1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52
53 #include <trace/events/ipi.h>
54
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "x86_ops.h"
72 #include "smm.h"
73 #include "vmx_onhyperv.h"
74 #include "posted_intr.h"
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
78 MODULE_LICENSE("GPL");
79
80 #ifdef MODULE
81 static const struct x86_cpu_id vmx_cpu_id[] = {
82 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
83 {}
84 };
85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
86 #endif
87
88 bool __read_mostly enable_vpid = 1;
89 module_param_named(vpid, enable_vpid, bool, 0444);
90
91 static bool __read_mostly enable_vnmi = 1;
92 module_param_named(vnmi, enable_vnmi, bool, 0444);
93
94 bool __read_mostly flexpriority_enabled = 1;
95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
96
97 bool __read_mostly enable_ept = 1;
98 module_param_named(ept, enable_ept, bool, 0444);
99
100 bool __read_mostly enable_unrestricted_guest = 1;
101 module_param_named(unrestricted_guest,
102 enable_unrestricted_guest, bool, 0444);
103
104 bool __read_mostly enable_ept_ad_bits = 1;
105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
106
107 static bool __read_mostly emulate_invalid_guest_state = true;
108 module_param(emulate_invalid_guest_state, bool, 0444);
109
110 static bool __read_mostly fasteoi = 1;
111 module_param(fasteoi, bool, 0444);
112
113 module_param(enable_apicv, bool, 0444);
114
115 bool __read_mostly enable_ipiv = true;
116 module_param(enable_ipiv, bool, 0444);
117
118 /*
119 * If nested=1, nested virtualization is supported, i.e., guests may use
120 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
121 * use VMX instructions.
122 */
123 static bool __read_mostly nested = 1;
124 module_param(nested, bool, 0444);
125
126 bool __read_mostly enable_pml = 1;
127 module_param_named(pml, enable_pml, bool, 0444);
128
129 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
130 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
131
132 static bool __read_mostly dump_invalid_vmcs = 0;
133 module_param(dump_invalid_vmcs, bool, 0644);
134
135 #define MSR_BITMAP_MODE_X2APIC 1
136 #define MSR_BITMAP_MODE_X2APIC_APICV 2
137
138 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
139
140 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
141 static int __read_mostly cpu_preemption_timer_multi;
142 static bool __read_mostly enable_preemption_timer = 1;
143 #ifdef CONFIG_X86_64
144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
145 #endif
146
147 extern bool __read_mostly allow_smaller_maxphyaddr;
148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
149
150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
152 #define KVM_VM_CR0_ALWAYS_ON \
153 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
154
155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
158
159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
160
161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
162 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
163 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
164 RTIT_STATUS_BYTECNT))
165
166 /*
167 * List of MSRs that can be directly passed to the guest.
168 * In addition to these x2apic, PT and LBR MSRs are handled specially.
169 */
170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
171 MSR_IA32_SPEC_CTRL,
172 MSR_IA32_PRED_CMD,
173 MSR_IA32_FLUSH_CMD,
174 MSR_IA32_TSC,
175 #ifdef CONFIG_X86_64
176 MSR_FS_BASE,
177 MSR_GS_BASE,
178 MSR_KERNEL_GS_BASE,
179 MSR_IA32_XFD,
180 MSR_IA32_XFD_ERR,
181 #endif
182 MSR_IA32_SYSENTER_CS,
183 MSR_IA32_SYSENTER_ESP,
184 MSR_IA32_SYSENTER_EIP,
185 MSR_CORE_C1_RES,
186 MSR_CORE_C3_RESIDENCY,
187 MSR_CORE_C6_RESIDENCY,
188 MSR_CORE_C7_RESIDENCY,
189 };
190
191 /*
192 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
193 * ple_gap: upper bound on the amount of time between two successive
194 * executions of PAUSE in a loop. Also indicate if ple enabled.
195 * According to test, this time is usually smaller than 128 cycles.
196 * ple_window: upper bound on the amount of time a guest is allowed to execute
197 * in a PAUSE loop. Tests indicate that most spinlocks are held for
198 * less than 2^12 cycles
199 * Time is measured based on a counter that runs at the same rate as the TSC,
200 * refer SDM volume 3b section 21.6.13 & 22.1.3.
201 */
202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
203 module_param(ple_gap, uint, 0444);
204
205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
206 module_param(ple_window, uint, 0444);
207
208 /* Default doubles per-vcpu window every exit. */
209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
210 module_param(ple_window_grow, uint, 0444);
211
212 /* Default resets per-vcpu window every exit to ple_window. */
213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
214 module_param(ple_window_shrink, uint, 0444);
215
216 /* Default is to compute the maximum so we can never overflow. */
217 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
218 module_param(ple_window_max, uint, 0444);
219
220 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
221 int __read_mostly pt_mode = PT_MODE_SYSTEM;
222 #ifdef CONFIG_BROKEN
223 module_param(pt_mode, int, S_IRUGO);
224 #endif
225
226 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
227
228 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
229 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
230 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
231
232 /* Storage for pre module init parameter parsing */
233 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
234
235 static const struct {
236 const char *option;
237 bool for_parse;
238 } vmentry_l1d_param[] = {
239 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
240 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
241 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
242 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
243 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
244 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
245 };
246
247 #define L1D_CACHE_ORDER 4
248 static void *vmx_l1d_flush_pages;
249
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)250 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
251 {
252 struct page *page;
253 unsigned int i;
254
255 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
257 return 0;
258 }
259
260 if (!enable_ept) {
261 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
262 return 0;
263 }
264
265 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
266 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
267 return 0;
268 }
269
270 /* If set to auto use the default l1tf mitigation method */
271 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
272 switch (l1tf_mitigation) {
273 case L1TF_MITIGATION_OFF:
274 l1tf = VMENTER_L1D_FLUSH_NEVER;
275 break;
276 case L1TF_MITIGATION_FLUSH_NOWARN:
277 case L1TF_MITIGATION_FLUSH:
278 case L1TF_MITIGATION_FLUSH_NOSMT:
279 l1tf = VMENTER_L1D_FLUSH_COND;
280 break;
281 case L1TF_MITIGATION_FULL:
282 case L1TF_MITIGATION_FULL_FORCE:
283 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 break;
285 }
286 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
287 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
288 }
289
290 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
291 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
292 /*
293 * This allocation for vmx_l1d_flush_pages is not tied to a VM
294 * lifetime and so should not be charged to a memcg.
295 */
296 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
297 if (!page)
298 return -ENOMEM;
299 vmx_l1d_flush_pages = page_address(page);
300
301 /*
302 * Initialize each page with a different pattern in
303 * order to protect against KSM in the nested
304 * virtualization case.
305 */
306 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
307 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
308 PAGE_SIZE);
309 }
310 }
311
312 l1tf_vmx_mitigation = l1tf;
313
314 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
315 static_branch_enable(&vmx_l1d_should_flush);
316 else
317 static_branch_disable(&vmx_l1d_should_flush);
318
319 if (l1tf == VMENTER_L1D_FLUSH_COND)
320 static_branch_enable(&vmx_l1d_flush_cond);
321 else
322 static_branch_disable(&vmx_l1d_flush_cond);
323 return 0;
324 }
325
vmentry_l1d_flush_parse(const char * s)326 static int vmentry_l1d_flush_parse(const char *s)
327 {
328 unsigned int i;
329
330 if (s) {
331 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
332 if (vmentry_l1d_param[i].for_parse &&
333 sysfs_streq(s, vmentry_l1d_param[i].option))
334 return i;
335 }
336 }
337 return -EINVAL;
338 }
339
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)340 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
341 {
342 int l1tf, ret;
343
344 l1tf = vmentry_l1d_flush_parse(s);
345 if (l1tf < 0)
346 return l1tf;
347
348 if (!boot_cpu_has(X86_BUG_L1TF))
349 return 0;
350
351 /*
352 * Has vmx_init() run already? If not then this is the pre init
353 * parameter parsing. In that case just store the value and let
354 * vmx_init() do the proper setup after enable_ept has been
355 * established.
356 */
357 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
358 vmentry_l1d_flush_param = l1tf;
359 return 0;
360 }
361
362 mutex_lock(&vmx_l1d_flush_mutex);
363 ret = vmx_setup_l1d_flush(l1tf);
364 mutex_unlock(&vmx_l1d_flush_mutex);
365 return ret;
366 }
367
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)368 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
369 {
370 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
371 return sysfs_emit(s, "???\n");
372
373 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
374 }
375
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 u64 msr;
379
380 if (!vmx->disable_fb_clear)
381 return;
382
383 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 msr |= FB_CLEAR_DIS;
385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 /* Cache the MSR value to avoid reading it later */
387 vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 if (!vmx->disable_fb_clear)
393 return;
394
395 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 /*
402 * Disable VERW's behavior of clearing CPU buffers for the guest if the
403 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
404 * the mitigation. Disabling the clearing behavior provides a
405 * performance boost for guests that aren't aware that manually clearing
406 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
407 * and VM-Exit.
408 */
409 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
410 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
411 !boot_cpu_has_bug(X86_BUG_MDS) &&
412 !boot_cpu_has_bug(X86_BUG_TAA);
413
414 /*
415 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416 * at VMEntry. Skip the MSR read/write when a guest has no use case to
417 * execute VERW.
418 */
419 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425 vmx->disable_fb_clear = false;
426 }
427
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429 .set = vmentry_l1d_flush_set,
430 .get = vmentry_l1d_flush_get,
431 };
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
433
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
435
436 void vmx_vmexit(void);
437
438 #define vmx_insn_failed(fmt...) \
439 do { \
440 WARN_ONCE(1, fmt); \
441 pr_warn_ratelimited(fmt); \
442 } while (0)
443
vmread_error(unsigned long field)444 noinline void vmread_error(unsigned long field)
445 {
446 vmx_insn_failed("vmread failed: field=%lx\n", field);
447 }
448
449 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)450 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
451 {
452 if (fault) {
453 kvm_spurious_fault();
454 } else {
455 instrumentation_begin();
456 vmread_error(field);
457 instrumentation_end();
458 }
459 }
460 #endif
461
vmwrite_error(unsigned long field,unsigned long value)462 noinline void vmwrite_error(unsigned long field, unsigned long value)
463 {
464 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
465 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467
vmclear_error(struct vmcs * vmcs,u64 phys_addr)468 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
469 {
470 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
471 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
472 }
473
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)474 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
475 {
476 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
477 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
478 }
479
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)480 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
481 {
482 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
483 ext, vpid, gva);
484 }
485
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)486 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
487 {
488 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
489 ext, eptp, gpa);
490 }
491
492 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
493 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
494 /*
495 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
496 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
497 */
498 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
499
500 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
501 static DEFINE_SPINLOCK(vmx_vpid_lock);
502
503 struct vmcs_config vmcs_config __ro_after_init;
504 struct vmx_capability vmx_capability __ro_after_init;
505
506 #define VMX_SEGMENT_FIELD(seg) \
507 [VCPU_SREG_##seg] = { \
508 .selector = GUEST_##seg##_SELECTOR, \
509 .base = GUEST_##seg##_BASE, \
510 .limit = GUEST_##seg##_LIMIT, \
511 .ar_bytes = GUEST_##seg##_AR_BYTES, \
512 }
513
514 static const struct kvm_vmx_segment_field {
515 unsigned selector;
516 unsigned base;
517 unsigned limit;
518 unsigned ar_bytes;
519 } kvm_vmx_segment_fields[] = {
520 VMX_SEGMENT_FIELD(CS),
521 VMX_SEGMENT_FIELD(DS),
522 VMX_SEGMENT_FIELD(ES),
523 VMX_SEGMENT_FIELD(FS),
524 VMX_SEGMENT_FIELD(GS),
525 VMX_SEGMENT_FIELD(SS),
526 VMX_SEGMENT_FIELD(TR),
527 VMX_SEGMENT_FIELD(LDTR),
528 };
529
530
531 static unsigned long host_idt_base;
532
533 #if IS_ENABLED(CONFIG_HYPERV)
534 static bool __read_mostly enlightened_vmcs = true;
535 module_param(enlightened_vmcs, bool, 0444);
536
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)537 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
538 {
539 struct hv_enlightened_vmcs *evmcs;
540 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
541
542 if (partition_assist_page == INVALID_PAGE)
543 return -ENOMEM;
544
545 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
546
547 evmcs->partition_assist_page = partition_assist_page;
548 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550
551 return 0;
552 }
553
hv_init_evmcs(void)554 static __init void hv_init_evmcs(void)
555 {
556 int cpu;
557
558 if (!enlightened_vmcs)
559 return;
560
561 /*
562 * Enlightened VMCS usage should be recommended and the host needs
563 * to support eVMCS v1 or above.
564 */
565 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
566 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
567 KVM_EVMCS_VERSION) {
568
569 /* Check that we have assist pages on all online CPUs */
570 for_each_online_cpu(cpu) {
571 if (!hv_get_vp_assist_page(cpu)) {
572 enlightened_vmcs = false;
573 break;
574 }
575 }
576
577 if (enlightened_vmcs) {
578 pr_info("Using Hyper-V Enlightened VMCS\n");
579 static_branch_enable(&__kvm_is_using_evmcs);
580 }
581
582 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
583 vt_x86_ops.enable_l2_tlb_flush
584 = hv_enable_l2_tlb_flush;
585 } else {
586 enlightened_vmcs = false;
587 }
588 }
589
hv_reset_evmcs(void)590 static void hv_reset_evmcs(void)
591 {
592 struct hv_vp_assist_page *vp_ap;
593
594 if (!kvm_is_using_evmcs())
595 return;
596
597 /*
598 * KVM should enable eVMCS if and only if all CPUs have a VP assist
599 * page, and should reject CPU onlining if eVMCS is enabled the CPU
600 * doesn't have a VP assist page allocated.
601 */
602 vp_ap = hv_get_vp_assist_page(smp_processor_id());
603 if (WARN_ON_ONCE(!vp_ap))
604 return;
605
606 /*
607 * Reset everything to support using non-enlightened VMCS access later
608 * (e.g. when we reload the module with enlightened_vmcs=0)
609 */
610 vp_ap->nested_control.features.directhypercall = 0;
611 vp_ap->current_nested_vmcs = 0;
612 vp_ap->enlighten_vmentry = 0;
613 }
614
615 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)616 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)617 static void hv_reset_evmcs(void) {}
618 #endif /* IS_ENABLED(CONFIG_HYPERV) */
619
620 /*
621 * Comment's format: document - errata name - stepping - processor name.
622 * Refer from
623 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
624 */
625 static u32 vmx_preemption_cpu_tfms[] = {
626 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
627 0x000206E6,
628 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
629 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
630 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
631 0x00020652,
632 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
633 0x00020655,
634 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
635 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
636 /*
637 * 320767.pdf - AAP86 - B1 -
638 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
639 */
640 0x000106E5,
641 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
642 0x000106A0,
643 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
644 0x000106A1,
645 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
646 0x000106A4,
647 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
648 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
649 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
650 0x000106A5,
651 /* Xeon E3-1220 V2 */
652 0x000306A8,
653 };
654
cpu_has_broken_vmx_preemption_timer(void)655 static inline bool cpu_has_broken_vmx_preemption_timer(void)
656 {
657 u32 eax = cpuid_eax(0x00000001), i;
658
659 /* Clear the reserved bits */
660 eax &= ~(0x3U << 14 | 0xfU << 28);
661 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
662 if (eax == vmx_preemption_cpu_tfms[i])
663 return true;
664
665 return false;
666 }
667
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)668 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
669 {
670 return flexpriority_enabled && lapic_in_kernel(vcpu);
671 }
672
vmx_get_passthrough_msr_slot(u32 msr)673 static int vmx_get_passthrough_msr_slot(u32 msr)
674 {
675 int i;
676
677 switch (msr) {
678 case 0x800 ... 0x8ff:
679 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
680 return -ENOENT;
681 case MSR_IA32_RTIT_STATUS:
682 case MSR_IA32_RTIT_OUTPUT_BASE:
683 case MSR_IA32_RTIT_OUTPUT_MASK:
684 case MSR_IA32_RTIT_CR3_MATCH:
685 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
686 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
687 case MSR_LBR_SELECT:
688 case MSR_LBR_TOS:
689 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
690 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
691 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
692 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
693 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
694 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
695 return -ENOENT;
696 }
697
698 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
699 if (vmx_possible_passthrough_msrs[i] == msr)
700 return i;
701 }
702
703 WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
704 return -ENOENT;
705 }
706
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)707 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
708 {
709 int i;
710
711 i = kvm_find_user_return_msr(msr);
712 if (i >= 0)
713 return &vmx->guest_uret_msrs[i];
714 return NULL;
715 }
716
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)717 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
718 struct vmx_uret_msr *msr, u64 data)
719 {
720 unsigned int slot = msr - vmx->guest_uret_msrs;
721 int ret = 0;
722
723 if (msr->load_into_hardware) {
724 preempt_disable();
725 ret = kvm_set_user_return_msr(slot, data, msr->mask);
726 preempt_enable();
727 }
728 if (!ret)
729 msr->data = data;
730 return ret;
731 }
732
733 /*
734 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
735 *
736 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
737 * atomically track post-VMXON state, e.g. this may be called in NMI context.
738 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
739 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
740 * magically in RM, VM86, compat mode, or at CPL>0.
741 */
kvm_cpu_vmxoff(void)742 static int kvm_cpu_vmxoff(void)
743 {
744 asm goto("1: vmxoff\n\t"
745 _ASM_EXTABLE(1b, %l[fault])
746 ::: "cc", "memory" : fault);
747
748 cr4_clear_bits(X86_CR4_VMXE);
749 return 0;
750
751 fault:
752 cr4_clear_bits(X86_CR4_VMXE);
753 return -EIO;
754 }
755
vmx_emergency_disable_virtualization_cpu(void)756 void vmx_emergency_disable_virtualization_cpu(void)
757 {
758 int cpu = raw_smp_processor_id();
759 struct loaded_vmcs *v;
760
761 kvm_rebooting = true;
762
763 /*
764 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
765 * set in task context. If this races with VMX is disabled by an NMI,
766 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
767 * kvm_rebooting set.
768 */
769 if (!(__read_cr4() & X86_CR4_VMXE))
770 return;
771
772 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
773 loaded_vmcss_on_cpu_link)
774 vmcs_clear(v->vmcs);
775
776 kvm_cpu_vmxoff();
777 }
778
__loaded_vmcs_clear(void * arg)779 static void __loaded_vmcs_clear(void *arg)
780 {
781 struct loaded_vmcs *loaded_vmcs = arg;
782 int cpu = raw_smp_processor_id();
783
784 if (loaded_vmcs->cpu != cpu)
785 return; /* vcpu migration can race with cpu offline */
786 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
787 per_cpu(current_vmcs, cpu) = NULL;
788
789 vmcs_clear(loaded_vmcs->vmcs);
790 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
791 vmcs_clear(loaded_vmcs->shadow_vmcs);
792
793 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
794
795 /*
796 * Ensure all writes to loaded_vmcs, including deleting it from its
797 * current percpu list, complete before setting loaded_vmcs->cpu to
798 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
799 * and add loaded_vmcs to its percpu list before it's deleted from this
800 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
801 */
802 smp_wmb();
803
804 loaded_vmcs->cpu = -1;
805 loaded_vmcs->launched = 0;
806 }
807
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)808 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
809 {
810 int cpu = loaded_vmcs->cpu;
811
812 if (cpu != -1)
813 smp_call_function_single(cpu,
814 __loaded_vmcs_clear, loaded_vmcs, 1);
815 }
816
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)817 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
818 unsigned field)
819 {
820 bool ret;
821 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
822
823 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
824 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
825 vmx->segment_cache.bitmask = 0;
826 }
827 ret = vmx->segment_cache.bitmask & mask;
828 vmx->segment_cache.bitmask |= mask;
829 return ret;
830 }
831
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)832 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
833 {
834 u16 *p = &vmx->segment_cache.seg[seg].selector;
835
836 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
837 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
838 return *p;
839 }
840
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)841 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
842 {
843 ulong *p = &vmx->segment_cache.seg[seg].base;
844
845 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
846 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
847 return *p;
848 }
849
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)850 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
851 {
852 u32 *p = &vmx->segment_cache.seg[seg].limit;
853
854 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
855 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
856 return *p;
857 }
858
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)859 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
860 {
861 u32 *p = &vmx->segment_cache.seg[seg].ar;
862
863 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
864 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
865 return *p;
866 }
867
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)868 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
869 {
870 u32 eb;
871
872 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
873 (1u << DB_VECTOR) | (1u << AC_VECTOR);
874 /*
875 * #VE isn't used for VMX. To test against unexpected changes
876 * related to #VE for VMX, intercept unexpected #VE and warn on it.
877 */
878 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
879 eb |= 1u << VE_VECTOR;
880 /*
881 * Guest access to VMware backdoor ports could legitimately
882 * trigger #GP because of TSS I/O permission bitmap.
883 * We intercept those #GP and allow access to them anyway
884 * as VMware does.
885 */
886 if (enable_vmware_backdoor)
887 eb |= (1u << GP_VECTOR);
888 if ((vcpu->guest_debug &
889 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
890 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
891 eb |= 1u << BP_VECTOR;
892 if (to_vmx(vcpu)->rmode.vm86_active)
893 eb = ~0;
894 if (!vmx_need_pf_intercept(vcpu))
895 eb &= ~(1u << PF_VECTOR);
896
897 /* When we are running a nested L2 guest and L1 specified for it a
898 * certain exception bitmap, we must trap the same exceptions and pass
899 * them to L1. When running L2, we will only handle the exceptions
900 * specified above if L1 did not want them.
901 */
902 if (is_guest_mode(vcpu))
903 eb |= get_vmcs12(vcpu)->exception_bitmap;
904 else {
905 int mask = 0, match = 0;
906
907 if (enable_ept && (eb & (1u << PF_VECTOR))) {
908 /*
909 * If EPT is enabled, #PF is currently only intercepted
910 * if MAXPHYADDR is smaller on the guest than on the
911 * host. In that case we only care about present,
912 * non-reserved faults. For vmcs02, however, PFEC_MASK
913 * and PFEC_MATCH are set in prepare_vmcs02_rare.
914 */
915 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
916 match = PFERR_PRESENT_MASK;
917 }
918 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
919 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
920 }
921
922 /*
923 * Disabling xfd interception indicates that dynamic xfeatures
924 * might be used in the guest. Always trap #NM in this case
925 * to save guest xfd_err timely.
926 */
927 if (vcpu->arch.xfd_no_write_intercept)
928 eb |= (1u << NM_VECTOR);
929
930 vmcs_write32(EXCEPTION_BITMAP, eb);
931 }
932
933 /*
934 * Check if MSR is intercepted for currently loaded MSR bitmap.
935 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)936 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
937 {
938 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
939 return true;
940
941 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
942 }
943
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)944 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
945 {
946 unsigned int flags = 0;
947
948 if (vmx->loaded_vmcs->launched)
949 flags |= VMX_RUN_VMRESUME;
950
951 /*
952 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
953 * to change it directly without causing a vmexit. In that case read
954 * it after vmexit and store it in vmx->spec_ctrl.
955 */
956 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
957 flags |= VMX_RUN_SAVE_SPEC_CTRL;
958
959 return flags;
960 }
961
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)962 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
963 unsigned long entry, unsigned long exit)
964 {
965 vm_entry_controls_clearbit(vmx, entry);
966 vm_exit_controls_clearbit(vmx, exit);
967 }
968
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)969 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
970 {
971 unsigned int i;
972
973 for (i = 0; i < m->nr; ++i) {
974 if (m->val[i].index == msr)
975 return i;
976 }
977 return -ENOENT;
978 }
979
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)980 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
981 {
982 int i;
983 struct msr_autoload *m = &vmx->msr_autoload;
984
985 switch (msr) {
986 case MSR_EFER:
987 if (cpu_has_load_ia32_efer()) {
988 clear_atomic_switch_msr_special(vmx,
989 VM_ENTRY_LOAD_IA32_EFER,
990 VM_EXIT_LOAD_IA32_EFER);
991 return;
992 }
993 break;
994 case MSR_CORE_PERF_GLOBAL_CTRL:
995 if (cpu_has_load_perf_global_ctrl()) {
996 clear_atomic_switch_msr_special(vmx,
997 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
998 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
999 return;
1000 }
1001 break;
1002 }
1003 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1004 if (i < 0)
1005 goto skip_guest;
1006 --m->guest.nr;
1007 m->guest.val[i] = m->guest.val[m->guest.nr];
1008 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1009
1010 skip_guest:
1011 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1012 if (i < 0)
1013 return;
1014
1015 --m->host.nr;
1016 m->host.val[i] = m->host.val[m->host.nr];
1017 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1018 }
1019
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1020 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1021 unsigned long entry, unsigned long exit,
1022 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1023 u64 guest_val, u64 host_val)
1024 {
1025 vmcs_write64(guest_val_vmcs, guest_val);
1026 if (host_val_vmcs != HOST_IA32_EFER)
1027 vmcs_write64(host_val_vmcs, host_val);
1028 vm_entry_controls_setbit(vmx, entry);
1029 vm_exit_controls_setbit(vmx, exit);
1030 }
1031
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1032 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1033 u64 guest_val, u64 host_val, bool entry_only)
1034 {
1035 int i, j = 0;
1036 struct msr_autoload *m = &vmx->msr_autoload;
1037
1038 switch (msr) {
1039 case MSR_EFER:
1040 if (cpu_has_load_ia32_efer()) {
1041 add_atomic_switch_msr_special(vmx,
1042 VM_ENTRY_LOAD_IA32_EFER,
1043 VM_EXIT_LOAD_IA32_EFER,
1044 GUEST_IA32_EFER,
1045 HOST_IA32_EFER,
1046 guest_val, host_val);
1047 return;
1048 }
1049 break;
1050 case MSR_CORE_PERF_GLOBAL_CTRL:
1051 if (cpu_has_load_perf_global_ctrl()) {
1052 add_atomic_switch_msr_special(vmx,
1053 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1054 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1055 GUEST_IA32_PERF_GLOBAL_CTRL,
1056 HOST_IA32_PERF_GLOBAL_CTRL,
1057 guest_val, host_val);
1058 return;
1059 }
1060 break;
1061 case MSR_IA32_PEBS_ENABLE:
1062 /* PEBS needs a quiescent period after being disabled (to write
1063 * a record). Disabling PEBS through VMX MSR swapping doesn't
1064 * provide that period, so a CPU could write host's record into
1065 * guest's memory.
1066 */
1067 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1068 }
1069
1070 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1071 if (!entry_only)
1072 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1073
1074 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1075 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1076 printk_once(KERN_WARNING "Not enough msr switch entries. "
1077 "Can't add msr %x\n", msr);
1078 return;
1079 }
1080 if (i < 0) {
1081 i = m->guest.nr++;
1082 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1083 }
1084 m->guest.val[i].index = msr;
1085 m->guest.val[i].value = guest_val;
1086
1087 if (entry_only)
1088 return;
1089
1090 if (j < 0) {
1091 j = m->host.nr++;
1092 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1093 }
1094 m->host.val[j].index = msr;
1095 m->host.val[j].value = host_val;
1096 }
1097
update_transition_efer(struct vcpu_vmx * vmx)1098 static bool update_transition_efer(struct vcpu_vmx *vmx)
1099 {
1100 u64 guest_efer = vmx->vcpu.arch.efer;
1101 u64 ignore_bits = 0;
1102 int i;
1103
1104 /* Shadow paging assumes NX to be available. */
1105 if (!enable_ept)
1106 guest_efer |= EFER_NX;
1107
1108 /*
1109 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1110 */
1111 ignore_bits |= EFER_SCE;
1112 #ifdef CONFIG_X86_64
1113 ignore_bits |= EFER_LMA | EFER_LME;
1114 /* SCE is meaningful only in long mode on Intel */
1115 if (guest_efer & EFER_LMA)
1116 ignore_bits &= ~(u64)EFER_SCE;
1117 #endif
1118
1119 /*
1120 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1121 * On CPUs that support "load IA32_EFER", always switch EFER
1122 * atomically, since it's faster than switching it manually.
1123 */
1124 if (cpu_has_load_ia32_efer() ||
1125 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1126 if (!(guest_efer & EFER_LMA))
1127 guest_efer &= ~EFER_LME;
1128 if (guest_efer != kvm_host.efer)
1129 add_atomic_switch_msr(vmx, MSR_EFER,
1130 guest_efer, kvm_host.efer, false);
1131 else
1132 clear_atomic_switch_msr(vmx, MSR_EFER);
1133 return false;
1134 }
1135
1136 i = kvm_find_user_return_msr(MSR_EFER);
1137 if (i < 0)
1138 return false;
1139
1140 clear_atomic_switch_msr(vmx, MSR_EFER);
1141
1142 guest_efer &= ~ignore_bits;
1143 guest_efer |= kvm_host.efer & ignore_bits;
1144
1145 vmx->guest_uret_msrs[i].data = guest_efer;
1146 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1147
1148 return true;
1149 }
1150
1151 #ifdef CONFIG_X86_32
1152 /*
1153 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1154 * VMCS rather than the segment table. KVM uses this helper to figure
1155 * out the current bases to poke them into the VMCS before entry.
