr4_set_bits_and_update_boot(unsigned long mask)219  static inline void cr4_set_bits_and_update_boot(unsigned long mask)
220  {
221  	mmu_cr4_features |= mask;
222  	if (trampoline_cr4_features)
223  		*trampoline_cr4_features = mmu_cr4_features;
224  	cr4_set_bits(mask);
225  }
226  
probe_page_size_mask(void)227  static void __init probe_page_size_mask(void)
228  {
229  	/*
230  	 * For pagealloc debugging, identity mapping will use small pages.
231  	 * This will simplify cpa(), which otherwise needs to support splitting
232  	 * large pages into small in interrupt context, etc.
233  	 */
234  	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
235  		page_size_mask |= 1 << PG_LEVEL_2M;
236  	else
237  		direct_gbpages = 0;
238  
239  	/* Enable PSE if available */
240  	if (boot_cpu_has(X86_FEATURE_PSE))
241  		cr4_set_bits_and_update_boot(X86_CR4_PSE);
242  
243  	/* Enable PGE if available */
244  	__supported_pte_mask &= ~_PAGE_GLOBAL;
245  	if (boot_cpu_has(X86_FEATURE_PGE)) {
246  		cr4_set_bits_and_update_boot(X86_CR4_PGE);
247  		__supported_pte_mask |= _PAGE_GLOBAL;
248  	}
249  
250  	/* By the default is everything supported: */
251  	__default_kernel_pte_mask = __supported_pte_mask;
252  	/* Except when with PTI where the kernel is mostly non-Global: */
253  	if (cpu_feature_enabled(X86_FEATURE_PTI))
254  		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
255  
256  	/* Enable 1 GB linear kernel mappings if available: */
257  	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
258  		printk(KERN_INFO "Using GB pages for direct mapping\n");
259  		page_size_mask |= 1 << PG_LEVEL_1G;
260  	} else {
261  		direct_gbpages = 0;
262  	}
263  }
264  
265  /*
266   * INVLPG may not properly flush Global entries
267   * on these CPUs when PCIDs are enabled.
268   */
269  static const struct x86_cpu_id invlpg_miss_ids[] = {
270  	X86_MATCH_VFM(INTEL_ALDERLAKE,	    0),
271  	X86_MATCH_VFM(INTEL_ALDERLAKE_L,    0),
272  	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0),
273  	X86_MATCH_VFM(INTEL_RAPTORLAKE,	    0),
274  	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,   0),
275  	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,   0),
276  	{}
277  };
278  
setup_pcid(void)279  static void setup_pcid(void)
280  {
281  	if (!IS_ENABLED(CONFIG_X86_64))
282  		return;
283  
284  	if (!boot_cpu_has(X86_FEATURE_PCID))
285  		return;
286  
287  	if (x86_match_cpu(invlpg_miss_ids)) {
288  		pr_info("Incomplete global flushes, disabling PCID");
289  		setup_clear_cpu_cap(X86_FEATURE_PCID);
290  		return;
291  	}
292  
293  	if (boot_cpu_has(X86_FEATURE_PGE)) {
294  		/*
295  		 * This can't be cr4_set_bits_and_update_boot() -- the
296  		 * trampoline code can't handle CR4.PCIDE and it wouldn't
297  		 * do any good anyway.  Despite the name,
298  		 * cr4_set_bits_and_update_boot() doesn't actually cause
299  		 * the bits in question to remain set all the way through
300  		 * the secondary boot asm.
301  		 *
302  		 * Instead, we brute-force it and set CR4.PCIDE manually in
303  		 * start_secondary().
304  		 */
305  		cr4_set_bits(X86_CR4_PCIDE);
306  	} else {
307  		/*
308  		 * flush_tlb_all(), as currently implemented, won't work if
309  		 * PCID is on but PGE is not.  Since that combination
310  		 * doesn't exist on real hardware, there's no reason to try
311  		 * to fully support it, but it's polite to avoid corrupting
312  		 * data if we're on an improperly configured VM.
