1  // SPDX-License-Identifier: GPL-2.0-only
2  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3  
4  #include <linux/kernel.h>
5  #include <linux/sched.h>
6  #include <linux/sched/clock.h>
7  #include <linux/init.h>
8  #include <linux/export.h>
9  #include <linux/timer.h>
10  #include <linux/acpi_pmtmr.h>
11  #include <linux/cpufreq.h>
12  #include <linux/delay.h>
13  #include <linux/clocksource.h>
14  #include <linux/percpu.h>
15  #include <linux/timex.h>
16  #include <linux/static_key.h>
17  #include <linux/static_call.h>
18  
19  #include <asm/hpet.h>
20  #include <asm/timer.h>
21  #include <asm/vgtod.h>
22  #include <asm/time.h>
23  #include <asm/delay.h>
24  #include <asm/hypervisor.h>
25  #include <asm/nmi.h>
26  #include <asm/x86_init.h>
27  #include <asm/geode.h>
28  #include <asm/apic.h>
29  #include <asm/cpu_device_id.h>
30  #include <asm/i8259.h>
31  #include <asm/topology.h>
32  #include <asm/uv/uv.h>
33  
34  unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
35  EXPORT_SYMBOL(cpu_khz);
36  
37  unsigned int __read_mostly tsc_khz;
38  EXPORT_SYMBOL(tsc_khz);
39  
40  #define KHZ	1000
41  
42  /*
43   * TSC can be unstable due to cpufreq or due to unsynced TSCs
44   */
45  static int __read_mostly tsc_unstable;
46  static unsigned int __initdata tsc_early_khz;
47  
48  static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc);
49  
50  int tsc_clocksource_reliable;
51  
52  static int __read_mostly tsc_force_recalibrate;
53  
54  static struct clocksource_base art_base_clk = {
55  	.id    = CSID_X86_ART,
56  };
57  static bool have_art;
58  
59  struct cyc2ns {
60  	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
61  	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
62  
63  }; /* fits one cacheline */
64  
65  static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
66  
tsc_early_khz_setup(char * buf)67  static int __init tsc_early_khz_setup(char *buf)
68  {
69  	return kstrtouint(buf, 0, &tsc_early_khz);
70  }
71  early_param("tsc_early_khz", tsc_early_khz_setup);
72  
__cyc2ns_read(struct cyc2ns_data * data)73  __always_inline void __cyc2ns_read(struct cyc2ns_data *data)
74  {
75  	int seq, idx;
76  
77  	do {
78  		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
79  		idx = seq & 1;
80  
81  		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
82  		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
83  		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
84  
85  	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
86  }
87  
cyc2ns_read_begin(struct cyc2ns_data * data)88  __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
89  {
90  	preempt_disable_notrace();
91  	__cyc2ns_read(data);
92  }
93  
cyc2ns_read_end(void)94  __always_inline void cyc2ns_read_end(void)
95  {
96  	preempt_enable_notrace();
97  }
98  
99  /*
100   * Accelerators for sched_clock()
101   * convert from cycles(64bits) => nanoseconds (64bits)
102   *  basic equation:
103   *              ns = cycles / (freq / ns_per_sec)
104   *              ns = cycles * (ns_per_sec / freq)
105   *              ns = cycles * (10^9 / (cpu_khz * 10^3))
106   *              ns = cycles * (10^6 / cpu_khz)
107   *
108   *      Then we use scaling math (suggested by george@mvista.com) to get:
109   *              ns = cycles * (10^6 * SC / cpu_khz) / SC
110   *              ns = cycles * cyc2ns_scale / SC
111   *
112   *      And since SC is a constant power of two, we can convert the div
113   *  into a shift. The larger SC is, the more accurate the conversion, but
114   *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
115   *  (64-bit result) can be used.
116   *
117   *  We can use khz divisor instead of mhz to keep a better precision.
118   *  (mathieu.desnoyers@polymtl.ca)
119   *
120   *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
121   */
122  
__cycles_2_ns(unsigned long long cyc)123  static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
124  {
125  	struct cyc2ns_data data;
126  	unsigned long long ns;
127  
128  	__cyc2ns_read(&data);
129  
130  	ns = data.cyc2ns_offset;
131  	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
132  
133  	return ns;
134  }
135  
cycles_2_ns(unsigned long long cyc)136  static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
137  {
138  	unsigned long long ns;
139  	preempt_disable_notrace();
140  	ns = __cycles_2_ns(cyc);
141  	preempt_enable_notrace();
142  	return ns;
143  }
144  
__set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)145  static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
146  {
147  	unsigned long long ns_now;
148  	struct cyc2ns_data data;
149  	struct cyc2ns *c2n;
150  
151  	ns_now = cycles_2_ns(tsc_now);
152  
153  	/*
154  	 * Compute a new multiplier as per the above comment and ensure our
155  	 * time function is continuous; see the comment near struct
156  	 * cyc2ns_data.
157  	 */
158  	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
159  			       NSEC_PER_MSEC, 0);
160  
161  	/*
162  	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
163  	 * not expected to be greater than 31 due to the original published
164  	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
165  	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
166  	 */
167  	if (data.cyc2ns_shift == 32) {
168  		data.cyc2ns_shift = 31;
169  		data.cyc2ns_mul >>= 1;
170  	}
171  
172  	data.cyc2ns_offset = ns_now -
173  		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
174  
175  	c2n = per_cpu_ptr(&cyc2ns, cpu);
176  
177  	raw_write_seqcount_latch(&c2n->seq);
178  	c2n->data[0] = data;
179  	raw_write_seqcount_latch(&c2n->seq);
180  	c2n->data[1] = data;
181  }
182  
set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)183  static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
184  {
185  	unsigned long flags;
186  
187  	local_irq_save(flags);
188  	sched_clock_idle_sleep_event();
189  
190  	if (khz)
191  		__set_cyc2ns_scale(khz, cpu, tsc_now);
192  
193  	sched_clock_idle_wakeup_event();
194  	local_irq_restore(flags);
195  }
196  
197  /*
198   * Initialize cyc2ns for boot cpu
199   */
cyc2ns_init_boot_cpu(void)200  static void __init cyc2ns_init_boot_cpu(void)
201  {
202  	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
203  
204  	seqcount_latch_init(&c2n->seq);
205  	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
206  }
207  
208  /*
209   * Secondary CPUs do not run through tsc_init(), so set up
210   * all the scale factors for all CPUs, assuming the same
211   * speed as the bootup CPU.