1156 */
segment_base(u16 selector)1157 static unsigned long segment_base(u16 selector)
1158 {
1159 struct desc_struct *table;
1160 unsigned long v;
1161
1162 if (!(selector & ~SEGMENT_RPL_MASK))
1163 return 0;
1164
1165 table = get_current_gdt_ro();
1166
1167 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1168 u16 ldt_selector = kvm_read_ldt();
1169
1170 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1171 return 0;
1172
1173 table = (struct desc_struct *)segment_base(ldt_selector);
1174 }
1175 v = get_desc_base(&table[selector >> 3]);
1176 return v;
1177 }
1178 #endif
1179
pt_can_write_msr(struct vcpu_vmx * vmx)1180 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1181 {
1182 return vmx_pt_mode_is_host_guest() &&
1183 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1184 }
1185
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1186 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1187 {
1188 /* The base must be 128-byte aligned and a legal physical address. */
1189 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1190 }
1191
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1192 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1193 {
1194 u32 i;
1195
1196 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1197 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1198 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1199 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1200 for (i = 0; i < addr_range; i++) {
1201 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1202 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1203 }
1204 }
1205
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1206 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1207 {
1208 u32 i;
1209
1210 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1211 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1212 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1213 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1214 for (i = 0; i < addr_range; i++) {
1215 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1216 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1217 }
1218 }
1219
pt_guest_enter(struct vcpu_vmx * vmx)1220 static void pt_guest_enter(struct vcpu_vmx *vmx)
1221 {
1222 if (vmx_pt_mode_is_system())
1223 return;
1224
1225 /*
1226 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1227 * Save host state before VM entry.
1228 */
1229 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1230 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1231 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1232 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1233 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1234 }
1235 }
1236
pt_guest_exit(struct vcpu_vmx * vmx)1237 static void pt_guest_exit(struct vcpu_vmx *vmx)
1238 {
1239 if (vmx_pt_mode_is_system())
1240 return;
1241
1242 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1243 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1244 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1245 }
1246
1247 /*
1248 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1249 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1250 */
1251 if (vmx->pt_desc.host.ctl)
1252 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1253 }
1254
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1255 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1256 unsigned long fs_base, unsigned long gs_base)
1257 {
1258 if (unlikely(fs_sel != host->fs_sel)) {
1259 if (!(fs_sel & 7))
1260 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1261 else
1262 vmcs_write16(HOST_FS_SELECTOR, 0);
1263 host->fs_sel = fs_sel;
1264 }
1265 if (unlikely(gs_sel != host->gs_sel)) {
1266 if (!(gs_sel & 7))
1267 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1268 else
1269 vmcs_write16(HOST_GS_SELECTOR, 0);
1270 host->gs_sel = gs_sel;
1271 }
1272 if (unlikely(fs_base != host->fs_base)) {
1273 vmcs_writel(HOST_FS_BASE, fs_base);
1274 host->fs_base = fs_base;
1275 }
1276 if (unlikely(gs_base != host->gs_base)) {
1277 vmcs_writel(HOST_GS_BASE, gs_base);
1278 host->gs_base = gs_base;
1279 }
1280 }
1281
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1282 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1283 {
1284 struct vcpu_vmx *vmx = to_vmx(vcpu);
1285 struct vmcs_host_state *host_state;
1286 #ifdef CONFIG_X86_64
1287 int cpu = raw_smp_processor_id();
1288 #endif
1289 unsigned long fs_base, gs_base;
1290 u16 fs_sel, gs_sel;
1291 int i;
1292
1293 /*
1294 * Note that guest MSRs to be saved/restored can also be changed
1295 * when guest state is loaded. This happens when guest transitions
1296 * to/from long-mode by setting MSR_EFER.LMA.
1297 */
1298 if (!vmx->guest_uret_msrs_loaded) {
1299 vmx->guest_uret_msrs_loaded = true;
1300 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1301 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1302 continue;
1303
1304 kvm_set_user_return_msr(i,
1305 vmx->guest_uret_msrs[i].data,
1306 vmx->guest_uret_msrs[i].mask);
1307 }
1308 }
1309
1310 if (vmx->nested.need_vmcs12_to_shadow_sync)
1311 nested_sync_vmcs12_to_shadow(vcpu);
1312
1313 if (vmx->guest_state_loaded)
1314 return;
1315
1316 host_state = &vmx->loaded_vmcs->host_state;
1317
1318 /*
1319 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1320 * allow segment selectors with cpl > 0 or ti == 1.
1321 */
1322 host_state->ldt_sel = kvm_read_ldt();
1323
1324 #ifdef CONFIG_X86_64
1325 savesegment(ds, host_state->ds_sel);
1326 savesegment(es, host_state->es_sel);
1327
1328 gs_base = cpu_kernelmode_gs_base(cpu);
1329 if (likely(is_64bit_mm(current->mm))) {
1330 current_save_fsgs();
1331 fs_sel = current->thread.fsindex;
1332 gs_sel = current->thread.gsindex;
1333 fs_base = current->thread.fsbase;
1334 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1335 } else {
1336 savesegment(fs, fs_sel);
1337 savesegment(gs, gs_sel);
1338 fs_base = read_msr(MSR_FS_BASE);
1339 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1340 }
1341
1342 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1343 #else
1344 savesegment(fs, fs_sel);
1345 savesegment(gs, gs_sel);
1346 fs_base = segment_base(fs_sel);
1347 gs_base = segment_base(gs_sel);
1348 #endif
1349
1350 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1351 vmx->guest_state_loaded = true;
1352 }
1353
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1354 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1355 {
1356 struct vmcs_host_state *host_state;
1357
1358 if (!vmx->guest_state_loaded)
1359 return;
1360
1361 host_state = &vmx->loaded_vmcs->host_state;
1362
1363 ++vmx->vcpu.stat.host_state_reload;
1364
1365 #ifdef CONFIG_X86_64
1366 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1367 #endif
1368 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1369 kvm_load_ldt(host_state->ldt_sel);
1370 #ifdef CONFIG_X86_64
1371 load_gs_index(host_state->gs_sel);
1372 #else
1373 loadsegment(gs, host_state->gs_sel);
1374 #endif
1375 }
1376 if (host_state->fs_sel & 7)
1377 loadsegment(fs, host_state->fs_sel);
1378 #ifdef CONFIG_X86_64
1379 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1380 loadsegment(ds, host_state->ds_sel);
1381 loadsegment(es, host_state->es_sel);
1382 }
1383 #endif
1384 invalidate_tss_limit();
1385 #ifdef CONFIG_X86_64
1386 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1387 #endif
1388 load_fixmap_gdt(raw_smp_processor_id());
1389 vmx->guest_state_loaded = false;
1390 vmx->guest_uret_msrs_loaded = false;
1391 }
1392
1393 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1394 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1395 {
1396 preempt_disable();
1397 if (vmx->guest_state_loaded)
1398 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1399 preempt_enable();
1400 return vmx->msr_guest_kernel_gs_base;
1401 }
1402
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1403 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1404 {
1405 preempt_disable();
1406 if (vmx->guest_state_loaded)
1407 wrmsrl(MSR_KERNEL_GS_BASE, data);
1408 preempt_enable();
1409 vmx->msr_guest_kernel_gs_base = data;
1410 }
1411 #endif
1412
grow_ple_window(struct kvm_vcpu * vcpu)1413 static void grow_ple_window(struct kvm_vcpu *vcpu)
1414 {
1415 struct vcpu_vmx *vmx = to_vmx(vcpu);
1416 unsigned int old = vmx->ple_window;
1417
1418 vmx->ple_window = __grow_ple_window(old, ple_window,
1419 ple_window_grow,
1420 ple_window_max);
1421
1422 if (vmx->ple_window != old) {
1423 vmx->ple_window_dirty = true;
1424 trace_kvm_ple_window_update(vcpu->vcpu_id,
1425 vmx->ple_window, old);
1426 }
1427 }
1428
shrink_ple_window(struct kvm_vcpu * vcpu)1429 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1430 {
1431 struct vcpu_vmx *vmx = to_vmx(vcpu);
1432 unsigned int old = vmx->ple_window;
1433
1434 vmx->ple_window = __shrink_ple_window(old, ple_window,
1435 ple_window_shrink,
1436 ple_window);
1437
1438 if (vmx->ple_window != old) {
1439 vmx->ple_window_dirty = true;
1440 trace_kvm_ple_window_update(vcpu->vcpu_id,
1441 vmx->ple_window, old);
1442 }
1443 }
1444
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1445 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1446 struct loaded_vmcs *buddy)
1447 {
1448 struct vcpu_vmx *vmx = to_vmx(vcpu);
1449 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1450 struct vmcs *prev;
1451
1452 if (!already_loaded) {
1453 loaded_vmcs_clear(vmx->loaded_vmcs);
1454 local_irq_disable();
1455
1456 /*
1457 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1458 * this cpu's percpu list, otherwise it may not yet be deleted
1459 * from its previous cpu's percpu list. Pairs with the
1460 * smb_wmb() in __loaded_vmcs_clear().
1461 */
1462 smp_rmb();
1463
1464 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1465 &per_cpu(loaded_vmcss_on_cpu, cpu));
1466 local_irq_enable();
1467 }
1468
1469 prev = per_cpu(current_vmcs, cpu);
1470 if (prev != vmx->loaded_vmcs->vmcs) {
1471 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1472 vmcs_load(vmx->loaded_vmcs->vmcs);
1473
1474 /*
1475 * No indirect branch prediction barrier needed when switching
1476 * the active VMCS within a vCPU, unless IBRS is advertised to
1477 * the vCPU. To minimize the number of IBPBs executed, KVM
1478 * performs IBPB on nested VM-Exit (a single nested transition
1479 * may switch the active VMCS multiple times).
1480 */
1481 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1482 indirect_branch_prediction_barrier();
1483 }
1484
1485 if (!already_loaded) {
1486 void *gdt = get_current_gdt_ro();
1487
1488 /*
1489 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1490 * TLB entries from its previous association with the vCPU.
1491 */
1492 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1493
1494 /*
1495 * Linux uses per-cpu TSS and GDT, so set these when switching
1496 * processors. See 22.2.4.
1497 */
1498 vmcs_writel(HOST_TR_BASE,
1499 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1500 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1501
1502 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1503 /* 22.2.3 */
1504 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1505 (unsigned long)(cpu_entry_stack(cpu) + 1));
1506 }
1507
1508 vmx->loaded_vmcs->cpu = cpu;
1509 }
1510 }
1511
1512 /*
1513 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1514 * vcpu mutex is already taken.
1515 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1516 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1517 {
1518 struct vcpu_vmx *vmx = to_vmx(vcpu);
1519
1520 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1521 shrink_ple_window(vcpu);
1522
1523 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1524
1525 vmx_vcpu_pi_load(vcpu, cpu);
1526
1527 vmx->host_debugctlmsr = get_debugctlmsr();
1528 }
1529
vmx_vcpu_put(struct kvm_vcpu * vcpu)1530 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1531 {
1532 vmx_vcpu_pi_put(vcpu);
1533
1534 vmx_prepare_switch_to_host(to_vmx(vcpu));
1535 }
1536
vmx_emulation_required(struct kvm_vcpu * vcpu)1537 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1538 {
1539 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1540 }
1541
vmx_get_rflags(struct kvm_vcpu * vcpu)1542 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1543 {
1544 struct vcpu_vmx *vmx = to_vmx(vcpu);
1545 unsigned long rflags, save_rflags;
1546
1547 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1548 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1549 rflags = vmcs_readl(GUEST_RFLAGS);
1550 if (vmx->rmode.vm86_active) {
1551 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1552 save_rflags = vmx->rmode.save_rflags;
1553 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1554 }
1555 vmx->rflags = rflags;
1556 }
1557 return vmx->rflags;
1558 }
1559
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1560 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1561 {
1562 struct vcpu_vmx *vmx = to_vmx(vcpu);
1563 unsigned long old_rflags;
1564
1565 /*
1566 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1567 * is an unrestricted guest in order to mark L2 as needing emulation
1568 * if L1 runs L2 as a restricted guest.
1569 */
1570 if (is_unrestricted_guest(vcpu)) {
1571 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1572 vmx->rflags = rflags;
1573 vmcs_writel(GUEST_RFLAGS, rflags);
1574 return;
1575 }
1576
1577 old_rflags = vmx_get_rflags(vcpu);
1578 vmx->rflags = rflags;
1579 if (vmx->rmode.vm86_active) {
1580 vmx->rmode.save_rflags = rflags;
1581 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1582 }
1583 vmcs_writel(GUEST_RFLAGS, rflags);
1584
1585 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1586 vmx->emulation_required = vmx_emulation_required(vcpu);
1587 }
1588
vmx_get_if_flag(struct kvm_vcpu * vcpu)1589 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1590 {
1591 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1592 }
1593
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1594 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1595 {
1596 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1597 int ret = 0;
1598
1599 if (interruptibility & GUEST_INTR_STATE_STI)
1600 ret |= KVM_X86_SHADOW_INT_STI;
1601 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1602 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1603
1604 return ret;
1605 }
1606
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1607 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1608 {
1609 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1610 u32 interruptibility = interruptibility_old;
1611
1612 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1613
1614 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1615 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1616 else if (mask & KVM_X86_SHADOW_INT_STI)
1617 interruptibility |= GUEST_INTR_STATE_STI;
1618
1619 if ((interruptibility != interruptibility_old))
1620 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1621 }
1622
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1623 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1624 {
1625 struct vcpu_vmx *vmx = to_vmx(vcpu);
1626 unsigned long value;
1627
1628 /*
1629 * Any MSR write that attempts to change bits marked reserved will
1630 * case a #GP fault.
1631 */
1632 if (data & vmx->pt_desc.ctl_bitmask)
1633 return 1;
1634
1635 /*
1636 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1637 * result in a #GP unless the same write also clears TraceEn.
1638 */
1639 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1640 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1641 return 1;
1642
1643 /*
1644 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1645 * and FabricEn would cause #GP, if
1646 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1647 */
1648 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1649 !(data & RTIT_CTL_FABRIC_EN) &&
1650 !intel_pt_validate_cap(vmx->pt_desc.caps,
1651 PT_CAP_single_range_output))
1652 return 1;
1653
1654 /*
1655 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1656 * utilize encodings marked reserved will cause a #GP fault.
1657 */
1658 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1659 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1660 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1661 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1662 return 1;
1663 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1664 PT_CAP_cycle_thresholds);
1665 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1666 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1667 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1668 return 1;
1669 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1670 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1671 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1672 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1673 return 1;
1674
1675 /*
1676 * If ADDRx_CFG is reserved or the encodings is >2 will
1677 * cause a #GP fault.
1678 */
1679 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1680 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1681 return 1;
1682 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1683 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1684 return 1;
1685 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1686 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1687 return 1;
1688 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1689 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1690 return 1;
1691
1692 return 0;
1693 }
1694
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1695 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1696 void *insn, int insn_len)
1697 {
1698 /*
1699 * Emulation of instructions in SGX enclaves is impossible as RIP does
1700 * not point at the failing instruction, and even if it did, the code
1701 * stream is inaccessible. Inject #UD instead of exiting to userspace
1702 * so that guest userspace can't DoS the guest simply by triggering
1703 * emulation (enclaves are CPL3 only).
1704 */
1705 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1706 kvm_queue_exception(vcpu, UD_VECTOR);
1707 return X86EMUL_PROPAGATE_FAULT;
1708 }
1709 return X86EMUL_CONTINUE;
1710 }
1711
skip_emulated_instruction(struct kvm_vcpu * vcpu)1712 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1713 {
1714 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1715 unsigned long rip, orig_rip;
1716 u32 instr_len;
1717
1718 /*
1719 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1720 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1721 * set when EPT misconfig occurs. In practice, real hardware updates
1722 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1723 * (namely Hyper-V) don't set it due to it being undefined behavior,
1724 * i.e. we end up advancing IP with some random value.
1725 */
1726 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1727 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1728 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1729
1730 /*
1731 * Emulating an enclave's instructions isn't supported as KVM
1732 * cannot access the enclave's memory or its true RIP, e.g. the
1733 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1734 * the RIP that actually triggered the VM-Exit. But, because
1735 * most instructions that cause VM-Exit will #UD in an enclave,
1736 * most instruction-based VM-Exits simply do not occur.
1737 *
1738 * There are a few exceptions, notably the debug instructions
1739 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1740 * and generate #DB/#BP as expected, which KVM might intercept.
1741 * But again, the CPU does the dirty work and saves an instr
1742 * length of zero so VMMs don't shoot themselves in the foot.
1743 * WARN if KVM tries to skip a non-zero length instruction on
1744 * a VM-Exit from an enclave.
1745 */
1746 if (!instr_len)
1747 goto rip_updated;
1748
1749 WARN_ONCE(exit_reason.enclave_mode,
1750 "skipping instruction after SGX enclave VM-Exit");
1751
1752 orig_rip = kvm_rip_read(vcpu);
1753 rip = orig_rip + instr_len;
1754 #ifdef CONFIG_X86_64
1755 /*
1756 * We need to mask out the high 32 bits of RIP if not in 64-bit
1757 * mode, but just finding out that we are in 64-bit mode is
1758 * quite expensive. Only do it if there was a carry.
1759 */
1760 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1761 rip = (u32)rip;
1762 #endif
1763 kvm_rip_write(vcpu, rip);
1764 } else {
1765 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1766 return 0;
1767 }
1768
1769 rip_updated:
1770 /* skipping an emulated instruction also counts */
1771 vmx_set_interrupt_shadow(vcpu, 0);
1772
1773 return 1;
1774 }
1775
1776 /*
1777 * Recognizes a pending MTF VM-exit and records the nested state for later
1778 * delivery.
1779 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1780 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1781 {
1782 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1783 struct vcpu_vmx *vmx = to_vmx(vcpu);
1784
1785 if (!is_guest_mode(vcpu))
1786 return;
1787
1788 /*
1789 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1790 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1791 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1792 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1793 * as ICEBP is higher priority than both. As instruction emulation is
1794 * completed at this point (i.e. KVM is at the instruction boundary),
1795 * any #DB exception pending delivery must be a debug-trap of lower
1796 * priority than MTF. Record the pending MTF state to be delivered in
1797 * vmx_check_nested_events().
1798 */
1799 if (nested_cpu_has_mtf(vmcs12) &&
1800 (!vcpu->arch.exception.pending ||
1801 vcpu->arch.exception.vector == DB_VECTOR) &&
1802 (!vcpu->arch.exception_vmexit.pending ||
1803 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1804 vmx->nested.mtf_pending = true;
1805 kvm_make_request(KVM_REQ_EVENT, vcpu);
1806 } else {
1807 vmx->nested.mtf_pending = false;
1808 }
1809 }
1810
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1811 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1812 {
1813 vmx_update_emulated_instruction(vcpu);
1814 return skip_emulated_instruction(vcpu);
1815 }
1816
vmx_clear_hlt(struct kvm_vcpu * vcpu)1817 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1818 {
1819 /*
1820 * Ensure that we clear the HLT state in the VMCS. We don't need to
1821 * explicitly skip the instruction because if the HLT state is set,
1822 * then the instruction is already executing and RIP has already been
1823 * advanced.
1824 */
1825 if (kvm_hlt_in_guest(vcpu->kvm) &&
1826 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1827 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1828 }
1829
vmx_inject_exception(struct kvm_vcpu * vcpu)1830 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1831 {
1832 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1833 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1834 struct vcpu_vmx *vmx = to_vmx(vcpu);
1835
1836 kvm_deliver_exception_payload(vcpu, ex);
1837
1838 if (ex->has_error_code) {
1839 /*
1840 * Despite the error code being architecturally defined as 32
1841 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1842 * VMX don't actually supporting setting bits 31:16. Hardware
1843 * will (should) never provide a bogus error code, but AMD CPUs
1844 * do generate error codes with bits 31:16 set, and so KVM's
1845 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1846 * the upper bits to avoid VM-Fail, losing information that
1847 * doesn't really exist is preferable to killing the VM.
1848 */
1849 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1850 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1851 }
1852
1853 if (vmx->rmode.vm86_active) {
1854 int inc_eip = 0;
1855 if (kvm_exception_is_soft(ex->vector))
1856 inc_eip = vcpu->arch.event_exit_inst_len;
1857 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1858 return;
1859 }
1860
1861 WARN_ON_ONCE(vmx->emulation_required);
1862
1863 if (kvm_exception_is_soft(ex->vector)) {
1864 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1865 vmx->vcpu.arch.event_exit_inst_len);
1866 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1867 } else
1868 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1869
1870 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1871
1872 vmx_clear_hlt(vcpu);
1873 }
1874
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1875 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1876 bool load_into_hardware)
1877 {
1878 struct vmx_uret_msr *uret_msr;
1879
1880 uret_msr = vmx_find_uret_msr(vmx, msr);
1881 if (!uret_msr)
1882 return;
1883
1884 uret_msr->load_into_hardware = load_into_hardware;
1885 }
1886
1887 /*
1888 * Configuring user return MSRs to automatically save, load, and restore MSRs
1889 * that need to be shoved into hardware when running the guest. Note, omitting
1890 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1891 * loaded into hardware when running the guest.
1892 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1893 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1894 {
1895 #ifdef CONFIG_X86_64
1896 bool load_syscall_msrs;
1897
1898 /*
1899 * The SYSCALL MSRs are only needed on long mode guests, and only
1900 * when EFER.SCE is set.
1901 */
1902 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1903 (vmx->vcpu.arch.efer & EFER_SCE);
1904
1905 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1906 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1907 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1908 #endif
1909 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1910
1911 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1912 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1913 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1914
1915 /*
1916 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1917 * kernel and old userspace. If those guests run on a tsx=off host, do
1918 * allow guests to use TSX_CTRL, but don't change the value in hardware
1919 * so that TSX remains always disabled.
1920 */
1921 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1922
1923 /*
1924 * The set of MSRs to load may have changed, reload MSRs before the
1925 * next VM-Enter.
1926 */
1927 vmx->guest_uret_msrs_loaded = false;
1928 }
1929
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1930 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1931 {
1932 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1933
1934 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1935 return vmcs12->tsc_offset;
1936
1937 return 0;
1938 }
1939
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1940 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1941 {
1942 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1943
1944 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1945 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1946 return vmcs12->tsc_multiplier;
1947
1948 return kvm_caps.default_tsc_scaling_ratio;
1949 }
1950
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1951 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1952 {
1953 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1954 }
1955
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1956 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1957 {
1958 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1959 }
1960
1961 /*
1962 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1963 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1964 * backwards compatibility even though KVM doesn't support emulating SMX. And
1965 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1966 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1967 */
1968 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1969 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1970 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1971 FEAT_CTL_SGX_LC_ENABLED | \
1972 FEAT_CTL_SGX_ENABLED | \
1973 FEAT_CTL_LMCE_ENABLED)
1974
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1975 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1976 struct msr_data *msr)
1977 {
1978 uint64_t valid_bits;
1979
1980 /*
1981 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1982 * exposed to the guest.
1983 */
1984 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1985 ~KVM_SUPPORTED_FEATURE_CONTROL);
1986
1987 if (!msr->host_initiated &&
1988 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1989 return false;
1990
1991 if (msr->host_initiated)
1992 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1993 else
1994 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1995
1996 return !(msr->data & ~valid_bits);
1997 }
1998
vmx_get_feature_msr(u32 msr,u64 * data)1999 int vmx_get_feature_msr(u32 msr, u64 *data)
2000 {
2001 switch (msr) {
2002 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2003 if (!nested)
2004 return 1;
2005 return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2006 default:
2007 return KVM_MSR_RET_UNSUPPORTED;
2008 }
2009 }
2010
2011 /*
2012 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2013 * Returns 0 on success, non-0 otherwise.
2014 * Assumes vcpu_load() was already called.
2015 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2016 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2017 {
2018 struct vcpu_vmx *vmx = to_vmx(vcpu);
2019 struct vmx_uret_msr *msr;
2020 u32 index;
2021
2022 switch (msr_info->index) {
2023 #ifdef CONFIG_X86_64
2024 case MSR_FS_BASE:
2025 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2026 break;
2027 case MSR_GS_BASE:
2028 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2029 break;
2030 case MSR_KERNEL_GS_BASE:
2031 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2032 break;
2033 #endif
2034 case MSR_EFER:
2035 return kvm_get_msr_common(vcpu, msr_info);
2036 case MSR_IA32_TSX_CTRL:
2037 if (!msr_info->host_initiated &&
2038 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2039 return 1;
2040 goto find_uret_msr;
2041 case MSR_IA32_UMWAIT_CONTROL:
2042 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2043 return 1;
2044
2045 msr_info->data = vmx->msr_ia32_umwait_control;
2046 break;
2047 case MSR_IA32_SPEC_CTRL:
2048 if (!msr_info->host_initiated &&
2049 !guest_has_spec_ctrl_msr(vcpu))
2050 return 1;
2051
2052 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2053 break;
2054 case MSR_IA32_SYSENTER_CS:
2055 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2056 break;
2057 case MSR_IA32_SYSENTER_EIP:
2058 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2059 break;
2060 case MSR_IA32_SYSENTER_ESP:
2061 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2062 break;
2063 case MSR_IA32_BNDCFGS:
2064 if (!kvm_mpx_supported() ||
2065 (!msr_info->host_initiated &&
2066 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2067 return 1;
2068 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2069 break;
2070 case MSR_IA32_MCG_EXT_CTL:
2071 if (!msr_info->host_initiated &&
2072 !(vmx->msr_ia32_feature_control &
2073 FEAT_CTL_LMCE_ENABLED))
2074 return 1;
2075 msr_info->data = vcpu->arch.mcg_ext_ctl;
2076 break;
2077 case MSR_IA32_FEAT_CTL:
2078 msr_info->data = vmx->msr_ia32_feature_control;
2079 break;
2080 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2081 if (!msr_info->host_initiated &&
2082 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2083 return 1;
2084 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2085 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2086 break;
2087 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2088 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2089 return 1;
2090 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2091 &msr_info->data))
2092 return 1;
2093 #ifdef CONFIG_KVM_HYPERV
2094 /*
2095 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2096 * instead of just ignoring the features, different Hyper-V
2097 * versions are either trying to use them and fail or do some
2098 * sanity checking and refuse to boot. Filter all unsupported
2099 * features out.
2100 */
2101 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2102 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2103 &msr_info->data);
2104 #endif
2105 break;
2106 case MSR_IA32_RTIT_CTL:
2107 if (!vmx_pt_mode_is_host_guest())
2108 return 1;
2109 msr_info->data = vmx->pt_desc.guest.ctl;
2110 break;
2111 case MSR_IA32_RTIT_STATUS:
2112 if (!vmx_pt_mode_is_host_guest())
2113 return 1;
2114 msr_info->data = vmx->pt_desc.guest.status;
2115 break;
2116 case MSR_IA32_RTIT_CR3_MATCH:
2117 if (!vmx_pt_mode_is_host_guest() ||
2118 !intel_pt_validate_cap(vmx->pt_desc.caps,
2119 PT_CAP_cr3_filtering))
2120 return 1;
2121 msr_info->data = vmx->pt_desc.guest.cr3_match;
2122 break;
2123 case MSR_IA32_RTIT_OUTPUT_BASE:
2124 if (!vmx_pt_mode_is_host_guest() ||
2125 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2126 PT_CAP_topa_output) &&
2127 !intel_pt_validate_cap(vmx->pt_desc.caps,
2128 PT_CAP_single_range_output)))
2129 return 1;
2130 msr_info->data = vmx->pt_desc.guest.output_base;
2131 break;
2132 case MSR_IA32_RTIT_OUTPUT_MASK:
2133 if (!vmx_pt_mode_is_host_guest() ||
2134 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2135 PT_CAP_topa_output) &&
2136 !intel_pt_validate_cap(vmx->pt_desc.caps,
2137 PT_CAP_single_range_output)))
2138 return 1;
2139 msr_info->data = vmx->pt_desc.guest.output_mask;
2140 break;
2141 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2142 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2143 if (!vmx_pt_mode_is_host_guest() ||
2144 (index >= 2 * vmx->pt_desc.num_address_ranges))
2145 return 1;
2146 if (index % 2)
2147 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2148 else
2149 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2150 break;
2151 case MSR_IA32_DEBUGCTLMSR:
2152 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2153 break;
2154 default:
2155 find_uret_msr:
2156 msr = vmx_find_uret_msr(vmx, msr_info->index);
2157 if (msr) {
2158 msr_info->data = msr->data;
2159 break;
2160 }
2161 return kvm_get_msr_common(vcpu, msr_info);
2162 }
2163
2164 return 0;
2165 }
2166
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2167 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2168 u64 data)
2169 {
2170 #ifdef CONFIG_X86_64
2171 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2172 return (u32)data;
2173 #endif
2174 return (unsigned long)data;
2175 }
2176
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2177 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2178 {
2179 u64 debugctl = 0;
2180
2181 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2182 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2183 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2184
2185 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2186 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2187 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2188
2189 return debugctl;
2190 }
2191
2192 /*
2193 * Writes msr value into the appropriate "register".
2194 * Returns 0 on success, non-0 otherwise.
2195 * Assumes vcpu_load() was already called.
