1  // SPDX-License-Identifier: GPL-2.0
2  #include <linux/bitops.h>
3  #include <linux/types.h>
4  #include <linux/slab.h>
5  #include <linux/sched/clock.h>
6  
7  #include <asm/cpu_entry_area.h>
8  #include <asm/debugreg.h>
9  #include <asm/perf_event.h>
10  #include <asm/tlbflush.h>
11  #include <asm/insn.h>
12  #include <asm/io.h>
13  #include <asm/timer.h>
14  
15  #include "../perf_event.h"
16  
17  /* Waste a full page so it can be mapped into the cpu_entry_area */
18  DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
19  
20  /* The size of a BTS record in bytes: */
21  #define BTS_RECORD_SIZE		24
22  
23  #define PEBS_FIXUP_SIZE		PAGE_SIZE
24  
25  /*
26   * pebs_record_32 for p4 and core not supported
27  
28  struct pebs_record_32 {
29  	u32 flags, ip;
30  	u32 ax, bc, cx, dx;
31  	u32 si, di, bp, sp;
32  };
33  
34   */
35  
36  union intel_x86_pebs_dse {
37  	u64 val;
38  	struct {
39  		unsigned int ld_dse:4;
40  		unsigned int ld_stlb_miss:1;
41  		unsigned int ld_locked:1;
42  		unsigned int ld_data_blk:1;
43  		unsigned int ld_addr_blk:1;
44  		unsigned int ld_reserved:24;
45  	};
46  	struct {
47  		unsigned int st_l1d_hit:1;
48  		unsigned int st_reserved1:3;
49  		unsigned int st_stlb_miss:1;
50  		unsigned int st_locked:1;
51  		unsigned int st_reserved2:26;
52  	};
53  	struct {
54  		unsigned int st_lat_dse:4;
55  		unsigned int st_lat_stlb_miss:1;
56  		unsigned int st_lat_locked:1;
57  		unsigned int ld_reserved3:26;
58  	};
59  	struct {
60  		unsigned int mtl_dse:5;
61  		unsigned int mtl_locked:1;
62  		unsigned int mtl_stlb_miss:1;
63  		unsigned int mtl_fwd_blk:1;
64  		unsigned int ld_reserved4:24;
65  	};
66  	struct {
67  		unsigned int lnc_dse:8;
68  		unsigned int ld_reserved5:2;
69  		unsigned int lnc_stlb_miss:1;
70  		unsigned int lnc_locked:1;
71  		unsigned int lnc_data_blk:1;
72  		unsigned int lnc_addr_blk:1;
73  		unsigned int ld_reserved6:18;
74  	};
75  };
76  
77  
78  /*
79   * Map PEBS Load Latency Data Source encodings to generic
80   * memory data source information
81   */
82  #define P(a, b) PERF_MEM_S(a, b)
83  #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
84  #define LEVEL(x) P(LVLNUM, x)
85  #define REM P(REMOTE, REMOTE)
86  #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
87  
88  /* Version for Sandy Bridge and later */
89  static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
90  	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
91  	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
92  	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
93  	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
94  	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
95  	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
96  	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
97  	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
98  	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
99  	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
100  	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
101  	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
102  	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
103  	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
104  	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
105  	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
106  };
107  
108  /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)109  void __init intel_pmu_pebs_data_source_nhm(void)
110  {
111  	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
112  	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
113  	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
114  }
115  
__intel_pmu_pebs_data_source_skl(bool pmem,u64 * data_source)116  static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
117  {
118  	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
119  
120  	data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
121  	data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
122  	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
123  	data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
124  	data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
125  }
126  
intel_pmu_pebs_data_source_skl(bool pmem)127  void __init intel_pmu_pebs_data_source_skl(bool pmem)
128  {
129  	__intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
130  }
131  
__intel_pmu_pebs_data_source_grt(u64 * data_source)132  static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
133  {
134  	data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
135  	data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
136  	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
137  }
138  
intel_pmu_pebs_data_source_grt(void)139  void __init intel_pmu_pebs_data_source_grt(void)
140  {
141  	__intel_pmu_pebs_data_source_grt(pebs_data_source);
142  }
143  
intel_pmu_pebs_data_source_adl(void)144  void __init intel_pmu_pebs_data_source_adl(void)
145  {
146  	u64 *data_source;
147  
148  	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
149  	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
150  	__intel_pmu_pebs_data_source_skl(false, data_source);
151  
152  	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
153  	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
154  	__intel_pmu_pebs_data_source_grt(data_source);
155  }
156  
__intel_pmu_pebs_data_source_cmt(u64 * data_source)157  static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
158  {
159  	data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
160  	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
161  	data_source[0x0a] = OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE);
162  	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
163  	data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
164  	data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
165  }
166  
intel_pmu_pebs_data_source_mtl(void)167  void __init intel_pmu_pebs_data_source_mtl(void)
168  {
169  	u64 *data_source;
170  
171  	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
172  	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
173  	__intel_pmu_pebs_data_source_skl(false, data_source);
174  
175  	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
176  	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
177  	__intel_pmu_pebs_data_source_cmt(data_source);
178  }
179  
intel_pmu_pebs_data_source_cmt(void)180  void __init intel_pmu_pebs_data_source_cmt(void)
181  {
182  	__intel_pmu_pebs_data_source_cmt(pebs_data_source);
183  }
184  
185  /* Version for Lion Cove and later */
186  static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
187  	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),	/* 0x00: ukn L3 */
188  	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),	/* 0x01: L1 hit */
189  	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),	/* 0x02: L1 hit */
190  	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE),	/* 0x03: LFB/L1 Miss Handling Buffer hit */