212   */
cyc2ns_init_secondary_cpus(void)213  static void __init cyc2ns_init_secondary_cpus(void)
214  {
215  	unsigned int cpu, this_cpu = smp_processor_id();
216  	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
217  	struct cyc2ns_data *data = c2n->data;
218  
219  	for_each_possible_cpu(cpu) {
220  		if (cpu != this_cpu) {
221  			seqcount_latch_init(&c2n->seq);
222  			c2n = per_cpu_ptr(&cyc2ns, cpu);
223  			c2n->data[0] = data[0];
224  			c2n->data[1] = data[1];
225  		}
226  	}
227  }
228  
229  /*
230   * Scheduler clock - returns current time in nanosec units.
231   */
native_sched_clock(void)232  noinstr u64 native_sched_clock(void)
233  {
234  	if (static_branch_likely(&__use_tsc)) {
235  		u64 tsc_now = rdtsc();
236  
237  		/* return the value in ns */
238  		return __cycles_2_ns(tsc_now);
239  	}
240  
241  	/*
242  	 * Fall back to jiffies if there's no TSC available:
243  	 * ( But note that we still use it if the TSC is marked
244  	 *   unstable. We do this because unlike Time Of Day,
245  	 *   the scheduler clock tolerates small errors and it's
246  	 *   very important for it to be as fast as the platform
247  	 *   can achieve it. )
248  	 */
249  
250  	/* No locking but a rare wrong value is not a big deal: */
251  	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
252  }
253  
254  /*
255   * Generate a sched_clock if you already have a TSC value.
256   */
native_sched_clock_from_tsc(u64 tsc)257  u64 native_sched_clock_from_tsc(u64 tsc)
258  {
259  	return cycles_2_ns(tsc);
260  }
261  
262  /* We need to define a real function for sched_clock, to override the
263     weak default version */
264  #ifdef CONFIG_PARAVIRT
sched_clock_noinstr(void)265  noinstr u64 sched_clock_noinstr(void)
266  {
267  	return paravirt_sched_clock();
268  }
269  
using_native_sched_clock(void)270  bool using_native_sched_clock(void)
271  {
272  	return static_call_query(pv_sched_clock) == native_sched_clock;
273  }
274  #else
275  u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
276  
using_native_sched_clock(void)277  bool using_native_sched_clock(void) { return true; }
278  #endif
279  
sched_clock(void)280  notrace u64 sched_clock(void)
281  {
282  	u64 now;
283  	preempt_disable_notrace();
284  	now = sched_clock_noinstr();
285  	preempt_enable_notrace();
286  	return now;
287  }
288  
check_tsc_unstable(void)289  int check_tsc_unstable(void)
290  {
291  	return tsc_unstable;
292  }
293  EXPORT_SYMBOL_GPL(check_tsc_unstable);
294  
295  #ifdef CONFIG_X86_TSC
notsc_setup(char * str)296  int __init notsc_setup(char *str)
297  {
298  	mark_tsc_unstable("boot parameter notsc");
299  	return 1;
300  }
301  #else
302  /*
303   * disable flag for tsc. Takes effect by clearing the TSC cpu flag
304   * in cpu/common.c
305   */
notsc_setup(char * str)306  int __init notsc_setup(char *str)
307  {
308  	setup_clear_cpu_cap(X86_FEATURE_TSC);
309  	return 1;
310  }
311  #endif
312  
313  __setup("notsc", notsc_setup);
314  
315  static int no_sched_irq_time;
316  static int no_tsc_watchdog;
317  static int tsc_as_watchdog;
318  
tsc_setup(char * str)319  static int __init tsc_setup(char *str)
320  {
321  	if (!strcmp(str, "reliable"))
322  		tsc_clocksource_reliable = 1;
323  	if (!strncmp(str, "noirqtime", 9))
324  		no_sched_irq_time = 1;
325  	if (!strcmp(str, "unstable"))
326  		mark_tsc_unstable("boot parameter");
327  	if (!strcmp(str, "nowatchdog")) {
328  		no_tsc_watchdog = 1;
329  		if (tsc_as_watchdog)
330  			pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
331  				 __func__);
332  		tsc_as_watchdog = 0;
333  	}
334  	if (!strcmp(str, "recalibrate"))
335  		tsc_force_recalibrate = 1;
336  	if (!strcmp(str, "watchdog")) {
337  		if (no_tsc_watchdog)
338  			pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
339  				 __func__);
340  		else
341  			tsc_as_watchdog = 1;
342  	}
343  	return 1;
344  }
345  
346  __setup("tsc=", tsc_setup);
347  
348  #define MAX_RETRIES		5
349  #define TSC_DEFAULT_THRESHOLD	0x20000
350  
351  /*
352   * Read TSC and the reference counters. Take care of any disturbances
353   */
tsc_read_refs(u64 * p,int hpet)354  static u64 tsc_read_refs(u64 *p, int hpet)
355  {
356  	u64 t1, t2;
357  	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
358  	int i;
359  
360  	for (i = 0; i < MAX_RETRIES; i++) {
361  		t1 = get_cycles();
362  		if (hpet)
363  			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
364  		else
365  			*p = acpi_pm_read_early();
366  		t2 = get_cycles();
367  		if ((t2 - t1) < thresh)
368  			return t2;
369  	}
370  	return ULLONG_MAX;
371  }
372  
373  /*
374   * Calculate the TSC frequency from HPET reference
375   */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)376  static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
377  {
378  	u64 tmp;
379  
380  	if (hpet2 < hpet1)
381  		hpet2 += 0x100000000ULL;
382  	hpet2 -= hpet1;
383  	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
384  	do_div(tmp, 1000000);
385  	deltatsc = div64_u64(deltatsc, tmp);
386  
387  	return (unsigned long) deltatsc;
388  }
389  
390  /*
391   * Calculate the TSC frequency from PMTimer reference
392   */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)393  static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
394  {
395  	u64 tmp;
396  
397  	if (!pm1 && !pm2)
398  		return ULONG_MAX;
399  
400  	if (pm2 < pm1)
401  		pm2 += (u64)ACPI_PM_OVRRUN;
402  	pm2 -= pm1;
403  	tmp = pm2 * 1000000000LL;
404  	do_div(tmp, PMTMR_TICKS_PER_SEC);
405  	do_div(deltatsc, tmp);
406  
407  	return (unsigned long) deltatsc;
408  }
409  
410  #define CAL_MS		10
411  #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
412  #define CAL_PIT_LOOPS	1000
413  
414  #define CAL2_MS		50
415  #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
416  #define CAL2_PIT_LOOPS	5000
417  
418  
419  /*
420   * Try to calibrate the TSC against the Programmable
421   * Interrupt Timer and return the frequency of the TSC
422   * in kHz.