2196 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2197 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2198 {
2199 struct vcpu_vmx *vmx = to_vmx(vcpu);
2200 struct vmx_uret_msr *msr;
2201 int ret = 0;
2202 u32 msr_index = msr_info->index;
2203 u64 data = msr_info->data;
2204 u32 index;
2205
2206 switch (msr_index) {
2207 case MSR_EFER:
2208 ret = kvm_set_msr_common(vcpu, msr_info);
2209 break;
2210 #ifdef CONFIG_X86_64
2211 case MSR_FS_BASE:
2212 vmx_segment_cache_clear(vmx);
2213 vmcs_writel(GUEST_FS_BASE, data);
2214 break;
2215 case MSR_GS_BASE:
2216 vmx_segment_cache_clear(vmx);
2217 vmcs_writel(GUEST_GS_BASE, data);
2218 break;
2219 case MSR_KERNEL_GS_BASE:
2220 vmx_write_guest_kernel_gs_base(vmx, data);
2221 break;
2222 case MSR_IA32_XFD:
2223 ret = kvm_set_msr_common(vcpu, msr_info);
2224 /*
2225 * Always intercepting WRMSR could incur non-negligible
2226 * overhead given xfd might be changed frequently in
2227 * guest context switch. Disable write interception
2228 * upon the first write with a non-zero value (indicating
2229 * potential usage on dynamic xfeatures). Also update
2230 * exception bitmap to trap #NM for proper virtualization
2231 * of guest xfd_err.
2232 */
2233 if (!ret && data) {
2234 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2235 MSR_TYPE_RW);
2236 vcpu->arch.xfd_no_write_intercept = true;
2237 vmx_update_exception_bitmap(vcpu);
2238 }
2239 break;
2240 #endif
2241 case MSR_IA32_SYSENTER_CS:
2242 if (is_guest_mode(vcpu))
2243 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2244 vmcs_write32(GUEST_SYSENTER_CS, data);
2245 break;
2246 case MSR_IA32_SYSENTER_EIP:
2247 if (is_guest_mode(vcpu)) {
2248 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2249 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2250 }
2251 vmcs_writel(GUEST_SYSENTER_EIP, data);
2252 break;
2253 case MSR_IA32_SYSENTER_ESP:
2254 if (is_guest_mode(vcpu)) {
2255 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2256 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2257 }
2258 vmcs_writel(GUEST_SYSENTER_ESP, data);
2259 break;
2260 case MSR_IA32_DEBUGCTLMSR: {
2261 u64 invalid;
2262
2263 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2264 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2265 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2266 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2267 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2268 }
2269
2270 if (invalid)
2271 return 1;
2272
2273 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2274 VM_EXIT_SAVE_DEBUG_CONTROLS)
2275 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2276
2277 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2278 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2279 (data & DEBUGCTLMSR_LBR))
2280 intel_pmu_create_guest_lbr_event(vcpu);
2281 return 0;
2282 }
2283 case MSR_IA32_BNDCFGS:
2284 if (!kvm_mpx_supported() ||
2285 (!msr_info->host_initiated &&
2286 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2287 return 1;
2288 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2289 (data & MSR_IA32_BNDCFGS_RSVD))
2290 return 1;
2291
2292 if (is_guest_mode(vcpu) &&
2293 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2294 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2295 get_vmcs12(vcpu)->guest_bndcfgs = data;
2296
2297 vmcs_write64(GUEST_BNDCFGS, data);
2298 break;
2299 case MSR_IA32_UMWAIT_CONTROL:
2300 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2301 return 1;
2302
2303 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2304 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2305 return 1;
2306
2307 vmx->msr_ia32_umwait_control = data;
2308 break;
2309 case MSR_IA32_SPEC_CTRL:
2310 if (!msr_info->host_initiated &&
2311 !guest_has_spec_ctrl_msr(vcpu))
2312 return 1;
2313
2314 if (kvm_spec_ctrl_test_value(data))
2315 return 1;
2316
2317 vmx->spec_ctrl = data;
2318 if (!data)
2319 break;
2320
2321 /*
2322 * For non-nested:
2323 * When it's written (to non-zero) for the first time, pass
2324 * it through.
2325 *
2326 * For nested:
2327 * The handling of the MSR bitmap for L2 guests is done in
2328 * nested_vmx_prepare_msr_bitmap. We should not touch the
2329 * vmcs02.msr_bitmap here since it gets completely overwritten
2330 * in the merging. We update the vmcs01 here for L1 as well
2331 * since it will end up touching the MSR anyway now.
2332 */
2333 vmx_disable_intercept_for_msr(vcpu,
2334 MSR_IA32_SPEC_CTRL,
2335 MSR_TYPE_RW);
2336 break;
2337 case MSR_IA32_TSX_CTRL:
2338 if (!msr_info->host_initiated &&
2339 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2340 return 1;
2341 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2342 return 1;
2343 goto find_uret_msr;
2344 case MSR_IA32_CR_PAT:
2345 ret = kvm_set_msr_common(vcpu, msr_info);
2346 if (ret)
2347 break;
2348
2349 if (is_guest_mode(vcpu) &&
2350 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2351 get_vmcs12(vcpu)->guest_ia32_pat = data;
2352
2353 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2354 vmcs_write64(GUEST_IA32_PAT, data);
2355 break;
2356 case MSR_IA32_MCG_EXT_CTL:
2357 if ((!msr_info->host_initiated &&
2358 !(to_vmx(vcpu)->msr_ia32_feature_control &
2359 FEAT_CTL_LMCE_ENABLED)) ||
2360 (data & ~MCG_EXT_CTL_LMCE_EN))
2361 return 1;
2362 vcpu->arch.mcg_ext_ctl = data;
2363 break;
2364 case MSR_IA32_FEAT_CTL:
2365 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2366 return 1;
2367
2368 vmx->msr_ia32_feature_control = data;
2369 if (msr_info->host_initiated && data == 0)
2370 vmx_leave_nested(vcpu);
2371
2372 /* SGX may be enabled/disabled by guest's firmware */
2373 vmx_write_encls_bitmap(vcpu, NULL);
2374 break;
2375 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2376 /*
2377 * On real hardware, the LE hash MSRs are writable before
2378 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2379 * at which point SGX related bits in IA32_FEATURE_CONTROL
2380 * become writable.
2381 *
2382 * KVM does not emulate SGX activation for simplicity, so
2383 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2384 * is unlocked. This is technically not architectural
2385 * behavior, but it's close enough.
2386 */
2387 if (!msr_info->host_initiated &&
2388 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2389 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2390 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2391 return 1;
2392 vmx->msr_ia32_sgxlepubkeyhash
2393 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2394 break;
2395 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2396 if (!msr_info->host_initiated)
2397 return 1; /* they are read-only */
2398 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2399 return 1;
2400 return vmx_set_vmx_msr(vcpu, msr_index, data);
2401 case MSR_IA32_RTIT_CTL:
2402 if (!vmx_pt_mode_is_host_guest() ||
2403 vmx_rtit_ctl_check(vcpu, data) ||
2404 vmx->nested.vmxon)
2405 return 1;
2406 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2407 vmx->pt_desc.guest.ctl = data;
2408 pt_update_intercept_for_msr(vcpu);
2409 break;
2410 case MSR_IA32_RTIT_STATUS:
2411 if (!pt_can_write_msr(vmx))
2412 return 1;
2413 if (data & MSR_IA32_RTIT_STATUS_MASK)
2414 return 1;
2415 vmx->pt_desc.guest.status = data;
2416 break;
2417 case MSR_IA32_RTIT_CR3_MATCH:
2418 if (!pt_can_write_msr(vmx))
2419 return 1;
2420 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2421 PT_CAP_cr3_filtering))
2422 return 1;
2423 vmx->pt_desc.guest.cr3_match = data;
2424 break;
2425 case MSR_IA32_RTIT_OUTPUT_BASE:
2426 if (!pt_can_write_msr(vmx))
2427 return 1;
2428 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2429 PT_CAP_topa_output) &&
2430 !intel_pt_validate_cap(vmx->pt_desc.caps,
2431 PT_CAP_single_range_output))
2432 return 1;
2433 if (!pt_output_base_valid(vcpu, data))
2434 return 1;
2435 vmx->pt_desc.guest.output_base = data;
2436 break;
2437 case MSR_IA32_RTIT_OUTPUT_MASK:
2438 if (!pt_can_write_msr(vmx))
2439 return 1;
2440 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2441 PT_CAP_topa_output) &&
2442 !intel_pt_validate_cap(vmx->pt_desc.caps,
2443 PT_CAP_single_range_output))
2444 return 1;
2445 vmx->pt_desc.guest.output_mask = data;
2446 break;
2447 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2448 if (!pt_can_write_msr(vmx))
2449 return 1;
2450 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2451 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2452 return 1;
2453 if (is_noncanonical_address(data, vcpu))
2454 return 1;
2455 if (index % 2)
2456 vmx->pt_desc.guest.addr_b[index / 2] = data;
2457 else
2458 vmx->pt_desc.guest.addr_a[index / 2] = data;
2459 break;
2460 case MSR_IA32_PERF_CAPABILITIES:
2461 if (data && !vcpu_to_pmu(vcpu)->version)
2462 return 1;
2463 if (data & PMU_CAP_LBR_FMT) {
2464 if ((data & PMU_CAP_LBR_FMT) !=
2465 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2466 return 1;
2467 if (!cpuid_model_is_consistent(vcpu))
2468 return 1;
2469 }
2470 if (data & PERF_CAP_PEBS_FORMAT) {
2471 if ((data & PERF_CAP_PEBS_MASK) !=
2472 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2473 return 1;
2474 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2475 return 1;
2476 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2477 return 1;
2478 if (!cpuid_model_is_consistent(vcpu))
2479 return 1;
2480 }
2481 ret = kvm_set_msr_common(vcpu, msr_info);
2482 break;
2483
2484 default:
2485 find_uret_msr:
2486 msr = vmx_find_uret_msr(vmx, msr_index);
2487 if (msr)
2488 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2489 else
2490 ret = kvm_set_msr_common(vcpu, msr_info);
2491 }
2492
2493 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2494 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2495 vmx_update_fb_clear_dis(vcpu, vmx);
2496
2497 return ret;
2498 }
2499
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2500 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2501 {
2502 unsigned long guest_owned_bits;
2503
2504 kvm_register_mark_available(vcpu, reg);
2505
2506 switch (reg) {
2507 case VCPU_REGS_RSP:
2508 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2509 break;
2510 case VCPU_REGS_RIP:
2511 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2512 break;
2513 case VCPU_EXREG_PDPTR:
2514 if (enable_ept)
2515 ept_save_pdptrs(vcpu);
2516 break;
2517 case VCPU_EXREG_CR0:
2518 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2519
2520 vcpu->arch.cr0 &= ~guest_owned_bits;
2521 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2522 break;
2523 case VCPU_EXREG_CR3:
2524 /*
2525 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2526 * CR3 is loaded into hardware, not the guest's CR3.
2527 */
2528 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2529 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2530 break;
2531 case VCPU_EXREG_CR4:
2532 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2533
2534 vcpu->arch.cr4 &= ~guest_owned_bits;
2535 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2536 break;
2537 default:
2538 KVM_BUG_ON(1, vcpu->kvm);
2539 break;
2540 }
2541 }
2542
2543 /*
2544 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2545 * directly instead of going through cpu_has(), to ensure KVM is trapping
2546 * ENCLS whenever it's supported in hardware. It does not matter whether
2547 * the host OS supports or has enabled SGX.
2548 */
cpu_has_sgx(void)2549 static bool cpu_has_sgx(void)
2550 {
2551 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2552 }
2553
2554 /*
2555 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2556 * can't be used due to errata where VM Exit may incorrectly clear
2557 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2558 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2559 */
cpu_has_perf_global_ctrl_bug(void)2560 static bool cpu_has_perf_global_ctrl_bug(void)
2561 {
2562 switch (boot_cpu_data.x86_vfm) {
2563 case INTEL_NEHALEM_EP: /* AAK155 */
2564 case INTEL_NEHALEM: /* AAP115 */
2565 case INTEL_WESTMERE: /* AAT100 */
2566 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */
2567 case INTEL_NEHALEM_EX: /* BA97 */
2568 return true;
2569 default:
2570 break;
2571 }
2572
2573 return false;
2574 }
2575
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2576 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2577 {
2578 u32 vmx_msr_low, vmx_msr_high;
2579 u32 ctl = ctl_min | ctl_opt;
2580
2581 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2582
2583 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2584 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2585
2586 /* Ensure minimum (required) set of control bits are supported. */
2587 if (ctl_min & ~ctl)
2588 return -EIO;
2589
2590 *result = ctl;
2591 return 0;
2592 }
2593
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2594 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2595 {
2596 u64 allowed;
2597
2598 rdmsrl(msr, allowed);
2599
2600 return ctl_opt & allowed;
2601 }
2602
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2603 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2604 struct vmx_capability *vmx_cap)
2605 {
2606 u32 _pin_based_exec_control = 0;
2607 u32 _cpu_based_exec_control = 0;
2608 u32 _cpu_based_2nd_exec_control = 0;
2609 u64 _cpu_based_3rd_exec_control = 0;
2610 u32 _vmexit_control = 0;
2611 u32 _vmentry_control = 0;
2612 u64 basic_msr;
2613 u64 misc_msr;
2614 int i;
2615
2616 /*
2617 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2618 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2619 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2620 */
2621 struct {
2622 u32 entry_control;
2623 u32 exit_control;
2624 } const vmcs_entry_exit_pairs[] = {
2625 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2626 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2627 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2628 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2629 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2630 };
2631
2632 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2633
2634 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2635 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2636 MSR_IA32_VMX_PROCBASED_CTLS,
2637 &_cpu_based_exec_control))
2638 return -EIO;
2639 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2640 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2641 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2642 MSR_IA32_VMX_PROCBASED_CTLS2,
2643 &_cpu_based_2nd_exec_control))
2644 return -EIO;
2645 }
2646 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2647 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2648
2649 #ifndef CONFIG_X86_64
2650 if (!(_cpu_based_2nd_exec_control &
2651 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2652 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2653 #endif
2654
2655 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2656 _cpu_based_2nd_exec_control &= ~(
2657 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2658 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2659 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2660
2661 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2662 &vmx_cap->ept, &vmx_cap->vpid);
2663
2664 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2665 vmx_cap->ept) {
2666 pr_warn_once("EPT CAP should not exist if not support "
2667 "1-setting enable EPT VM-execution control\n");
2668
2669 if (error_on_inconsistent_vmcs_config)
2670 return -EIO;
2671
2672 vmx_cap->ept = 0;
2673 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2674 }
2675 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2676 vmx_cap->vpid) {
2677 pr_warn_once("VPID CAP should not exist if not support "
2678 "1-setting enable VPID VM-execution control\n");
2679
2680 if (error_on_inconsistent_vmcs_config)
2681 return -EIO;
2682
2683 vmx_cap->vpid = 0;
2684 }
2685
2686 if (!cpu_has_sgx())
2687 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2688
2689 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2690 _cpu_based_3rd_exec_control =
2691 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2692 MSR_IA32_VMX_PROCBASED_CTLS3);
2693
2694 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2695 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2696 MSR_IA32_VMX_EXIT_CTLS,
2697 &_vmexit_control))
2698 return -EIO;
2699
2700 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2701 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2702 MSR_IA32_VMX_PINBASED_CTLS,
2703 &_pin_based_exec_control))
2704 return -EIO;
2705
2706 if (cpu_has_broken_vmx_preemption_timer())
2707 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2708 if (!(_cpu_based_2nd_exec_control &
2709 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2710 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2711
2712 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2713 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2714 MSR_IA32_VMX_ENTRY_CTLS,
2715 &_vmentry_control))
2716 return -EIO;
2717
2718 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2719 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2720 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2721
2722 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2723 continue;
2724
2725 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2726 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2727
2728 if (error_on_inconsistent_vmcs_config)
2729 return -EIO;
2730
2731 _vmentry_control &= ~n_ctrl;
2732 _vmexit_control &= ~x_ctrl;
2733 }
2734
2735 rdmsrl(MSR_IA32_VMX_BASIC, basic_msr);
2736
2737 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2738 if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2739 return -EIO;
2740
2741 #ifdef CONFIG_X86_64
2742 /*
2743 * KVM expects to be able to shove all legal physical addresses into
2744 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2745 * 0 for processors that support Intel 64 architecture".
2746 */
2747 if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2748 return -EIO;
2749 #endif
2750
2751 /* Require Write-Back (WB) memory type for VMCS accesses. */
2752 if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2753 return -EIO;
2754
2755 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2756
2757 vmcs_conf->basic = basic_msr;
2758 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2759 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2760 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2761 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2762 vmcs_conf->vmexit_ctrl = _vmexit_control;
2763 vmcs_conf->vmentry_ctrl = _vmentry_control;
2764 vmcs_conf->misc = misc_msr;
2765
2766 #if IS_ENABLED(CONFIG_HYPERV)
2767 if (enlightened_vmcs)
2768 evmcs_sanitize_exec_ctrls(vmcs_conf);
2769 #endif
2770
2771 return 0;
2772 }
2773
__kvm_is_vmx_supported(void)2774 static bool __kvm_is_vmx_supported(void)
2775 {
2776 int cpu = smp_processor_id();
2777
2778 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2779 pr_err("VMX not supported by CPU %d\n", cpu);
2780 return false;
2781 }
2782
2783 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2784 !this_cpu_has(X86_FEATURE_VMX)) {
2785 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2786 return false;
2787 }
2788
2789 return true;
2790 }
2791
kvm_is_vmx_supported(void)2792 static bool kvm_is_vmx_supported(void)
2793 {
2794 bool supported;
2795
2796 migrate_disable();
2797 supported = __kvm_is_vmx_supported();
2798 migrate_enable();
2799
2800 return supported;
2801 }
2802
vmx_check_processor_compat(void)2803 int vmx_check_processor_compat(void)
2804 {
2805 int cpu = raw_smp_processor_id();
2806 struct vmcs_config vmcs_conf;
2807 struct vmx_capability vmx_cap;
2808
2809 if (!__kvm_is_vmx_supported())
2810 return -EIO;
2811
2812 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2813 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2814 return -EIO;
2815 }
2816 if (nested)
2817 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2818 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2819 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2820 return -EIO;
2821 }
2822 return 0;
2823 }
2824
kvm_cpu_vmxon(u64 vmxon_pointer)2825 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2826 {
2827 u64 msr;
2828
2829 cr4_set_bits(X86_CR4_VMXE);
2830
2831 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2832 _ASM_EXTABLE(1b, %l[fault])
2833 : : [vmxon_pointer] "m"(vmxon_pointer)
2834 : : fault);
2835 return 0;
2836
2837 fault:
2838 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2839 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2840 cr4_clear_bits(X86_CR4_VMXE);
2841
2842 return -EFAULT;
2843 }
2844
vmx_enable_virtualization_cpu(void)2845 int vmx_enable_virtualization_cpu(void)
2846 {
2847 int cpu = raw_smp_processor_id();
2848 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2849 int r;
2850
2851 if (cr4_read_shadow() & X86_CR4_VMXE)
2852 return -EBUSY;
2853
2854 /*
2855 * This can happen if we hot-added a CPU but failed to allocate
2856 * VP assist page for it.
2857 */
2858 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2859 return -EFAULT;
2860
2861 intel_pt_handle_vmx(1);
2862
2863 r = kvm_cpu_vmxon(phys_addr);
2864 if (r) {
2865 intel_pt_handle_vmx(0);
2866 return r;
2867 }
2868
2869 return 0;
2870 }
2871
vmclear_local_loaded_vmcss(void)2872 static void vmclear_local_loaded_vmcss(void)
2873 {
2874 int cpu = raw_smp_processor_id();
2875 struct loaded_vmcs *v, *n;
2876
2877 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2878 loaded_vmcss_on_cpu_link)
2879 __loaded_vmcs_clear(v);
2880 }
2881
vmx_disable_virtualization_cpu(void)2882 void vmx_disable_virtualization_cpu(void)
2883 {
2884 vmclear_local_loaded_vmcss();
2885
2886 if (kvm_cpu_vmxoff())
2887 kvm_spurious_fault();
2888
2889 hv_reset_evmcs();
2890
2891 intel_pt_handle_vmx(0);
2892 }
2893
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2894 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2895 {
2896 int node = cpu_to_node(cpu);
2897 struct page *pages;
2898 struct vmcs *vmcs;
2899
2900 pages = __alloc_pages_node(node, flags, 0);
2901 if (!pages)
2902 return NULL;
2903 vmcs = page_address(pages);
2904 memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2905
2906 /* KVM supports Enlightened VMCS v1 only */
2907 if (kvm_is_using_evmcs())
2908 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2909 else
2910 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2911
2912 if (shadow)
2913 vmcs->hdr.shadow_vmcs = 1;
2914 return vmcs;
2915 }
2916
free_vmcs(struct vmcs * vmcs)2917 void free_vmcs(struct vmcs *vmcs)
2918 {
2919 free_page((unsigned long)vmcs);
2920 }
2921
2922 /*
2923 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2924 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2925 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2926 {
2927 if (!loaded_vmcs->vmcs)
2928 return;
2929 loaded_vmcs_clear(loaded_vmcs);
2930 free_vmcs(loaded_vmcs->vmcs);
2931 loaded_vmcs->vmcs = NULL;
2932 if (loaded_vmcs->msr_bitmap)
2933 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2934 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2935 }
2936
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2937 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2938 {
2939 loaded_vmcs->vmcs = alloc_vmcs(false);
2940 if (!loaded_vmcs->vmcs)
2941 return -ENOMEM;
2942
2943 vmcs_clear(loaded_vmcs->vmcs);
2944
2945 loaded_vmcs->shadow_vmcs = NULL;
2946 loaded_vmcs->hv_timer_soft_disabled = false;
2947 loaded_vmcs->cpu = -1;
2948 loaded_vmcs->launched = 0;
2949
2950 if (cpu_has_vmx_msr_bitmap()) {
2951 loaded_vmcs->msr_bitmap = (unsigned long *)
2952 __get_free_page(GFP_KERNEL_ACCOUNT);
2953 if (!loaded_vmcs->msr_bitmap)
2954 goto out_vmcs;
2955 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2956 }
2957
2958 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2959 memset(&loaded_vmcs->controls_shadow, 0,
2960 sizeof(struct vmcs_controls_shadow));
2961
2962 return 0;
2963
2964 out_vmcs:
2965 free_loaded_vmcs(loaded_vmcs);
2966 return -ENOMEM;
2967 }
2968
free_kvm_area(void)2969 static void free_kvm_area(void)
2970 {
2971 int cpu;
2972
2973 for_each_possible_cpu(cpu) {
2974 free_vmcs(per_cpu(vmxarea, cpu));
2975 per_cpu(vmxarea, cpu) = NULL;
2976 }
2977 }
2978
alloc_kvm_area(void)2979 static __init int alloc_kvm_area(void)
2980 {
2981 int cpu;
2982
2983 for_each_possible_cpu(cpu) {
2984 struct vmcs *vmcs;
2985
2986 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2987 if (!vmcs) {
2988 free_kvm_area();
2989 return -ENOMEM;
2990 }
2991
2992 /*
2993 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2994 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2995 * revision_id reported by MSR_IA32_VMX_BASIC.
2996 *
2997 * However, even though not explicitly documented by
2998 * TLFS, VMXArea passed as VMXON argument should
2999 * still be marked with revision_id reported by
3000 * physical CPU.
3001 */
3002 if (kvm_is_using_evmcs())
3003 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3004
3005 per_cpu(vmxarea, cpu) = vmcs;
3006 }
3007 return 0;
3008 }
3009
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3010 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3011 struct kvm_segment *save)
3012 {
3013 if (!emulate_invalid_guest_state) {
3014 /*
3015 * CS and SS RPL should be equal during guest entry according
3016 * to VMX spec, but in reality it is not always so. Since vcpu
3017 * is in the middle of the transition from real mode to
3018 * protected mode it is safe to assume that RPL 0 is a good
3019 * default value.
3020 */
3021 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3022 save->selector &= ~SEGMENT_RPL_MASK;
3023 save->dpl = save->selector & SEGMENT_RPL_MASK;
3024 save->s = 1;
3025 }
3026 __vmx_set_segment(vcpu, save, seg);
3027 }
3028
enter_pmode(struct kvm_vcpu * vcpu)3029 static void enter_pmode(struct kvm_vcpu *vcpu)
3030 {
3031 unsigned long flags;
3032 struct vcpu_vmx *vmx = to_vmx(vcpu);
3033
3034 /*
3035 * Update real mode segment cache. It may be not up-to-date if segment
3036 * register was written while vcpu was in a guest mode.
3037 */
3038 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3039 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3040 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3041 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3042 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3043 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3044
3045 vmx->rmode.vm86_active = 0;
3046
3047 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3048
3049 flags = vmcs_readl(GUEST_RFLAGS);
3050 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3051 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3052 vmcs_writel(GUEST_RFLAGS, flags);
3053
3054 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3055 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3056
3057 vmx_update_exception_bitmap(vcpu);
3058
3059 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3060 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3061 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3062 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3063 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3064 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3065 }
3066
fix_rmode_seg(int seg,struct kvm_segment * save)3067 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3068 {
3069 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3070 struct kvm_segment var = *save;
3071
3072 var.dpl = 0x3;
3073 if (seg == VCPU_SREG_CS)
3074 var.type = 0x3;
3075
3076 if (!emulate_invalid_guest_state) {
3077 var.selector = var.base >> 4;
3078 var.base = var.base & 0xffff0;
3079 var.limit = 0xffff;
3080 var.g = 0;
3081 var.db = 0;
3082 var.present = 1;
3083 var.s = 1;
3084 var.l = 0;
3085 var.unusable = 0;
3086 var.type = 0x3;
3087 var.avl = 0;
3088 if (save->base & 0xf)
3089 pr_warn_once("segment base is not paragraph aligned "
3090 "when entering protected mode (seg=%d)", seg);
3091 }
3092
3093 vmcs_write16(sf->selector, var.selector);
3094 vmcs_writel(sf->base, var.base);
3095 vmcs_write32(sf->limit, var.limit);
3096 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3097 }
3098
enter_rmode(struct kvm_vcpu * vcpu)3099 static void enter_rmode(struct kvm_vcpu *vcpu)
3100 {
3101 unsigned long flags;
3102 struct vcpu_vmx *vmx = to_vmx(vcpu);
3103 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3104
3105 /*
3106 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3107 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3108 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3109 * should VM-Fail and KVM should reject userspace attempts to stuff
3110 * CR0.PG=0 when L2 is active.
3111 */
3112 WARN_ON_ONCE(is_guest_mode(vcpu));
3113
3114 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3115 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3116 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3117 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3118 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3119 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3120 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3121
3122 vmx->rmode.vm86_active = 1;
3123
3124 vmx_segment_cache_clear(vmx);
3125
3126 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3127 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3128 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3129
3130 flags = vmcs_readl(GUEST_RFLAGS);
3131 vmx->rmode.save_rflags = flags;
3132
3133 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3134
3135 vmcs_writel(GUEST_RFLAGS, flags);
3136 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3137 vmx_update_exception_bitmap(vcpu);
3138
3139 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3140 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3141 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3142 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3143 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3144 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3145 }
3146
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3147 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3148 {
3149 struct vcpu_vmx *vmx = to_vmx(vcpu);
3150
3151 /* Nothing to do if hardware doesn't support EFER. */
3152 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3153 return 0;
3154
3155 vcpu->arch.efer = efer;
3156 #ifdef CONFIG_X86_64
3157 if (efer & EFER_LMA)
3158 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3159 else
3160 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3161 #else
3162 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3163 return 1;
3164 #endif
3165
3166 vmx_setup_uret_msrs(vmx);
3167 return 0;
3168 }
3169
3170 #ifdef CONFIG_X86_64
3171
enter_lmode(struct kvm_vcpu * vcpu)3172 static void enter_lmode(struct kvm_vcpu *vcpu)
3173 {
3174 u32 guest_tr_ar;
3175
3176 vmx_segment_cache_clear(to_vmx(vcpu));
3177
3178 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3179 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3180 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3181 __func__);
3182 vmcs_write32(GUEST_TR_AR_BYTES,
3183 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3184 | VMX_AR_TYPE_BUSY_64_TSS);
3185 }
3186 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3187 }
3188
exit_lmode(struct kvm_vcpu * vcpu)3189 static void exit_lmode(struct kvm_vcpu *vcpu)
3190 {
3191 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3192 }
3193
3194 #endif
3195
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3196 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3197 {
3198 struct vcpu_vmx *vmx = to_vmx(vcpu);
3199
3200 /*
3201 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3202 * the CPU is not required to invalidate guest-physical mappings on
3203 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3204 * associated with the root EPT structure and not any particular VPID
3205 * (INVVPID also isn't required to invalidate guest-physical mappings).