313  		 */
314  		setup_clear_cpu_cap(X86_FEATURE_PCID);
315  	}
316  }
317  
318  #ifdef CONFIG_X86_32
319  #define NR_RANGE_MR 3
320  #else /* CONFIG_X86_64 */
321  #define NR_RANGE_MR 5
322  #endif
323  
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)324  static int __meminit save_mr(struct map_range *mr, int nr_range,
325  			     unsigned long start_pfn, unsigned long end_pfn,
326  			     unsigned long page_size_mask)
327  {
328  	if (start_pfn < end_pfn) {
329  		if (nr_range >= NR_RANGE_MR)
330  			panic("run out of range for init_memory_mapping\n");
331  		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
332  		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
333  		mr[nr_range].page_size_mask = page_size_mask;
334  		nr_range++;
335  	}
336  
337  	return nr_range;
338  }
339  
340  /*
341   * adjust the page_size_mask for small range to go with
342   *	big page size instead small one if nearby are ram too.
343   */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)344  static void __ref adjust_range_page_size_mask(struct map_range *mr,
345  							 int nr_range)
346  {
347  	int i;
348  
349  	for (i = 0; i < nr_range; i++) {
350  		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
351  		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
352  			unsigned long start = round_down(mr[i].start, PMD_SIZE);
353  			unsigned long end = round_up(mr[i].end, PMD_SIZE);
354  
355  #ifdef CONFIG_X86_32
356  			if ((end >> PAGE_SHIFT) > max_low_pfn)
357  				continue;
358  #endif
359  
360  			if (memblock_is_region_memory(start, end - start))
361  				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
362  		}
363  		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
364  		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
365  			unsigned long start = round_down(mr[i].start, PUD_SIZE);
366  			unsigned long end = round_up(mr[i].end, PUD_SIZE);
367  
368  			if (memblock_is_region_memory(start, end - start))
369  				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
370  		}
371  	}
372  }
373  
page_size_string(struct map_range * mr)374  static const char *page_size_string(struct map_range *mr)
375  {
376  	static const char str_1g[] = "1G";
377  	static const char str_2m[] = "2M";
378  	static const char str_4m[] = "4M";
379  	static const char str_4k[] = "4k";
380  
381  	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
382  		return str_1g;
383  	/*
384  	 * 32-bit without PAE has a 4M large page size.
385  	 * PG_LEVEL_2M is misnamed, but we can at least
386  	 * print out the right size in the string.
387  	 */
388  	if (IS_ENABLED(CONFIG_X86_32) &&
389  	    !IS_ENABLED(CONFIG_X86_PAE) &&
390  	    mr->page_size_mask & (1<<PG_LEVEL_2M))
391  		return str_4m;
392  
393  	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
394  		return str_2m;
395  
396  	return str_4k;
397  }
398  
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)399  static int __meminit split_mem_range(struct map_range *mr, int nr_range,
400  				     unsigned long start,
401  				     unsigned long end)
402  {
403  	unsigned long start_pfn, end_pfn, limit_pfn;
404  	unsigned long pfn;
405  	int i;
406  
407  	limit_pfn = PFN_DOWN(end);
408  
409  	/* head if not big page alignment ? */
410  	pfn = start_pfn = PFN_DOWN(start);
411  #ifdef CONFIG_X86_32
412  	/*
413  	 * Don't use a large page for the first 2/4MB of memory
414  	 * because there are often fixed size MTRRs in there
415  	 * and overlapping MTRRs into large pages can cause
416  	 * slowdowns.