423   *
424   * Return ULONG_MAX on failure to calibrate.
425   */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)426  static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
427  {
428  	u64 tsc, t1, t2, delta;
429  	unsigned long tscmin, tscmax;
430  	int pitcnt;
431  
432  	if (!has_legacy_pic()) {
433  		/*
434  		 * Relies on tsc_early_delay_calibrate() to have given us semi
435  		 * usable udelay(), wait for the same 50ms we would have with
436  		 * the PIT loop below.
437  		 */
438  		udelay(10 * USEC_PER_MSEC);
439  		udelay(10 * USEC_PER_MSEC);
440  		udelay(10 * USEC_PER_MSEC);
441  		udelay(10 * USEC_PER_MSEC);
442  		udelay(10 * USEC_PER_MSEC);
443  		return ULONG_MAX;
444  	}
445  
446  	/* Set the Gate high, disable speaker */
447  	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
448  
449  	/*
450  	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
451  	 * count mode), binary count. Set the latch register to 50ms
452  	 * (LSB then MSB) to begin countdown.
453  	 */
454  	outb(0xb0, 0x43);
455  	outb(latch & 0xff, 0x42);
456  	outb(latch >> 8, 0x42);
457  
458  	tsc = t1 = t2 = get_cycles();
459  
460  	pitcnt = 0;
461  	tscmax = 0;
462  	tscmin = ULONG_MAX;
463  	while ((inb(0x61) & 0x20) == 0) {
464  		t2 = get_cycles();
465  		delta = t2 - tsc;
466  		tsc = t2;
467  		if ((unsigned long) delta < tscmin)
468  			tscmin = (unsigned int) delta;
469  		if ((unsigned long) delta > tscmax)
470  			tscmax = (unsigned int) delta;
471  		pitcnt++;
472  	}
473  
474  	/*
475  	 * Sanity checks:
476  	 *
477  	 * If we were not able to read the PIT more than loopmin
478  	 * times, then we have been hit by a massive SMI
479  	 *
480  	 * If the maximum is 10 times larger than the minimum,
481  	 * then we got hit by an SMI as well.
482  	 */
483  	if (pitcnt < loopmin || tscmax > 10 * tscmin)
484  		return ULONG_MAX;
485  
486  	/* Calculate the PIT value */
487  	delta = t2 - t1;
488  	do_div(delta, ms);
489  	return delta;
490  }
491  
492  /*
493   * This reads the current MSB of the PIT counter, and
494   * checks if we are running on sufficiently fast and
495   * non-virtualized hardware.
496   *
497   * Our expectations are:
498   *
499   *  - the PIT is running at roughly 1.19MHz
500   *
501   *  - each IO is going to take about 1us on real hardware,
502   *    but we allow it to be much faster (by a factor of 10) or
503   *    _slightly_ slower (ie we allow up to a 2us read+counter
504   *    update - anything else implies a unacceptably slow CPU
505   *    or PIT for the fast calibration to work.
506   *
507   *  - with 256 PIT ticks to read the value, we have 214us to
508   *    see the same MSB (and overhead like doing a single TSC
509   *    read per MSB value etc).
510   *
511   *  - We're doing 2 reads per loop (LSB, MSB), and we expect
512   *    them each to take about a microsecond on real hardware.
513   *    So we expect a count value of around 100. But we'll be
514   *    generous, and accept anything over 50.
515   *
516   *  - if the PIT is stuck, and we see *many* more reads, we
517   *    return early (and the next caller of pit_expect_msb()
518   *    then consider it a failure when they don't see the
519   *    next expected value).
520   *
521   * These expectations mean that we know that we have seen the
522   * transition from one expected value to another with a fairly
523   * high accuracy, and we didn't miss any events. We can thus
524   * use the TSC value at the transitions to calculate a pretty
525   * good value for the TSC frequency.
526   */
pit_verify_msb(unsigned char val)527  static inline int pit_verify_msb(unsigned char val)
528  {
529  	/* Ignore LSB */
530  	inb(0x42);
531  	return inb(0x42) == val;
532  }
533  
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)534  static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
535  {
536  	int count;
537  	u64 tsc = 0, prev_tsc = 0;
538  
539  	for (count = 0; count < 50000; count++) {
540  		if (!pit_verify_msb(val))
541  			break;
542  		prev_tsc = tsc;
543  		tsc = get_cycles();
544  	}
545  	*deltap = get_cycles() - prev_tsc;
546  	*tscp = tsc;
547  
548  	/*
549  	 * We require _some_ success, but the quality control
550  	 * will be based on the error terms on the TSC values.
551  	 */
552  	return count > 5;
553  }
554  
555  /*
556   * How many MSB values do we want to see? We aim for
557   * a maximum error rate of 500ppm (in practice the
558   * real error is much smaller), but refuse to spend
559   * more than 50ms on it.
560   */
561  #define MAX_QUICK_PIT_MS 50
562  #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
563  
quick_pit_calibrate(void)564  static unsigned long quick_pit_calibrate(void)
565  {
566  	int i;
567  	u64 tsc, delta;
568  	unsigned long d1, d2;
569  
570  	if (!has_legacy_pic())
571  		return 0;
572  
573  	/* Set the Gate high, disable speaker */
574  	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
575  
576  	/*
577  	 * Counter 2, mode 0 (one-shot), binary count
578  	 *
579  	 * NOTE! Mode 2 decrements by two (and then the
580  	 * output is flipped each time, giving the same
581  	 * final output frequency as a decrement-by-one),
582  	 * so mode 0 is much better when looking at the
583  	 * individual counts.
584  	 */
585  	outb(0xb0, 0x43);
586  
587  	/* Start at 0xffff */
588  	outb(0xff, 0x42);
589  	outb(0xff, 0x42);
590  
591  	/*
592  	 * The PIT starts counting at the next edge, so we
593  	 * need to delay for a microsecond. The easiest way
594  	 * to do that is to just read back the 16-bit counter
595  	 * once from the PIT.
596  	 */
597  	pit_verify_msb(0);
598  
599  	if (pit_expect_msb(0xff, &tsc, &d1)) {
600  		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
601  			if (!pit_expect_msb(0xff-i, &delta, &d2))
602  				break;
603  
604  			delta -= tsc;
605  
606  			/*
607  			 * Extrapolate the error and fail fast if the error will
608  			 * never be below 500 ppm.