3206 */
3207 if (enable_ept) {
3208 ept_sync_global();
3209 } else if (enable_vpid) {
3210 if (cpu_has_vmx_invvpid_global()) {
3211 vpid_sync_vcpu_global();
3212 } else {
3213 vpid_sync_vcpu_single(vmx->vpid);
3214 vpid_sync_vcpu_single(vmx->nested.vpid02);
3215 }
3216 }
3217 }
3218
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3219 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3220 {
3221 if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3222 return nested_get_vpid02(vcpu);
3223 return to_vmx(vcpu)->vpid;
3224 }
3225
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3226 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3227 {
3228 struct kvm_mmu *mmu = vcpu->arch.mmu;
3229 u64 root_hpa = mmu->root.hpa;
3230
3231 /* No flush required if the current context is invalid. */
3232 if (!VALID_PAGE(root_hpa))
3233 return;
3234
3235 if (enable_ept)
3236 ept_sync_context(construct_eptp(vcpu, root_hpa,
3237 mmu->root_role.level));
3238 else
3239 vpid_sync_context(vmx_get_current_vpid(vcpu));
3240 }
3241
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3242 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3243 {
3244 /*
3245 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3246 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3247 */
3248 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3249 }
3250
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3251 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3252 {
3253 /*
3254 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3255 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3256 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3257 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3258 * i.e. no explicit INVVPID is necessary.
3259 */
3260 vpid_sync_context(vmx_get_current_vpid(vcpu));
3261 }
3262
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3263 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3264 {
3265 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3266
3267 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3268 return;
3269
3270 if (is_pae_paging(vcpu)) {
3271 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3272 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3273 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3274 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3275 }
3276 }
3277
ept_save_pdptrs(struct kvm_vcpu * vcpu)3278 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3279 {
3280 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3281
3282 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3283 return;
3284
3285 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3286 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3287 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3288 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3289
3290 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3291 }
3292
3293 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3294 CPU_BASED_CR3_STORE_EXITING)
3295
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3296 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3297 {
3298 if (is_guest_mode(vcpu))
3299 return nested_guest_cr0_valid(vcpu, cr0);
3300
3301 if (to_vmx(vcpu)->nested.vmxon)
3302 return nested_host_cr0_valid(vcpu, cr0);
3303
3304 return true;
3305 }
3306
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3307 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3308 {
3309 struct vcpu_vmx *vmx = to_vmx(vcpu);
3310 unsigned long hw_cr0, old_cr0_pg;
3311 u32 tmp;
3312
3313 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3314
3315 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3316 if (enable_unrestricted_guest)
3317 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3318 else {
3319 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3320 if (!enable_ept)
3321 hw_cr0 |= X86_CR0_WP;
3322
3323 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3324 enter_pmode(vcpu);
3325
3326 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3327 enter_rmode(vcpu);
3328 }
3329
3330 vmcs_writel(CR0_READ_SHADOW, cr0);
3331 vmcs_writel(GUEST_CR0, hw_cr0);
3332 vcpu->arch.cr0 = cr0;
3333 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3334
3335 #ifdef CONFIG_X86_64
3336 if (vcpu->arch.efer & EFER_LME) {
3337 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3338 enter_lmode(vcpu);
3339 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3340 exit_lmode(vcpu);
3341 }
3342 #endif
3343
3344 if (enable_ept && !enable_unrestricted_guest) {
3345 /*
3346 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3347 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3348 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3349 * KVM's CR3 is installed.
3350 */
3351 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3352 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3353
3354 /*
3355 * When running with EPT but not unrestricted guest, KVM must
3356 * intercept CR3 accesses when paging is _disabled_. This is
3357 * necessary because restricted guests can't actually run with
3358 * paging disabled, and so KVM stuffs its own CR3 in order to
3359 * run the guest when identity mapped page tables.
3360 *
3361 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3362 * update, it may be stale with respect to CR3 interception,
3363 * e.g. after nested VM-Enter.
3364 *
3365 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3366 * stores to forward them to L1, even if KVM does not need to
3367 * intercept them to preserve its identity mapped page tables.
3368 */
3369 if (!(cr0 & X86_CR0_PG)) {
3370 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3371 } else if (!is_guest_mode(vcpu)) {
3372 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3373 } else {
3374 tmp = exec_controls_get(vmx);
3375 tmp &= ~CR3_EXITING_BITS;
3376 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3377 exec_controls_set(vmx, tmp);
3378 }
3379
3380 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3381 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3382 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3383
3384 /*
3385 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3386 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3387 */
3388 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3389 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3390 }
3391
3392 /* depends on vcpu->arch.cr0 to be set to a new value */
3393 vmx->emulation_required = vmx_emulation_required(vcpu);
3394 }
3395
vmx_get_max_ept_level(void)3396 static int vmx_get_max_ept_level(void)
3397 {
3398 if (cpu_has_vmx_ept_5levels())
3399 return 5;
3400 return 4;
3401 }
3402
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3403 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3404 {
3405 u64 eptp = VMX_EPTP_MT_WB;
3406
3407 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3408
3409 if (enable_ept_ad_bits &&
3410 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3411 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3412 eptp |= root_hpa;
3413
3414 return eptp;
3415 }
3416
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3417 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3418 {
3419 struct kvm *kvm = vcpu->kvm;
3420 bool update_guest_cr3 = true;
3421 unsigned long guest_cr3;
3422 u64 eptp;
3423
3424 if (enable_ept) {
3425 eptp = construct_eptp(vcpu, root_hpa, root_level);
3426 vmcs_write64(EPT_POINTER, eptp);
3427
3428 hv_track_root_tdp(vcpu, root_hpa);
3429
3430 if (!enable_unrestricted_guest && !is_paging(vcpu))
3431 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3432 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3433 guest_cr3 = vcpu->arch.cr3;
3434 else /* vmcs.GUEST_CR3 is already up-to-date. */
3435 update_guest_cr3 = false;
3436 vmx_ept_load_pdptrs(vcpu);
3437 } else {
3438 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3439 kvm_get_active_cr3_lam_bits(vcpu);
3440 }
3441
3442 if (update_guest_cr3)
3443 vmcs_writel(GUEST_CR3, guest_cr3);
3444 }
3445
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3446 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3447 {
3448 /*
3449 * We operate under the default treatment of SMM, so VMX cannot be
3450 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3451 * i.e. is a reserved bit, is handled by common x86 code.
3452 */
3453 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3454 return false;
3455
3456 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3457 return false;
3458
3459 return true;
3460 }
3461
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3462 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3463 {
3464 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3465 struct vcpu_vmx *vmx = to_vmx(vcpu);
3466 unsigned long hw_cr4;
3467
3468 /*
3469 * Pass through host's Machine Check Enable value to hw_cr4, which
3470 * is in force while we are in guest mode. Do not let guests control
3471 * this bit, even if host CR4.MCE == 0.
3472 */
3473 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3474 if (enable_unrestricted_guest)
3475 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3476 else if (vmx->rmode.vm86_active)
3477 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3478 else
3479 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3480
3481 if (vmx_umip_emulated()) {
3482 if (cr4 & X86_CR4_UMIP) {
3483 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3484 hw_cr4 &= ~X86_CR4_UMIP;
3485 } else if (!is_guest_mode(vcpu) ||
3486 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3487 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3488 }
3489 }
3490
3491 vcpu->arch.cr4 = cr4;
3492 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3493
3494 if (!enable_unrestricted_guest) {
3495 if (enable_ept) {
3496 if (!is_paging(vcpu)) {
3497 hw_cr4 &= ~X86_CR4_PAE;
3498 hw_cr4 |= X86_CR4_PSE;
3499 } else if (!(cr4 & X86_CR4_PAE)) {
3500 hw_cr4 &= ~X86_CR4_PAE;
3501 }
3502 }
3503
3504 /*
3505 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3506 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3507 * to be manually disabled when guest switches to non-paging
3508 * mode.
3509 *
3510 * If !enable_unrestricted_guest, the CPU is always running
3511 * with CR0.PG=1 and CR4 needs to be modified.
3512 * If enable_unrestricted_guest, the CPU automatically
3513 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3514 */
3515 if (!is_paging(vcpu))
3516 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3517 }
3518
3519 vmcs_writel(CR4_READ_SHADOW, cr4);
3520 vmcs_writel(GUEST_CR4, hw_cr4);
3521
3522 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3523 kvm_update_cpuid_runtime(vcpu);
3524 }
3525
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3526 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3527 {
3528 struct vcpu_vmx *vmx = to_vmx(vcpu);
3529 u32 ar;
3530
3531 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3532 *var = vmx->rmode.segs[seg];
3533 if (seg == VCPU_SREG_TR
3534 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3535 return;
3536 var->base = vmx_read_guest_seg_base(vmx, seg);
3537 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3538 return;
3539 }
3540 var->base = vmx_read_guest_seg_base(vmx, seg);
3541 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3542 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3543 ar = vmx_read_guest_seg_ar(vmx, seg);
3544 var->unusable = (ar >> 16) & 1;
3545 var->type = ar & 15;
3546 var->s = (ar >> 4) & 1;
3547 var->dpl = (ar >> 5) & 3;
3548 /*
3549 * Some userspaces do not preserve unusable property. Since usable
3550 * segment has to be present according to VMX spec we can use present
3551 * property to amend userspace bug by making unusable segment always
3552 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3553 * segment as unusable.
3554 */
3555 var->present = !var->unusable;
3556 var->avl = (ar >> 12) & 1;
3557 var->l = (ar >> 13) & 1;
3558 var->db = (ar >> 14) & 1;
3559 var->g = (ar >> 15) & 1;
3560 }
3561
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3562 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3563 {
3564 struct kvm_segment s;
3565
3566 if (to_vmx(vcpu)->rmode.vm86_active) {
3567 vmx_get_segment(vcpu, &s, seg);
3568 return s.base;
3569 }
3570 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3571 }
3572
vmx_get_cpl(struct kvm_vcpu * vcpu)3573 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3574 {
3575 struct vcpu_vmx *vmx = to_vmx(vcpu);
3576
3577 if (unlikely(vmx->rmode.vm86_active))
3578 return 0;
3579 else {
3580 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3581 return VMX_AR_DPL(ar);
3582 }
3583 }
3584
vmx_segment_access_rights(struct kvm_segment * var)3585 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3586 {
3587 u32 ar;
3588
3589 ar = var->type & 15;
3590 ar |= (var->s & 1) << 4;
3591 ar |= (var->dpl & 3) << 5;
3592 ar |= (var->present & 1) << 7;
3593 ar |= (var->avl & 1) << 12;
3594 ar |= (var->l & 1) << 13;
3595 ar |= (var->db & 1) << 14;
3596 ar |= (var->g & 1) << 15;
3597 ar |= (var->unusable || !var->present) << 16;
3598
3599 return ar;
3600 }
3601
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3602 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3603 {
3604 struct vcpu_vmx *vmx = to_vmx(vcpu);
3605 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3606
3607 vmx_segment_cache_clear(vmx);
3608
3609 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3610 vmx->rmode.segs[seg] = *var;
3611 if (seg == VCPU_SREG_TR)
3612 vmcs_write16(sf->selector, var->selector);
3613 else if (var->s)
3614 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3615 return;
3616 }
3617
3618 vmcs_writel(sf->base, var->base);
3619 vmcs_write32(sf->limit, var->limit);
3620 vmcs_write16(sf->selector, var->selector);
3621
3622 /*
3623 * Fix the "Accessed" bit in AR field of segment registers for older
3624 * qemu binaries.
3625 * IA32 arch specifies that at the time of processor reset the
3626 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3627 * is setting it to 0 in the userland code. This causes invalid guest
3628 * state vmexit when "unrestricted guest" mode is turned on.
3629 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3630 * tree. Newer qemu binaries with that qemu fix would not need this
3631 * kvm hack.
3632 */
3633 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3634 var->type |= 0x1; /* Accessed */
3635
3636 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3637 }
3638
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3639 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3640 {
3641 __vmx_set_segment(vcpu, var, seg);
3642
3643 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3644 }
3645
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3646 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3647 {
3648 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3649
3650 *db = (ar >> 14) & 1;
3651 *l = (ar >> 13) & 1;
3652 }
3653
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3654 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3655 {
3656 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3657 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3658 }
3659
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3660 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3661 {
3662 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3663 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3664 }
3665
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3666 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3667 {
3668 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3669 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3670 }
3671
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3672 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3673 {
3674 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3675 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3676 }
3677
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3678 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3679 {
3680 struct kvm_segment var;
3681 u32 ar;
3682
3683 vmx_get_segment(vcpu, &var, seg);
3684 var.dpl = 0x3;
3685 if (seg == VCPU_SREG_CS)
3686 var.type = 0x3;
3687 ar = vmx_segment_access_rights(&var);
3688
3689 if (var.base != (var.selector << 4))
3690 return false;
3691 if (var.limit != 0xffff)
3692 return false;
3693 if (ar != 0xf3)
3694 return false;
3695
3696 return true;
3697 }
3698
code_segment_valid(struct kvm_vcpu * vcpu)3699 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3700 {
3701 struct kvm_segment cs;
3702 unsigned int cs_rpl;
3703
3704 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3705 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3706
3707 if (cs.unusable)
3708 return false;
3709 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3710 return false;
3711 if (!cs.s)
3712 return false;
3713 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3714 if (cs.dpl > cs_rpl)
3715 return false;
3716 } else {
3717 if (cs.dpl != cs_rpl)
3718 return false;
3719 }
3720 if (!cs.present)
3721 return false;
3722
3723 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3724 return true;
3725 }
3726
stack_segment_valid(struct kvm_vcpu * vcpu)3727 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3728 {
3729 struct kvm_segment ss;
3730 unsigned int ss_rpl;
3731
3732 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3733 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3734
3735 if (ss.unusable)
3736 return true;
3737 if (ss.type != 3 && ss.type != 7)
3738 return false;
3739 if (!ss.s)
3740 return false;
3741 if (ss.dpl != ss_rpl) /* DPL != RPL */
3742 return false;
3743 if (!ss.present)
3744 return false;
3745
3746 return true;
3747 }
3748
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3749 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3750 {
3751 struct kvm_segment var;
3752 unsigned int rpl;
3753
3754 vmx_get_segment(vcpu, &var, seg);
3755 rpl = var.selector & SEGMENT_RPL_MASK;
3756
3757 if (var.unusable)
3758 return true;
3759 if (!var.s)
3760 return false;
3761 if (!var.present)
3762 return false;
3763 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3764 if (var.dpl < rpl) /* DPL < RPL */
3765 return false;
3766 }
3767
3768 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3769 * rights flags
3770 */
3771 return true;
3772 }
3773
tr_valid(struct kvm_vcpu * vcpu)3774 static bool tr_valid(struct kvm_vcpu *vcpu)
3775 {
3776 struct kvm_segment tr;
3777
3778 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3779
3780 if (tr.unusable)
3781 return false;
3782 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3783 return false;
3784 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3785 return false;
3786 if (!tr.present)
3787 return false;
3788
3789 return true;
3790 }
3791
ldtr_valid(struct kvm_vcpu * vcpu)3792 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3793 {
3794 struct kvm_segment ldtr;
3795
3796 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3797
3798 if (ldtr.unusable)
3799 return true;
3800 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3801 return false;
3802 if (ldtr.type != 2)
3803 return false;
3804 if (!ldtr.present)
3805 return false;
3806
3807 return true;
3808 }
3809
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3810 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3811 {
3812 struct kvm_segment cs, ss;
3813
3814 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3815 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3816
3817 return ((cs.selector & SEGMENT_RPL_MASK) ==
3818 (ss.selector & SEGMENT_RPL_MASK));
3819 }
3820
3821 /*
3822 * Check if guest state is valid. Returns true if valid, false if
3823 * not.
3824 * We assume that registers are always usable
3825 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3826 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3827 {
3828 /* real mode guest state checks */
3829 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3830 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3831 return false;
3832 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3833 return false;
3834 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3835 return false;
3836 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3837 return false;
3838 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3839 return false;
3840 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3841 return false;
3842 } else {
3843 /* protected mode guest state checks */
3844 if (!cs_ss_rpl_check(vcpu))
3845 return false;
3846 if (!code_segment_valid(vcpu))
3847 return false;
3848 if (!stack_segment_valid(vcpu))
3849 return false;
3850 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3851 return false;
3852 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3853 return false;
3854 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3855 return false;
3856 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3857 return false;
3858 if (!tr_valid(vcpu))
3859 return false;
3860 if (!ldtr_valid(vcpu))
3861 return false;
3862 }
3863 /* TODO:
3864 * - Add checks on RIP
3865 * - Add checks on RFLAGS
3866 */
3867
3868 return true;
3869 }
3870
init_rmode_tss(struct kvm * kvm,void __user * ua)3871 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3872 {
3873 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3874 u16 data;
3875 int i;
3876
3877 for (i = 0; i < 3; i++) {
3878 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3879 return -EFAULT;
3880 }
3881
3882 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3883 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3884 return -EFAULT;
3885
3886 data = ~0;
3887 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3888 return -EFAULT;
3889
3890 return 0;
3891 }
3892
init_rmode_identity_map(struct kvm * kvm)3893 static int init_rmode_identity_map(struct kvm *kvm)
3894 {
3895 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3896 int i, r = 0;
3897 void __user *uaddr;
3898 u32 tmp;
3899
3900 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3901 mutex_lock(&kvm->slots_lock);
3902
3903 if (likely(kvm_vmx->ept_identity_pagetable_done))
3904 goto out;
3905
3906 if (!kvm_vmx->ept_identity_map_addr)
3907 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3908
3909 uaddr = __x86_set_memory_region(kvm,
3910 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3911 kvm_vmx->ept_identity_map_addr,
3912 PAGE_SIZE);
3913 if (IS_ERR(uaddr)) {
3914 r = PTR_ERR(uaddr);
3915 goto out;
3916 }
3917
3918 /* Set up identity-mapping pagetable for EPT in real mode */
3919 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3920 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3921 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3922 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3923 r = -EFAULT;
3924 goto out;
3925 }
3926 }
3927 kvm_vmx->ept_identity_pagetable_done = true;
3928
3929 out:
3930 mutex_unlock(&kvm->slots_lock);
3931 return r;
3932 }
3933
seg_setup(int seg)3934 static void seg_setup(int seg)
3935 {
3936 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3937 unsigned int ar;
3938
3939 vmcs_write16(sf->selector, 0);
3940 vmcs_writel(sf->base, 0);
3941 vmcs_write32(sf->limit, 0xffff);
3942 ar = 0x93;
3943 if (seg == VCPU_SREG_CS)
3944 ar |= 0x08; /* code segment */
3945
3946 vmcs_write32(sf->ar_bytes, ar);
3947 }
3948
allocate_vpid(void)3949 int allocate_vpid(void)
3950 {
3951 int vpid;
3952
3953 if (!enable_vpid)
3954 return 0;
3955 spin_lock(&vmx_vpid_lock);
3956 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3957 if (vpid < VMX_NR_VPIDS)
3958 __set_bit(vpid, vmx_vpid_bitmap);
3959 else
3960 vpid = 0;
3961 spin_unlock(&vmx_vpid_lock);
3962 return vpid;
3963 }
3964
free_vpid(int vpid)3965 void free_vpid(int vpid)
3966 {
3967 if (!enable_vpid || vpid == 0)
3968 return;
3969 spin_lock(&vmx_vpid_lock);
3970 __clear_bit(vpid, vmx_vpid_bitmap);
3971 spin_unlock(&vmx_vpid_lock);
3972 }
3973
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3974 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3975 {
3976 /*
3977 * When KVM is a nested hypervisor on top of Hyper-V and uses
3978 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3979 * bitmap has changed.
3980 */
3981 if (kvm_is_using_evmcs()) {
3982 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3983
3984 if (evmcs->hv_enlightenments_control.msr_bitmap)
3985 evmcs->hv_clean_fields &=
3986 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3987 }
3988
3989 vmx->nested.force_msr_bitmap_recalc = true;
3990 }
3991
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3992 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3993 {
3994 struct vcpu_vmx *vmx = to_vmx(vcpu);
3995 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3996 int idx;
3997
3998 if (!cpu_has_vmx_msr_bitmap())
3999 return;
4000
4001 vmx_msr_bitmap_l01_changed(vmx);
4002
4003 /*
4004 * Mark the desired intercept state in shadow bitmap, this is needed
4005 * for resync when the MSR filters change.
4006 */
4007 idx = vmx_get_passthrough_msr_slot(msr);
4008 if (idx >= 0) {
4009 if (type & MSR_TYPE_R)
4010 clear_bit(idx, vmx->shadow_msr_intercept.read);
4011 if (type & MSR_TYPE_W)
4012 clear_bit(idx, vmx->shadow_msr_intercept.write);
4013 }
4014
4015 if ((type & MSR_TYPE_R) &&
4016 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4017 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4018 type &= ~MSR_TYPE_R;
4019 }
4020
4021 if ((type & MSR_TYPE_W) &&
4022 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4023 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4024 type &= ~MSR_TYPE_W;
4025 }
4026
4027 if (type & MSR_TYPE_R)
4028 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4029
4030 if (type & MSR_TYPE_W)
4031 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4032 }
4033
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4034 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4035 {
4036 struct vcpu_vmx *vmx = to_vmx(vcpu);
4037 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4038 int idx;
4039
4040 if (!cpu_has_vmx_msr_bitmap())
4041 return;
4042
4043 vmx_msr_bitmap_l01_changed(vmx);
4044
4045 /*
4046 * Mark the desired intercept state in shadow bitmap, this is needed
4047 * for resync when the MSR filter changes.
4048 */
4049 idx = vmx_get_passthrough_msr_slot(msr);
4050 if (idx >= 0) {
4051 if (type & MSR_TYPE_R)
4052 set_bit(idx, vmx->shadow_msr_intercept.read);
4053 if (type & MSR_TYPE_W)
4054 set_bit(idx, vmx->shadow_msr_intercept.write);
4055 }
4056
4057 if (type & MSR_TYPE_R)
4058 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4059
4060 if (type & MSR_TYPE_W)
4061 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4062 }
4063
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4064 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4065 {
4066 /*
4067 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4068 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4069 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4070 */
4071 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4072 const int write_idx = read_idx + (0x800 / sizeof(u64));
4073 struct vcpu_vmx *vmx = to_vmx(vcpu);
4074 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4075 u8 mode;
4076
4077 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4078 return;
4079
4080 if (cpu_has_secondary_exec_ctrls() &&
4081 (secondary_exec_controls_get(vmx) &
4082 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4083 mode = MSR_BITMAP_MODE_X2APIC;
4084 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4085 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4086 } else {
4087 mode = 0;
4088 }
4089
4090 if (mode == vmx->x2apic_msr_bitmap_mode)
4091 return;
4092
4093 vmx->x2apic_msr_bitmap_mode = mode;
4094
4095 /*
4096 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4097 * registers (0x840 and above) intercepted, KVM doesn't support them.
4098 * Intercept all writes by default and poke holes as needed. Pass
4099 * through reads for all valid registers by default in x2APIC+APICv
4100 * mode, only the current timer count needs on-demand emulation by KVM.
4101 */
4102 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4103 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4104 else
4105 msr_bitmap[read_idx] = ~0ull;
4106 msr_bitmap[write_idx] = ~0ull;
4107
4108 /*
4109 * TPR reads and writes can be virtualized even if virtual interrupt
4110 * delivery is not in use.
4111 */
4112 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4113 !(mode & MSR_BITMAP_MODE_X2APIC));
4114
4115 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4116 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4117 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4118 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4119 if (enable_ipiv)
4120 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4121 }
4122 }
4123
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4124 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4125 {
4126 struct vcpu_vmx *vmx = to_vmx(vcpu);
4127 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4128 u32 i;
4129
4130 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4131 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4132 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4133 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4134 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4135 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4136 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4137 }
4138 }
4139
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4140 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4141 {
4142 struct vcpu_vmx *vmx = to_vmx(vcpu);
4143 u32 i;
4144
4145 if (!cpu_has_vmx_msr_bitmap())
4146 return;
4147
4148 /*
4149 * Redo intercept permissions for MSRs that KVM is passing through to
4150 * the guest. Disabling interception will check the new MSR filter and
4151 * ensure that KVM enables interception if usersepace wants to filter
4152 * the MSR. MSRs that KVM is already intercepting don't need to be
4153 * refreshed since KVM is going to intercept them regardless of what
4154 * userspace wants.
4155 */
4156 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4157 u32 msr = vmx_possible_passthrough_msrs[i];
4158
4159 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4160 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4161
4162 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4163 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4164 }
4165
4166 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4167 if (vmx_pt_mode_is_host_guest())
4168 pt_update_intercept_for_msr(vcpu);
4169 }
4170
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4171 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4172 int pi_vec)
4173 {
4174 #ifdef CONFIG_SMP
4175 if (vcpu->mode == IN_GUEST_MODE) {
4176 /*
4177 * The vector of the virtual has already been set in the PIR.
4178 * Send a notification event to deliver the virtual interrupt
4179 * unless the vCPU is the currently running vCPU, i.e. the
4180 * event is being sent from a fastpath VM-Exit handler, in
4181 * which case the PIR will be synced to the vIRR before
4182 * re-entering the guest.
4183 *
4184 * When the target is not the running vCPU, the following
4185 * possibilities emerge:
4186 *
4187 * Case 1: vCPU stays in non-root mode. Sending a notification
4188 * event posts the interrupt to the vCPU.
4189 *
4190 * Case 2: vCPU exits to root mode and is still runnable. The
4191 * PIR will be synced to the vIRR before re-entering the guest.
4192 * Sending a notification event is ok as the host IRQ handler
4193 * will ignore the spurious event.
4194 *
4195 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4196 * has already synced PIR to vIRR and never blocks the vCPU if
4197 * the vIRR is not empty. Therefore, a blocked vCPU here does
4198 * not wait for any requested interrupts in PIR, and sending a
4199 * notification event also results in a benign, spurious event.
4200 */
4201
4202 if (vcpu != kvm_get_running_vcpu())
4203 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4204 return;
4205 }
4206 #endif
4207 /*
4208 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4209 * otherwise do nothing as KVM will grab the highest priority pending
4210 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4211 */
4212 kvm_vcpu_wake_up(vcpu);
4213 }
4214
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4215 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4216 int vector)
4217 {
4218 struct vcpu_vmx *vmx = to_vmx(vcpu);
4219
4220 /*
4221 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4222 * and freed, and must not be accessed outside of vcpu->mutex. The
4223 * vCPU's cached PI NV is valid if and only if posted interrupts
4224 * enabled in its vmcs12, i.e. checking the vector also checks that
4225 * L1 has enabled posted interrupts for L2.
4226 */
4227 if (is_guest_mode(vcpu) &&
4228 vector == vmx->nested.posted_intr_nv) {
4229 /*
4230 * If a posted intr is not recognized by hardware,
4231 * we will accomplish it in the next vmentry.
4232 */
4233 vmx->nested.pi_pending = true;
4234 kvm_make_request(KVM_REQ_EVENT, vcpu);
4235
4236 /*
4237 * This pairs with the smp_mb_*() after setting vcpu->mode in
4238 * vcpu_enter_guest() to guarantee the vCPU sees the event
4239 * request if triggering a posted interrupt "fails" because
4240 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4241 * the smb_wmb() in kvm_make_request() only ensures everything
4242 * done before making the request is visible when the request
4243 * is visible, it doesn't ensure ordering between the store to
4244 * vcpu->requests and the load from vcpu->mode.
4245 */
4246 smp_mb__after_atomic();
4247
4248 /* the PIR and ON have been set by L1. */
4249 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4250 return 0;
4251 }
4252 return -1;
4253 }
4254 /*
4255 * Send interrupt to vcpu via posted interrupt way.
4256 * 1. If target vcpu is running(non-root mode), send posted interrupt
4257 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4258 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4259 * interrupt from PIR in next vmentry.
4260 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4261 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4262 {
4263 struct vcpu_vmx *vmx = to_vmx(vcpu);
4264 int r;
4265
4266 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4267 if (!r)
4268 return 0;
4269
4270 /* Note, this is called iff the local APIC is in-kernel. */
4271 if (!vcpu->arch.apic->apicv_active)
4272 return -1;
4273
4274 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4275 return 0;
4276
4277 /* If a previous notification has sent the IPI, nothing to do. */
4278 if (pi_test_and_set_on(&vmx->pi_desc))
4279 return 0;
4280
4281 /*
4282 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4283 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4284 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4285 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4286 */
4287 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4288 return 0;
4289 }
4290
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4291 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4292 int trig_mode, int vector)
4293 {
4294 struct kvm_vcpu *vcpu = apic->vcpu;
4295
4296 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4297 kvm_lapic_set_irr(vector, apic);
4298 kvm_make_request(KVM_REQ_EVENT, vcpu);
4299 kvm_vcpu_kick(vcpu);
4300 } else {
4301 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4302 trig_mode, vector);
4303 }
4304 }
4305
4306 /*
4307 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4308 * will not change in the lifetime of the guest.
4309 * Note that host-state that does change is set elsewhere. E.g., host-state
4310 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4311 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4312 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4313 {
4314 u32 low32, high32;
4315 unsigned long tmpl;
4316 unsigned long cr0, cr3, cr4;
4317
4318 cr0 = read_cr0();
4319 WARN_ON(cr0 & X86_CR0_TS);
4320 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4321
4322 /*
4323 * Save the most likely value for this task's CR3 in the VMCS.
4324 * We can't use __get_current_cr3_fast() because we're not atomic.