191  	0,							/* 0x04: Reserved */
192  	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),	/* 0x05: L2 Hit */
193  	OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE),			/* 0x06: L2 Miss Handling Buffer Hit */
194  	0,							/* 0x07: Reserved */
195  	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),	/* 0x08: L3 Hit */
196  	0,							/* 0x09: Reserved */
197  	0,							/* 0x0a: Reserved */
198  	0,							/* 0x0b: Reserved */
199  	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOPX, FWD),	/* 0x0c: L3 Hit Snoop Fwd */
200  	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),	/* 0x0d: L3 Hit Snoop HitM */
201  	0,							/* 0x0e: Reserved */
202  	P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),	/* 0x0f: L3 Miss Snoop HitM */
203  	OP_LH | LEVEL(MSC) | P(SNOOP, NONE),			/* 0x10: Memory-side Cache Hit */
204  	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */
205  };
206  
intel_pmu_pebs_data_source_lnl(void)207  void __init intel_pmu_pebs_data_source_lnl(void)
208  {
209  	u64 *data_source;
210  
211  	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
212  	memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source));
213  
214  	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
215  	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
216  	__intel_pmu_pebs_data_source_cmt(data_source);
217  }
218  
precise_store_data(u64 status)219  static u64 precise_store_data(u64 status)
220  {
221  	union intel_x86_pebs_dse dse;
222  	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
223  
224  	dse.val = status;
225  
226  	/*
227  	 * bit 4: TLB access
228  	 * 1 = stored missed 2nd level TLB
229  	 *
230  	 * so it either hit the walker or the OS
231  	 * otherwise hit 2nd level TLB
232  	 */
233  	if (dse.st_stlb_miss)
234  		val |= P(TLB, MISS);
235  	else
236  		val |= P(TLB, HIT);
237  
238  	/*
239  	 * bit 0: hit L1 data cache
240  	 * if not set, then all we know is that
241  	 * it missed L1D
242  	 */
243  	if (dse.st_l1d_hit)
244  		val |= P(LVL, HIT);
245  	else
246  		val |= P(LVL, MISS);
247  
248  	/*
249  	 * bit 5: Locked prefix
250  	 */
251  	if (dse.st_locked)
252  		val |= P(LOCK, LOCKED);
253  
254  	return val;
255  }
256  
precise_datala_hsw(struct perf_event * event,u64 status)257  static u64 precise_datala_hsw(struct perf_event *event, u64 status)
258  {
259  	union perf_mem_data_src dse;
260  
261  	dse.val = PERF_MEM_NA;
262  
263  	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
264  		dse.mem_op = PERF_MEM_OP_STORE;
265  	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
266  		dse.mem_op = PERF_MEM_OP_LOAD;
267  
268  	/*
269  	 * L1 info only valid for following events:
270  	 *
271  	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
272  	 * MEM_UOPS_RETIRED.LOCK_STORES
273  	 * MEM_UOPS_RETIRED.SPLIT_STORES
274  	 * MEM_UOPS_RETIRED.ALL_STORES
275  	 */
276  	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
277  		if (status & 1)
278  			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
279  		else
280  			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
281  	}
282  	return dse.val;
283  }
284  
pebs_set_tlb_lock(u64 * val,bool tlb,bool lock)285  static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
286  {
287  	/*
288  	 * TLB access
289  	 * 0 = did not miss 2nd level TLB
290  	 * 1 = missed 2nd level TLB
291  	 */
292  	if (tlb)
293  		*val |= P(TLB, MISS) | P(TLB, L2);
294  	else
295  		*val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
296  
297  	/* locked prefix */
298  	if (lock)
299  		*val |= P(LOCK, LOCKED);
300  }
301  
302  /* Retrieve the latency data for e-core of ADL */
__grt_latency_data(struct perf_event * event,u64 status,u8 dse,bool tlb,bool lock,bool blk)303  static u64 __grt_latency_data(struct perf_event *event, u64 status,
304  			       u8 dse, bool tlb, bool lock, bool blk)
305  {
306  	u64 val;
307  
308  	WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
309  
310  	dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
311  	val = hybrid_var(event->pmu, pebs_data_source)[dse];
312  
313  	pebs_set_tlb_lock(&val, tlb, lock);
314  
315  	if (blk)
316  		val |= P(BLK, DATA);
317  	else
318  		val |= P(BLK, NA);
319  
320  	return val;
321  }
322  
grt_latency_data(struct perf_event * event,u64 status)323  u64 grt_latency_data(struct perf_event *event, u64 status)
324  {
325  	union intel_x86_pebs_dse dse;
326  
327  	dse.val = status;
328  
329  	return __grt_latency_data(event, status, dse.ld_dse,
330  				  dse.ld_locked, dse.ld_stlb_miss,
331  				  dse.ld_data_blk);
332  }
333  
334  /* Retrieve the latency data for e-core of MTL */
cmt_latency_data(struct perf_event * event,u64 status)335  u64 cmt_latency_data(struct perf_event *event, u64 status)
336  {
337  	union intel_x86_pebs_dse dse;
338  
339  	dse.val = status;
340  
341  	return __grt_latency_data(event, status, dse.mtl_dse,
342  				  dse.mtl_stlb_miss, dse.mtl_locked,
343  				  dse.mtl_fwd_blk);
344  }
345  
lnc_latency_data(struct perf_event * event,u64 status)346  static u64 lnc_latency_data(struct perf_event *event, u64 status)
347  {
348  	union intel_x86_pebs_dse dse;
349  	union perf_mem_data_src src;
350  	u64 val;
351  
352  	dse.val = status;
353  
354  	/* LNC core latency data */
355  	val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK];
356  	if (!val)
357  		val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA);
358  
359  	if (dse.lnc_stlb_miss)
360  		val |= P(TLB, MISS) | P(TLB, L2);
361  	else
362  		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
363  
364  	if (dse.lnc_locked)
365  		val |= P(LOCK, LOCKED);
366  
367  	if (dse.lnc_data_blk)
368  		val |= P(BLK, DATA);
369  	if (dse.lnc_addr_blk)
370  		val |= P(BLK, ADDR);
371  	if (!dse.lnc_data_blk && !dse.lnc_addr_blk)
372  		val |= P(BLK, NA);
373  
374  	src.val = val;
375  	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
376  		src.mem_op = P(OP, STORE);
377  
378  	return src.val;
379  }
380  
lnl_latency_data(struct perf_event * event,u64 status)381  u64 lnl_latency_data(struct perf_event *event, u64 status)
382  {
383  	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
384  
385  	if (pmu->pmu_type == hybrid_small)
386  		return cmt_latency_data(event, status);
387  
388  	return lnc_latency_data(event, status);
389  }
390  
load_latency_data(struct perf_event * event,u64 status)391  static u64 load_latency_data(struct perf_event *event, u64 status)
392  {
393  	union intel_x86_pebs_dse dse;
394  	u64 val;
395  
396  	dse.val = status;
397  
398  	/*
399  	 * use the mapping table for bit 0-3
400  	 */
401  	val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
402  
403  	/*
404  	 * Nehalem models do not support TLB, Lock infos
405  	 */
406  	if (x86_pmu.pebs_no_tlb) {
407  		val |= P(TLB, NA) | P(LOCK, NA);
408  		return val;
409  	}
410  
411  	pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
412  
413  	/*
414  	 * Ice Lake and earlier models do not support block infos.