609  			 */
610  			if (i == 1 &&
611  			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
612  				return 0;
613  
614  			/*
615  			 * Iterate until the error is less than 500 ppm
616  			 */
617  			if (d1+d2 >= delta >> 11)
618  				continue;
619  
620  			/*
621  			 * Check the PIT one more time to verify that
622  			 * all TSC reads were stable wrt the PIT.
623  			 *
624  			 * This also guarantees serialization of the
625  			 * last cycle read ('d2') in pit_expect_msb.
626  			 */
627  			if (!pit_verify_msb(0xfe - i))
628  				break;
629  			goto success;
630  		}
631  	}
632  	pr_info("Fast TSC calibration failed\n");
633  	return 0;
634  
635  success:
636  	/*
637  	 * Ok, if we get here, then we've seen the
638  	 * MSB of the PIT decrement 'i' times, and the
639  	 * error has shrunk to less than 500 ppm.
640  	 *
641  	 * As a result, we can depend on there not being
642  	 * any odd delays anywhere, and the TSC reads are
643  	 * reliable (within the error).
644  	 *
645  	 * kHz = ticks / time-in-seconds / 1000;
646  	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
647  	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
648  	 */
649  	delta *= PIT_TICK_RATE;
650  	do_div(delta, i*256*1000);
651  	pr_info("Fast TSC calibration using PIT\n");
652  	return delta;
653  }
654  
655  /**
656   * native_calibrate_tsc - determine TSC frequency
657   * Determine TSC frequency via CPUID, else return 0.
658   */
native_calibrate_tsc(void)659  unsigned long native_calibrate_tsc(void)
660  {
661  	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
662  	unsigned int crystal_khz;
663  
664  	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
665  		return 0;
666  
667  	if (boot_cpu_data.cpuid_level < 0x15)
668  		return 0;
669  
670  	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
671  
672  	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
673  	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
674  
675  	if (ebx_numerator == 0 || eax_denominator == 0)
676  		return 0;
677  
678  	crystal_khz = ecx_hz / 1000;
679  
680  	/*
681  	 * Denverton SoCs don't report crystal clock, and also don't support
682  	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
683  	 * clock.
684  	 */
685  	if (crystal_khz == 0 &&
686  			boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D)
687  		crystal_khz = 25000;
688  
689  	/*
690  	 * TSC frequency reported directly by CPUID is a "hardware reported"
691  	 * frequency and is the most accurate one so far we have. This
692  	 * is considered a known frequency.
693  	 */
694  	if (crystal_khz != 0)
695  		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
696  
697  	/*
698  	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
699  	 * clock, but we can easily calculate it to a high degree of accuracy
700  	 * by considering the crystal ratio and the CPU speed.
701  	 */
702  	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
703  		unsigned int eax_base_mhz, ebx, ecx, edx;
704  
705  		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
706  		crystal_khz = eax_base_mhz * 1000 *
707  			eax_denominator / ebx_numerator;
708  	}
709  
710  	if (crystal_khz == 0)
711  		return 0;
712  
713  	/*
714  	 * For Atom SoCs TSC is the only reliable clocksource.
715  	 * Mark TSC reliable so no watchdog on it.
716  	 */
717  	if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT)
718  		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
719  
720  #ifdef CONFIG_X86_LOCAL_APIC
721  	/*
722  	 * The local APIC appears to be fed by the core crystal clock
723  	 * (which sounds entirely sensible). We can set the global
724  	 * lapic_timer_period here to avoid having to calibrate the APIC
725  	 * timer later.
726  	 */
727  	lapic_timer_period = crystal_khz * 1000 / HZ;
728  #endif
729  
730  	return crystal_khz * ebx_numerator / eax_denominator;
731  }
732  
cpu_khz_from_cpuid(void)733  static unsigned long cpu_khz_from_cpuid(void)
734  {
735  	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
736  
737  	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
738  		return 0;
739  
740  	if (boot_cpu_data.cpuid_level < 0x16)
741  		return 0;
742  
743  	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
744  
745  	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
746  
747  	return eax_base_mhz * 1000;
748  }
749  
750  /*
751   * calibrate cpu using pit, hpet, and ptimer methods. They are available
752   * later in boot after acpi is initialized.
753   */
pit_hpet_ptimer_calibrate_cpu(void)754  static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
755  {
756  	u64 tsc1, tsc2, delta, ref1, ref2;
757  	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
758  	unsigned long flags, latch, ms;
759  	int hpet = is_hpet_enabled(), i, loopmin;
760  
761  	/*
762  	 * Run 5 calibration loops to get the lowest frequency value
763  	 * (the best estimate). We use two different calibration modes
764  	 * here:
765  	 *
766  	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
767  	 * load a timeout of 50ms. We read the time right after we
768  	 * started the timer and wait until the PIT count down reaches
769  	 * zero. In each wait loop iteration we read the TSC and check
770  	 * the delta to the previous read. We keep track of the min
771  	 * and max values of that delta. The delta is mostly defined
772  	 * by the IO time of the PIT access, so we can detect when
773  	 * any disturbance happened between the two reads. If the
774  	 * maximum time is significantly larger than the minimum time,
775  	 * then we discard the result and have another try.
776  	 *
777  	 * 2) Reference counter. If available we use the HPET or the
778  	 * PMTIMER as a reference to check the sanity of that value.
779  	 * We use separate TSC readouts and check inside of the
780  	 * reference read for any possible disturbance. We discard
781  	 * disturbed values here as well. We do that around the PIT
782  	 * calibration delay loop as we have to wait for a certain
783  	 * amount of time anyway.
784  	 */
785  
786  	/* Preset PIT loop values */
787  	latch = CAL_LATCH;
788  	ms = CAL_MS;
789  	loopmin = CAL_PIT_LOOPS;
790  
791  	for (i = 0; i < 3; i++) {
792  		unsigned long tsc_pit_khz;
793  
794  		/*
795  		 * Read the start value and the reference count of
796  		 * hpet/pmtimer when available. Then do the PIT
797  		 * calibration, which will take at least 50ms, and
798  		 * read the end value.