417  	 */
418  	if (pfn == 0)
419  		end_pfn = PFN_DOWN(PMD_SIZE);
420  	else
421  		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
422  #else /* CONFIG_X86_64 */
423  	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
424  #endif
425  	if (end_pfn > limit_pfn)
426  		end_pfn = limit_pfn;
427  	if (start_pfn < end_pfn) {
428  		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
429  		pfn = end_pfn;
430  	}
431  
432  	/* big page (2M) range */
433  	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
434  #ifdef CONFIG_X86_32
435  	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
436  #else /* CONFIG_X86_64 */
437  	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
438  	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
439  		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
440  #endif
441  
442  	if (start_pfn < end_pfn) {
443  		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
444  				page_size_mask & (1<<PG_LEVEL_2M));
445  		pfn = end_pfn;
446  	}
447  
448  #ifdef CONFIG_X86_64
449  	/* big page (1G) range */
450  	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
451  	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
452  	if (start_pfn < end_pfn) {
453  		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
454  				page_size_mask &
455  				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
456  		pfn = end_pfn;
457  	}
458  
459  	/* tail is not big page (1G) alignment */
460  	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
461  	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
462  	if (start_pfn < end_pfn) {
463  		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
464  				page_size_mask & (1<<PG_LEVEL_2M));
465  		pfn = end_pfn;
466  	}
467  #endif
468  
469  	/* tail is not big page (2M) alignment */
470  	start_pfn = pfn;
471  	end_pfn = limit_pfn;
472  	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
473  
474  	if (!after_bootmem)
475  		adjust_range_page_size_mask(mr, nr_range);
476  
477  	/* try to merge same page size and continuous */
478  	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
479  		unsigned long old_start;
480  		if (mr[i].end != mr[i+1].start ||
481  		    mr[i].page_size_mask != mr[i+1].page_size_mask)
482  			continue;
483  		/* move it */
484  		old_start = mr[i].start;
485  		memmove(&mr[i], &mr[i+1],
486  			(nr_range - 1 - i) * sizeof(struct map_range));
487  		mr[i--].start = old_start;
488  		nr_range--;
489  	}
490  
491  	for (i = 0; i < nr_range; i++)
492  		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
493  				mr[i].start, mr[i].end - 1,
494  				page_size_string(&mr[i]));
495  
496  	return nr_range;
497  }
498  
499  struct range pfn_mapped[E820_MAX_ENTRIES];
500  int nr_pfn_mapped;
501  
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)502  static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
503  {
504  	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
505  					     nr_pfn_mapped, start_pfn, end_pfn);
506  	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
507  
508  	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
509  
510  	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
511  		max_low_pfn_mapped = max(max_low_pfn_mapped,
512  					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
513  }
514  
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)515  bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
516  {
517  	int i;
518  
519  	for (i = 0; i < nr_pfn_mapped; i++)
520  		if ((start_pfn >= pfn_mapped[i].start) &&
521  		    (end_pfn <= pfn_mapped[i].end))
522  			return true;
523  
524  	return false;
525  }
526  
527  /*
528   * Setup the direct mapping of the physical memory at PAGE_OFFSET.
529   * This runs before bootmem is initialized and gets pages directly from
530   * the physical memory. To access them they are temporarily mapped.
531   */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)532  unsigned long __ref init_memory_mapping(unsigned long start,
533  					unsigned long end, pgprot_t prot)
534  {
535  	struct map_range mr[NR_RANGE_MR];
536  	unsigned long ret = 0;
537  	int nr_range, i;
538  
539  	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
540  	       start, end - 1);
541  
542  	memset(mr, 0, sizeof(mr));
543  	nr_range = split_mem_range(mr, 0, start, end);
544  
545  	for (i = 0; i < nr_range; i++)
546  		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
547  						   mr[i].page_size_mask,
548  						   prot);
549  
550  	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
551  
552  	return ret >> PAGE_SHIFT;
553  }
554  
555  /*
556   * We need to iterate through the E820 memory map and create direct mappings
557   * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
558   * create direct mappings for all pfns from [0 to max_low_pfn) and
559   * [4GB to max_pfn) because of possible memory holes in high addresses
560   * that cannot be marked as UC by fixed/variable range MTRRs.
561   * Depending on the alignment of E820 ranges, this may possibly result
562   * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
563   *
564   * init_mem_mapping() calls init_range_memory_mapping() with big range.
565   * That range would have hole in the middle or ends, and only ram parts
566   * will be mapped in init_range_memory_mapping().
567   */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)568  static unsigned long __init init_range_memory_mapping(
569  					   unsigned long r_start,
570  					   unsigned long r_end)
571  {
572  	unsigned long start_pfn, end_pfn;
573  	unsigned long mapped_ram_size = 0;
574  	int i;
575  
576  	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
577  		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
578  		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
579  		if (start >= end)
580  			continue;
581  
582  		/*
583  		 * if it is overlapping with brk pgt, we need to
584  		 * alloc pgt buf from memblock instead.