415  	 */
416  	if (!x86_pmu.pebs_block) {
417  		val |= P(BLK, NA);
418  		return val;
419  	}
420  	/*
421  	 * bit 6: load was blocked since its data could not be forwarded
422  	 *        from a preceding store
423  	 */
424  	if (dse.ld_data_blk)
425  		val |= P(BLK, DATA);
426  
427  	/*
428  	 * bit 7: load was blocked due to potential address conflict with
429  	 *        a preceding store
430  	 */
431  	if (dse.ld_addr_blk)
432  		val |= P(BLK, ADDR);
433  
434  	if (!dse.ld_data_blk && !dse.ld_addr_blk)
435  		val |= P(BLK, NA);
436  
437  	return val;
438  }
439  
store_latency_data(struct perf_event * event,u64 status)440  static u64 store_latency_data(struct perf_event *event, u64 status)
441  {
442  	union intel_x86_pebs_dse dse;
443  	union perf_mem_data_src src;
444  	u64 val;
445  
446  	dse.val = status;
447  
448  	/*
449  	 * use the mapping table for bit 0-3
450  	 */
451  	val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
452  
453  	pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
454  
455  	val |= P(BLK, NA);
456  
457  	/*
458  	 * the pebs_data_source table is only for loads
459  	 * so override the mem_op to say STORE instead
460  	 */
461  	src.val = val;
462  	src.mem_op = P(OP,STORE);
463  
464  	return src.val;
465  }
466  
467  struct pebs_record_core {
468  	u64 flags, ip;
469  	u64 ax, bx, cx, dx;
470  	u64 si, di, bp, sp;
471  	u64 r8,  r9,  r10, r11;
472  	u64 r12, r13, r14, r15;
473  };
474  
475  struct pebs_record_nhm {
476  	u64 flags, ip;
477  	u64 ax, bx, cx, dx;
478  	u64 si, di, bp, sp;
479  	u64 r8,  r9,  r10, r11;
480  	u64 r12, r13, r14, r15;
481  	u64 status, dla, dse, lat;
482  };
483  
484  /*
485   * Same as pebs_record_nhm, with two additional fields.
486   */
487  struct pebs_record_hsw {
488  	u64 flags, ip;
489  	u64 ax, bx, cx, dx;
490  	u64 si, di, bp, sp;
491  	u64 r8,  r9,  r10, r11;
492  	u64 r12, r13, r14, r15;
493  	u64 status, dla, dse, lat;
494  	u64 real_ip, tsx_tuning;
495  };
496  
497  union hsw_tsx_tuning {
498  	struct {
499  		u32 cycles_last_block     : 32,
500  		    hle_abort		  : 1,
501  		    rtm_abort		  : 1,
502  		    instruction_abort     : 1,
503  		    non_instruction_abort : 1,
504  		    retry		  : 1,
505  		    data_conflict	  : 1,
506  		    capacity_writes	  : 1,
507  		    capacity_reads	  : 1;
508  	};
509  	u64	    value;
510  };
511  
512  #define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
513  
514  /* Same as HSW, plus TSC */
515  
516  struct pebs_record_skl {
517  	u64 flags, ip;
518  	u64 ax, bx, cx, dx;
519  	u64 si, di, bp, sp;
520  	u64 r8,  r9,  r10, r11;
521  	u64 r12, r13, r14, r15;
522  	u64 status, dla, dse, lat;
523  	u64 real_ip, tsx_tuning;
524  	u64 tsc;
525  };
526  
init_debug_store_on_cpu(int cpu)527  void init_debug_store_on_cpu(int cpu)
528  {
529  	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
530  
531  	if (!ds)
532  		return;
533  
534  	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
535  		     (u32)((u64)(unsigned long)ds),
536  		     (u32)((u64)(unsigned long)ds >> 32));
537  }
538  
fini_debug_store_on_cpu(int cpu)539  void fini_debug_store_on_cpu(int cpu)
540  {
541  	if (!per_cpu(cpu_hw_events, cpu).ds)
542  		return;
543  
544  	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
545  }
546  
547  static DEFINE_PER_CPU(void *, insn_buffer);
548  
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)549  static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
550  {
551  	unsigned long start = (unsigned long)cea;
552  	phys_addr_t pa;
553  	size_t msz = 0;
554  
555  	pa = virt_to_phys(addr);
556  
557  	preempt_disable();
558  	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
559  		cea_set_pte(cea, pa, prot);
560  
561  	/*
562  	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
563  	 * all TLB entries for it.
564  	 */
565  	flush_tlb_kernel_range(start, start + size);
566  	preempt_enable();
567  }
568  
ds_clear_cea(void * cea,size_t size)569  static void ds_clear_cea(void *cea, size_t size)
570  {
571  	unsigned long start = (unsigned long)cea;
572  	size_t msz = 0;
573  
574  	preempt_disable();
575  	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
576  		cea_set_pte(cea, 0, PAGE_NONE);
577  
578  	flush_tlb_kernel_range(start, start + size);
579  	preempt_enable();
580  }
581  
dsalloc_pages(size_t size,gfp_t flags,int cpu)582  static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
583  {
584  	unsigned int order = get_order(size);
585  	int node = cpu_to_node(cpu);
586  	struct page *page;
587  
588  	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
589  	return page ? page_address(page) : NULL;
590  }
591  
dsfree_pages(const void * buffer,size_t size)592  static void dsfree_pages(const void *buffer, size_t size)
593  {
594  	if (buffer)
595  		free_pages((unsigned long)buffer, get_order(size));
596  }
597  
alloc_pebs_buffer(int cpu)598  static int alloc_pebs_buffer(int cpu)
599  {
600  	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
601  	struct debug_store *ds = hwev->ds;
602  	size_t bsiz = x86_pmu.pebs_buffer_size;
603  	int max, node = cpu_to_node(cpu);
604  	void *buffer, *insn_buff, *cea;
605  
606  	if (!x86_pmu.pebs)
607  		return 0;
608  
609  	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
610  	if (unlikely(!buffer))
611  		return -ENOMEM;
612  
613  	/*
614  	 * HSW+ already provides us the eventing ip; no need to allocate this
615  	 * buffer then.