799  		 */
800  		local_irq_save(flags);
801  		tsc1 = tsc_read_refs(&ref1, hpet);
802  		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
803  		tsc2 = tsc_read_refs(&ref2, hpet);
804  		local_irq_restore(flags);
805  
806  		/* Pick the lowest PIT TSC calibration so far */
807  		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
808  
809  		/* hpet or pmtimer available ? */
810  		if (ref1 == ref2)
811  			continue;
812  
813  		/* Check, whether the sampling was disturbed */
814  		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
815  			continue;
816  
817  		tsc2 = (tsc2 - tsc1) * 1000000LL;
818  		if (hpet)
819  			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
820  		else
821  			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
822  
823  		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
824  
825  		/* Check the reference deviation */
826  		delta = ((u64) tsc_pit_min) * 100;
827  		do_div(delta, tsc_ref_min);
828  
829  		/*
830  		 * If both calibration results are inside a 10% window
831  		 * then we can be sure, that the calibration
832  		 * succeeded. We break out of the loop right away. We
833  		 * use the reference value, as it is more precise.
834  		 */
835  		if (delta >= 90 && delta <= 110) {
836  			pr_info("PIT calibration matches %s. %d loops\n",
837  				hpet ? "HPET" : "PMTIMER", i + 1);
838  			return tsc_ref_min;
839  		}
840  
841  		/*
842  		 * Check whether PIT failed more than once. This
843  		 * happens in virtualized environments. We need to
844  		 * give the virtual PC a slightly longer timeframe for
845  		 * the HPET/PMTIMER to make the result precise.
846  		 */
847  		if (i == 1 && tsc_pit_min == ULONG_MAX) {
848  			latch = CAL2_LATCH;
849  			ms = CAL2_MS;
850  			loopmin = CAL2_PIT_LOOPS;
851  		}
852  	}
853  
854  	/*
855  	 * Now check the results.
856  	 */
857  	if (tsc_pit_min == ULONG_MAX) {
858  		/* PIT gave no useful value */
859  		pr_warn("Unable to calibrate against PIT\n");
860  
861  		/* We don't have an alternative source, disable TSC */
862  		if (!hpet && !ref1 && !ref2) {
863  			pr_notice("No reference (HPET/PMTIMER) available\n");
864  			return 0;
865  		}
866  
867  		/* The alternative source failed as well, disable TSC */
868  		if (tsc_ref_min == ULONG_MAX) {
869  			pr_warn("HPET/PMTIMER calibration failed\n");
870  			return 0;
871  		}
872  
873  		/* Use the alternative source */
874  		pr_info("using %s reference calibration\n",
875  			hpet ? "HPET" : "PMTIMER");
876  
877  		return tsc_ref_min;
878  	}
879  
880  	/* We don't have an alternative source, use the PIT calibration value */
881  	if (!hpet && !ref1 && !ref2) {
882  		pr_info("Using PIT calibration value\n");
883  		return tsc_pit_min;
884  	}
885  
886  	/* The alternative source failed, use the PIT calibration value */
887  	if (tsc_ref_min == ULONG_MAX) {
888  		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
889  		return tsc_pit_min;
890  	}
891  
892  	/*
893  	 * The calibration values differ too much. In doubt, we use
894  	 * the PIT value as we know that there are PMTIMERs around
895  	 * running at double speed. At least we let the user know:
896  	 */
897  	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
898  		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
899  	pr_info("Using PIT calibration value\n");
900  	return tsc_pit_min;
901  }
902  
903  /**
904   * native_calibrate_cpu_early - can calibrate the cpu early in boot
905   */
native_calibrate_cpu_early(void)906  unsigned long native_calibrate_cpu_early(void)
907  {
908  	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
909  
910  	if (!fast_calibrate)
911  		fast_calibrate = cpu_khz_from_msr();
912  	if (!fast_calibrate) {
913  		local_irq_save(flags);
914  		fast_calibrate = quick_pit_calibrate();
915  		local_irq_restore(flags);
916  	}
917  	return fast_calibrate;
918  }
919  
920  
921  /**
922   * native_calibrate_cpu - calibrate the cpu
923   */
native_calibrate_cpu(void)924  static unsigned long native_calibrate_cpu(void)
925  {
926  	unsigned long tsc_freq = native_calibrate_cpu_early();
927  
928  	if (!tsc_freq)
929  		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
930  
931  	return tsc_freq;
932  }
933  
recalibrate_cpu_khz(void)934  void recalibrate_cpu_khz(void)
935  {
936  #ifndef CONFIG_SMP
937  	unsigned long cpu_khz_old = cpu_khz;
938  
939  	if (!boot_cpu_has(X86_FEATURE_TSC))
940  		return;
941  
942  	cpu_khz = x86_platform.calibrate_cpu();
943  	tsc_khz = x86_platform.calibrate_tsc();
944  	if (tsc_khz == 0)
945  		tsc_khz = cpu_khz;
946  	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
947  		cpu_khz = tsc_khz;
948  	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
949  						    cpu_khz_old, cpu_khz);
950  #endif
951  }
952  EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
953  
954  
955  static unsigned long long cyc2ns_suspend;
956  
tsc_save_sched_clock_state(void)957  void tsc_save_sched_clock_state(void)
958  {
959  	if (!sched_clock_stable())
960  		return;
961  
962  	cyc2ns_suspend = sched_clock();
963  }
964  
965  /*
966   * Even on processors with invariant TSC, TSC gets reset in some the
967   * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
968   * arbitrary value (still sync'd across cpu's) during resume from such sleep
969   * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
970   * that sched_clock() continues from the point where it was left off during
971   * suspend.
972   */
tsc_restore_sched_clock_state(void)973  void tsc_restore_sched_clock_state(void)
974  {
975  	unsigned long long offset;
976  	unsigned long flags;
977  	int cpu;
978  
979  	if (!sched_clock_stable())
980  		return;
981  
982  	local_irq_save(flags);
983  
984  	/*
985  	 * We're coming out of suspend, there's no concurrency yet; don't
986  	 * bother being nice about the RCU stuff, just write to both
987  	 * data fields.
988  	 */
989  
990  	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
991  	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
992  
993  	offset = cyc2ns_suspend - sched_clock();
994  
995  	for_each_possible_cpu(cpu) {
996  		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
997  		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
998  	}
999  
1000  	local_irq_restore(flags);
1001  }
1002  
1003  #ifdef CONFIG_CPU_FREQ
1004  /*
1005   * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1006   * changes.
1007   *
1008   * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1009   * as unstable and give up in those cases.
1010   *
1011   * Should fix up last_tsc too. Currently gettimeofday in the
1012   * first tick after the change will be slightly wrong.