4325 */
4326 cr3 = __read_cr3();
4327 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4328 vmx->loaded_vmcs->host_state.cr3 = cr3;
4329
4330 /* Save the most likely value for this task's CR4 in the VMCS. */
4331 cr4 = cr4_read_shadow();
4332 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4333 vmx->loaded_vmcs->host_state.cr4 = cr4;
4334
4335 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4336 #ifdef CONFIG_X86_64
4337 /*
4338 * Load null selectors, so we can avoid reloading them in
4339 * vmx_prepare_switch_to_host(), in case userspace uses
4340 * the null selectors too (the expected case).
4341 */
4342 vmcs_write16(HOST_DS_SELECTOR, 0);
4343 vmcs_write16(HOST_ES_SELECTOR, 0);
4344 #else
4345 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4346 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4347 #endif
4348 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4349 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4350
4351 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4352
4353 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4354
4355 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4356 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4357
4358 /*
4359 * SYSENTER is used for 32-bit system calls on either 32-bit or
4360 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4361 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4362 * have already done so!).
4363 */
4364 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4365 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4366
4367 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4368 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4369
4370 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4371 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4372 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4373 }
4374
4375 if (cpu_has_load_ia32_efer())
4376 vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4377 }
4378
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4379 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4380 {
4381 struct kvm_vcpu *vcpu = &vmx->vcpu;
4382
4383 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4384 ~vcpu->arch.cr4_guest_rsvd_bits;
4385 if (!enable_ept) {
4386 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4387 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4388 }
4389 if (is_guest_mode(&vmx->vcpu))
4390 vcpu->arch.cr4_guest_owned_bits &=
4391 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4392 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4393 }
4394
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4395 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4396 {
4397 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4398
4399 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4400 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4401
4402 if (!enable_vnmi)
4403 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4404
4405 if (!enable_preemption_timer)
4406 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4407
4408 return pin_based_exec_ctrl;
4409 }
4410
vmx_vmentry_ctrl(void)4411 static u32 vmx_vmentry_ctrl(void)
4412 {
4413 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4414
4415 if (vmx_pt_mode_is_system())
4416 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4417 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4418 /*
4419 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4420 */
4421 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4422 VM_ENTRY_LOAD_IA32_EFER |
4423 VM_ENTRY_IA32E_MODE);
4424
4425 if (cpu_has_perf_global_ctrl_bug())
4426 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4427
4428 return vmentry_ctrl;
4429 }
4430
vmx_vmexit_ctrl(void)4431 static u32 vmx_vmexit_ctrl(void)
4432 {
4433 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4434
4435 /*
4436 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4437 * nested virtualization and thus allowed to be set in vmcs12.
4438 */
4439 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4440 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4441
4442 if (vmx_pt_mode_is_system())
4443 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4444 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4445
4446 if (cpu_has_perf_global_ctrl_bug())
4447 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4448
4449 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4450 return vmexit_ctrl &
4451 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4452 }
4453
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4454 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4455 {
4456 struct vcpu_vmx *vmx = to_vmx(vcpu);
4457
4458 if (is_guest_mode(vcpu)) {
4459 vmx->nested.update_vmcs01_apicv_status = true;
4460 return;
4461 }
4462
4463 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4464
4465 if (kvm_vcpu_apicv_active(vcpu)) {
4466 secondary_exec_controls_setbit(vmx,
4467 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4468 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4469 if (enable_ipiv)
4470 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4471 } else {
4472 secondary_exec_controls_clearbit(vmx,
4473 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4474 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4475 if (enable_ipiv)
4476 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4477 }
4478
4479 vmx_update_msr_bitmap_x2apic(vcpu);
4480 }
4481
vmx_exec_control(struct vcpu_vmx * vmx)4482 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4483 {
4484 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4485
4486 /*
4487 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4488 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4489 */
4490 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4491 CPU_BASED_USE_IO_BITMAPS |
4492 CPU_BASED_MONITOR_TRAP_FLAG |
4493 CPU_BASED_PAUSE_EXITING);
4494
4495 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4496 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4497 CPU_BASED_NMI_WINDOW_EXITING);
4498
4499 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4500 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4501
4502 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4503 exec_control &= ~CPU_BASED_TPR_SHADOW;
4504
4505 #ifdef CONFIG_X86_64
4506 if (exec_control & CPU_BASED_TPR_SHADOW)
4507 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4508 CPU_BASED_CR8_STORE_EXITING);
4509 else
4510 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4511 CPU_BASED_CR8_LOAD_EXITING;
4512 #endif
4513 /* No need to intercept CR3 access or INVPLG when using EPT. */
4514 if (enable_ept)
4515 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4516 CPU_BASED_CR3_STORE_EXITING |
4517 CPU_BASED_INVLPG_EXITING);
4518 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4519 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4520 CPU_BASED_MONITOR_EXITING);
4521 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4522 exec_control &= ~CPU_BASED_HLT_EXITING;
4523 return exec_control;
4524 }
4525
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4526 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4527 {
4528 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4529
4530 /*
4531 * IPI virtualization relies on APICv. Disable IPI virtualization if
4532 * APICv is inhibited.
4533 */
4534 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4535 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4536
4537 return exec_control;
4538 }
4539
4540 /*
4541 * Adjust a single secondary execution control bit to intercept/allow an
4542 * instruction in the guest. This is usually done based on whether or not a
4543 * feature has been exposed to the guest in order to correctly emulate faults.
4544 */
4545 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4546 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4547 u32 control, bool enabled, bool exiting)
4548 {
4549 /*
4550 * If the control is for an opt-in feature, clear the control if the
4551 * feature is not exposed to the guest, i.e. not enabled. If the
4552 * control is opt-out, i.e. an exiting control, clear the control if
4553 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4554 * disabled for the associated instruction. Note, the caller is
4555 * responsible presetting exec_control to set all supported bits.
4556 */
4557 if (enabled == exiting)
4558 *exec_control &= ~control;
4559
4560 /*
4561 * Update the nested MSR settings so that a nested VMM can/can't set
4562 * controls for features that are/aren't exposed to the guest.
4563 */
4564 if (nested) {
4565 /*
4566 * All features that can be added or removed to VMX MSRs must
4567 * be supported in the first place for nested virtualization.
4568 */
4569 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4570 enabled = false;
4571
4572 if (enabled)
4573 vmx->nested.msrs.secondary_ctls_high |= control;
4574 else
4575 vmx->nested.msrs.secondary_ctls_high &= ~control;
4576 }
4577 }
4578
4579 /*
4580 * Wrapper macro for the common case of adjusting a secondary execution control
4581 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4582 * verifies that the control is actually supported by KVM and hardware.
4583 */
4584 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4585 ({ \
4586 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4587 bool __enabled; \
4588 \
4589 if (cpu_has_vmx_##name()) { \
4590 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
4591 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
4592 else \
4593 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
4594 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4595 __enabled, exiting); \
4596 } \
4597 })
4598
4599 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4600 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4601 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4602
4603 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4604 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4605
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4606 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4607 {
4608 struct kvm_vcpu *vcpu = &vmx->vcpu;
4609
4610 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4611
4612 if (vmx_pt_mode_is_system())
4613 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4614 if (!cpu_need_virtualize_apic_accesses(vcpu))
4615 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4616 if (vmx->vpid == 0)
4617 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4618 if (!enable_ept) {
4619 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4620 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4621 enable_unrestricted_guest = 0;
4622 }
4623 if (!enable_unrestricted_guest)
4624 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4625 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4626 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4627 if (!kvm_vcpu_apicv_active(vcpu))
4628 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4629 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4630 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4631
4632 /*
4633 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4634 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4635 */
4636 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4637
4638 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4639 * in vmx_set_cr4. */
4640 exec_control &= ~SECONDARY_EXEC_DESC;
4641
4642 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4643 (handle_vmptrld).
4644 We can NOT enable shadow_vmcs here because we don't have yet
4645 a current VMCS12
4646 */
4647 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4648
4649 /*
4650 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4651 * it needs to be set here when dirty logging is already active, e.g.
4652 * if this vCPU was created after dirty logging was enabled.
4653 */
4654 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4655 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4656
4657 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4658
4659 /*
4660 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4661 * feature is exposed to the guest. This creates a virtualization hole
4662 * if both are supported in hardware but only one is exposed to the
4663 * guest, but letting the guest execute RDTSCP or RDPID when either one
4664 * is advertised is preferable to emulating the advertised instruction
4665 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4666 */
4667 if (cpu_has_vmx_rdtscp()) {
4668 bool rdpid_or_rdtscp_enabled =
4669 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4670 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4671
4672 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4673 SECONDARY_EXEC_ENABLE_RDTSCP,
4674 rdpid_or_rdtscp_enabled, false);
4675 }
4676
4677 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4678
4679 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4680 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4681
4682 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4683 ENABLE_USR_WAIT_PAUSE, false);
4684
4685 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4686 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4687
4688 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4689 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4690
4691 return exec_control;
4692 }
4693
vmx_get_pid_table_order(struct kvm * kvm)4694 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4695 {
4696 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4697 }
4698
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4699 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4700 {
4701 struct page *pages;
4702 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4703
4704 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4705 return 0;
4706
4707 if (kvm_vmx->pid_table)
4708 return 0;
4709
4710 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4711 vmx_get_pid_table_order(kvm));
4712 if (!pages)
4713 return -ENOMEM;
4714
4715 kvm_vmx->pid_table = (void *)page_address(pages);
4716 return 0;
4717 }
4718
vmx_vcpu_precreate(struct kvm * kvm)4719 int vmx_vcpu_precreate(struct kvm *kvm)
4720 {
4721 return vmx_alloc_ipiv_pid_table(kvm);
4722 }
4723
4724 #define VMX_XSS_EXIT_BITMAP 0
4725
init_vmcs(struct vcpu_vmx * vmx)4726 static void init_vmcs(struct vcpu_vmx *vmx)
4727 {
4728 struct kvm *kvm = vmx->vcpu.kvm;
4729 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4730
4731 if (nested)
4732 nested_vmx_set_vmcs_shadowing_bitmap();
4733
4734 if (cpu_has_vmx_msr_bitmap())
4735 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4736
4737 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4738
4739 /* Control */
4740 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4741
4742 exec_controls_set(vmx, vmx_exec_control(vmx));
4743
4744 if (cpu_has_secondary_exec_ctrls()) {
4745 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4746 if (vmx->ve_info)
4747 vmcs_write64(VE_INFORMATION_ADDRESS,
4748 __pa(vmx->ve_info));
4749 }
4750
4751 if (cpu_has_tertiary_exec_ctrls())
4752 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4753
4754 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4755 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4756 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4757 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4758 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4759
4760 vmcs_write16(GUEST_INTR_STATUS, 0);
4761
4762 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4763 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4764 }
4765
4766 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4767 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4768 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4769 }
4770
4771 if (!kvm_pause_in_guest(kvm)) {
4772 vmcs_write32(PLE_GAP, ple_gap);
4773 vmx->ple_window = ple_window;
4774 vmx->ple_window_dirty = true;
4775 }
4776
4777 if (kvm_notify_vmexit_enabled(kvm))
4778 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4779
4780 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4781 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4782 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4783
4784 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4785 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4786 vmx_set_constant_host_state(vmx);
4787 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4788 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4789
4790 if (cpu_has_vmx_vmfunc())
4791 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4792
4793 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4794 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4795 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4796 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4797 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4798
4799 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4800 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4801
4802 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4803
4804 /* 22.2.1, 20.8.1 */
4805 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4806
4807 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4808 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4809
4810 set_cr4_guest_host_mask(vmx);
4811
4812 if (vmx->vpid != 0)
4813 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4814
4815 if (cpu_has_vmx_xsaves())
4816 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4817
4818 if (enable_pml) {
4819 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4820 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4821 }
4822
4823 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4824
4825 if (vmx_pt_mode_is_host_guest()) {
4826 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4827 /* Bit[6~0] are forced to 1, writes are ignored. */
4828 vmx->pt_desc.guest.output_mask = 0x7F;
4829 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4830 }
4831
4832 vmcs_write32(GUEST_SYSENTER_CS, 0);
4833 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4834 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4835 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4836
4837 if (cpu_has_vmx_tpr_shadow()) {
4838 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4839 if (cpu_need_tpr_shadow(&vmx->vcpu))
4840 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4841 __pa(vmx->vcpu.arch.apic->regs));
4842 vmcs_write32(TPR_THRESHOLD, 0);
4843 }
4844
4845 vmx_setup_uret_msrs(vmx);
4846 }
4847
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4848 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4849 {
4850 struct vcpu_vmx *vmx = to_vmx(vcpu);
4851
4852 init_vmcs(vmx);
4853
4854 if (nested)
4855 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4856
4857 vcpu_setup_sgx_lepubkeyhash(vcpu);
4858
4859 vmx->nested.posted_intr_nv = -1;
4860 vmx->nested.vmxon_ptr = INVALID_GPA;
4861 vmx->nested.current_vmptr = INVALID_GPA;
4862
4863 #ifdef CONFIG_KVM_HYPERV
4864 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4865 #endif
4866
4867 vcpu->arch.microcode_version = 0x100000000ULL;
4868 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4869
4870 /*
4871 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4872 * or POSTED_INTR_WAKEUP_VECTOR.
4873 */
4874 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4875 __pi_set_sn(&vmx->pi_desc);
4876 }
4877
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4878 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4879 {
4880 struct vcpu_vmx *vmx = to_vmx(vcpu);
4881
4882 if (!init_event)
4883 __vmx_vcpu_reset(vcpu);
4884
4885 vmx->rmode.vm86_active = 0;
4886 vmx->spec_ctrl = 0;
4887
4888 vmx->msr_ia32_umwait_control = 0;
4889
4890 vmx->hv_deadline_tsc = -1;
4891 kvm_set_cr8(vcpu, 0);
4892
4893 seg_setup(VCPU_SREG_CS);
4894 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4895 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4896
4897 seg_setup(VCPU_SREG_DS);
4898 seg_setup(VCPU_SREG_ES);
4899 seg_setup(VCPU_SREG_FS);
4900 seg_setup(VCPU_SREG_GS);
4901 seg_setup(VCPU_SREG_SS);
4902
4903 vmcs_write16(GUEST_TR_SELECTOR, 0);
4904 vmcs_writel(GUEST_TR_BASE, 0);
4905 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4906 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4907
4908 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4909 vmcs_writel(GUEST_LDTR_BASE, 0);
4910 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4911 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4912
4913 vmcs_writel(GUEST_GDTR_BASE, 0);
4914 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4915
4916 vmcs_writel(GUEST_IDTR_BASE, 0);
4917 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4918
4919 vmx_segment_cache_clear(vmx);
4920 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4921
4922 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4923 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4924 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4925 if (kvm_mpx_supported())
4926 vmcs_write64(GUEST_BNDCFGS, 0);
4927
4928 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4929
4930 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4931
4932 vpid_sync_context(vmx->vpid);
4933
4934 vmx_update_fb_clear_dis(vcpu, vmx);
4935 }
4936
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4937 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4938 {
4939 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4940 }
4941
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4942 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4943 {
4944 if (!enable_vnmi ||
4945 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4946 vmx_enable_irq_window(vcpu);
4947 return;
4948 }
4949
4950 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4951 }
4952
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4953 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4954 {
4955 struct vcpu_vmx *vmx = to_vmx(vcpu);
4956 uint32_t intr;
4957 int irq = vcpu->arch.interrupt.nr;
4958
4959 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4960
4961 ++vcpu->stat.irq_injections;
4962 if (vmx->rmode.vm86_active) {
4963 int inc_eip = 0;
4964 if (vcpu->arch.interrupt.soft)
4965 inc_eip = vcpu->arch.event_exit_inst_len;
4966 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4967 return;
4968 }
4969 intr = irq | INTR_INFO_VALID_MASK;
4970 if (vcpu->arch.interrupt.soft) {
4971 intr |= INTR_TYPE_SOFT_INTR;
4972 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4973 vmx->vcpu.arch.event_exit_inst_len);
4974 } else
4975 intr |= INTR_TYPE_EXT_INTR;
4976 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4977
4978 vmx_clear_hlt(vcpu);
4979 }
4980
vmx_inject_nmi(struct kvm_vcpu * vcpu)4981 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4982 {
4983 struct vcpu_vmx *vmx = to_vmx(vcpu);
4984
4985 if (!enable_vnmi) {
4986 /*
4987 * Tracking the NMI-blocked state in software is built upon
4988 * finding the next open IRQ window. This, in turn, depends on
4989 * well-behaving guests: They have to keep IRQs disabled at
4990 * least as long as the NMI handler runs. Otherwise we may
4991 * cause NMI nesting, maybe breaking the guest. But as this is
4992 * highly unlikely, we can live with the residual risk.
4993 */
4994 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4995 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4996 }
4997
4998 ++vcpu->stat.nmi_injections;
4999 vmx->loaded_vmcs->nmi_known_unmasked = false;
5000
5001 if (vmx->rmode.vm86_active) {
5002 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
5003 return;
5004 }
5005
5006 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5007 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5008
5009 vmx_clear_hlt(vcpu);
5010 }
5011
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)5012 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5013 {
5014 struct vcpu_vmx *vmx = to_vmx(vcpu);
5015 bool masked;
5016
5017 if (!enable_vnmi)
5018 return vmx->loaded_vmcs->soft_vnmi_blocked;
5019 if (vmx->loaded_vmcs->nmi_known_unmasked)
5020 return false;
5021 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5022 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5023 return masked;
5024 }
5025
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5026 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5027 {
5028 struct vcpu_vmx *vmx = to_vmx(vcpu);
5029
5030 if (!enable_vnmi) {
5031 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5032 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5033 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5034 }
5035 } else {
5036 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5037 if (masked)
5038 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5039 GUEST_INTR_STATE_NMI);
5040 else
5041 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5042 GUEST_INTR_STATE_NMI);
5043 }
5044 }
5045
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5046 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5047 {
5048 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5049 return false;
5050
5051 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5052 return true;
5053
5054 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5055 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5056 GUEST_INTR_STATE_NMI));
5057 }
5058
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5059 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5060 {
5061 if (to_vmx(vcpu)->nested.nested_run_pending)
5062 return -EBUSY;
5063
5064 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5065 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5066 return -EBUSY;
5067
5068 return !vmx_nmi_blocked(vcpu);
5069 }
5070
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5071 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5072 {
5073 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5074 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5075 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5076 }
5077
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5078 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5079 {
5080 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5081 return false;
5082
5083 return __vmx_interrupt_blocked(vcpu);
5084 }
5085
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5086 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5087 {
5088 if (to_vmx(vcpu)->nested.nested_run_pending)
5089 return -EBUSY;
5090
5091 /*
5092 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5093 * e.g. if the IRQ arrived asynchronously after checking nested events.
5094 */
5095 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5096 return -EBUSY;
5097
5098 return !vmx_interrupt_blocked(vcpu);
5099 }
5100
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5101 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5102 {
5103 void __user *ret;
5104
5105 if (enable_unrestricted_guest)
5106 return 0;
5107
5108 mutex_lock(&kvm->slots_lock);
5109 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5110 PAGE_SIZE * 3);
5111 mutex_unlock(&kvm->slots_lock);
5112
5113 if (IS_ERR(ret))
5114 return PTR_ERR(ret);
5115
5116 to_kvm_vmx(kvm)->tss_addr = addr;
5117
5118 return init_rmode_tss(kvm, ret);
5119 }
5120
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5121 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5122 {
5123 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5124 return 0;
5125 }
5126
rmode_exception(struct kvm_vcpu * vcpu,int vec)5127 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5128 {
5129 switch (vec) {
5130 case BP_VECTOR:
5131 /*
5132 * Update instruction length as we may reinject the exception
5133 * from user space while in guest debugging mode.
5134 */
5135 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5136 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5137 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5138 return false;
5139 fallthrough;
5140 case DB_VECTOR:
5141 return !(vcpu->guest_debug &
5142 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5143 case DE_VECTOR:
5144 case OF_VECTOR:
5145 case BR_VECTOR:
5146 case UD_VECTOR:
5147 case DF_VECTOR:
5148 case SS_VECTOR:
5149 case GP_VECTOR:
5150 case MF_VECTOR:
5151 return true;
5152 }
5153 return false;
5154 }
5155
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5156 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5157 int vec, u32 err_code)
5158 {
5159 /*
5160 * Instruction with address size override prefix opcode 0x67
5161 * Cause the #SS fault with 0 error code in VM86 mode.
5162 */
5163 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5164 if (kvm_emulate_instruction(vcpu, 0)) {
5165 if (vcpu->arch.halt_request) {
5166 vcpu->arch.halt_request = 0;
5167 return kvm_emulate_halt_noskip(vcpu);
5168 }
5169 return 1;
5170 }
5171 return 0;
5172 }
5173
5174 /*
5175 * Forward all other exceptions that are valid in real mode.
5176 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5177 * the required debugging infrastructure rework.
5178 */
5179 kvm_queue_exception(vcpu, vec);
5180 return 1;
5181 }
5182
handle_machine_check(struct kvm_vcpu * vcpu)5183 static int handle_machine_check(struct kvm_vcpu *vcpu)
5184 {
5185 /* handled by vmx_vcpu_run() */
5186 return 1;
5187 }
5188
5189 /*
5190 * If the host has split lock detection disabled, then #AC is
5191 * unconditionally injected into the guest, which is the pre split lock
5192 * detection behaviour.
5193 *
5194 * If the host has split lock detection enabled then #AC is
5195 * only injected into the guest when:
5196 * - Guest CPL == 3 (user mode)
5197 * - Guest has #AC detection enabled in CR0
5198 * - Guest EFLAGS has AC bit set
5199 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5200 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5201 {
5202 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5203 return true;
5204
5205 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5206 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5207 }
5208
handle_exception_nmi(struct kvm_vcpu * vcpu)5209 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5210 {
5211 struct vcpu_vmx *vmx = to_vmx(vcpu);
5212 struct kvm_run *kvm_run = vcpu->run;
5213 u32 intr_info, ex_no, error_code;
5214 unsigned long cr2, dr6;
5215 u32 vect_info;
5216
5217 vect_info = vmx->idt_vectoring_info;
5218 intr_info = vmx_get_intr_info(vcpu);
5219
5220 /*
5221 * Machine checks are handled by handle_exception_irqoff(), or by
5222 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5223 * vmx_vcpu_enter_exit().
5224 */
5225 if (is_machine_check(intr_info) || is_nmi(intr_info))
5226 return 1;
5227
5228 /*
5229 * Queue the exception here instead of in handle_nm_fault_irqoff().
5230 * This ensures the nested_vmx check is not skipped so vmexit can
5231 * be reflected to L1 (when it intercepts #NM) before reaching this
5232 * point.
5233 */
5234 if (is_nm_fault(intr_info)) {
5235 kvm_queue_exception(vcpu, NM_VECTOR);
5236 return 1;
5237 }
5238
5239 if (is_invalid_opcode(intr_info))
5240 return handle_ud(vcpu);
5241
5242 if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5243 struct vmx_ve_information *ve_info = vmx->ve_info;
5244
5245 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5246 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5247 dump_vmcs(vcpu);
5248 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5249 return 1;
5250 }
5251
5252 error_code = 0;
5253 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5254 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5255
5256 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5257 WARN_ON_ONCE(!enable_vmware_backdoor);
5258
5259 /*
5260 * VMware backdoor emulation on #GP interception only handles
5261 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5262 * error code on #GP.
5263 */
5264 if (error_code) {
5265 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5266 return 1;
5267 }
5268 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5269 }
5270
5271 /*
5272 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5273 * MMIO, it is better to report an internal error.
5274 * See the comments in vmx_handle_exit.
5275 */
5276 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5277 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5278 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5279 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5280 vcpu->run->internal.ndata = 4;
5281 vcpu->run->internal.data[0] = vect_info;
5282 vcpu->run->internal.data[1] = intr_info;
5283 vcpu->run->internal.data[2] = error_code;
5284 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5285 return 0;
5286 }
5287
5288 if (is_page_fault(intr_info)) {
5289 cr2 = vmx_get_exit_qual(vcpu);
5290 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5291 /*
5292 * EPT will cause page fault only if we need to
5293 * detect illegal GPAs.
5294 */
5295 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5296 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5297 return 1;
5298 } else
5299 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5300 }
5301
5302 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5303
5304 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5305 return handle_rmode_exception(vcpu, ex_no, error_code);
5306
5307 switch (ex_no) {
5308 case DB_VECTOR:
5309 dr6 = vmx_get_exit_qual(vcpu);
5310 if (!(vcpu->guest_debug &
5311 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5312 /*
5313 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5314 * instruction. ICEBP generates a trap-like #DB, but
5315 * despite its interception control being tied to #DB,
5316 * is an instruction intercept, i.e. the VM-Exit occurs
5317 * on the ICEBP itself. Use the inner "skip" helper to
5318 * avoid single-step #DB and MTF updates, as ICEBP is
5319 * higher priority. Note, skipping ICEBP still clears
5320 * STI and MOVSS blocking.
5321 *
5322 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5323 * if single-step is enabled in RFLAGS and STI or MOVSS
5324 * blocking is active, as the CPU doesn't set the bit
5325 * on VM-Exit due to #DB interception. VM-Entry has a
5326 * consistency check that a single-step #DB is pending
5327 * in this scenario as the previous instruction cannot
5328 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5329 * don't modify RFLAGS), therefore the one instruction
5330 * delay when activating single-step breakpoints must
5331 * have already expired. Note, the CPU sets/clears BS
5332 * as appropriate for all other VM-Exits types.
5333 */
5334 if (is_icebp(intr_info))
5335 WARN_ON(!skip_emulated_instruction(vcpu));
5336 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5337 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5338 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5339 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5340 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5341
5342 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5343 return 1;
5344 }
5345 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5346 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5347 fallthrough;
5348 case BP_VECTOR:
5349 /*
5350 * Update instruction length as we may reinject #BP from
5351 * user space while in guest debugging mode. Reading it for
5352 * #DB as well causes no harm, it is not used in that case.
5353 */
5354 vmx->vcpu.arch.event_exit_inst_len =
5355 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5356 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5357 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5358 kvm_run->debug.arch.exception = ex_no;
5359 break;
5360 case AC_VECTOR:
5361 if (vmx_guest_inject_ac(vcpu)) {
5362 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5363 return 1;
5364 }
5365
5366 /*
5367 * Handle split lock. Depending on detection mode this will
5368 * either warn and disable split lock detection for this
5369 * task or force SIGBUS on it.
5370 */
5371 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5372 return 1;
5373 fallthrough;
5374 default:
5375 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5376 kvm_run->ex.exception = ex_no;
5377 kvm_run->ex.error_code = error_code;
5378 break;
5379 }
5380 return 0;
5381 }
5382
handle_external_interrupt(struct kvm_vcpu * vcpu)5383 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5384 {
5385 ++vcpu->stat.irq_exits;
5386 return 1;
5387 }
5388
handle_triple_fault(struct kvm_vcpu * vcpu)5389 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5390 {
5391 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5392 vcpu->mmio_needed = 0;
5393 return 0;
5394 }
5395
handle_io(struct kvm_vcpu * vcpu)5396 static int handle_io(struct kvm_vcpu *vcpu)
5397 {
5398 unsigned long exit_qualification;
5399 int size, in, string;
5400 unsigned port;
5401
5402 exit_qualification = vmx_get_exit_qual(vcpu);
5403 string = (exit_qualification & 16) != 0;
5404
5405 ++vcpu->stat.io_exits;
5406
5407 if (string)
5408 return kvm_emulate_instruction(vcpu, 0);
5409
5410 port = exit_qualification >> 16;
5411 size = (exit_qualification & 7) + 1;
5412 in = (exit_qualification & 8) != 0;
5413
5414 return kvm_fast_pio(vcpu, size, port, in);
5415 }
5416
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5417 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5418 {
5419 /*
5420 * Patch in the VMCALL instruction:
5421 */
5422 hypercall[0] = 0x0f;
5423 hypercall[1] = 0x01;
5424 hypercall[2] = 0xc1;
5425 }
5426
5427 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5428 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5429 {
5430 if (is_guest_mode(vcpu)) {
5431 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5432 unsigned long orig_val = val;
5433
5434 /*
5435 * We get here when L2 changed cr0 in a way that did not change
5436 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5437 * but did change L0 shadowed bits. So we first calculate the
5438 * effective cr0 value that L1 would like to write into the
5439 * hardware. It consists of the L2-owned bits from the new
5440 * value combined with the L1-owned bits from L1's guest_cr0.
5441 */
5442 val = (val & ~vmcs12->cr0_guest_host_mask) |
5443 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5444
5445 if (kvm_set_cr0(vcpu, val))
5446 return 1;
5447 vmcs_writel(CR0_READ_SHADOW, orig_val);
5448 return 0;
5449 } else {
5450 return kvm_set_cr0(vcpu, val);
5451 }
5452 }
5453
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5454 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5455 {
5456 if (is_guest_mode(vcpu)) {
5457 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5458 unsigned long orig_val = val;
5459
5460 /* analogously to handle_set_cr0 */
5461 val = (val & ~vmcs12->cr4_guest_host_mask) |
5462 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5463 if (kvm_set_cr4(vcpu, val))
5464 return 1;
5465 vmcs_writel(CR4_READ_SHADOW, orig_val);
5466 return 0;
5467 } else
5468 return kvm_set_cr4(vcpu, val);
5469 }
5470
handle_desc(struct kvm_vcpu * vcpu)5471 static int handle_desc(struct kvm_vcpu *vcpu)
5472 {
5473 /*
5474 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5475 * and other code needs to be updated if UMIP can be guest owned.