616  	 */
617  	if (x86_pmu.intel_cap.pebs_format < 2) {
618  		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
619  		if (!insn_buff) {
620  			dsfree_pages(buffer, bsiz);
621  			return -ENOMEM;
622  		}
623  		per_cpu(insn_buffer, cpu) = insn_buff;
624  	}
625  	hwev->ds_pebs_vaddr = buffer;
626  	/* Update the cpu entry area mapping */
627  	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
628  	ds->pebs_buffer_base = (unsigned long) cea;
629  	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
630  	ds->pebs_index = ds->pebs_buffer_base;
631  	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
632  	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
633  	return 0;
634  }
635  
release_pebs_buffer(int cpu)636  static void release_pebs_buffer(int cpu)
637  {
638  	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
639  	void *cea;
640  
641  	if (!x86_pmu.pebs)
642  		return;
643  
644  	kfree(per_cpu(insn_buffer, cpu));
645  	per_cpu(insn_buffer, cpu) = NULL;
646  
647  	/* Clear the fixmap */
648  	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
649  	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
650  	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
651  	hwev->ds_pebs_vaddr = NULL;
652  }
653  
alloc_bts_buffer(int cpu)654  static int alloc_bts_buffer(int cpu)
655  {
656  	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
657  	struct debug_store *ds = hwev->ds;
658  	void *buffer, *cea;
659  	int max;
660  
661  	if (!x86_pmu.bts)
662  		return 0;
663  
664  	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
665  	if (unlikely(!buffer)) {
666  		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
667  		return -ENOMEM;
668  	}
669  	hwev->ds_bts_vaddr = buffer;
670  	/* Update the fixmap */
671  	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
672  	ds->bts_buffer_base = (unsigned long) cea;
673  	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
674  	ds->bts_index = ds->bts_buffer_base;
675  	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
676  	ds->bts_absolute_maximum = ds->bts_buffer_base +
677  					max * BTS_RECORD_SIZE;
678  	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
679  					(max / 16) * BTS_RECORD_SIZE;
680  	return 0;
681  }
682  
release_bts_buffer(int cpu)683  static void release_bts_buffer(int cpu)
684  {
685  	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
686  	void *cea;
687  
688  	if (!x86_pmu.bts)
689  		return;
690  
691  	/* Clear the fixmap */
692  	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
693  	ds_clear_cea(cea, BTS_BUFFER_SIZE);
694  	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
695  	hwev->ds_bts_vaddr = NULL;
696  }
697  
alloc_ds_buffer(int cpu)698  static int alloc_ds_buffer(int cpu)
699  {
700  	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
701  
702  	memset(ds, 0, sizeof(*ds));
703  	per_cpu(cpu_hw_events, cpu).ds = ds;
704  	return 0;
705  }
706  
release_ds_buffer(int cpu)707  static void release_ds_buffer(int cpu)
708  {
709  	per_cpu(cpu_hw_events, cpu).ds = NULL;
710  }
711  
release_ds_buffers(void)712  void release_ds_buffers(void)
713  {
714  	int cpu;
715  
716  	if (!x86_pmu.bts && !x86_pmu.pebs)
717  		return;
718  
719  	for_each_possible_cpu(cpu)
720  		release_ds_buffer(cpu);
721  
722  	for_each_possible_cpu(cpu) {
723  		/*
724  		 * Again, ignore errors from offline CPUs, they will no longer
725  		 * observe cpu_hw_events.ds and not program the DS_AREA when
726  		 * they come up.
727  		 */
728  		fini_debug_store_on_cpu(cpu);
729  	}
730  
731  	for_each_possible_cpu(cpu) {
732  		release_pebs_buffer(cpu);
733  		release_bts_buffer(cpu);
734  	}
735  }
736  
reserve_ds_buffers(void)737  void reserve_ds_buffers(void)
738  {
739  	int bts_err = 0, pebs_err = 0;
740  	int cpu;
741  
742  	x86_pmu.bts_active = 0;
743  	x86_pmu.pebs_active = 0;
744  
745  	if (!x86_pmu.bts && !x86_pmu.pebs)
746  		return;
747  
748  	if (!x86_pmu.bts)
749  		bts_err = 1;
750  
751  	if (!x86_pmu.pebs)
752  		pebs_err = 1;
753  
754  	for_each_possible_cpu(cpu) {
755  		if (alloc_ds_buffer(cpu)) {
756  			bts_err = 1;
757  			pebs_err = 1;
758  		}
759  
760  		if (!bts_err && alloc_bts_buffer(cpu))
761  			bts_err = 1;
762  
763  		if (!pebs_err && alloc_pebs_buffer(cpu))
764  			pebs_err = 1;
765  
766  		if (bts_err && pebs_err)
767  			break;
768  	}
769  
770  	if (bts_err) {
771  		for_each_possible_cpu(cpu)
772  			release_bts_buffer(cpu);
773  	}
774  
775  	if (pebs_err) {
776  		for_each_possible_cpu(cpu)
777  			release_pebs_buffer(cpu);
778  	}
779  
780  	if (bts_err && pebs_err) {
781  		for_each_possible_cpu(cpu)
782  			release_ds_buffer(cpu);
783  	} else {
784  		if (x86_pmu.bts && !bts_err)
785  			x86_pmu.bts_active = 1;
786  
787  		if (x86_pmu.pebs && !pebs_err)
788  			x86_pmu.pebs_active = 1;
789  
790  		for_each_possible_cpu(cpu) {
791  			/*
792  			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
793  			 * will get this call through intel_pmu_cpu_starting().
794  			 */
795  			init_debug_store_on_cpu(cpu);
796  		}
797  	}
798  }
799  
800  /*
801   * BTS
802   */
803  
804  struct event_constraint bts_constraint =
805  	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
806  
intel_pmu_enable_bts(u64 config)807  void intel_pmu_enable_bts(u64 config)
808  {
809  	unsigned long debugctlmsr;
810  
811  	debugctlmsr = get_debugctlmsr();
812  
813  	debugctlmsr |= DEBUGCTLMSR_TR;
814  	debugctlmsr |= DEBUGCTLMSR_BTS;
815  	if (config & ARCH_PERFMON_EVENTSEL_INT)
816  		debugctlmsr |= DEBUGCTLMSR_BTINT;
817  
818  	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
819  		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
820  
821  	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
822  		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
823  
824  	update_debugctlmsr(debugctlmsr);
825  }
826  
intel_pmu_disable_bts(void)827  void intel_pmu_disable_bts(void)
828  {
829  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
830  	unsigned long debugctlmsr;
831  
832  	if (!cpuc->ds)
833  		return;
834  
835  	debugctlmsr = get_debugctlmsr();
836  
837  	debugctlmsr &=
838  		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
839  		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
840  
841  	update_debugctlmsr(debugctlmsr);
842  }
843  
intel_pmu_drain_bts_buffer(void)844  int intel_pmu_drain_bts_buffer(void)
845  {
846  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
847  	struct debug_store *ds = cpuc->ds;
848  	struct bts_record {
849  		u64	from;
850  		u64	to;
851  		u64	flags;
852  	};
853  	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
854  	struct bts_record *at, *base, *top;
855  	struct perf_output_handle handle;
856  	struct perf_event_header header;
857  	struct perf_sample_data data;
858  	unsigned long skip = 0;
859  	struct pt_regs regs;
860  
861  	if (!event)
862  		return 0;
863  
864  	if (!x86_pmu.bts_active)
865  		return 0;
866  
867  	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
868  	top  = (struct bts_record *)(unsigned long)ds->bts_index;
869  
870  	if (top <= base)
871  		return 0;
872  
873  	memset(&regs, 0, sizeof(regs));
874  
875  	ds->bts_index = ds->bts_buffer_base;
876  
877  	perf_sample_data_init(&data, 0, event->hw.last_period);
878  
879  	/*
880  	 * BTS leaks kernel addresses in branches across the cpl boundary,
881  	 * such as traps or system calls, so unless the user is asking for
882  	 * kernel tracing (and right now it's not possible), we'd need to
883  	 * filter them out. But first we need to count how many of those we
884  	 * have in the current batch. This is an extra O(n) pass, however,
885  	 * it's much faster than the other one especially considering that
886  	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
887  	 * alloc_bts_buffer()).