1013   */
1014  
1015  static unsigned int  ref_freq;
1016  static unsigned long loops_per_jiffy_ref;
1017  static unsigned long tsc_khz_ref;
1018  
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)1019  static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1020  				void *data)
1021  {
1022  	struct cpufreq_freqs *freq = data;
1023  
1024  	if (num_online_cpus() > 1) {
1025  		mark_tsc_unstable("cpufreq changes on SMP");
1026  		return 0;
1027  	}
1028  
1029  	if (!ref_freq) {
1030  		ref_freq = freq->old;
1031  		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1032  		tsc_khz_ref = tsc_khz;
1033  	}
1034  
1035  	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1036  	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1037  		boot_cpu_data.loops_per_jiffy =
1038  			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1039  
1040  		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1041  		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1042  			mark_tsc_unstable("cpufreq changes");
1043  
1044  		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1045  	}
1046  
1047  	return 0;
1048  }
1049  
1050  static struct notifier_block time_cpufreq_notifier_block = {
1051  	.notifier_call  = time_cpufreq_notifier
1052  };
1053  
cpufreq_register_tsc_scaling(void)1054  static int __init cpufreq_register_tsc_scaling(void)
1055  {
1056  	if (!boot_cpu_has(X86_FEATURE_TSC))
1057  		return 0;
1058  	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1059  		return 0;
1060  	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1061  				CPUFREQ_TRANSITION_NOTIFIER);
1062  	return 0;
1063  }
1064  
1065  core_initcall(cpufreq_register_tsc_scaling);
1066  
1067  #endif /* CONFIG_CPU_FREQ */
1068  
1069  #define ART_CPUID_LEAF (0x15)
1070  #define ART_MIN_DENOMINATOR (1)
1071  
1072  
1073  /*
1074   * If ART is present detect the numerator:denominator to convert to TSC
1075   */
detect_art(void)1076  static void __init detect_art(void)
1077  {
1078  	unsigned int unused;
1079  
1080  	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1081  		return;
1082  
1083  	/*
1084  	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1085  	 * and the TSC counter resets must not occur asynchronously.
1086  	 */
1087  	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1088  	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1089  	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1090  	    tsc_async_resets)
1091  		return;
1092  
1093  	cpuid(ART_CPUID_LEAF, &art_base_clk.denominator,
1094  	      &art_base_clk.numerator, &art_base_clk.freq_khz, &unused);
1095  
1096  	art_base_clk.freq_khz /= KHZ;
1097  	if (art_base_clk.denominator < ART_MIN_DENOMINATOR)
1098  		return;
1099  
1100  	rdmsrl(MSR_IA32_TSC_ADJUST, art_base_clk.offset);
1101  
1102  	/* Make this sticky over multiple CPU init calls */
1103  	setup_force_cpu_cap(X86_FEATURE_ART);
1104  }
1105  
1106  
1107  /* clocksource code */
1108  
tsc_resume(struct clocksource * cs)1109  static void tsc_resume(struct clocksource *cs)
1110  {
1111  	tsc_verify_tsc_adjust(true);
1112  }
1113  
1114  /*
1115   * We used to compare the TSC to the cycle_last value in the clocksource
1116   * structure to avoid a nasty time-warp. This can be observed in a
1117   * very small window right after one CPU updated cycle_last under
1118   * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1119   * is smaller than the cycle_last reference value due to a TSC which
1120   * is slightly behind. This delta is nowhere else observable, but in
1121   * that case it results in a forward time jump in the range of hours
1122   * due to the unsigned delta calculation of the time keeping core
1123   * code, which is necessary to support wrapping clocksources like pm
1124   * timer.
1125   *
1126   * This sanity check is now done in the core timekeeping code.
1127   * checking the result of read_tsc() - cycle_last for being negative.
1128   * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1129   */
read_tsc(struct clocksource * cs)1130  static u64 read_tsc(struct clocksource *cs)
1131  {
1132  	return (u64)rdtsc_ordered();
1133  }
1134  
tsc_cs_mark_unstable(struct clocksource * cs)1135  static void tsc_cs_mark_unstable(struct clocksource *cs)
1136  {
1137  	if (tsc_unstable)
1138  		return;
1139  
1140  	tsc_unstable = 1;
1141  	if (using_native_sched_clock())
1142  		clear_sched_clock_stable();
1143  	disable_sched_clock_irqtime();
1144  	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1145  }
1146  
tsc_cs_tick_stable(struct clocksource * cs)1147  static void tsc_cs_tick_stable(struct clocksource *cs)
1148  {
1149  	if (tsc_unstable)
1150  		return;
1151  
1152  	if (using_native_sched_clock())
1153  		sched_clock_tick_stable();
1154  }
1155  
tsc_cs_enable(struct clocksource * cs)1156  static int tsc_cs_enable(struct clocksource *cs)
1157  {
1158  	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1159  	return 0;
1160  }
1161  
1162  /*
1163   * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1164   */
1165  static struct clocksource clocksource_tsc_early = {
1166  	.name			= "tsc-early",
1167  	.rating			= 299,
1168  	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1169  	.read			= read_tsc,
1170  	.mask			= CLOCKSOURCE_MASK(64),
1171  	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1172  				  CLOCK_SOURCE_MUST_VERIFY,
1173  	.id			= CSID_X86_TSC_EARLY,
1174  	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1175  	.enable			= tsc_cs_enable,
1176  	.resume			= tsc_resume,
1177  	.mark_unstable		= tsc_cs_mark_unstable,
1178  	.tick_stable		= tsc_cs_tick_stable,
1179  	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1180  };
1181  
1182  /*
1183   * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1184   * this one will immediately take over. We will only register if TSC has
1185   * been found good.