585  		 */
586  		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
587  				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
588  		init_memory_mapping(start, end, PAGE_KERNEL);
589  		mapped_ram_size += end - start;
590  		can_use_brk_pgt = true;
591  	}
592  
593  	return mapped_ram_size;
594  }
595  
get_new_step_size(unsigned long step_size)596  static unsigned long __init get_new_step_size(unsigned long step_size)
597  {
598  	/*
599  	 * Initial mapped size is PMD_SIZE (2M).
600  	 * We can not set step_size to be PUD_SIZE (1G) yet.
601  	 * In worse case, when we cross the 1G boundary, and
602  	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
603  	 * to map 1G range with PTE. Hence we use one less than the
604  	 * difference of page table level shifts.
605  	 *
606  	 * Don't need to worry about overflow in the top-down case, on 32bit,
607  	 * when step_size is 0, round_down() returns 0 for start, and that
608  	 * turns it into 0x100000000ULL.
609  	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
610  	 * needs to be taken into consideration by the code below.
611  	 */
612  	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
613  }
614  
615  /**
616   * memory_map_top_down - Map [map_start, map_end) top down
617   * @map_start: start address of the target memory range
618   * @map_end: end address of the target memory range
619   *
620   * This function will setup direct mapping for memory range
621   * [map_start, map_end) in top-down. That said, the page tables
622   * will be allocated at the end of the memory, and we map the
623   * memory in top-down.
624   */
memory_map_top_down(unsigned long map_start,unsigned long map_end)625  static void __init memory_map_top_down(unsigned long map_start,
626  				       unsigned long map_end)
627  {
628  	unsigned long real_end, last_start;
629  	unsigned long step_size;
630  	unsigned long addr;
631  	unsigned long mapped_ram_size = 0;
632  
633  	/*
634  	 * Systems that have many reserved areas near top of the memory,
635  	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
636  	 * require lots of 4K mappings which may exhaust pgt_buf.
637  	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
638  	 * there is enough mapped memory that can be allocated from
639  	 * memblock.
640  	 */
641  	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
642  					 map_end);
643  	memblock_phys_free(addr, PMD_SIZE);
644  	real_end = addr + PMD_SIZE;
645  
646  	/* step_size need to be small so pgt_buf from BRK could cover it */
647  	step_size = PMD_SIZE;
648  	max_pfn_mapped = 0; /* will get exact value next */
649  	min_pfn_mapped = real_end >> PAGE_SHIFT;
650  	last_start = real_end;
651  
652  	/*
653  	 * We start from the top (end of memory) and go to the bottom.
654  	 * The memblock_find_in_range() gets us a block of RAM from the
655  	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
656  	 * for page table.
657  	 */
658  	while (last_start > map_start) {
659  		unsigned long start;
660  
661  		if (last_start > step_size) {
662  			start = round_down(last_start - 1, step_size);
663  			if (start < map_start)
664  				start = map_start;
665  		} else
666  			start = map_start;
667  		mapped_ram_size += init_range_memory_mapping(start,
668  							last_start);
669  		last_start = start;
670  		min_pfn_mapped = last_start >> PAGE_SHIFT;
671  		if (mapped_ram_size >= step_size)
672  			step_size = get_new_step_size(step_size);
673  	}
674  
675  	if (real_end < map_end)
676  		init_range_memory_mapping(real_end, map_end);
677  }
678  
679  /**
680   * memory_map_bottom_up - Map [map_start, map_end) bottom up
681   * @map_start: start address of the target memory range
682   * @map_end: end address of the target memory range
683   *
684   * This function will setup direct mapping for memory range
685   * [map_start, map_end) in bottom-up. Since we have limited the
686   * bottom-up allocation above the kernel, the page tables will
687   * be allocated just above the kernel and we map the memory
688   * in [map_start, map_end) in bottom-up.
689   */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)690  static void __init memory_map_bottom_up(unsigned long map_start,
691  					unsigned long map_end)
692  {
693  	unsigned long next, start;
694  	unsigned long mapped_ram_size = 0;
695  	/* step_size need to be small so pgt_buf from BRK could cover it */
696  	unsigned long step_size = PMD_SIZE;
697  
698  	start = map_start;
699  	min_pfn_mapped = start >> PAGE_SHIFT;
700  
701  	/*
702  	 * We start from the bottom (@map_start) and go to the top (@map_end).