888  	 */
889  	for (at = base; at < top; at++) {
890  		/*
891  		 * Note that right now *this* BTS code only works if
892  		 * attr::exclude_kernel is set, but let's keep this extra
893  		 * check here in case that changes.
894  		 */
895  		if (event->attr.exclude_kernel &&
896  		    (kernel_ip(at->from) || kernel_ip(at->to)))
897  			skip++;
898  	}
899  
900  	/*
901  	 * Prepare a generic sample, i.e. fill in the invariant fields.
902  	 * We will overwrite the from and to address before we output
903  	 * the sample.
904  	 */
905  	rcu_read_lock();
906  	perf_prepare_sample(&data, event, &regs);
907  	perf_prepare_header(&header, &data, event, &regs);
908  
909  	if (perf_output_begin(&handle, &data, event,
910  			      header.size * (top - base - skip)))
911  		goto unlock;
912  
913  	for (at = base; at < top; at++) {
914  		/* Filter out any records that contain kernel addresses. */
915  		if (event->attr.exclude_kernel &&
916  		    (kernel_ip(at->from) || kernel_ip(at->to)))
917  			continue;
918  
919  		data.ip		= at->from;
920  		data.addr	= at->to;
921  
922  		perf_output_sample(&handle, &header, &data, event);
923  	}
924  
925  	perf_output_end(&handle);
926  
927  	/* There's new data available. */
928  	event->hw.interrupts++;
929  	event->pending_kill = POLL_IN;
930  unlock:
931  	rcu_read_unlock();
932  	return 1;
933  }
934  
intel_pmu_drain_pebs_buffer(void)935  static inline void intel_pmu_drain_pebs_buffer(void)
936  {
937  	struct perf_sample_data data;
938  
939  	x86_pmu.drain_pebs(NULL, &data);
940  }
941  
942  /*
943   * PEBS
944   */
945  struct event_constraint intel_core2_pebs_event_constraints[] = {
946  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
947  	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
948  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
949  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
950  	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
951  	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
952  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
953  	EVENT_CONSTRAINT_END
954  };
955  
956  struct event_constraint intel_atom_pebs_event_constraints[] = {
957  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
958  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
959  	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
960  	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
961  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
962  	/* Allow all events as PEBS with no flags */
963  	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
964  	EVENT_CONSTRAINT_END
965  };
966  
967  struct event_constraint intel_slm_pebs_event_constraints[] = {
968  	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
969  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
970  	/* Allow all events as PEBS with no flags */
971  	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
972  	EVENT_CONSTRAINT_END
973  };
974  
975  struct event_constraint intel_glm_pebs_event_constraints[] = {
976  	/* Allow all events as PEBS with no flags */
977  	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
978  	EVENT_CONSTRAINT_END
979  };
980  
981  struct event_constraint intel_grt_pebs_event_constraints[] = {
982  	/* Allow all events as PEBS with no flags */
983  	INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
984  	INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
985  	EVENT_CONSTRAINT_END
986  };
987  
988  struct event_constraint intel_nehalem_pebs_event_constraints[] = {
989  	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
990  	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
991  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
992  	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
993  	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
994  	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
995  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
996  	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
997  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
998  	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
999  	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1000  	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1001  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1002  	EVENT_CONSTRAINT_END
1003  };
1004  
1005  struct event_constraint intel_westmere_pebs_event_constraints[] = {
1006  	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
1007  	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
1008  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1009  	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
1010  	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
1011  	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
1012  	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
1013  	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
1014  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1015  	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
1016  	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1017  	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1018  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1019  	EVENT_CONSTRAINT_END
1020  };
1021  
1022  struct event_constraint intel_snb_pebs_event_constraints[] = {
1023  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1024  	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1025  	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1026  	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1027  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1028          INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1029          INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1030          INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1031          INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1032  	/* Allow all events as PEBS with no flags */
1033  	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1034  	EVENT_CONSTRAINT_END
1035  };
1036  
1037  struct event_constraint intel_ivb_pebs_event_constraints[] = {
1038          INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1039          INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1040  	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1041  	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1042  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1043  	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1044  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1045  	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1046  	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1047  	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1048  	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1049  	/* Allow all events as PEBS with no flags */
1050  	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1051          EVENT_CONSTRAINT_END
1052  };
1053  
1054  struct event_constraint intel_hsw_pebs_event_constraints[] = {
1055  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1056  	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1057  	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1058  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1059  	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1060  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1061  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1062  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1063  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1064  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1065  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1066  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1067  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1068  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1069  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1070  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1071  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1072  	/* Allow all events as PEBS with no flags */
1073  	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1074  	EVENT_CONSTRAINT_END
1075  };
1076  
1077  struct event_constraint intel_bdw_pebs_event_constraints[] = {
1078  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1079  	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1080  	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1081  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1082  	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1083  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1084  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1085  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1086  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1087  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1088  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1089  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1090  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1091  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1092  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1093  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1094  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1095  	/* Allow all events as PEBS with no flags */
1096  	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1097  	EVENT_CONSTRAINT_END
1098  };
1099  
1100  
1101  struct event_constraint intel_skl_pebs_event_constraints[] = {
1102  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
1103  	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1104  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1105  	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1106  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1107  	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
1108  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1109  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1110  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1111  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1112  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1113  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1114  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1115  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1116  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
1117  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
1118  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
1119  	/* Allow all events as PEBS with no flags */
1120  	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1121  	EVENT_CONSTRAINT_END
1122  };
1123  
1124  struct event_constraint intel_icl_pebs_event_constraints[] = {
1125  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),	/* old INST_RETIRED.PREC_DIST */
1126  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1127  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
1128  
1129  	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
1130  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1131  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1132  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1133  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1134  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1135  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1136  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1137  
1138  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1139  
1140  	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */
1141  
1142  	/*
1143  	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1144  	 * need the full constraints from the main table.
1145  	 */
1146  
1147  	EVENT_CONSTRAINT_END
1148  };
1149  
1150  struct event_constraint intel_glc_pebs_event_constraints[] = {
1151  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1152  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1153  
1154  	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1155  	INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1156  	INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1157  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1158  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1159  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1160  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1161  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1162  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1163  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1164  
1165  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1166  
1167  	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1168  
1169  	/*
1170  	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1171  	 * need the full constraints from the main table.
1172  	 */
1173  
1174  	EVENT_CONSTRAINT_END
1175  };
1176  
1177  struct event_constraint intel_lnc_pebs_event_constraints[] = {
1178  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1179  	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1180  
1181  	INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3ff),
1182  	INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3),
1183  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1184  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1185  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1186  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1187  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1188  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1189  	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1190  
1191  	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1192  
1193  	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1194  
1195  	/*
1196  	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1197  	 * need the full constraints from the main table.