1186   */
1187  static struct clocksource clocksource_tsc = {
1188  	.name			= "tsc",
1189  	.rating			= 300,
1190  	.read			= read_tsc,
1191  	.mask			= CLOCKSOURCE_MASK(64),
1192  	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1193  				  CLOCK_SOURCE_VALID_FOR_HRES |
1194  				  CLOCK_SOURCE_MUST_VERIFY |
1195  				  CLOCK_SOURCE_VERIFY_PERCPU,
1196  	.id			= CSID_X86_TSC,
1197  	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1198  	.enable			= tsc_cs_enable,
1199  	.resume			= tsc_resume,
1200  	.mark_unstable		= tsc_cs_mark_unstable,
1201  	.tick_stable		= tsc_cs_tick_stable,
1202  	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1203  };
1204  
mark_tsc_unstable(char * reason)1205  void mark_tsc_unstable(char *reason)
1206  {
1207  	if (tsc_unstable)
1208  		return;
1209  
1210  	tsc_unstable = 1;
1211  	if (using_native_sched_clock())
1212  		clear_sched_clock_stable();
1213  	disable_sched_clock_irqtime();
1214  	pr_info("Marking TSC unstable due to %s\n", reason);
1215  
1216  	clocksource_mark_unstable(&clocksource_tsc_early);
1217  	clocksource_mark_unstable(&clocksource_tsc);
1218  }
1219  
1220  EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1221  
tsc_disable_clocksource_watchdog(void)1222  static void __init tsc_disable_clocksource_watchdog(void)
1223  {
1224  	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1225  	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1226  }
1227  
tsc_clocksource_watchdog_disabled(void)1228  bool tsc_clocksource_watchdog_disabled(void)
1229  {
1230  	return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1231  	       tsc_as_watchdog && !no_tsc_watchdog;
1232  }
1233  
check_system_tsc_reliable(void)1234  static void __init check_system_tsc_reliable(void)
1235  {
1236  #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1237  	if (is_geode_lx()) {
1238  		/* RTSC counts during suspend */
1239  #define RTSC_SUSP 0x100
1240  		unsigned long res_low, res_high;
1241  
1242  		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1243  		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1244  		if (res_low & RTSC_SUSP)
1245  			tsc_clocksource_reliable = 1;
1246  	}
1247  #endif
1248  	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1249  		tsc_clocksource_reliable = 1;
1250  
1251  	/*
1252  	 * Disable the clocksource watchdog when the system has:
1253  	 *  - TSC running at constant frequency
1254  	 *  - TSC which does not stop in C-States
1255  	 *  - the TSC_ADJUST register which allows to detect even minimal
1256  	 *    modifications
1257  	 *  - not more than four packages
1258  	 */
1259  	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1260  	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1261  	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1262  	    topology_max_packages() <= 4)
1263  		tsc_disable_clocksource_watchdog();
1264  }
1265  
1266  /*
1267   * Make an educated guess if the TSC is trustworthy and synchronized
1268   * over all CPUs.
1269   */
unsynchronized_tsc(void)1270  int unsynchronized_tsc(void)
1271  {
1272  	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1273  		return 1;
1274  
1275  #ifdef CONFIG_SMP
1276  	if (apic_is_clustered_box())
1277  		return 1;
1278  #endif
1279  
1280  	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1281  		return 0;
1282  
1283  	if (tsc_clocksource_reliable)
1284  		return 0;
1285  	/*
1286  	 * Intel systems are normally all synchronized.
1287  	 * Exceptions must mark TSC as unstable:
1288  	 */
1289  	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1290  		/* assume multi socket systems are not synchronized: */
1291  		if (topology_max_packages() > 1)
1292  			return 1;
1293  	}
1294  
1295  	return 0;
1296  }
1297  
1298  static void tsc_refine_calibration_work(struct work_struct *work);
1299  static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1300  /**
1301   * tsc_refine_calibration_work - Further refine tsc freq calibration
1302   * @work: ignored.
1303   *
1304   * This functions uses delayed work over a period of a
1305   * second to further refine the TSC freq value. Since this is
1306   * timer based, instead of loop based, we don't block the boot
1307   * process while this longer calibration is done.
1308   *
1309   * If there are any calibration anomalies (too many SMIs, etc),
1310   * or the refined calibration is off by 1% of the fast early
1311   * calibration, we throw out the new calibration and use the
1312   * early calibration.
1313   */
tsc_refine_calibration_work(struct work_struct * work)1314  static void tsc_refine_calibration_work(struct work_struct *work)
1315  {
1316  	static u64 tsc_start = ULLONG_MAX, ref_start;
1317  	static int hpet;
1318  	u64 tsc_stop, ref_stop, delta;
1319  	unsigned long freq;
1320  	int cpu;
1321  
1322  	/* Don't bother refining TSC on unstable systems */
1323  	if (tsc_unstable)
1324  		goto unreg;
1325  
1326  	/*
1327  	 * Since the work is started early in boot, we may be
1328  	 * delayed the first time we expire. So set the workqueue
1329  	 * again once we know timers are working.
1330  	 */
1331  	if (tsc_start == ULLONG_MAX) {
1332  restart:
1333  		/*
1334  		 * Only set hpet once, to avoid mixing hardware
1335  		 * if the hpet becomes enabled later.
1336  		 */
1337  		hpet = is_hpet_enabled();
1338  		tsc_start = tsc_read_refs(&ref_start, hpet);
1339  		schedule_delayed_work(&tsc_irqwork, HZ);
1340  		return;
1341  	}
1342  
1343  	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1344  
1345  	/* hpet or pmtimer available ? */
1346  	if (ref_start == ref_stop)
1347  		goto out;
1348  
1349  	/* Check, whether the sampling was disturbed */
1350  	if (tsc_stop == ULLONG_MAX)
1351  		goto restart;
1352  
1353  	delta = tsc_stop - tsc_start;
1354  	delta *= 1000000LL;
1355  	if (hpet)
1356  		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1357  	else
1358  		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1359  
1360  	/* Will hit this only if tsc_force_recalibrate has been set */
1361  	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1362  
1363  		/* Warn if the deviation exceeds 500 ppm */
1364  		if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1365  			pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1366  			pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1367  				(unsigned long)tsc_khz / 1000,
1368  				(unsigned long)tsc_khz % 1000);
1369  		}
1370  
1371  		pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1372  			hpet ? "HPET" : "PM_TIMER",
1373  			(unsigned long)freq / 1000,
1374  			(unsigned long)freq % 1000);
1375  
1376  		return;
1377  	}
1378  
1379  	/* Make sure we're within 1% */
1380  	if (abs(tsc_khz - freq) > tsc_khz/100)
1381  		goto out;
1382  
1383  	tsc_khz = freq;
1384  	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1385  		(unsigned long)tsc_khz / 1000,
1386  		(unsigned long)tsc_khz % 1000);
1387  
1388  	/* Inform the TSC deadline clockevent devices about the recalibration */
1389  	lapic_update_tsc_freq();
1390  
1391  	/* Update the sched_clock() rate to match the clocksource one */
1392  	for_each_possible_cpu(cpu)
1393  		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1394  
1395  out:
1396  	if (tsc_unstable)
1397  		goto unreg;
1398  
1399  	if (boot_cpu_has(X86_FEATURE_ART)) {
1400  		have_art = true;
1401  		clocksource_tsc.base = &art_base_clk;
1402  	}
1403  	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1404  unreg:
1405  	clocksource_unregister(&clocksource_tsc_early);
1406  }
1407  
1408  
init_tsc_clocksource(void)1409  static int __init init_tsc_clocksource(void)
1410  {
1411  	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1412  		return 0;
1413  
1414  	if (tsc_unstable) {
1415  		clocksource_unregister(&clocksource_tsc_early);
1416  		return 0;
1417  	}
1418  
1419  	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1420  		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1421  
1422  	/*
1423  	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1424  	 * the refined calibration and directly register it as a clocksource.