5476 */
5477 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5478
5479 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5480 return kvm_emulate_instruction(vcpu, 0);
5481 }
5482
handle_cr(struct kvm_vcpu * vcpu)5483 static int handle_cr(struct kvm_vcpu *vcpu)
5484 {
5485 unsigned long exit_qualification, val;
5486 int cr;
5487 int reg;
5488 int err;
5489 int ret;
5490
5491 exit_qualification = vmx_get_exit_qual(vcpu);
5492 cr = exit_qualification & 15;
5493 reg = (exit_qualification >> 8) & 15;
5494 switch ((exit_qualification >> 4) & 3) {
5495 case 0: /* mov to cr */
5496 val = kvm_register_read(vcpu, reg);
5497 trace_kvm_cr_write(cr, val);
5498 switch (cr) {
5499 case 0:
5500 err = handle_set_cr0(vcpu, val);
5501 return kvm_complete_insn_gp(vcpu, err);
5502 case 3:
5503 WARN_ON_ONCE(enable_unrestricted_guest);
5504
5505 err = kvm_set_cr3(vcpu, val);
5506 return kvm_complete_insn_gp(vcpu, err);
5507 case 4:
5508 err = handle_set_cr4(vcpu, val);
5509 return kvm_complete_insn_gp(vcpu, err);
5510 case 8: {
5511 u8 cr8_prev = kvm_get_cr8(vcpu);
5512 u8 cr8 = (u8)val;
5513 err = kvm_set_cr8(vcpu, cr8);
5514 ret = kvm_complete_insn_gp(vcpu, err);
5515 if (lapic_in_kernel(vcpu))
5516 return ret;
5517 if (cr8_prev <= cr8)
5518 return ret;
5519 /*
5520 * TODO: we might be squashing a
5521 * KVM_GUESTDBG_SINGLESTEP-triggered
5522 * KVM_EXIT_DEBUG here.
5523 */
5524 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5525 return 0;
5526 }
5527 }
5528 break;
5529 case 2: /* clts */
5530 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5531 return -EIO;
5532 case 1: /*mov from cr*/
5533 switch (cr) {
5534 case 3:
5535 WARN_ON_ONCE(enable_unrestricted_guest);
5536
5537 val = kvm_read_cr3(vcpu);
5538 kvm_register_write(vcpu, reg, val);
5539 trace_kvm_cr_read(cr, val);
5540 return kvm_skip_emulated_instruction(vcpu);
5541 case 8:
5542 val = kvm_get_cr8(vcpu);
5543 kvm_register_write(vcpu, reg, val);
5544 trace_kvm_cr_read(cr, val);
5545 return kvm_skip_emulated_instruction(vcpu);
5546 }
5547 break;
5548 case 3: /* lmsw */
5549 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5550 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5551 kvm_lmsw(vcpu, val);
5552
5553 return kvm_skip_emulated_instruction(vcpu);
5554 default:
5555 break;
5556 }
5557 vcpu->run->exit_reason = 0;
5558 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5559 (int)(exit_qualification >> 4) & 3, cr);
5560 return 0;
5561 }
5562
handle_dr(struct kvm_vcpu * vcpu)5563 static int handle_dr(struct kvm_vcpu *vcpu)
5564 {
5565 unsigned long exit_qualification;
5566 int dr, dr7, reg;
5567 int err = 1;
5568
5569 exit_qualification = vmx_get_exit_qual(vcpu);
5570 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5571
5572 /* First, if DR does not exist, trigger UD */
5573 if (!kvm_require_dr(vcpu, dr))
5574 return 1;
5575
5576 if (vmx_get_cpl(vcpu) > 0)
5577 goto out;
5578
5579 dr7 = vmcs_readl(GUEST_DR7);
5580 if (dr7 & DR7_GD) {
5581 /*
5582 * As the vm-exit takes precedence over the debug trap, we
5583 * need to emulate the latter, either for the host or the
5584 * guest debugging itself.
5585 */
5586 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5587 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5588 vcpu->run->debug.arch.dr7 = dr7;
5589 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5590 vcpu->run->debug.arch.exception = DB_VECTOR;
5591 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5592 return 0;
5593 } else {
5594 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5595 return 1;
5596 }
5597 }
5598
5599 if (vcpu->guest_debug == 0) {
5600 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5601
5602 /*
5603 * No more DR vmexits; force a reload of the debug registers
5604 * and reenter on this instruction. The next vmexit will
5605 * retrieve the full state of the debug registers.
5606 */
5607 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5608 return 1;
5609 }
5610
5611 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5612 if (exit_qualification & TYPE_MOV_FROM_DR) {
5613 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5614 err = 0;
5615 } else {
5616 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5617 }
5618
5619 out:
5620 return kvm_complete_insn_gp(vcpu, err);
5621 }
5622
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5623 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5624 {
5625 get_debugreg(vcpu->arch.db[0], 0);
5626 get_debugreg(vcpu->arch.db[1], 1);
5627 get_debugreg(vcpu->arch.db[2], 2);
5628 get_debugreg(vcpu->arch.db[3], 3);
5629 get_debugreg(vcpu->arch.dr6, 6);
5630 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5631
5632 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5633 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5634
5635 /*
5636 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5637 * a stale dr6 from the guest.
5638 */
5639 set_debugreg(DR6_RESERVED, 6);
5640 }
5641
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5642 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5643 {
5644 vmcs_writel(GUEST_DR7, val);
5645 }
5646
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5647 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5648 {
5649 kvm_apic_update_ppr(vcpu);
5650 return 1;
5651 }
5652
handle_interrupt_window(struct kvm_vcpu * vcpu)5653 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5654 {
5655 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5656
5657 kvm_make_request(KVM_REQ_EVENT, vcpu);
5658
5659 ++vcpu->stat.irq_window_exits;
5660 return 1;
5661 }
5662
handle_invlpg(struct kvm_vcpu * vcpu)5663 static int handle_invlpg(struct kvm_vcpu *vcpu)
5664 {
5665 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5666
5667 kvm_mmu_invlpg(vcpu, exit_qualification);
5668 return kvm_skip_emulated_instruction(vcpu);
5669 }
5670
handle_apic_access(struct kvm_vcpu * vcpu)5671 static int handle_apic_access(struct kvm_vcpu *vcpu)
5672 {
5673 if (likely(fasteoi)) {
5674 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5675 int access_type, offset;
5676
5677 access_type = exit_qualification & APIC_ACCESS_TYPE;
5678 offset = exit_qualification & APIC_ACCESS_OFFSET;
5679 /*
5680 * Sane guest uses MOV to write EOI, with written value
5681 * not cared. So make a short-circuit here by avoiding
5682 * heavy instruction emulation.
5683 */
5684 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5685 (offset == APIC_EOI)) {
5686 kvm_lapic_set_eoi(vcpu);
5687 return kvm_skip_emulated_instruction(vcpu);
5688 }
5689 }
5690 return kvm_emulate_instruction(vcpu, 0);
5691 }
5692
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5693 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5694 {
5695 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5696 int vector = exit_qualification & 0xff;
5697
5698 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5699 kvm_apic_set_eoi_accelerated(vcpu, vector);
5700 return 1;
5701 }
5702
handle_apic_write(struct kvm_vcpu * vcpu)5703 static int handle_apic_write(struct kvm_vcpu *vcpu)
5704 {
5705 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5706
5707 /*
5708 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5709 * hardware has done any necessary aliasing, offset adjustments, etc...
5710 * for the access. I.e. the correct value has already been written to
5711 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5712 * retrieve the register value and emulate the access.
5713 */
5714 u32 offset = exit_qualification & 0xff0;
5715
5716 kvm_apic_write_nodecode(vcpu, offset);
5717 return 1;
5718 }
5719
handle_task_switch(struct kvm_vcpu * vcpu)5720 static int handle_task_switch(struct kvm_vcpu *vcpu)
5721 {
5722 struct vcpu_vmx *vmx = to_vmx(vcpu);
5723 unsigned long exit_qualification;
5724 bool has_error_code = false;
5725 u32 error_code = 0;
5726 u16 tss_selector;
5727 int reason, type, idt_v, idt_index;
5728
5729 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5730 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5731 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5732
5733 exit_qualification = vmx_get_exit_qual(vcpu);
5734
5735 reason = (u32)exit_qualification >> 30;
5736 if (reason == TASK_SWITCH_GATE && idt_v) {
5737 switch (type) {
5738 case INTR_TYPE_NMI_INTR:
5739 vcpu->arch.nmi_injected = false;
5740 vmx_set_nmi_mask(vcpu, true);
5741 break;
5742 case INTR_TYPE_EXT_INTR:
5743 case INTR_TYPE_SOFT_INTR:
5744 kvm_clear_interrupt_queue(vcpu);
5745 break;
5746 case INTR_TYPE_HARD_EXCEPTION:
5747 if (vmx->idt_vectoring_info &
5748 VECTORING_INFO_DELIVER_CODE_MASK) {
5749 has_error_code = true;
5750 error_code =
5751 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5752 }
5753 fallthrough;
5754 case INTR_TYPE_SOFT_EXCEPTION:
5755 kvm_clear_exception_queue(vcpu);
5756 break;
5757 default:
5758 break;
5759 }
5760 }
5761 tss_selector = exit_qualification;
5762
5763 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5764 type != INTR_TYPE_EXT_INTR &&
5765 type != INTR_TYPE_NMI_INTR))
5766 WARN_ON(!skip_emulated_instruction(vcpu));
5767
5768 /*
5769 * TODO: What about debug traps on tss switch?
5770 * Are we supposed to inject them and update dr6?
5771 */
5772 return kvm_task_switch(vcpu, tss_selector,
5773 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5774 reason, has_error_code, error_code);
5775 }
5776
handle_ept_violation(struct kvm_vcpu * vcpu)5777 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5778 {
5779 unsigned long exit_qualification;
5780 gpa_t gpa;
5781 u64 error_code;
5782
5783 exit_qualification = vmx_get_exit_qual(vcpu);
5784
5785 /*
5786 * EPT violation happened while executing iret from NMI,
5787 * "blocked by NMI" bit has to be set before next VM entry.
5788 * There are errata that may cause this bit to not be set:
5789 * AAK134, BY25.
5790 */
5791 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5792 enable_vnmi &&
5793 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5794 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5795
5796 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5797 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5798
5799 /* Is it a read fault? */
5800 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5801 ? PFERR_USER_MASK : 0;
5802 /* Is it a write fault? */
5803 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5804 ? PFERR_WRITE_MASK : 0;
5805 /* Is it a fetch fault? */
5806 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5807 ? PFERR_FETCH_MASK : 0;
5808 /* ept page table entry is present? */
5809 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5810 ? PFERR_PRESENT_MASK : 0;
5811
5812 if (error_code & EPT_VIOLATION_GVA_IS_VALID)
5813 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ?
5814 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5815
5816 /*
5817 * Check that the GPA doesn't exceed physical memory limits, as that is
5818 * a guest page fault. We have to emulate the instruction here, because
5819 * if the illegal address is that of a paging structure, then
5820 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5821 * would also use advanced VM-exit information for EPT violations to
5822 * reconstruct the page fault error code.
5823 */
5824 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5825 return kvm_emulate_instruction(vcpu, 0);
5826
5827 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5828 }
5829
handle_ept_misconfig(struct kvm_vcpu * vcpu)5830 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5831 {
5832 gpa_t gpa;
5833
5834 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5835 return 1;
5836
5837 /*
5838 * A nested guest cannot optimize MMIO vmexits, because we have an
5839 * nGPA here instead of the required GPA.
5840 */
5841 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5842 if (!is_guest_mode(vcpu) &&
5843 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5844 trace_kvm_fast_mmio(gpa);
5845 return kvm_skip_emulated_instruction(vcpu);
5846 }
5847
5848 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5849 }
5850
handle_nmi_window(struct kvm_vcpu * vcpu)5851 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5852 {
5853 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5854 return -EIO;
5855
5856 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5857 ++vcpu->stat.nmi_window_exits;
5858 kvm_make_request(KVM_REQ_EVENT, vcpu);
5859
5860 return 1;
5861 }
5862
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5863 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5864 {
5865 struct vcpu_vmx *vmx = to_vmx(vcpu);
5866
5867 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5868 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5869 }
5870
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5871 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5872 {
5873 struct vcpu_vmx *vmx = to_vmx(vcpu);
5874 bool intr_window_requested;
5875 unsigned count = 130;
5876
5877 intr_window_requested = exec_controls_get(vmx) &
5878 CPU_BASED_INTR_WINDOW_EXITING;
5879
5880 while (vmx->emulation_required && count-- != 0) {
5881 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5882 return handle_interrupt_window(&vmx->vcpu);
5883
5884 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5885 return 1;
5886
5887 if (!kvm_emulate_instruction(vcpu, 0))
5888 return 0;
5889
5890 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5891 kvm_prepare_emulation_failure_exit(vcpu);
5892 return 0;
5893 }
5894
5895 if (vcpu->arch.halt_request) {
5896 vcpu->arch.halt_request = 0;
5897 return kvm_emulate_halt_noskip(vcpu);
5898 }
5899
5900 /*
5901 * Note, return 1 and not 0, vcpu_run() will invoke
5902 * xfer_to_guest_mode() which will create a proper return
5903 * code.
5904 */
5905 if (__xfer_to_guest_mode_work_pending())
5906 return 1;
5907 }
5908
5909 return 1;
5910 }
5911
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5912 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5913 {
5914 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5915 kvm_prepare_emulation_failure_exit(vcpu);
5916 return 0;
5917 }
5918
5919 return 1;
5920 }
5921
5922 /*
5923 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5924 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5925 */
handle_pause(struct kvm_vcpu * vcpu)5926 static int handle_pause(struct kvm_vcpu *vcpu)
5927 {
5928 if (!kvm_pause_in_guest(vcpu->kvm))
5929 grow_ple_window(vcpu);
5930
5931 /*
5932 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5933 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5934 * never set PAUSE_EXITING and just set PLE if supported,
5935 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5936 */
5937 kvm_vcpu_on_spin(vcpu, true);
5938 return kvm_skip_emulated_instruction(vcpu);
5939 }
5940
handle_monitor_trap(struct kvm_vcpu * vcpu)5941 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5942 {
5943 return 1;
5944 }
5945
handle_invpcid(struct kvm_vcpu * vcpu)5946 static int handle_invpcid(struct kvm_vcpu *vcpu)
5947 {
5948 u32 vmx_instruction_info;
5949 unsigned long type;
5950 gva_t gva;
5951 struct {
5952 u64 pcid;
5953 u64 gla;
5954 } operand;
5955 int gpr_index;
5956
5957 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5958 kvm_queue_exception(vcpu, UD_VECTOR);
5959 return 1;
5960 }
5961
5962 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5963 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5964 type = kvm_register_read(vcpu, gpr_index);
5965
5966 /* According to the Intel instruction reference, the memory operand
5967 * is read even if it isn't needed (e.g., for type==all)
5968 */
5969 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5970 vmx_instruction_info, false,
5971 sizeof(operand), &gva))
5972 return 1;
5973
5974 return kvm_handle_invpcid(vcpu, type, gva);
5975 }
5976
handle_pml_full(struct kvm_vcpu * vcpu)5977 static int handle_pml_full(struct kvm_vcpu *vcpu)
5978 {
5979 unsigned long exit_qualification;
5980
5981 trace_kvm_pml_full(vcpu->vcpu_id);
5982
5983 exit_qualification = vmx_get_exit_qual(vcpu);
5984
5985 /*
5986 * PML buffer FULL happened while executing iret from NMI,
5987 * "blocked by NMI" bit has to be set before next VM entry.
5988 */
5989 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5990 enable_vnmi &&
5991 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5992 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5993 GUEST_INTR_STATE_NMI);
5994
5995 /*
5996 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5997 * here.., and there's no userspace involvement needed for PML.
5998 */
5999 return 1;
6000 }
6001
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)6002 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6003 bool force_immediate_exit)
6004 {
6005 struct vcpu_vmx *vmx = to_vmx(vcpu);
6006
6007 /*
6008 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6009 * due to the timer expiring while it was "soft" disabled, just eat the
6010 * exit and re-enter the guest.
6011 */
6012 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6013 return EXIT_FASTPATH_REENTER_GUEST;
6014
6015 /*
6016 * If the timer expired because KVM used it to force an immediate exit,
6017 * then mission accomplished.
6018 */
6019 if (force_immediate_exit)
6020 return EXIT_FASTPATH_EXIT_HANDLED;
6021
6022 /*
6023 * If L2 is active, go down the slow path as emulating the guest timer
6024 * expiration likely requires synthesizing a nested VM-Exit.
6025 */
6026 if (is_guest_mode(vcpu))
6027 return EXIT_FASTPATH_NONE;
6028
6029 kvm_lapic_expired_hv_timer(vcpu);
6030 return EXIT_FASTPATH_REENTER_GUEST;
6031 }
6032
handle_preemption_timer(struct kvm_vcpu * vcpu)6033 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6034 {
6035 /*
6036 * This non-fastpath handler is reached if and only if the preemption
6037 * timer was being used to emulate a guest timer while L2 is active.
6038 * All other scenarios are supposed to be handled in the fastpath.
6039 */
6040 WARN_ON_ONCE(!is_guest_mode(vcpu));
6041 kvm_lapic_expired_hv_timer(vcpu);
6042 return 1;
6043 }
6044
6045 /*
6046 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6047 * are overwritten by nested_vmx_setup() when nested=1.
6048 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6049 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6050 {
6051 kvm_queue_exception(vcpu, UD_VECTOR);
6052 return 1;
6053 }
6054
6055 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6056 static int handle_encls(struct kvm_vcpu *vcpu)
6057 {
6058 /*
6059 * SGX virtualization is disabled. There is no software enable bit for
6060 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6061 * the guest from executing ENCLS (when SGX is supported by hardware).
6062 */
6063 kvm_queue_exception(vcpu, UD_VECTOR);
6064 return 1;
6065 }
6066 #endif /* CONFIG_X86_SGX_KVM */
6067
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6068 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6069 {
6070 /*
6071 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6072 * VM-Exits. Unconditionally set the flag here and leave the handling to
6073 * vmx_handle_exit().
6074 */
6075 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6076 return 1;
6077 }
6078
handle_notify(struct kvm_vcpu * vcpu)6079 static int handle_notify(struct kvm_vcpu *vcpu)
6080 {
6081 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6082 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6083
6084 ++vcpu->stat.notify_window_exits;
6085
6086 /*
6087 * Notify VM exit happened while executing iret from NMI,
6088 * "blocked by NMI" bit has to be set before next VM entry.
6089 */
6090 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6091 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6092 GUEST_INTR_STATE_NMI);
6093
6094 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6095 context_invalid) {
6096 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6097 vcpu->run->notify.flags = context_invalid ?
6098 KVM_NOTIFY_CONTEXT_INVALID : 0;
6099 return 0;
6100 }
6101
6102 return 1;
6103 }
6104
6105 /*
6106 * The exit handlers return 1 if the exit was handled fully and guest execution
6107 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6108 * to be done to userspace and return 0.
6109 */
6110 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6111 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6112 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6113 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6114 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6115 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6116 [EXIT_REASON_CR_ACCESS] = handle_cr,
6117 [EXIT_REASON_DR_ACCESS] = handle_dr,
6118 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6119 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6120 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6121 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6122 [EXIT_REASON_HLT] = kvm_emulate_halt,
6123 [EXIT_REASON_INVD] = kvm_emulate_invd,
6124 [EXIT_REASON_INVLPG] = handle_invlpg,
6125 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6126 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6127 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6128 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6129 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6130 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6131 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6132 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6133 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6134 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6135 [EXIT_REASON_VMON] = handle_vmx_instruction,
6136 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6137 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6138 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6139 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6140 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6141 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6142 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6143 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6144 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6145 [EXIT_REASON_LDTR_TR] = handle_desc,
6146 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6147 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6148 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6149 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6150 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6151 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6152 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6153 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6154 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6155 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6156 [EXIT_REASON_PML_FULL] = handle_pml_full,
6157 [EXIT_REASON_INVPCID] = handle_invpcid,
6158 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6159 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6160 [EXIT_REASON_ENCLS] = handle_encls,
6161 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6162 [EXIT_REASON_NOTIFY] = handle_notify,
6163 };
6164
6165 static const int kvm_vmx_max_exit_handlers =
6166 ARRAY_SIZE(kvm_vmx_exit_handlers);
6167
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6168 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6169 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6170 {
6171 struct vcpu_vmx *vmx = to_vmx(vcpu);
6172
6173 *reason = vmx->exit_reason.full;
6174 *info1 = vmx_get_exit_qual(vcpu);
6175 if (!(vmx->exit_reason.failed_vmentry)) {
6176 *info2 = vmx->idt_vectoring_info;
6177 *intr_info = vmx_get_intr_info(vcpu);
6178 if (is_exception_with_error_code(*intr_info))
6179 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6180 else
6181 *error_code = 0;
6182 } else {
6183 *info2 = 0;
6184 *intr_info = 0;
6185 *error_code = 0;
6186 }
6187 }
6188
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6189 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6190 {
6191 if (vmx->pml_pg) {
6192 __free_page(vmx->pml_pg);
6193 vmx->pml_pg = NULL;
6194 }
6195 }
6196
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6197 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6198 {
6199 struct vcpu_vmx *vmx = to_vmx(vcpu);
6200 u64 *pml_buf;
6201 u16 pml_idx;
6202
6203 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6204
6205 /* Do nothing if PML buffer is empty */
6206 if (pml_idx == (PML_ENTITY_NUM - 1))
6207 return;
6208
6209 /* PML index always points to next available PML buffer entity */
6210 if (pml_idx >= PML_ENTITY_NUM)
6211 pml_idx = 0;
6212 else
6213 pml_idx++;
6214
6215 pml_buf = page_address(vmx->pml_pg);
6216 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6217 u64 gpa;
6218
6219 gpa = pml_buf[pml_idx];
6220 WARN_ON(gpa & (PAGE_SIZE - 1));
6221 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6222 }
6223
6224 /* reset PML index */
6225 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6226 }
6227
vmx_dump_sel(char * name,uint32_t sel)6228 static void vmx_dump_sel(char *name, uint32_t sel)
6229 {
6230 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6231 name, vmcs_read16(sel),
6232 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6233 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6234 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6235 }
6236
vmx_dump_dtsel(char * name,uint32_t limit)6237 static void vmx_dump_dtsel(char *name, uint32_t limit)
6238 {
6239 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6240 name, vmcs_read32(limit),
6241 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6242 }
6243
vmx_dump_msrs(char * name,struct vmx_msrs * m)6244 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6245 {
6246 unsigned int i;
6247 struct vmx_msr_entry *e;
6248
6249 pr_err("MSR %s:\n", name);
6250 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6251 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6252 }
6253
dump_vmcs(struct kvm_vcpu * vcpu)6254 void dump_vmcs(struct kvm_vcpu *vcpu)
6255 {
6256 struct vcpu_vmx *vmx = to_vmx(vcpu);
6257 u32 vmentry_ctl, vmexit_ctl;
6258 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6259 u64 tertiary_exec_control;
6260 unsigned long cr4;
6261 int efer_slot;
6262
6263 if (!dump_invalid_vmcs) {
6264 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6265 return;
6266 }
6267
6268 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6269 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6270 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6271 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6272 cr4 = vmcs_readl(GUEST_CR4);
6273
6274 if (cpu_has_secondary_exec_ctrls())
6275 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6276 else
6277 secondary_exec_control = 0;
6278
6279 if (cpu_has_tertiary_exec_ctrls())
6280 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6281 else
6282 tertiary_exec_control = 0;
6283
6284 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6285 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6286 pr_err("*** Guest State ***\n");
6287 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6288 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6289 vmcs_readl(CR0_GUEST_HOST_MASK));
6290 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6291 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6292 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6293 if (cpu_has_vmx_ept()) {
6294 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6295 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6296 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6297 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6298 }
6299 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6300 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6301 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6302 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6303 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6304 vmcs_readl(GUEST_SYSENTER_ESP),
6305 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6306 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6307 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6308 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6309 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6310 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6311 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6312 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6313 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6314 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6315 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6316 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6317 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6318 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6319 else if (efer_slot >= 0)
6320 pr_err("EFER= 0x%016llx (autoload)\n",
6321 vmx->msr_autoload.guest.val[efer_slot].value);
6322 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6323 pr_err("EFER= 0x%016llx (effective)\n",
6324 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6325 else
6326 pr_err("EFER= 0x%016llx (effective)\n",
6327 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6328 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6329 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6330 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6331 vmcs_read64(GUEST_IA32_DEBUGCTL),
6332 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6333 if (cpu_has_load_perf_global_ctrl() &&
6334 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6335 pr_err("PerfGlobCtl = 0x%016llx\n",
6336 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6337 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6338 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6339 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6340 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6341 vmcs_read32(GUEST_ACTIVITY_STATE));
6342 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6343 pr_err("InterruptStatus = %04x\n",
6344 vmcs_read16(GUEST_INTR_STATUS));
6345 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6346 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6347 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6348 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6349
6350 pr_err("*** Host State ***\n");
6351 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6352 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6353 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6354 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6355 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6356 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6357 vmcs_read16(HOST_TR_SELECTOR));
6358 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6359 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6360 vmcs_readl(HOST_TR_BASE));
6361 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6362 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6363 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6364 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6365 vmcs_readl(HOST_CR4));
6366 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6367 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6368 vmcs_read32(HOST_IA32_SYSENTER_CS),
6369 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6370 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6371 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6372 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6373 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6374 if (cpu_has_load_perf_global_ctrl() &&
6375 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6376 pr_err("PerfGlobCtl = 0x%016llx\n",
6377 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6378 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6379 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6380
6381 pr_err("*** Control State ***\n");
6382 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6383 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6384 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6385 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6386 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6387 vmcs_read32(EXCEPTION_BITMAP),
6388 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6389 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6390 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6391 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6392 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6393 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6394 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6395 vmcs_read32(VM_EXIT_INTR_INFO),
6396 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6397 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6398 pr_err(" reason=%08x qualification=%016lx\n",
6399 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6400 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6401 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6402 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6403 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6404 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6405 pr_err("TSC Multiplier = 0x%016llx\n",
6406 vmcs_read64(TSC_MULTIPLIER));
6407 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6408 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6409 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6410 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6411 }
6412 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6413 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6414 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6415 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6416 }
6417 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6418 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6419 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6420 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6421 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6422 pr_err("PLE Gap=%08x Window=%08x\n",
6423 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6424 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6425 pr_err("Virtual processor ID = 0x%04x\n",
6426 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6427 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6428 struct vmx_ve_information *ve_info = vmx->ve_info;
6429 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6430
6431 /*
6432 * If KVM is dumping the VMCS, then something has gone wrong
6433 * already. Derefencing an address from the VMCS, which could
6434 * very well be corrupted, is a terrible idea. The virtual
6435 * address is known so use it.
6436 */
6437 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6438 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6439 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6440 ve_info->exit_reason, ve_info->delivery,
6441 ve_info->exit_qualification,
6442 ve_info->guest_linear_address,
6443 ve_info->guest_physical_address, ve_info->eptp_index);
6444 }
6445 }
6446
6447 /*
6448 * The guest has exited. See if we can fix it or if we need userspace
6449 * assistance.
6450 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6451 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6452 {
6453 struct vcpu_vmx *vmx = to_vmx(vcpu);
6454 union vmx_exit_reason exit_reason = vmx->exit_reason;
6455 u32 vectoring_info = vmx->idt_vectoring_info;
6456 u16 exit_handler_index;
6457
6458 /*
6459 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6460 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6461 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6462 * mode as if vcpus is in root mode, the PML buffer must has been
6463 * flushed already. Note, PML is never enabled in hardware while
6464 * running L2.
6465 */
6466 if (enable_pml && !is_guest_mode(vcpu))
6467 vmx_flush_pml_buffer(vcpu);
6468
6469 /*
6470 * KVM should never reach this point with a pending nested VM-Enter.
6471 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6472 * invalid guest state should never happen as that means KVM knowingly
6473 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6474 */
6475 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6476 return -EIO;
6477
6478 if (is_guest_mode(vcpu)) {
6479 /*
6480 * PML is never enabled when running L2, bail immediately if a
6481 * PML full exit occurs as something is horribly wrong.
6482 */
6483 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6484 goto unexpected_vmexit;
6485
6486 /*
6487 * The host physical addresses of some pages of guest memory
6488 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6489 * Page). The CPU may write to these pages via their host
6490 * physical address while L2 is running, bypassing any
6491 * address-translation-based dirty tracking (e.g. EPT write
6492 * protection).
6493 *
6494 * Mark them dirty on every exit from L2 to prevent them from
6495 * getting out of sync with dirty tracking.