1198  	 */
1199  
1200  	EVENT_CONSTRAINT_END
1201  };
1202  
intel_pebs_constraints(struct perf_event * event)1203  struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1204  {
1205  	struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1206  	struct event_constraint *c;
1207  
1208  	if (!event->attr.precise_ip)
1209  		return NULL;
1210  
1211  	if (pebs_constraints) {
1212  		for_each_event_constraint(c, pebs_constraints) {
1213  			if (constraint_match(c, event->hw.config)) {
1214  				event->hw.flags |= c->flags;
1215  				return c;
1216  			}
1217  		}
1218  	}
1219  
1220  	/*
1221  	 * Extended PEBS support
1222  	 * Makes the PEBS code search the normal constraints.
1223  	 */
1224  	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1225  		return NULL;
1226  
1227  	return &emptyconstraint;
1228  }
1229  
1230  /*
1231   * We need the sched_task callback even for per-cpu events when we use
1232   * the large interrupt threshold, such that we can provide PID and TID
1233   * to PEBS samples.
1234   */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1235  static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1236  {
1237  	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1238  		return false;
1239  
1240  	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1241  }
1242  
intel_pmu_pebs_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)1243  void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1244  {
1245  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1246  
1247  	if (!sched_in && pebs_needs_sched_cb(cpuc))
1248  		intel_pmu_drain_pebs_buffer();
1249  }
1250  
pebs_update_threshold(struct cpu_hw_events * cpuc)1251  static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1252  {
1253  	struct debug_store *ds = cpuc->ds;
1254  	int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu);
1255  	u64 threshold;
1256  	int reserved;
1257  
1258  	if (cpuc->n_pebs_via_pt)
1259  		return;
1260  
1261  	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1262  		reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu);
1263  	else
1264  		reserved = max_pebs_events;
1265  
1266  	if (cpuc->n_pebs == cpuc->n_large_pebs) {
1267  		threshold = ds->pebs_absolute_maximum -
1268  			reserved * cpuc->pebs_record_size;
1269  	} else {
1270  		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1271  	}
1272  
1273  	ds->pebs_interrupt_threshold = threshold;
1274  }
1275  
adaptive_pebs_record_size_update(void)1276  static void adaptive_pebs_record_size_update(void)
1277  {
1278  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1279  	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1280  	int sz = sizeof(struct pebs_basic);
1281  
1282  	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1283  		sz += sizeof(struct pebs_meminfo);
1284  	if (pebs_data_cfg & PEBS_DATACFG_GP)
1285  		sz += sizeof(struct pebs_gprs);
1286  	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1287  		sz += sizeof(struct pebs_xmm);
1288  	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1289  		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1290  
1291  	cpuc->pebs_record_size = sz;
1292  }
1293  
1294  #define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1295  				PERF_SAMPLE_PHYS_ADDR |			     \
1296  				PERF_SAMPLE_WEIGHT_TYPE |		     \
1297  				PERF_SAMPLE_TRANSACTION |		     \
1298  				PERF_SAMPLE_DATA_PAGE_SIZE)
1299  
pebs_update_adaptive_cfg(struct perf_event * event)1300  static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1301  {
1302  	struct perf_event_attr *attr = &event->attr;
1303  	u64 sample_type = attr->sample_type;
1304  	u64 pebs_data_cfg = 0;
1305  	bool gprs, tsx_weight;
1306  
1307  	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1308  	    attr->precise_ip > 1)
1309  		return pebs_data_cfg;
1310  
1311  	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1312  		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1313  
1314  	/*
1315  	 * We need GPRs when:
1316  	 * + user requested them
1317  	 * + precise_ip < 2 for the non event IP
1318  	 * + For RTM TSX weight we need GPRs for the abort code.
1319  	 */
1320  	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1321  	       (attr->sample_regs_intr & PEBS_GP_REGS);
1322  
1323  	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1324  		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1325  		      x86_pmu.rtm_abort_event);
1326  
1327  	if (gprs || (attr->precise_ip < 2) || tsx_weight)
1328  		pebs_data_cfg |= PEBS_DATACFG_GP;
1329  
1330  	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1331  	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1332  		pebs_data_cfg |= PEBS_DATACFG_XMMS;
1333  
1334  	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1335  		/*
1336  		 * For now always log all LBRs. Could configure this
1337  		 * later.
1338  		 */
1339  		pebs_data_cfg |= PEBS_DATACFG_LBRS |
1340  			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1341  	}
1342  
1343  	return pebs_data_cfg;
1344  }
1345  
1346  static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1347  pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1348  		  struct perf_event *event, bool add)
1349  {
1350  	struct pmu *pmu = event->pmu;
1351  
1352  	/*
1353  	 * Make sure we get updated with the first PEBS event.
1354  	 * During removal, ->pebs_data_cfg is still valid for
1355  	 * the last PEBS event. Don't clear it.
1356  	 */
1357  	if ((cpuc->n_pebs == 1) && add)
1358  		cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1359  
1360  	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1361  		if (!needed_cb)
1362  			perf_sched_cb_inc(pmu);
1363  		else
1364  			perf_sched_cb_dec(pmu);
1365  
1366  		cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1367  	}
1368  
1369  	/*
1370  	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1371  	 * iterating all remaining PEBS events to reconstruct the config.
1372  	 */
1373  	if (x86_pmu.intel_cap.pebs_baseline && add) {
1374  		u64 pebs_data_cfg;
1375  
1376  		pebs_data_cfg = pebs_update_adaptive_cfg(event);
1377  		/*
1378  		 * Be sure to update the thresholds when we change the record.