703  	 * The memblock_find_in_range() gets us a block of RAM from the
704  	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
705  	 * for page table.
706  	 */
707  	while (start < map_end) {
708  		if (step_size && map_end - start > step_size) {
709  			next = round_up(start + 1, step_size);
710  			if (next > map_end)
711  				next = map_end;
712  		} else {
713  			next = map_end;
714  		}
715  
716  		mapped_ram_size += init_range_memory_mapping(start, next);
717  		start = next;
718  
719  		if (mapped_ram_size >= step_size)
720  			step_size = get_new_step_size(step_size);
721  	}
722  }
723  
724  /*
725   * The real mode trampoline, which is required for bootstrapping CPUs
726   * occupies only a small area under the low 1MB.  See reserve_real_mode()
727   * for details.
728   *
729   * If KASLR is disabled the first PGD entry of the direct mapping is copied
730   * to map the real mode trampoline.
731   *
732   * If KASLR is enabled, copy only the PUD which covers the low 1MB
733   * area. This limits the randomization granularity to 1GB for both 4-level
734   * and 5-level paging.
735   */
init_trampoline(void)736  static void __init init_trampoline(void)
737  {
738  #ifdef CONFIG_X86_64
739  	/*
740  	 * The code below will alias kernel page-tables in the user-range of the
741  	 * address space, including the Global bit. So global TLB entries will
742  	 * be created when using the trampoline page-table.
743  	 */
744  	if (!kaslr_memory_enabled())
745  		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
746  	else
747  		init_trampoline_kaslr();
748  #endif
749  }
750  
init_mem_mapping(void)751  void __init init_mem_mapping(void)
752  {
753  	unsigned long end;
754  
755  	pti_check_boottime_disable();
756  	probe_page_size_mask();
757  	setup_pcid();
758  
759  #ifdef CONFIG_X86_64
760  	end = max_pfn << PAGE_SHIFT;
761  #else
762  	end = max_low_pfn << PAGE_SHIFT;
763  #endif
764  
765  	/* the ISA range is always mapped regardless of memory holes */
766  	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
767  
768  	/* Init the trampoline, possibly with KASLR memory offset */
769  	init_trampoline();
770  
771  	/*
772  	 * If the allocation is in bottom-up direction, we setup direct mapping
773  	 * in bottom-up, otherwise we setup direct mapping in top-down.
774  	 */
775  	if (memblock_bottom_up()) {
776  		unsigned long kernel_end = __pa_symbol(_end);
777  
778  		/*
779  		 * we need two separate calls here. This is because we want to
780  		 * allocate page tables above the kernel. So we first map
781  		 * [kernel_end, end) to make memory above the kernel be mapped
782  		 * as soon as possible. And then use page tables allocated above
783  		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
784  		 */
785  		memory_map_bottom_up(kernel_end, end);
786  		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
787  	} else {
788  		memory_map_top_down(ISA_END_ADDRESS, end);
789  	}
790  
791  #ifdef CONFIG_X86_64
792  	if (max_pfn > max_low_pfn) {
793  		/* can we preserve max_low_pfn ?*/
794  		max_low_pfn = max_pfn;
795  	}
796  #else
797  	early_ioremap_page_table_range_init();
798  #endif
799  
800  	load_cr3(swapper_pg_dir);
801  	__flush_tlb_all();
802  
803  	x86_init.hyper.init_mem_mapping();
804  
805  	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
806  }
807  
808  /*
809   * Initialize an mm_struct to be used during poking and a pointer to be used
810   * during patching.
811   */
poking_init(void)812  void __init poking_init(void)
813  {
814  	spinlock_t *ptl;
815  	pte_t *ptep;
816  
817  	poking_mm = mm_alloc();
818  	BUG_ON(!poking_mm);
819  
820  	/* Xen PV guests need the PGD to be pinned. */
821  	paravirt_enter_mmap(poking_mm);
822  
823  	/*
824  	 * Randomize the poking address, but make sure that the following page
825  	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
826  	 * and adjust the address if the PMD ends after the first one.