6496 */
6497 nested_mark_vmcs12_pages_dirty(vcpu);
6498
6499 /*
6500 * Synthesize a triple fault if L2 state is invalid. In normal
6501 * operation, nested VM-Enter rejects any attempt to enter L2
6502 * with invalid state. However, those checks are skipped if
6503 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6504 * L2 state is invalid, it means either L1 modified SMRAM state
6505 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6506 * doing so is architecturally allowed in the RSM case, and is
6507 * the least awful solution for the userspace case without
6508 * risking false positives.
6509 */
6510 if (vmx->emulation_required) {
6511 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6512 return 1;
6513 }
6514
6515 if (nested_vmx_reflect_vmexit(vcpu))
6516 return 1;
6517 }
6518
6519 /* If guest state is invalid, start emulating. L2 is handled above. */
6520 if (vmx->emulation_required)
6521 return handle_invalid_guest_state(vcpu);
6522
6523 if (exit_reason.failed_vmentry) {
6524 dump_vmcs(vcpu);
6525 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6526 vcpu->run->fail_entry.hardware_entry_failure_reason
6527 = exit_reason.full;
6528 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6529 return 0;
6530 }
6531
6532 if (unlikely(vmx->fail)) {
6533 dump_vmcs(vcpu);
6534 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6535 vcpu->run->fail_entry.hardware_entry_failure_reason
6536 = vmcs_read32(VM_INSTRUCTION_ERROR);
6537 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6538 return 0;
6539 }
6540
6541 /*
6542 * Note:
6543 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6544 * delivery event since it indicates guest is accessing MMIO.
6545 * The vm-exit can be triggered again after return to guest that
6546 * will cause infinite loop.
6547 */
6548 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6549 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6550 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6551 exit_reason.basic != EXIT_REASON_PML_FULL &&
6552 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6553 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6554 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6555 int ndata = 3;
6556
6557 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6558 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6559 vcpu->run->internal.data[0] = vectoring_info;
6560 vcpu->run->internal.data[1] = exit_reason.full;
6561 vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6562 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6563 vcpu->run->internal.data[ndata++] =
6564 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6565 }
6566 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6567 vcpu->run->internal.ndata = ndata;
6568 return 0;
6569 }
6570
6571 if (unlikely(!enable_vnmi &&
6572 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6573 if (!vmx_interrupt_blocked(vcpu)) {
6574 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6575 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6576 vcpu->arch.nmi_pending) {
6577 /*
6578 * This CPU don't support us in finding the end of an
6579 * NMI-blocked window if the guest runs with IRQs
6580 * disabled. So we pull the trigger after 1 s of
6581 * futile waiting, but inform the user about this.
6582 */
6583 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6584 "state on VCPU %d after 1 s timeout\n",
6585 __func__, vcpu->vcpu_id);
6586 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6587 }
6588 }
6589
6590 if (exit_fastpath != EXIT_FASTPATH_NONE)
6591 return 1;
6592
6593 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6594 goto unexpected_vmexit;
6595 #ifdef CONFIG_MITIGATION_RETPOLINE
6596 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6597 return kvm_emulate_wrmsr(vcpu);
6598 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6599 return handle_preemption_timer(vcpu);
6600 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6601 return handle_interrupt_window(vcpu);
6602 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6603 return handle_external_interrupt(vcpu);
6604 else if (exit_reason.basic == EXIT_REASON_HLT)
6605 return kvm_emulate_halt(vcpu);
6606 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6607 return handle_ept_misconfig(vcpu);
6608 #endif
6609
6610 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6611 kvm_vmx_max_exit_handlers);
6612 if (!kvm_vmx_exit_handlers[exit_handler_index])
6613 goto unexpected_vmexit;
6614
6615 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6616
6617 unexpected_vmexit:
6618 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6619 exit_reason.full);
6620 dump_vmcs(vcpu);
6621 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6622 vcpu->run->internal.suberror =
6623 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6624 vcpu->run->internal.ndata = 2;
6625 vcpu->run->internal.data[0] = exit_reason.full;
6626 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6627 return 0;
6628 }
6629
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6630 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6631 {
6632 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6633
6634 /*
6635 * Exit to user space when bus lock detected to inform that there is
6636 * a bus lock in guest.
6637 */
6638 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6639 if (ret > 0)
6640 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6641
6642 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6643 return 0;
6644 }
6645 return ret;
6646 }
6647
6648 /*
6649 * Software based L1D cache flush which is used when microcode providing
6650 * the cache control MSR is not loaded.
6651 *
6652 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6653 * flush it is required to read in 64 KiB because the replacement algorithm
6654 * is not exactly LRU. This could be sized at runtime via topology
6655 * information but as all relevant affected CPUs have 32KiB L1D cache size
6656 * there is no point in doing so.
6657 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6658 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6659 {
6660 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6661
6662 /*
6663 * This code is only executed when the flush mode is 'cond' or
6664 * 'always'
6665 */
6666 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6667 bool flush_l1d;
6668
6669 /*
6670 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6671 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6672 * exits to userspace, or if KVM reaches one of the unsafe
6673 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6674 */
6675 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6676 vcpu->arch.l1tf_flush_l1d = false;
6677
6678 /*
6679 * Clear the per-cpu flush bit, it gets set again from
6680 * the interrupt handlers.
6681 */
6682 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6683 kvm_clear_cpu_l1tf_flush_l1d();
6684
6685 if (!flush_l1d)
6686 return;
6687 }
6688
6689 vcpu->stat.l1d_flush++;
6690
6691 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6692 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6693 return;
6694 }
6695
6696 asm volatile(
6697 /* First ensure the pages are in the TLB */
6698 "xorl %%eax, %%eax\n"
6699 ".Lpopulate_tlb:\n\t"
6700 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6701 "addl $4096, %%eax\n\t"
6702 "cmpl %%eax, %[size]\n\t"
6703 "jne .Lpopulate_tlb\n\t"
6704 "xorl %%eax, %%eax\n\t"
6705 "cpuid\n\t"
6706 /* Now fill the cache */
6707 "xorl %%eax, %%eax\n"
6708 ".Lfill_cache:\n"
6709 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6710 "addl $64, %%eax\n\t"
6711 "cmpl %%eax, %[size]\n\t"
6712 "jne .Lfill_cache\n\t"
6713 "lfence\n"
6714 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6715 [size] "r" (size)
6716 : "eax", "ebx", "ecx", "edx");
6717 }
6718
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6719 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6720 {
6721 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6722 int tpr_threshold;
6723
6724 if (is_guest_mode(vcpu) &&
6725 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6726 return;
6727
6728 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6729 if (is_guest_mode(vcpu))
6730 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6731 else
6732 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6733 }
6734
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6735 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6736 {
6737 struct vcpu_vmx *vmx = to_vmx(vcpu);
6738 u32 sec_exec_control;
6739
6740 if (!lapic_in_kernel(vcpu))
6741 return;
6742
6743 if (!flexpriority_enabled &&
6744 !cpu_has_vmx_virtualize_x2apic_mode())
6745 return;
6746
6747 /* Postpone execution until vmcs01 is the current VMCS. */
6748 if (is_guest_mode(vcpu)) {
6749 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6750 return;
6751 }
6752
6753 sec_exec_control = secondary_exec_controls_get(vmx);
6754 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6755 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6756
6757 switch (kvm_get_apic_mode(vcpu)) {
6758 case LAPIC_MODE_INVALID:
6759 WARN_ONCE(true, "Invalid local APIC state");
6760 break;
6761 case LAPIC_MODE_DISABLED:
6762 break;
6763 case LAPIC_MODE_XAPIC:
6764 if (flexpriority_enabled) {
6765 sec_exec_control |=
6766 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6767 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6768
6769 /*
6770 * Flush the TLB, reloading the APIC access page will
6771 * only do so if its physical address has changed, but
6772 * the guest may have inserted a non-APIC mapping into
6773 * the TLB while the APIC access page was disabled.
6774 */
6775 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6776 }
6777 break;
6778 case LAPIC_MODE_X2APIC:
6779 if (cpu_has_vmx_virtualize_x2apic_mode())
6780 sec_exec_control |=
6781 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6782 break;
6783 }
6784 secondary_exec_controls_set(vmx, sec_exec_control);
6785
6786 vmx_update_msr_bitmap_x2apic(vcpu);
6787 }
6788
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6789 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6790 {
6791 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6792 struct kvm *kvm = vcpu->kvm;
6793 struct kvm_memslots *slots = kvm_memslots(kvm);
6794 struct kvm_memory_slot *slot;
6795 unsigned long mmu_seq;
6796 kvm_pfn_t pfn;
6797
6798 /* Defer reload until vmcs01 is the current VMCS. */
6799 if (is_guest_mode(vcpu)) {
6800 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6801 return;
6802 }
6803
6804 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6805 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6806 return;
6807
6808 /*
6809 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6810 * KVM doesn't unintentionally grab a userspace memslot. It _should_
6811 * be impossible for userspace to create a memslot for the APIC when
6812 * APICv is enabled, but paranoia won't hurt in this case.
6813 */
6814 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6815 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6816 return;
6817
6818 /*
6819 * Ensure that the mmu_notifier sequence count is read before KVM
6820 * retrieves the pfn from the primary MMU. Note, the memslot is
6821 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6822 * in kvm_mmu_invalidate_end().
6823 */
6824 mmu_seq = kvm->mmu_invalidate_seq;
6825 smp_rmb();
6826
6827 /*
6828 * No need to retry if the memslot does not exist or is invalid. KVM
6829 * controls the APIC-access page memslot, and only deletes the memslot
6830 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6831 */
6832 pfn = gfn_to_pfn_memslot(slot, gfn);
6833 if (is_error_noslot_pfn(pfn))
6834 return;
6835
6836 read_lock(&vcpu->kvm->mmu_lock);
6837 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6838 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6839 read_unlock(&vcpu->kvm->mmu_lock);
6840 goto out;
6841 }
6842
6843 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6844 read_unlock(&vcpu->kvm->mmu_lock);
6845
6846 /*
6847 * No need for a manual TLB flush at this point, KVM has already done a
6848 * flush if there were SPTEs pointing at the previous page.
6849 */
6850 out:
6851 /*
6852 * Do not pin apic access page in memory, the MMU notifier
6853 * will call us again if it is migrated or swapped out.
6854 */
6855 kvm_release_pfn_clean(pfn);
6856 }
6857
vmx_hwapic_isr_update(int max_isr)6858 void vmx_hwapic_isr_update(int max_isr)
6859 {
6860 u16 status;
6861 u8 old;
6862
6863 if (max_isr == -1)
6864 max_isr = 0;
6865
6866 status = vmcs_read16(GUEST_INTR_STATUS);
6867 old = status >> 8;
6868 if (max_isr != old) {
6869 status &= 0xff;
6870 status |= max_isr << 8;
6871 vmcs_write16(GUEST_INTR_STATUS, status);
6872 }
6873 }
6874
vmx_set_rvi(int vector)6875 static void vmx_set_rvi(int vector)
6876 {
6877 u16 status;
6878 u8 old;
6879
6880 if (vector == -1)
6881 vector = 0;
6882
6883 status = vmcs_read16(GUEST_INTR_STATUS);
6884 old = (u8)status & 0xff;
6885 if ((u8)vector != old) {
6886 status &= ~0xff;
6887 status |= (u8)vector;
6888 vmcs_write16(GUEST_INTR_STATUS, status);
6889 }
6890 }
6891
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6892 void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6893 {
6894 /*
6895 * When running L2, updating RVI is only relevant when
6896 * vmcs12 virtual-interrupt-delivery enabled.
6897 * However, it can be enabled only when L1 also
6898 * intercepts external-interrupts and in that case
6899 * we should not update vmcs02 RVI but instead intercept
6900 * interrupt. Therefore, do nothing when running L2.
6901 */
6902 if (!is_guest_mode(vcpu))
6903 vmx_set_rvi(max_irr);
6904 }
6905
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6906 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6907 {
6908 struct vcpu_vmx *vmx = to_vmx(vcpu);
6909 int max_irr;
6910 bool got_posted_interrupt;
6911
6912 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6913 return -EIO;
6914
6915 if (pi_test_on(&vmx->pi_desc)) {
6916 pi_clear_on(&vmx->pi_desc);
6917 /*
6918 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6919 * But on x86 this is just a compiler barrier anyway.
6920 */
6921 smp_mb__after_atomic();
6922 got_posted_interrupt =
6923 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6924 } else {
6925 max_irr = kvm_lapic_find_highest_irr(vcpu);
6926 got_posted_interrupt = false;
6927 }
6928
6929 /*
6930 * Newly recognized interrupts are injected via either virtual interrupt
6931 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6932 * disabled in two cases:
6933 *
6934 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6935 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6936 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6937 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6938 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6939 *
6940 * 2) If APICv is disabled for this vCPU, assigned devices may still
6941 * attempt to post interrupts. The posted interrupt vector will cause
6942 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6943 */
6944 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6945 vmx_set_rvi(max_irr);
6946 else if (got_posted_interrupt)
6947 kvm_make_request(KVM_REQ_EVENT, vcpu);
6948
6949 return max_irr;
6950 }
6951
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6952 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6953 {
6954 if (!kvm_vcpu_apicv_active(vcpu))
6955 return;
6956
6957 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6958 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6959 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6960 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6961 }
6962
vmx_apicv_pre_state_restore(struct kvm_vcpu * vcpu)6963 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6964 {
6965 struct vcpu_vmx *vmx = to_vmx(vcpu);
6966
6967 pi_clear_on(&vmx->pi_desc);
6968 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6969 }
6970
6971 void vmx_do_interrupt_irqoff(unsigned long entry);
6972 void vmx_do_nmi_irqoff(void);
6973
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6974 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6975 {
6976 /*
6977 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6978 * MSR value is not clobbered by the host activity before the guest
6979 * has chance to consume it.
6980 *
6981 * Do not blindly read xfd_err here, since this exception might
6982 * be caused by L1 interception on a platform which doesn't
6983 * support xfd at all.
6984 *
6985 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6986 * only when xfd contains a non-zero value.
6987 *
6988 * Queuing exception is done in vmx_handle_exit. See comment there.
6989 */
6990 if (vcpu->arch.guest_fpu.fpstate->xfd)
6991 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6992 }
6993
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)6994 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6995 {
6996 /* if exit due to PF check for async PF */
6997 if (is_page_fault(intr_info))
6998 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6999 /* if exit due to NM, handle before interrupts are enabled */
7000 else if (is_nm_fault(intr_info))
7001 handle_nm_fault_irqoff(vcpu);
7002 /* Handle machine checks before interrupts are enabled */
7003 else if (is_machine_check(intr_info))
7004 kvm_machine_check();
7005 }
7006
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7007 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7008 u32 intr_info)
7009 {
7010 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7011
7012 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7013 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7014 return;
7015
7016 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7017 if (cpu_feature_enabled(X86_FEATURE_FRED))
7018 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7019 else
7020 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7021 kvm_after_interrupt(vcpu);
7022
7023 vcpu->arch.at_instruction_boundary = true;
7024 }
7025
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)7026 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7027 {
7028 struct vcpu_vmx *vmx = to_vmx(vcpu);
7029
7030 if (vmx->emulation_required)
7031 return;
7032
7033 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7034 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7035 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7036 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7037 }
7038
7039 /*
7040 * The kvm parameter can be NULL (module initialization, or invocation before
7041 * VM creation). Be sure to check the kvm parameter before using it.
7042 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7043 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7044 {
7045 switch (index) {
7046 case MSR_IA32_SMBASE:
7047 if (!IS_ENABLED(CONFIG_KVM_SMM))
7048 return false;
7049 /*
7050 * We cannot do SMM unless we can run the guest in big
7051 * real mode.
7052 */
7053 return enable_unrestricted_guest || emulate_invalid_guest_state;
7054 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7055 return nested;
7056 case MSR_AMD64_VIRT_SPEC_CTRL:
7057 case MSR_AMD64_TSC_RATIO:
7058 /* This is AMD only. */
7059 return false;
7060 default:
7061 return true;
7062 }
7063 }
7064
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7065 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7066 {
7067 u32 exit_intr_info;
7068 bool unblock_nmi;
7069 u8 vector;
7070 bool idtv_info_valid;
7071
7072 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7073
7074 if (enable_vnmi) {
7075 if (vmx->loaded_vmcs->nmi_known_unmasked)
7076 return;
7077
7078 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7079 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7080 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7081 /*
7082 * SDM 3: 27.7.1.2 (September 2008)
7083 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7084 * a guest IRET fault.
7085 * SDM 3: 23.2.2 (September 2008)
7086 * Bit 12 is undefined in any of the following cases:
7087 * If the VM exit sets the valid bit in the IDT-vectoring
7088 * information field.
7089 * If the VM exit is due to a double fault.
7090 */
7091 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7092 vector != DF_VECTOR && !idtv_info_valid)
7093 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7094 GUEST_INTR_STATE_NMI);
7095 else
7096 vmx->loaded_vmcs->nmi_known_unmasked =
7097 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7098 & GUEST_INTR_STATE_NMI);
7099 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7100 vmx->loaded_vmcs->vnmi_blocked_time +=
7101 ktime_to_ns(ktime_sub(ktime_get(),
7102 vmx->loaded_vmcs->entry_time));
7103 }
7104
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7105 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7106 u32 idt_vectoring_info,
7107 int instr_len_field,
7108 int error_code_field)
7109 {
7110 u8 vector;
7111 int type;
7112 bool idtv_info_valid;
7113
7114 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7115
7116 vcpu->arch.nmi_injected = false;
7117 kvm_clear_exception_queue(vcpu);
7118 kvm_clear_interrupt_queue(vcpu);
7119
7120 if (!idtv_info_valid)
7121 return;
7122
7123 kvm_make_request(KVM_REQ_EVENT, vcpu);
7124
7125 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7126 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7127
7128 switch (type) {
7129 case INTR_TYPE_NMI_INTR:
7130 vcpu->arch.nmi_injected = true;
7131 /*
7132 * SDM 3: 27.7.1.2 (September 2008)
7133 * Clear bit "block by NMI" before VM entry if a NMI
7134 * delivery faulted.
7135 */
7136 vmx_set_nmi_mask(vcpu, false);
7137 break;
7138 case INTR_TYPE_SOFT_EXCEPTION:
7139 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7140 fallthrough;
7141 case INTR_TYPE_HARD_EXCEPTION:
7142 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7143 u32 err = vmcs_read32(error_code_field);
7144 kvm_requeue_exception_e(vcpu, vector, err);
7145 } else
7146 kvm_requeue_exception(vcpu, vector);
7147 break;
7148 case INTR_TYPE_SOFT_INTR:
7149 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7150 fallthrough;
7151 case INTR_TYPE_EXT_INTR:
7152 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7153 break;
7154 default:
7155 break;
7156 }
7157 }
7158
vmx_complete_interrupts(struct vcpu_vmx * vmx)7159 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7160 {
7161 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7162 VM_EXIT_INSTRUCTION_LEN,
7163 IDT_VECTORING_ERROR_CODE);
7164 }
7165
vmx_cancel_injection(struct kvm_vcpu * vcpu)7166 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7167 {
7168 __vmx_complete_interrupts(vcpu,
7169 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7170 VM_ENTRY_INSTRUCTION_LEN,
7171 VM_ENTRY_EXCEPTION_ERROR_CODE);
7172
7173 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7174 }
7175
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7176 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7177 {
7178 int i, nr_msrs;
7179 struct perf_guest_switch_msr *msrs;
7180 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7181
7182 pmu->host_cross_mapped_mask = 0;
7183 if (pmu->pebs_enable & pmu->global_ctrl)
7184 intel_pmu_cross_mapped_check(pmu);
7185
7186 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7187 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7188 if (!msrs)
7189 return;
7190
7191 for (i = 0; i < nr_msrs; i++)
7192 if (msrs[i].host == msrs[i].guest)
7193 clear_atomic_switch_msr(vmx, msrs[i].msr);
7194 else
7195 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7196 msrs[i].host, false);
7197 }
7198
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7199 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7200 {
7201 struct vcpu_vmx *vmx = to_vmx(vcpu);
7202 u64 tscl;
7203 u32 delta_tsc;
7204
7205 if (force_immediate_exit) {
7206 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7207 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7208 } else if (vmx->hv_deadline_tsc != -1) {
7209 tscl = rdtsc();
7210 if (vmx->hv_deadline_tsc > tscl)
7211 /* set_hv_timer ensures the delta fits in 32-bits */
7212 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7213 cpu_preemption_timer_multi);
7214 else
7215 delta_tsc = 0;
7216
7217 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7218 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7219 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7220 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7221 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7222 }
7223 }
7224
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7225 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7226 {
7227 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7228 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7229 vmcs_writel(HOST_RSP, host_rsp);
7230 }
7231 }
7232
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7233 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7234 unsigned int flags)
7235 {
7236 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7237
7238 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7239 return;
7240
7241 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7242 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7243
7244 /*
7245 * If the guest/host SPEC_CTRL values differ, restore the host value.
7246 *
7247 * For legacy IBRS, the IBRS bit always needs to be written after
7248 * transitioning from a less privileged predictor mode, regardless of
7249 * whether the guest/host values differ.
7250 */
7251 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7252 vmx->spec_ctrl != hostval)
7253 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7254
7255 barrier_nospec();
7256 }
7257
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7258 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7259 bool force_immediate_exit)
7260 {
7261 /*
7262 * If L2 is active, some VMX preemption timer exits can be handled in
7263 * the fastpath even, all other exits must use the slow path.
7264 */
7265 if (is_guest_mode(vcpu) &&
7266 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7267 return EXIT_FASTPATH_NONE;
7268
7269 switch (to_vmx(vcpu)->exit_reason.basic) {
7270 case EXIT_REASON_MSR_WRITE:
7271 return handle_fastpath_set_msr_irqoff(vcpu);
7272 case EXIT_REASON_PREEMPTION_TIMER:
7273 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7274 case EXIT_REASON_HLT:
7275 return handle_fastpath_hlt(vcpu);
7276 default:
7277 return EXIT_FASTPATH_NONE;
7278 }
7279 }
7280
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7281 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7282 unsigned int flags)
7283 {
7284 struct vcpu_vmx *vmx = to_vmx(vcpu);
7285
7286 guest_state_enter_irqoff();
7287
7288 /*
7289 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7290 * mitigation for MDS is done late in VMentry and is still
7291 * executed in spite of L1D Flush. This is because an extra VERW
7292 * should not matter much after the big hammer L1D Flush.
7293 */
7294 if (static_branch_unlikely(&vmx_l1d_should_flush))
7295 vmx_l1d_flush(vcpu);
7296 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7297 kvm_arch_has_assigned_device(vcpu->kvm))
7298 mds_clear_cpu_buffers();
7299
7300 vmx_disable_fb_clear(vmx);
7301
7302 if (vcpu->arch.cr2 != native_read_cr2())
7303 native_write_cr2(vcpu->arch.cr2);
7304
7305 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7306 flags);
7307
7308 vcpu->arch.cr2 = native_read_cr2();
7309 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7310
7311 vmx->idt_vectoring_info = 0;
7312
7313 vmx_enable_fb_clear(vmx);
7314
7315 if (unlikely(vmx->fail)) {
7316 vmx->exit_reason.full = 0xdead;
7317 goto out;
7318 }
7319
7320 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7321 if (likely(!vmx->exit_reason.failed_vmentry))
7322 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7323
7324 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7325 is_nmi(vmx_get_intr_info(vcpu))) {
7326 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7327 if (cpu_feature_enabled(X86_FEATURE_FRED))
7328 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7329 else
7330 vmx_do_nmi_irqoff();
7331 kvm_after_interrupt(vcpu);
7332 }
7333
7334 out:
7335 guest_state_exit_irqoff();
7336 }
7337
vmx_vcpu_run(struct kvm_vcpu * vcpu,bool force_immediate_exit)7338 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7339 {
7340 struct vcpu_vmx *vmx = to_vmx(vcpu);
7341 unsigned long cr3, cr4;
7342
7343 /* Record the guest's net vcpu time for enforced NMI injections. */
7344 if (unlikely(!enable_vnmi &&
7345 vmx->loaded_vmcs->soft_vnmi_blocked))
7346 vmx->loaded_vmcs->entry_time = ktime_get();
7347
7348 /*
7349 * Don't enter VMX if guest state is invalid, let the exit handler
7350 * start emulation until we arrive back to a valid state. Synthesize a
7351 * consistency check VM-Exit due to invalid guest state and bail.
7352 */
7353 if (unlikely(vmx->emulation_required)) {
7354 vmx->fail = 0;
7355
7356 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7357 vmx->exit_reason.failed_vmentry = 1;
7358 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7359 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7360 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7361 vmx->exit_intr_info = 0;
7362 return EXIT_FASTPATH_NONE;
7363 }
7364
7365 trace_kvm_entry(vcpu, force_immediate_exit);
7366
7367 if (vmx->ple_window_dirty) {
7368 vmx->ple_window_dirty = false;
7369 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7370 }
7371
7372 /*
7373 * We did this in prepare_switch_to_guest, because it needs to
7374 * be within srcu_read_lock.
7375 */
7376 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7377
7378 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7379 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7380 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7381 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7382 vcpu->arch.regs_dirty = 0;
7383
7384 /*
7385 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7386 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7387 * it switches back to the current->mm, which can occur in KVM context
7388 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7389 * toggles a static key while handling a VM-Exit.
7390 */
7391 cr3 = __get_current_cr3_fast();
7392 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7393 vmcs_writel(HOST_CR3, cr3);
7394 vmx->loaded_vmcs->host_state.cr3 = cr3;
7395 }
7396
7397 cr4 = cr4_read_shadow();
7398 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7399 vmcs_writel(HOST_CR4, cr4);
7400 vmx->loaded_vmcs->host_state.cr4 = cr4;
7401 }
7402
7403 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7404 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7405 set_debugreg(vcpu->arch.dr6, 6);
7406
7407 /* When single-stepping over STI and MOV SS, we must clear the
7408 * corresponding interruptibility bits in the guest state. Otherwise
7409 * vmentry fails as it then expects bit 14 (BS) in pending debug
7410 * exceptions being set, but that's not correct for the guest debugging
7411 * case. */
7412 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7413 vmx_set_interrupt_shadow(vcpu, 0);
7414
7415 kvm_load_guest_xsave_state(vcpu);
7416
7417 pt_guest_enter(vmx);
7418
7419 atomic_switch_perf_msrs(vmx);
7420 if (intel_pmu_lbr_is_enabled(vcpu))
7421 vmx_passthrough_lbr_msrs(vcpu);
7422
7423 if (enable_preemption_timer)
7424 vmx_update_hv_timer(vcpu, force_immediate_exit);
7425 else if (force_immediate_exit)
7426 smp_send_reschedule(vcpu->cpu);
7427
7428 kvm_wait_lapic_expire(vcpu);
7429
7430 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7431 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7432
7433 /* All fields are clean at this point */
7434 if (kvm_is_using_evmcs()) {
7435 current_evmcs->hv_clean_fields |=
7436 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7437
7438 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7439 }
7440
7441 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7442 if (vmx->host_debugctlmsr)
7443 update_debugctlmsr(vmx->host_debugctlmsr);
7444
7445 #ifndef CONFIG_X86_64
7446 /*
7447 * The sysexit path does not restore ds/es, so we must set them to
7448 * a reasonable value ourselves.
7449 *
7450 * We can't defer this to vmx_prepare_switch_to_host() since that
7451 * function may be executed in interrupt context, which saves and
7452 * restore segments around it, nullifying its effect.
7453 */
7454 loadsegment(ds, __USER_DS);
7455 loadsegment(es, __USER_DS);
7456 #endif
7457
7458 pt_guest_exit(vmx);
7459
7460 kvm_load_host_xsave_state(vcpu);
7461
7462 if (is_guest_mode(vcpu)) {
7463 /*
7464 * Track VMLAUNCH/VMRESUME that have made past guest state
7465 * checking.
7466 */
7467 if (vmx->nested.nested_run_pending &&
7468 !vmx->exit_reason.failed_vmentry)
7469 ++vcpu->stat.nested_run;
7470
7471 vmx->nested.nested_run_pending = 0;
7472 }
7473
7474 if (unlikely(vmx->fail))
7475 return EXIT_FASTPATH_NONE;
7476
7477 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7478 kvm_machine_check();
7479
7480 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7481
7482 if (unlikely(vmx->exit_reason.failed_vmentry))
7483 return EXIT_FASTPATH_NONE;
7484
7485 vmx->loaded_vmcs->launched = 1;
7486
7487 vmx_recover_nmi_blocking(vmx);
7488 vmx_complete_interrupts(vmx);
7489
7490 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7491 }
7492
vmx_vcpu_free(struct kvm_vcpu * vcpu)7493 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7494 {
7495 struct vcpu_vmx *vmx = to_vmx(vcpu);
7496
7497 if (enable_pml)
7498 vmx_destroy_pml_buffer(vmx);
7499 free_vpid(vmx->vpid);
7500 nested_vmx_free_vcpu(vcpu);
7501 free_loaded_vmcs(vmx->loaded_vmcs);
7502 free_page((unsigned long)vmx->ve_info);
7503 }
7504
vmx_vcpu_create(struct kvm_vcpu * vcpu)7505 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7506 {
7507 struct vmx_uret_msr *tsx_ctrl;
7508 struct vcpu_vmx *vmx;
7509 int i, err;
7510
7511 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7512 vmx = to_vmx(vcpu);
7513
7514 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7515
7516 err = -ENOMEM;
7517
7518 vmx->vpid = allocate_vpid();
7519
7520 /*
7521 * If PML is turned on, failure on enabling PML just results in failure
7522 * of creating the vcpu, therefore we can simplify PML logic (by
7523 * avoiding dealing with cases, such as enabling PML partially on vcpus
7524 * for the guest), etc.