1379  		 */
1380  		if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1381  			cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1382  	}
1383  }
1384  
intel_pmu_pebs_add(struct perf_event * event)1385  void intel_pmu_pebs_add(struct perf_event *event)
1386  {
1387  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1388  	struct hw_perf_event *hwc = &event->hw;
1389  	bool needed_cb = pebs_needs_sched_cb(cpuc);
1390  
1391  	cpuc->n_pebs++;
1392  	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1393  		cpuc->n_large_pebs++;
1394  	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1395  		cpuc->n_pebs_via_pt++;
1396  
1397  	pebs_update_state(needed_cb, cpuc, event, true);
1398  }
1399  
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1400  static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1401  {
1402  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1403  
1404  	if (!is_pebs_pt(event))
1405  		return;
1406  
1407  	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1408  		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1409  }
1410  
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1411  static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1412  {
1413  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1414  	struct hw_perf_event *hwc = &event->hw;
1415  	struct debug_store *ds = cpuc->ds;
1416  	u64 value = ds->pebs_event_reset[hwc->idx];
1417  	u32 base = MSR_RELOAD_PMC0;
1418  	unsigned int idx = hwc->idx;
1419  
1420  	if (!is_pebs_pt(event))
1421  		return;
1422  
1423  	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1424  		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1425  
1426  	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1427  
1428  	if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1429  		base = MSR_RELOAD_FIXED_CTR0;
1430  		idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1431  		if (x86_pmu.intel_cap.pebs_format < 5)
1432  			value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1433  		else
1434  			value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1435  	}
1436  	wrmsrl(base + idx, value);
1437  }
1438  
intel_pmu_drain_large_pebs(struct cpu_hw_events * cpuc)1439  static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1440  {
1441  	if (cpuc->n_pebs == cpuc->n_large_pebs &&
1442  	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1443  		intel_pmu_drain_pebs_buffer();
1444  }
1445  
intel_pmu_pebs_enable(struct perf_event * event)1446  void intel_pmu_pebs_enable(struct perf_event *event)
1447  {
1448  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1449  	u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1450  	struct hw_perf_event *hwc = &event->hw;
1451  	struct debug_store *ds = cpuc->ds;
1452  	unsigned int idx = hwc->idx;
1453  
1454  	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1455  
1456  	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1457  
1458  	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1459  		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1460  	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1461  		cpuc->pebs_enabled |= 1ULL << 63;
1462  
1463  	if (x86_pmu.intel_cap.pebs_baseline) {
1464  		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1465  		if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1466  			/*
1467  			 * drain_pebs() assumes uniform record size;
1468  			 * hence we need to drain when changing said
1469  			 * size.
1470  			 */
1471  			intel_pmu_drain_large_pebs(cpuc);
1472  			adaptive_pebs_record_size_update();
1473  			wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1474  			cpuc->active_pebs_data_cfg = pebs_data_cfg;
1475  		}
1476  	}
1477  	if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1478  		cpuc->pebs_data_cfg = pebs_data_cfg;
1479  		pebs_update_threshold(cpuc);
1480  	}
1481  
1482  	if (idx >= INTEL_PMC_IDX_FIXED) {
1483  		if (x86_pmu.intel_cap.pebs_format < 5)
1484  			idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1485  		else
1486  			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1487  	}
1488  
1489  	/*
1490  	 * Use auto-reload if possible to save a MSR write in the PMI.
1491  	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1492  	 */
1493  	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1494  		ds->pebs_event_reset[idx] =
1495  			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1496  	} else {
1497  		ds->pebs_event_reset[idx] = 0;
1498  	}
1499  
1500  	intel_pmu_pebs_via_pt_enable(event);
1501  }
1502  
intel_pmu_pebs_del(struct perf_event * event)1503  void intel_pmu_pebs_del(struct perf_event *event)
1504  {
1505  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1506  	struct hw_perf_event *hwc = &event->hw;
1507  	bool needed_cb = pebs_needs_sched_cb(cpuc);
1508  
1509  	cpuc->n_pebs--;
1510  	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1511  		cpuc->n_large_pebs--;
1512  	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1513  		cpuc->n_pebs_via_pt--;
1514  
1515  	pebs_update_state(needed_cb, cpuc, event, false);
1516  }
1517  
intel_pmu_pebs_disable(struct perf_event * event)1518  void intel_pmu_pebs_disable(struct perf_event *event)
1519  {
1520  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1521  	struct hw_perf_event *hwc = &event->hw;
1522  
1523  	intel_pmu_drain_large_pebs(cpuc);
1524  
1525  	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1526  
1527  	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1528  	    (x86_pmu.version < 5))
1529  		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1530  	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1531  		cpuc->pebs_enabled &= ~(1ULL << 63);
1532  
1533  	intel_pmu_pebs_via_pt_disable(event);
1534  
1535  	if (cpuc->enabled)
1536  		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1537  
1538  	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1539  }
1540  
intel_pmu_pebs_enable_all(void)1541  void intel_pmu_pebs_enable_all(void)
1542  {
1543  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1544  
1545  	if (cpuc->pebs_enabled)
1546  		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1547  }
1548  
intel_pmu_pebs_disable_all(void)1549  void intel_pmu_pebs_disable_all(void)
1550  {
1551  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1552  
1553  	if (cpuc->pebs_enabled)
1554  		__intel_pmu_pebs_disable_all();
1555  }
1556  
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1557  static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1558  {
1559  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1560  	unsigned long from = cpuc->lbr_entries[0].from;
1561  	unsigned long old_to, to = cpuc->lbr_entries[0].to;
1562  	unsigned long ip = regs->ip;
1563  	int is_64bit = 0;
1564  	void *kaddr;
1565  	int size;
1566  
1567  	/*
1568  	 * We don't need to fixup if the PEBS assist is fault like
1569  	 */
1570  	if (!x86_pmu.intel_cap.pebs_trap)
1571  		return 1;
1572  
1573  	/*
1574  	 * No LBR entry, no basic block, no rewinding
1575  	 */
1576  	if (!cpuc->lbr_stack.nr || !from || !to)
1577  		return 0;
1578  
1579  	/*
1580  	 * Basic blocks should never cross user/kernel boundaries
1581  	 */
1582  	if (kernel_ip(ip) != kernel_ip(to))
1583  		return 0;
1584  
1585  	/*
1586  	 * unsigned math, either ip is before the start (impossible) or
1587  	 * the basic block is larger than 1 page (sanity)
1588  	 */
1589  	if ((ip - to) > PEBS_FIXUP_SIZE)
1590  		return 0;
1591  
1592  	/*
1593  	 * We sampled a branch insn, rewind using the LBR stack
1594  	 */
1595  	if (ip == to) {
1596  		set_linear_ip(regs, from);
1597  		return 1;
1598  	}
1599  
1600  	size = ip - to;
1601  	if (!kernel_ip(ip)) {
1602  		int bytes;
1603  		u8 *buf = this_cpu_read(insn_buffer);
1604  
1605  		/* 'size' must fit our buffer, see above */
1606  		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1607  		if (bytes != 0)
1608  			return 0;
1609  
1610  		kaddr = buf;
1611  	} else {
1612  		kaddr = (void *)to;
1613  	}
1614  
1615  	do {
1616  		struct insn insn;
1617  
1618  		old_to = to;
1619  
1620  #ifdef CONFIG_X86_64
1621  		is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1622  #endif
1623  		insn_init(&insn, kaddr, size, is_64bit);
1624  
1625  		/*
1626  		 * Make sure there was not a problem decoding the instruction.
1627  		 * This is doubly important because we have an infinite loop if
1628  		 * insn.length=0.
1629  		 */
1630  		if (insn_get_length(&insn))
1631  			break;
1632  
1633  		to += insn.length;
1634  		kaddr += insn.length;
1635  		size -= insn.length;
1636  	} while (to < ip);
1637  
1638  	if (to == ip) {
1639  		set_linear_ip(regs, old_to);
1640  		return 1;
1641  	}
1642  
1643  	/*
1644  	 * Even though we decoded the basic block, the instruction stream
1645  	 * never matched the given IP, either the TO or the IP got corrupted.