1425  	 */
1426  	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1427  		if (boot_cpu_has(X86_FEATURE_ART)) {
1428  			have_art = true;
1429  			clocksource_tsc.base = &art_base_clk;
1430  		}
1431  		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1432  		clocksource_unregister(&clocksource_tsc_early);
1433  
1434  		if (!tsc_force_recalibrate)
1435  			return 0;
1436  	}
1437  
1438  	schedule_delayed_work(&tsc_irqwork, 0);
1439  	return 0;
1440  }
1441  /*
1442   * We use device_initcall here, to ensure we run after the hpet
1443   * is fully initialized, which may occur at fs_initcall time.
1444   */
1445  device_initcall(init_tsc_clocksource);
1446  
determine_cpu_tsc_frequencies(bool early)1447  static bool __init determine_cpu_tsc_frequencies(bool early)
1448  {
1449  	/* Make sure that cpu and tsc are not already calibrated */
1450  	WARN_ON(cpu_khz || tsc_khz);
1451  
1452  	if (early) {
1453  		cpu_khz = x86_platform.calibrate_cpu();
1454  		if (tsc_early_khz) {
1455  			tsc_khz = tsc_early_khz;
1456  		} else {
1457  			tsc_khz = x86_platform.calibrate_tsc();
1458  			clocksource_tsc.freq_khz = tsc_khz;
1459  		}
1460  	} else {
1461  		/* We should not be here with non-native cpu calibration */
1462  		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1463  		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1464  	}
1465  
1466  	/*
1467  	 * Trust non-zero tsc_khz as authoritative,
1468  	 * and use it to sanity check cpu_khz,
1469  	 * which will be off if system timer is off.
1470  	 */
1471  	if (tsc_khz == 0)
1472  		tsc_khz = cpu_khz;
1473  	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1474  		cpu_khz = tsc_khz;
1475  
1476  	if (tsc_khz == 0)
1477  		return false;
1478  
1479  	pr_info("Detected %lu.%03lu MHz processor\n",
1480  		(unsigned long)cpu_khz / KHZ,
1481  		(unsigned long)cpu_khz % KHZ);
1482  
1483  	if (cpu_khz != tsc_khz) {
1484  		pr_info("Detected %lu.%03lu MHz TSC",
1485  			(unsigned long)tsc_khz / KHZ,
1486  			(unsigned long)tsc_khz % KHZ);
1487  	}
1488  	return true;
1489  }
1490  
get_loops_per_jiffy(void)1491  static unsigned long __init get_loops_per_jiffy(void)
1492  {
1493  	u64 lpj = (u64)tsc_khz * KHZ;
1494  
1495  	do_div(lpj, HZ);
1496  	return lpj;
1497  }
1498  
tsc_enable_sched_clock(void)1499  static void __init tsc_enable_sched_clock(void)
1500  {
1501  	loops_per_jiffy = get_loops_per_jiffy();
1502  	use_tsc_delay();
1503  
1504  	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1505  	tsc_store_and_check_tsc_adjust(true);
1506  	cyc2ns_init_boot_cpu();
1507  	static_branch_enable(&__use_tsc);
1508  }
1509  
tsc_early_init(void)1510  void __init tsc_early_init(void)
1511  {
1512  	if (!boot_cpu_has(X86_FEATURE_TSC))
1513  		return;
1514  	/* Don't change UV TSC multi-chassis synchronization */
1515  	if (is_early_uv_system())
1516  		return;
1517  	if (!determine_cpu_tsc_frequencies(true))
1518  		return;
1519  	tsc_enable_sched_clock();
1520  }
1521  
tsc_init(void)1522  void __init tsc_init(void)
1523  {
1524  	if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1525  		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1526  		return;
1527  	}
1528  
1529  	/*
1530  	 * native_calibrate_cpu_early can only calibrate using methods that are
1531  	 * available early in boot.
1532  	 */
1533  	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1534  		x86_platform.calibrate_cpu = native_calibrate_cpu;
1535  
1536  	if (!tsc_khz) {
1537  		/* We failed to determine frequencies earlier, try again */
1538  		if (!determine_cpu_tsc_frequencies(false)) {
1539  			mark_tsc_unstable("could not calculate TSC khz");
1540  			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1541  			return;
1542  		}
1543  		tsc_enable_sched_clock();
1544  	}
1545  
1546  	cyc2ns_init_secondary_cpus();
1547  
1548  	if (!no_sched_irq_time)
1549  		enable_sched_clock_irqtime();
1550  
1551  	lpj_fine = get_loops_per_jiffy();
1552  
1553  	check_system_tsc_reliable();
1554  
1555  	if (unsynchronized_tsc()) {
1556  		mark_tsc_unstable("TSCs unsynchronized");
1557  		return;
1558  	}
1559  
1560  	if (tsc_clocksource_reliable || no_tsc_watchdog)
1561  		tsc_disable_clocksource_watchdog();
1562  
1563  	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1564  	detect_art();
1565  }
1566  
1567  #ifdef CONFIG_SMP
1568  /*
1569   * Check whether existing calibration data can be reused.
1570   */
calibrate_delay_is_known(void)1571  unsigned long calibrate_delay_is_known(void)
1572  {
1573  	int sibling, cpu = smp_processor_id();
1574  	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1575  	const struct cpumask *mask = topology_core_cpumask(cpu);
1576  
1577  	/*
1578  	 * If TSC has constant frequency and TSC is synchronized across
1579  	 * sockets then reuse CPU0 calibration.
1580  	 */
1581  	if (constant_tsc && !tsc_unstable)
1582  		return cpu_data(0).loops_per_jiffy;
1583  
1584  	/*
1585  	 * If TSC has constant frequency and TSC is not synchronized across
1586  	 * sockets and this is not the first CPU in the socket, then reuse
1587  	 * the calibration value of an already online CPU on that socket.
1588  	 *
1589  	 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1590  	 * socket.
1591  	 */
1592  	if (!constant_tsc || !mask)
1593  		return 0;
1594  
1595  	sibling = cpumask_any_but(mask, cpu);
1596  	if (sibling < nr_cpu_ids)
1597  		return cpu_data(sibling).loops_per_jiffy;
1598  	return 0;
1599  }
1600  #endif
1601