7525 */
7526 if (enable_pml) {
7527 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7528 if (!vmx->pml_pg)
7529 goto free_vpid;
7530 }
7531
7532 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7533 vmx->guest_uret_msrs[i].mask = -1ull;
7534 if (boot_cpu_has(X86_FEATURE_RTM)) {
7535 /*
7536 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7537 * Keep the host value unchanged to avoid changing CPUID bits
7538 * under the host kernel's feet.
7539 */
7540 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7541 if (tsx_ctrl)
7542 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7543 }
7544
7545 err = alloc_loaded_vmcs(&vmx->vmcs01);
7546 if (err < 0)
7547 goto free_pml;
7548
7549 /*
7550 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7551 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7552 * feature only for vmcs01, KVM currently isn't equipped to realize any
7553 * performance benefits from enabling it for vmcs02.
7554 */
7555 if (kvm_is_using_evmcs() &&
7556 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7557 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7558
7559 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7560 }
7561
7562 /* The MSR bitmap starts with all ones */
7563 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7564 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7565
7566 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7567 #ifdef CONFIG_X86_64
7568 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7569 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7570 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7571 #endif
7572 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7573 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7574 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7575 if (kvm_cstate_in_guest(vcpu->kvm)) {
7576 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7577 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7578 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7579 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7580 }
7581
7582 vmx->loaded_vmcs = &vmx->vmcs01;
7583
7584 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7585 err = kvm_alloc_apic_access_page(vcpu->kvm);
7586 if (err)
7587 goto free_vmcs;
7588 }
7589
7590 if (enable_ept && !enable_unrestricted_guest) {
7591 err = init_rmode_identity_map(vcpu->kvm);
7592 if (err)
7593 goto free_vmcs;
7594 }
7595
7596 err = -ENOMEM;
7597 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7598 struct page *page;
7599
7600 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7601
7602 /* ve_info must be page aligned. */
7603 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7604 if (!page)
7605 goto free_vmcs;
7606
7607 vmx->ve_info = page_to_virt(page);
7608 }
7609
7610 if (vmx_can_use_ipiv(vcpu))
7611 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7612 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7613
7614 return 0;
7615
7616 free_vmcs:
7617 free_loaded_vmcs(vmx->loaded_vmcs);
7618 free_pml:
7619 vmx_destroy_pml_buffer(vmx);
7620 free_vpid:
7621 free_vpid(vmx->vpid);
7622 return err;
7623 }
7624
7625 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7626 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7627
vmx_vm_init(struct kvm * kvm)7628 int vmx_vm_init(struct kvm *kvm)
7629 {
7630 if (!ple_gap)
7631 kvm->arch.pause_in_guest = true;
7632
7633 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7634 switch (l1tf_mitigation) {
7635 case L1TF_MITIGATION_OFF:
7636 case L1TF_MITIGATION_FLUSH_NOWARN:
7637 /* 'I explicitly don't care' is set */
7638 break;
7639 case L1TF_MITIGATION_FLUSH:
7640 case L1TF_MITIGATION_FLUSH_NOSMT:
7641 case L1TF_MITIGATION_FULL:
7642 /*
7643 * Warn upon starting the first VM in a potentially
7644 * insecure environment.
7645 */
7646 if (sched_smt_active())
7647 pr_warn_once(L1TF_MSG_SMT);
7648 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7649 pr_warn_once(L1TF_MSG_L1D);
7650 break;
7651 case L1TF_MITIGATION_FULL_FORCE:
7652 /* Flush is enforced */
7653 break;
7654 }
7655 }
7656 return 0;
7657 }
7658
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7659 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7660 {
7661 /*
7662 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7663 * with cacheable accesses will result in Machine Checks.
7664 */
7665 if (is_mmio)
7666 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7667
7668 /*
7669 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7670 * device attached. Letting the guest control memory types on Intel
7671 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust
7672 * the guest to behave only as a last resort.
7673 */
7674 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7675 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7676
7677 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7678 }
7679
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7680 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7681 {
7682 /*
7683 * These bits in the secondary execution controls field
7684 * are dynamic, the others are mostly based on the hypervisor
7685 * architecture and the guest's CPUID. Do not touch the
7686 * dynamic bits.
7687 */
7688 u32 mask =
7689 SECONDARY_EXEC_SHADOW_VMCS |
7690 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7691 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7692 SECONDARY_EXEC_DESC;
7693
7694 u32 cur_ctl = secondary_exec_controls_get(vmx);
7695
7696 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7697 }
7698
7699 /*
7700 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7701 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7702 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7703 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7704 {
7705 struct vcpu_vmx *vmx = to_vmx(vcpu);
7706 struct kvm_cpuid_entry2 *entry;
7707
7708 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7709 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7710
7711 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7712 if (entry && (entry->_reg & (_cpuid_mask))) \
7713 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7714 } while (0)
7715
7716 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7717 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7718 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7719 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7720 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7721 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7722 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7723 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7724 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7725 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7726 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7727 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7728 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7729 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7730 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7731
7732 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7733 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7734 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7735 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7736 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7737 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7738 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7739
7740 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7741 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7742
7743 #undef cr4_fixed1_update
7744 }
7745
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7746 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7747 {
7748 struct vcpu_vmx *vmx = to_vmx(vcpu);
7749 struct kvm_cpuid_entry2 *best = NULL;
7750 int i;
7751
7752 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7753 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7754 if (!best)
7755 return;
7756 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7757 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7758 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7759 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7760 }
7761
7762 /* Get the number of configurable Address Ranges for filtering */
7763 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7764 PT_CAP_num_address_ranges);
7765
7766 /* Initialize and clear the no dependency bits */
7767 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7768 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7769 RTIT_CTL_BRANCH_EN);
7770
7771 /*
7772 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7773 * will inject an #GP
7774 */
7775 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7776 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7777
7778 /*
7779 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7780 * PSBFreq can be set
7781 */
7782 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7783 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7784 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7785
7786 /*
7787 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7788 */
7789 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7790 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7791 RTIT_CTL_MTC_RANGE);
7792
7793 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7794 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7795 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7796 RTIT_CTL_PTW_EN);
7797
7798 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7799 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7800 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7801
7802 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7803 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7804 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7805
7806 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7807 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7808 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7809
7810 /* unmask address range configure area */
7811 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7812 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7813 }
7814
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7815 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7816 {
7817 struct vcpu_vmx *vmx = to_vmx(vcpu);
7818
7819 /*
7820 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7821 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7822 * set if and only if XSAVE is supported.
7823 */
7824 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7825 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7826 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7827
7828 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7829 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7830
7831 vmx_setup_uret_msrs(vmx);
7832
7833 if (cpu_has_secondary_exec_ctrls())
7834 vmcs_set_secondary_exec_control(vmx,
7835 vmx_secondary_exec_control(vmx));
7836
7837 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7838 vmx->msr_ia32_feature_control_valid_bits |=
7839 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7840 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7841 else
7842 vmx->msr_ia32_feature_control_valid_bits &=
7843 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7844 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7845
7846 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7847 nested_vmx_cr_fixed1_bits_update(vcpu);
7848
7849 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7850 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7851 update_intel_pt_cfg(vcpu);
7852
7853 if (boot_cpu_has(X86_FEATURE_RTM)) {
7854 struct vmx_uret_msr *msr;
7855 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7856 if (msr) {
7857 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7858 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7859 }
7860 }
7861
7862 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7863 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7864 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7865
7866 if (boot_cpu_has(X86_FEATURE_IBPB))
7867 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7868 !guest_has_pred_cmd_msr(vcpu));
7869
7870 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7871 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7872 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7873
7874 set_cr4_guest_host_mask(vmx);
7875
7876 vmx_write_encls_bitmap(vcpu, NULL);
7877 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7878 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7879 else
7880 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7881
7882 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7883 vmx->msr_ia32_feature_control_valid_bits |=
7884 FEAT_CTL_SGX_LC_ENABLED;
7885 else
7886 vmx->msr_ia32_feature_control_valid_bits &=
7887 ~FEAT_CTL_SGX_LC_ENABLED;
7888
7889 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7890 vmx_update_exception_bitmap(vcpu);
7891 }
7892
vmx_get_perf_capabilities(void)7893 static __init u64 vmx_get_perf_capabilities(void)
7894 {
7895 u64 perf_cap = PMU_CAP_FW_WRITES;
7896 u64 host_perf_cap = 0;
7897
7898 if (!enable_pmu)
7899 return 0;
7900
7901 if (boot_cpu_has(X86_FEATURE_PDCM))
7902 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7903
7904 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7905 x86_perf_get_lbr(&vmx_lbr_caps);
7906
7907 /*
7908 * KVM requires LBR callstack support, as the overhead due to
7909 * context switching LBRs without said support is too high.
7910 * See intel_pmu_create_guest_lbr_event() for more info.
7911 */
7912 if (!vmx_lbr_caps.has_callstack)
7913 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7914 else if (vmx_lbr_caps.nr)
7915 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7916 }
7917
7918 if (vmx_pebs_supported()) {
7919 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7920
7921 /*
7922 * Disallow adaptive PEBS as it is functionally broken, can be
7923 * used by the guest to read *host* LBRs, and can be used to
7924 * bypass userspace event filters. To correctly and safely
7925 * support adaptive PEBS, KVM needs to:
7926 *
7927 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7928 * counters.
7929 *
7930 * 2. Gain support from perf (or take direct control of counter
7931 * programming) to support events without adaptive PEBS
7932 * enabled for the hardware counter.
7933 *
7934 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7935 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7936 *
7937 * 4. Document which PMU events are effectively exposed to the
7938 * guest via adaptive PEBS, and make adaptive PEBS mutually
7939 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7940 */
7941 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7942 }
7943
7944 return perf_cap;
7945 }
7946
vmx_set_cpu_caps(void)7947 static __init void vmx_set_cpu_caps(void)
7948 {
7949 kvm_set_cpu_caps();
7950
7951 /* CPUID 0x1 */
7952 if (nested)
7953 kvm_cpu_cap_set(X86_FEATURE_VMX);
7954
7955 /* CPUID 0x7 */
7956 if (kvm_mpx_supported())
7957 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7958 if (!cpu_has_vmx_invpcid())
7959 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7960 if (vmx_pt_mode_is_host_guest())
7961 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7962 if (vmx_pebs_supported()) {
7963 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7964 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7965 }
7966
7967 if (!enable_pmu)
7968 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7969 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7970
7971 if (!enable_sgx) {
7972 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7973 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7974 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7975 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7976 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7977 }
7978
7979 if (vmx_umip_emulated())
7980 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7981
7982 /* CPUID 0xD.1 */
7983 kvm_caps.supported_xss = 0;
7984 if (!cpu_has_vmx_xsaves())
7985 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7986
7987 /* CPUID 0x80000001 and 0x7 (RDPID) */
7988 if (!cpu_has_vmx_rdtscp()) {
7989 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7990 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7991 }
7992
7993 if (cpu_has_vmx_waitpkg())
7994 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7995 }
7996
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7997 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7998 struct x86_instruction_info *info)
7999 {
8000 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8001 unsigned short port;
8002 bool intercept;
8003 int size;
8004
8005 if (info->intercept == x86_intercept_in ||
8006 info->intercept == x86_intercept_ins) {
8007 port = info->src_val;
8008 size = info->dst_bytes;
8009 } else {
8010 port = info->dst_val;
8011 size = info->src_bytes;
8012 }
8013
8014 /*
8015 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8016 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8017 * control.
8018 *
8019 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8020 */
8021 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8022 intercept = nested_cpu_has(vmcs12,
8023 CPU_BASED_UNCOND_IO_EXITING);
8024 else
8025 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
8026
8027 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
8028 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8029 }
8030
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)8031 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8032 struct x86_instruction_info *info,
8033 enum x86_intercept_stage stage,
8034 struct x86_exception *exception)
8035 {
8036 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8037
8038 switch (info->intercept) {
8039 /*
8040 * RDPID causes #UD if disabled through secondary execution controls.
8041 * Because it is marked as EmulateOnUD, we need to intercept it here.
8042 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8043 */
8044 case x86_intercept_rdpid:
8045 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8046 exception->vector = UD_VECTOR;
8047 exception->error_code_valid = false;
8048 return X86EMUL_PROPAGATE_FAULT;
8049 }
8050 break;
8051
8052 case x86_intercept_in:
8053 case x86_intercept_ins:
8054 case x86_intercept_out:
8055 case x86_intercept_outs:
8056 return vmx_check_intercept_io(vcpu, info);
8057
8058 case x86_intercept_lgdt:
8059 case x86_intercept_lidt:
8060 case x86_intercept_lldt:
8061 case x86_intercept_ltr:
8062 case x86_intercept_sgdt:
8063 case x86_intercept_sidt:
8064 case x86_intercept_sldt:
8065 case x86_intercept_str:
8066 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8067 return X86EMUL_CONTINUE;
8068
8069 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
8070 break;
8071
8072 case x86_intercept_pause:
8073 /*
8074 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8075 * with vanilla NOPs in the emulator. Apply the interception
8076 * check only to actual PAUSE instructions. Don't check
8077 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8078 * exit, i.e. KVM is within its rights to allow L2 to execute
8079 * the PAUSE.
8080 */
8081 if ((info->rep_prefix != REPE_PREFIX) ||
8082 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8083 return X86EMUL_CONTINUE;
8084
8085 break;
8086
8087 /* TODO: check more intercepts... */
8088 default:
8089 break;
8090 }
8091
8092 return X86EMUL_UNHANDLEABLE;
8093 }
8094
8095 #ifdef CONFIG_X86_64
8096 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8097 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8098 u64 divisor, u64 *result)
8099 {
8100 u64 low = a << shift, high = a >> (64 - shift);
8101
8102 /* To avoid the overflow on divq */
8103 if (high >= divisor)
8104 return 1;
8105
8106 /* Low hold the result, high hold rem which is discarded */
8107 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8108 "rm" (divisor), "0" (low), "1" (high));
8109 *result = low;
8110
8111 return 0;
8112 }
8113
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8114 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8115 bool *expired)
8116 {
8117 struct vcpu_vmx *vmx;
8118 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8119 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8120
8121 vmx = to_vmx(vcpu);
8122 tscl = rdtsc();
8123 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8124 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8125 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8126 ktimer->timer_advance_ns);
8127
8128 if (delta_tsc > lapic_timer_advance_cycles)
8129 delta_tsc -= lapic_timer_advance_cycles;
8130 else
8131 delta_tsc = 0;
8132
8133 /* Convert to host delta tsc if tsc scaling is enabled */
8134 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8135 delta_tsc && u64_shl_div_u64(delta_tsc,
8136 kvm_caps.tsc_scaling_ratio_frac_bits,
8137 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8138 return -ERANGE;
8139
8140 /*
8141 * If the delta tsc can't fit in the 32 bit after the multi shift,
8142 * we can't use the preemption timer.
8143 * It's possible that it fits on later vmentries, but checking
8144 * on every vmentry is costly so we just use an hrtimer.
8145 */
8146 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8147 return -ERANGE;
8148
8149 vmx->hv_deadline_tsc = tscl + delta_tsc;
8150 *expired = !delta_tsc;
8151 return 0;
8152 }
8153
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8154 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8155 {
8156 to_vmx(vcpu)->hv_deadline_tsc = -1;
8157 }
8158 #endif
8159
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8160 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8161 {
8162 struct vcpu_vmx *vmx = to_vmx(vcpu);
8163
8164 if (WARN_ON_ONCE(!enable_pml))
8165 return;
8166
8167 if (is_guest_mode(vcpu)) {
8168 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8169 return;
8170 }
8171
8172 /*
8173 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8174 * code, but in that case another update request will be made and so
8175 * the guest will never run with a stale PML value.
8176 */
8177 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8178 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8179 else
8180 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8181 }
8182
vmx_setup_mce(struct kvm_vcpu * vcpu)8183 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8184 {
8185 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8186 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8187 FEAT_CTL_LMCE_ENABLED;
8188 else
8189 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8190 ~FEAT_CTL_LMCE_ENABLED;
8191 }
8192
8193 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8194 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8195 {
8196 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8197 if (to_vmx(vcpu)->nested.nested_run_pending)
8198 return -EBUSY;
8199 return !is_smm(vcpu);
8200 }
8201
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8202 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8203 {
8204 struct vcpu_vmx *vmx = to_vmx(vcpu);
8205
8206 /*
8207 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8208 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8209 * SMI and RSM only modify state that is saved and restored via SMRAM.
8210 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8211 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8212 */
8213 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8214 if (vmx->nested.smm.guest_mode)
8215 nested_vmx_vmexit(vcpu, -1, 0, 0);
8216
8217 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8218 vmx->nested.vmxon = false;
8219 vmx_clear_hlt(vcpu);
8220 return 0;
8221 }
8222
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8223 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8224 {
8225 struct vcpu_vmx *vmx = to_vmx(vcpu);
8226 int ret;
8227
8228 if (vmx->nested.smm.vmxon) {
8229 vmx->nested.vmxon = true;
8230 vmx->nested.smm.vmxon = false;
8231 }
8232
8233 if (vmx->nested.smm.guest_mode) {
8234 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8235 if (ret)
8236 return ret;
8237
8238 vmx->nested.nested_run_pending = 1;
8239 vmx->nested.smm.guest_mode = false;
8240 }
8241 return 0;
8242 }
8243
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8244 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8245 {
8246 /* RSM will cause a vmexit anyway. */
8247 }
8248 #endif
8249
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8250 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8251 {
8252 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8253 }
8254
vmx_migrate_timers(struct kvm_vcpu * vcpu)8255 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8256 {
8257 if (is_guest_mode(vcpu)) {
8258 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8259
8260 if (hrtimer_try_to_cancel(timer) == 1)
8261 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8262 }
8263 }
8264
vmx_hardware_unsetup(void)8265 void vmx_hardware_unsetup(void)
8266 {
8267 kvm_set_posted_intr_wakeup_handler(NULL);
8268
8269 if (nested)
8270 nested_vmx_hardware_unsetup();
8271
8272 free_kvm_area();
8273 }
8274
vmx_vm_destroy(struct kvm * kvm)8275 void vmx_vm_destroy(struct kvm *kvm)
8276 {
8277 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8278
8279 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8280 }
8281
8282 /*
8283 * Note, the SDM states that the linear address is masked *after* the modified
8284 * canonicality check, whereas KVM masks (untags) the address and then performs
8285 * a "normal" canonicality check. Functionally, the two methods are identical,
8286 * and when the masking occurs relative to the canonicality check isn't visible
8287 * to software, i.e. KVM's behavior doesn't violate the SDM.
8288 */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8289 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8290 {
8291 int lam_bit;
8292 unsigned long cr3_bits;
8293
8294 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8295 return gva;
8296
8297 if (!is_64_bit_mode(vcpu))
8298 return gva;
8299
8300 /*
8301 * Bit 63 determines if the address should be treated as user address
8302 * or a supervisor address.
8303 */
8304 if (!(gva & BIT_ULL(63))) {
8305 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8306 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8307 return gva;
8308
8309 /* LAM_U48 is ignored if LAM_U57 is set. */
8310 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8311 } else {
8312 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8313 return gva;
8314
8315 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8316 }
8317
8318 /*
8319 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8320 * Bit 63 is retained from the raw virtual address so that untagging
8321 * doesn't change a user access to a supervisor access, and vice versa.
8322 */
8323 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8324 }
8325
vmx_handle_intel_pt_intr(void)8326 static unsigned int vmx_handle_intel_pt_intr(void)
8327 {
8328 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8329
8330 /* '0' on failure so that the !PT case can use a RET0 static call. */
8331 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8332 return 0;
8333
8334 kvm_make_request(KVM_REQ_PMI, vcpu);
8335 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8336 (unsigned long *)&vcpu->arch.pmu.global_status);
8337 return 1;
8338 }
8339
vmx_setup_user_return_msrs(void)8340 static __init void vmx_setup_user_return_msrs(void)
8341 {
8342
8343 /*
8344 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8345 * will emulate SYSCALL in legacy mode if the vendor string in guest
8346 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8347 * support this emulation, MSR_STAR is included in the list for i386,
8348 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8349 * into hardware and is here purely for emulation purposes.
8350 */
8351 const u32 vmx_uret_msrs_list[] = {
8352 #ifdef CONFIG_X86_64
8353 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8354 #endif
8355 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8356 MSR_IA32_TSX_CTRL,
8357 };
8358 int i;
8359
8360 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8361
8362 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8363 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8364 }
8365
vmx_setup_me_spte_mask(void)8366 static void __init vmx_setup_me_spte_mask(void)
8367 {
8368 u64 me_mask = 0;
8369
8370 /*
8371 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8372 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems,
8373 * boot_cpu_data.x86_phys_bits holds the actual physical address
8374 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8375 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits.
8376 */
8377 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8378 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8379 kvm_host.maxphyaddr - 1);
8380
8381 /*
8382 * Unlike SME, host kernel doesn't support setting up any
8383 * MKTME KeyID on Intel platforms. No memory encryption
8384 * bits should be included into the SPTE.
8385 */
8386 kvm_mmu_set_me_spte_mask(0, me_mask);
8387 }
8388
vmx_hardware_setup(void)8389 __init int vmx_hardware_setup(void)
8390 {
8391 unsigned long host_bndcfgs;
8392 struct desc_ptr dt;
8393 int r;
8394
8395 store_idt(&dt);
8396 host_idt_base = dt.address;
8397
8398 vmx_setup_user_return_msrs();
8399
8400 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8401 return -EIO;
8402
8403 if (cpu_has_perf_global_ctrl_bug())
8404 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8405 "does not work properly. Using workaround\n");
8406
8407 if (boot_cpu_has(X86_FEATURE_NX))
8408 kvm_enable_efer_bits(EFER_NX);
8409
8410 if (boot_cpu_has(X86_FEATURE_MPX)) {
8411 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8412 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8413 }
8414
8415 if (!cpu_has_vmx_mpx())
8416 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8417 XFEATURE_MASK_BNDCSR);
8418
8419 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8420 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8421 enable_vpid = 0;
8422
8423 if (!cpu_has_vmx_ept() ||
8424 !cpu_has_vmx_ept_4levels() ||
8425 !cpu_has_vmx_ept_mt_wb() ||
8426 !cpu_has_vmx_invept_global())
8427 enable_ept = 0;
8428
8429 /* NX support is required for shadow paging. */
8430 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8431 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8432 return -EOPNOTSUPP;
8433 }
8434
8435 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8436 enable_ept_ad_bits = 0;
8437
8438 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8439 enable_unrestricted_guest = 0;
8440
8441 if (!cpu_has_vmx_flexpriority())
8442 flexpriority_enabled = 0;
8443
8444 if (!cpu_has_virtual_nmis())
8445 enable_vnmi = 0;
8446
8447 #ifdef CONFIG_X86_SGX_KVM
8448 if (!cpu_has_vmx_encls_vmexit())
8449 enable_sgx = false;
8450 #endif
8451
8452 /*
8453 * set_apic_access_page_addr() is used to reload apic access
8454 * page upon invalidation. No need to do anything if not
8455 * using the APIC_ACCESS_ADDR VMCS field.
8456 */
8457 if (!flexpriority_enabled)
8458 vt_x86_ops.set_apic_access_page_addr = NULL;
8459
8460 if (!cpu_has_vmx_tpr_shadow())
8461 vt_x86_ops.update_cr8_intercept = NULL;
8462
8463 #if IS_ENABLED(CONFIG_HYPERV)
8464 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8465 && enable_ept) {
8466 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8467 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8468 }
8469 #endif
8470
8471 if (!cpu_has_vmx_ple()) {
8472 ple_gap = 0;
8473 ple_window = 0;
8474 ple_window_grow = 0;
8475 ple_window_max = 0;
8476 ple_window_shrink = 0;
8477 }
8478
8479 if (!cpu_has_vmx_apicv())
8480 enable_apicv = 0;
8481 if (!enable_apicv)
8482 vt_x86_ops.sync_pir_to_irr = NULL;
8483
8484 if (!enable_apicv || !cpu_has_vmx_ipiv())
8485 enable_ipiv = false;
8486
8487 if (cpu_has_vmx_tsc_scaling())
8488 kvm_caps.has_tsc_control = true;
8489
8490 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8491 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8492 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8493 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8494
8495 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8496
8497 if (enable_ept)
8498 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8499 cpu_has_vmx_ept_execute_only());
8500
8501 /*
8502 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8503 * bits to shadow_zero_check.
8504 */
8505 vmx_setup_me_spte_mask();
8506
8507 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8508 ept_caps_to_lpage_level(vmx_capability.ept));
8509
8510 /*
8511 * Only enable PML when hardware supports PML feature, and both EPT
8512 * and EPT A/D bit features are enabled -- PML depends on them to work.
8513 */
8514 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8515 enable_pml = 0;
8516
8517 if (!enable_pml)
8518 vt_x86_ops.cpu_dirty_log_size = 0;
8519
8520 if (!cpu_has_vmx_preemption_timer())
8521 enable_preemption_timer = false;
8522
8523 if (enable_preemption_timer) {
8524 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8525
8526 cpu_preemption_timer_multi =
8527 vmx_misc_preemption_timer_rate(vmcs_config.misc);
8528
8529 if (tsc_khz)
8530 use_timer_freq = (u64)tsc_khz * 1000;
8531 use_timer_freq >>= cpu_preemption_timer_multi;
8532
8533 /*
8534 * KVM "disables" the preemption timer by setting it to its max
8535 * value. Don't use the timer if it might cause spurious exits
8536 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8537 */
8538 if (use_timer_freq > 0xffffffffu / 10)
8539 enable_preemption_timer = false;
8540 }
8541
8542 if (!enable_preemption_timer) {
8543 vt_x86_ops.set_hv_timer = NULL;
8544 vt_x86_ops.cancel_hv_timer = NULL;
8545 }
8546
8547 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8548 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8549
8550 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8551 return -EINVAL;
8552 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8553 pt_mode = PT_MODE_SYSTEM;
8554 if (pt_mode == PT_MODE_HOST_GUEST)
8555 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8556 else
8557 vt_init_ops.handle_intel_pt_intr = NULL;
8558
8559 setup_default_sgx_lepubkeyhash();
8560
8561 if (nested) {
8562 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8563
8564 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8565 if (r)
8566 return r;
8567 }
8568
8569 vmx_set_cpu_caps();
8570
8571 r = alloc_kvm_area();
8572 if (r && nested)
8573 nested_vmx_hardware_unsetup();
8574
8575 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8576
8577 return r;
8578 }
8579
vmx_cleanup_l1d_flush(void)8580 static void vmx_cleanup_l1d_flush(void)
8581 {
8582 if (vmx_l1d_flush_pages) {
8583 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8584 vmx_l1d_flush_pages = NULL;
8585 }
8586 /* Restore state so sysfs ignores VMX */
8587 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8588 }
8589
__vmx_exit(void)8590 static void __vmx_exit(void)
8591 {
8592 allow_smaller_maxphyaddr = false;
8593
8594 vmx_cleanup_l1d_flush();
8595 }
8596
vmx_exit(void)8597 static void vmx_exit(void)
8598 {
8599 kvm_exit();
8600 __vmx_exit();
8601 kvm_x86_vendor_exit();
8602
8603 }
8604 module_exit(vmx_exit);
8605
vmx_init(void)8606 static int __init vmx_init(void)
8607 {
8608 int r, cpu;
8609
8610 if (!kvm_is_vmx_supported())
8611 return -EOPNOTSUPP;
8612
8613 /*
8614 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8615 * to unwind if a later step fails.
8616 */
8617 hv_init_evmcs();
8618
8619 r = kvm_x86_vendor_init(&vt_init_ops);
8620 if (r)
8621 return r;
8622
8623 /*
8624 * Must be called after common x86 init so enable_ept is properly set
8625 * up. Hand the parameter mitigation value in which was stored in
8626 * the pre module init parser. If no parameter was given, it will
8627 * contain 'auto' which will be turned into the default 'cond'
8628 * mitigation mode.
8629 */
8630 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8631 if (r)
8632 goto err_l1d_flush;
8633
8634 for_each_possible_cpu(cpu) {
8635 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8636
8637 pi_init_cpu(cpu);
8638 }
8639
8640 vmx_check_vmcs12_offsets();
8641
8642 /*
8643 * Shadow paging doesn't have a (further) performance penalty
8644 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8645 * by default
8646 */
8647 if (!enable_ept)
8648 allow_smaller_maxphyaddr = true;
8649
8650 /*
8651 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8652 * exposed to userspace!
8653 */
8654 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8655 THIS_MODULE);
8656 if (r)
8657 goto err_kvm_init;
8658
8659 return 0;
8660
8661 err_kvm_init:
8662 __vmx_exit();
8663 err_l1d_flush:
8664 kvm_x86_vendor_exit();
8665 return r;
8666 }
8667 module_init(vmx_init);
8668