827  	 */
828  	poking_addr = TASK_UNMAPPED_BASE;
829  	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
830  		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
831  			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
832  
833  	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
834  		poking_addr += PAGE_SIZE;
835  
836  	/*
837  	 * We need to trigger the allocation of the page-tables that will be
838  	 * needed for poking now. Later, poking may be performed in an atomic
839  	 * section, which might cause allocation to fail.
840  	 */
841  	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
842  	BUG_ON(!ptep);
843  	pte_unmap_unlock(ptep, ptl);
844  }
845  
846  /*
847   * devmem_is_allowed() checks to see if /dev/mem access to a certain address
848   * is valid. The argument is a physical page number.
849   *
850   * On x86, access has to be given to the first megabyte of RAM because that
851   * area traditionally contains BIOS code and data regions used by X, dosemu,
852   * and similar apps. Since they map the entire memory range, the whole range
853   * must be allowed (for mapping), but any areas that would otherwise be
854   * disallowed are flagged as being "zero filled" instead of rejected.
855   * Access has to be given to non-kernel-ram areas as well, these contain the
856   * PCI mmio resources as well as potential bios/acpi data regions.
857   */
devmem_is_allowed(unsigned long pagenr)858  int devmem_is_allowed(unsigned long pagenr)
859  {
860  	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
861  				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
862  			!= REGION_DISJOINT) {
863  		/*
864  		 * For disallowed memory regions in the low 1MB range,
865  		 * request that the page be shown as all zeros.
866  		 */
867  		if (pagenr < 256)
868  			return 2;
869  
870  		return 0;
871  	}
872  
873  	/*
874  	 * This must follow RAM test, since System RAM is considered a
875  	 * restricted resource under CONFIG_STRICT_DEVMEM.
876  	 */
877  	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
878  		/* Low 1MB bypasses iomem restrictions. */
879  		if (pagenr < 256)
880  			return 1;
881  
882  		return 0;
883  	}
884  
885  	return 1;
886  }
887  
free_init_pages(const char * what,unsigned long begin,unsigned long end)888  void free_init_pages(const char *what, unsigned long begin, unsigned long end)
889  {
890  	unsigned long begin_aligned, end_aligned;
891  
892  	/* Make sure boundaries are page aligned */
893  	begin_aligned = PAGE_ALIGN(begin);
894  	end_aligned   = end & PAGE_MASK;
895  
896  	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
897  		begin = begin_aligned;
898  		end   = end_aligned;
899  	}
900  
901  	if (begin >= end)
902  		return;
903  
904  	/*
905  	 * If debugging page accesses then do not free this memory but
906  	 * mark them not present - any buggy init-section access will
907  	 * create a kernel page fault:
908  	 */
909  	if (debug_pagealloc_enabled()) {
910  		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
911  			begin, end - 1);
912  		/*
913  		 * Inform kmemleak about the hole in the memory since the
914  		 * corresponding pages will be unmapped.
915  		 */
916  		kmemleak_free_part((void *)begin, end - begin);
917  		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
918  	} else {
919  		/*
920  		 * We just marked the kernel text read only above, now that
921  		 * we are going to free part of that, we need to make that
922  		 * writeable and non-executable first.
923  		 */
924  		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
925  		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
926  
927  		free_reserved_area((void *)begin, (void *)end,
928  				   POISON_FREE_INITMEM, what);
929  	}
930  }
931  
932  /*
933   * begin/end can be in the direct map or the "high kernel mapping"
934   * used for the kernel image only.  free_init_pages() will do the
935   * right thing for either kind of address.
936   */
free_kernel_image_pages(const char * what,void * begin,void * end)937  void free_kernel_image_pages(const char *what, void *begin, void *end)
938  {
939  	unsigned long begin_ul = (unsigned long)begin;
940  	unsigned long end_ul = (unsigned long)end;
941  	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
942  
943  	free_init_pages(what, begin_ul, end_ul);
944  
945  	/*
946  	 * PTI maps some of the kernel into userspace.  For performance,
947  	 * this includes some kernel areas that do not contain secrets.
948  	 * Those areas might be adjacent to the parts of the kernel image
949  	 * being freed, which may contain secrets.  Remove the "high kernel
950  	 * image mapping" for these freed areas, ensuring they are not even
951  	 * potentially vulnerable to Meltdown regardless of the specific
952  	 * optimizations PTI is currently using.
953  	 *
954  	 * The "noalias" prevents unmapping the direct map alias which is
955  	 * needed to access the freed pages.
956  	 *
957  	 * This is only valid for 64bit kernels. 32bit has only one mapping
958  	 * which can't be treated in this way for obvious reasons.
959  	 */
960  	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
961  		set_memory_np_noalias(begin_ul, len_pages);
962  }
963  
free_initmem(void)964  void __ref free_initmem(void)
965  {
966  	e820__reallocate_tables();
967  
968  	mem_encrypt_free_decrypted_mem();
969  
970  	free_kernel_image_pages("unused kernel image (initmem)",
971  				&__init_begin, &__init_end);
972  }
973  
974  #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)975  void __init free_initrd_mem(unsigned long start, unsigned long end)
976  {
977  	/*
978  	 * end could be not aligned, and We can not align that,
979  	 * decompressor could be confused by aligned initrd_end
980  	 * We already reserve the end partial page before in
981  	 *   - i386_start_kernel()
982  	 *   - x86_64_start_kernel()
983  	 *   - relocate_initrd()
984  	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
985  	 */
986  	free_init_pages("initrd", start, PAGE_ALIGN(end));
987  }
988  #endif
989  
zone_sizes_init(void)990  void __init zone_sizes_init(void)
991  {
992  	unsigned long max_zone_pfns[MAX_NR_ZONES];
993  
994  	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
995  
996  #ifdef CONFIG_ZONE_DMA
997  	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
998  #endif
999  #ifdef CONFIG_ZONE_DMA32
1000  	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1001  #endif
1002  	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1003  #ifdef CONFIG_HIGHMEM
1004  	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1005  #endif
1006  
1007  	free_area_init(max_zone_pfns);
1008  }
1009  
1010  __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1011  	.loaded_mm = &init_mm,
1012  	.next_asid = 1,
1013  	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1014  };
1015  
1016  #ifdef CONFIG_ADDRESS_MASKING
1017  DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1018  EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1019  #endif
1020  
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1021  void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1022  {
1023  	/* entry 0 MUST be WB (hardwired to speed up translations) */
1024  	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1025  
1026  	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1027  	__pte2cachemode_tbl[entry] = cache;
1028  }
1029  
1030  #ifdef CONFIG_SWAP
arch_max_swapfile_size(void)1031  unsigned long arch_max_swapfile_size(void)
1032  {
1033  	unsigned long pages;
1034  
1035  	pages = generic_max_swapfile_size();
1036  
1037  	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1038  		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1039  		unsigned long long l1tf_limit = l1tf_pfn_limit();
1040  		/*
1041  		 * We encode swap offsets also with 3 bits below those for pfn
1042  		 * which makes the usable limit higher.
1043  		 */
1044  #if CONFIG_PGTABLE_LEVELS > 2
1045  		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1046  #endif
1047  		pages = min_t(unsigned long long, l1tf_limit, pages);
1048  	}
1049  	return pages;
1050  }
1051  #endif
1052  
1053  #ifdef CONFIG_EXECMEM
1054  static struct execmem_info execmem_info __ro_after_init;
1055  
execmem_arch_setup(void)1056  struct execmem_info __init *execmem_arch_setup(void)
1057  {
1058  	unsigned long start, offset = 0;
1059  
1060  	if (kaslr_enabled())
1061  		offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1062  
1063  	start = MODULES_VADDR + offset;
1064  
1065  	execmem_info = (struct execmem_info){
1066  		.ranges = {
1067  			[EXECMEM_DEFAULT] = {
1068  				.flags	= EXECMEM_KASAN_SHADOW,
1069  				.start	= start,
1070  				.end	= MODULES_END,
1071  				.pgprot	= PAGE_KERNEL,
1072  				.alignment = MODULE_ALIGN,
1073  			},
1074  		},
1075  	};
1076  
1077  	return &execmem_info;
1078  }
1079  #endif /* CONFIG_EXECMEM */
1080