1646  	 */
1647  	return 0;
1648  }
1649  
intel_get_tsx_weight(u64 tsx_tuning)1650  static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1651  {
1652  	if (tsx_tuning) {
1653  		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1654  		return tsx.cycles_last_block;
1655  	}
1656  	return 0;
1657  }
1658  
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1659  static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1660  {
1661  	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1662  
1663  	/* For RTM XABORTs also log the abort code from AX */
1664  	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1665  		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1666  	return txn;
1667  }
1668  
get_pebs_status(void * n)1669  static inline u64 get_pebs_status(void *n)
1670  {
1671  	if (x86_pmu.intel_cap.pebs_format < 4)
1672  		return ((struct pebs_record_nhm *)n)->status;
1673  	return ((struct pebs_basic *)n)->applicable_counters;
1674  }
1675  
1676  #define PERF_X86_EVENT_PEBS_HSW_PREC \
1677  		(PERF_X86_EVENT_PEBS_ST_HSW | \
1678  		 PERF_X86_EVENT_PEBS_LD_HSW | \
1679  		 PERF_X86_EVENT_PEBS_NA_HSW)
1680  
get_data_src(struct perf_event * event,u64 aux)1681  static u64 get_data_src(struct perf_event *event, u64 aux)
1682  {
1683  	u64 val = PERF_MEM_NA;
1684  	int fl = event->hw.flags;
1685  	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1686  
1687  	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1688  		val = load_latency_data(event, aux);
1689  	else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1690  		val = store_latency_data(event, aux);
1691  	else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1692  		val = x86_pmu.pebs_latency_data(event, aux);
1693  	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1694  		val = precise_datala_hsw(event, aux);
1695  	else if (fst)
1696  		val = precise_store_data(aux);
1697  	return val;
1698  }
1699  
setup_pebs_time(struct perf_event * event,struct perf_sample_data * data,u64 tsc)1700  static void setup_pebs_time(struct perf_event *event,
1701  			    struct perf_sample_data *data,
1702  			    u64 tsc)
1703  {
1704  	/* Converting to a user-defined clock is not supported yet. */
1705  	if (event->attr.use_clockid != 0)
1706  		return;
1707  
1708  	/*
1709  	 * Doesn't support the conversion when the TSC is unstable.
1710  	 * The TSC unstable case is a corner case and very unlikely to
1711  	 * happen. If it happens, the TSC in a PEBS record will be
1712  	 * dropped and fall back to perf_event_clock().
1713  	 */
1714  	if (!using_native_sched_clock() || !sched_clock_stable())
1715  		return;
1716  
1717  	data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1718  	data->sample_flags |= PERF_SAMPLE_TIME;
1719  }
1720  
1721  #define PERF_SAMPLE_ADDR_TYPE	(PERF_SAMPLE_ADDR |		\
1722  				 PERF_SAMPLE_PHYS_ADDR |	\
1723  				 PERF_SAMPLE_DATA_PAGE_SIZE)
1724  
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1725  static void setup_pebs_fixed_sample_data(struct perf_event *event,
1726  				   struct pt_regs *iregs, void *__pebs,
1727  				   struct perf_sample_data *data,
1728  				   struct pt_regs *regs)
1729  {
1730  	/*
1731  	 * We cast to the biggest pebs_record but are careful not to
1732  	 * unconditionally access the 'extra' entries.
1733  	 */
1734  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1735  	struct pebs_record_skl *pebs = __pebs;
1736  	u64 sample_type;
1737  	int fll;
1738  
1739  	if (pebs == NULL)
1740  		return;
1741  
1742  	sample_type = event->attr.sample_type;
1743  	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1744  
1745  	perf_sample_data_init(data, 0, event->hw.last_period);
1746  
1747  	data->period = event->hw.last_period;
1748  
1749  	/*
1750  	 * Use latency for weight (only avail with PEBS-LL)
1751  	 */
1752  	if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1753  		data->weight.full = pebs->lat;
1754  		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1755  	}
1756  
1757  	/*
1758  	 * data.data_src encodes the data source
1759  	 */
1760  	if (sample_type & PERF_SAMPLE_DATA_SRC) {
1761  		data->data_src.val = get_data_src(event, pebs->dse);
1762  		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1763  	}
1764  
1765  	/*
1766  	 * We must however always use iregs for the unwinder to stay sane; the
1767  	 * record BP,SP,IP can point into thin air when the record is from a
1768  	 * previous PMI context or an (I)RET happened between the record and
1769  	 * PMI.
1770  	 */
1771  	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1772  		perf_sample_save_callchain(data, event, iregs);
1773  
1774  	/*
1775  	 * We use the interrupt regs as a base because the PEBS record does not
1776  	 * contain a full regs set, specifically it seems to lack segment
1777  	 * descriptors, which get used by things like user_mode().
1778  	 *
1779  	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1780  	 */
1781  	*regs = *iregs;
1782  
1783  	/*
1784  	 * Initialize regs_>flags from PEBS,
1785  	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1786  	 * i.e., do not rely on it being zero:
1787  	 */
1788  	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1789  
1790  	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1791  		regs->ax = pebs->ax;
1792  		regs->bx = pebs->bx;
1793  		regs->cx = pebs->cx;
1794  		regs->dx = pebs->dx;
1795  		regs->si = pebs->si;
1796  		regs->di = pebs->di;
1797  
1798  		regs->bp = pebs->bp;
1799  		regs->sp = pebs->sp;
1800  
1801  #ifndef CONFIG_X86_32
1802  		regs->r8 = pebs->r8;
1803  		regs->r9 = pebs->r9;
1804  		regs->r10 = pebs->r10;
1805  		regs->r11 = pebs->r11;
1806  		regs->r12 = pebs->r12;
1807  		regs->r13 = pebs->r13;
1808  		regs->r14 = pebs->r14;
1809  		regs->r15 = pebs->r15;
1810  #endif
1811  	}
1812  
1813  	if (event->attr.precise_ip > 1) {
1814  		/*
1815  		 * Haswell and later processors have an 'eventing IP'
1816  		 * (real IP) which fixes the off-by-1 skid in hardware.
1817  		 * Use it when precise_ip >= 2 :
1818  		 */
1819  		if (x86_pmu.intel_cap.pebs_format >= 2) {
1820  			set_linear_ip(regs, pebs->real_ip);
1821  			regs->flags |= PERF_EFLAGS_EXACT;
1822  		} else {
1823  			/* Otherwise, use PEBS off-by-1 IP: */
1824  			set_linear_ip(regs, pebs->ip);
1825  
1826  			/*
1827  			 * With precise_ip >= 2, try to fix up the off-by-1 IP
1828  			 * using the LBR. If successful, the fixup function
1829  			 * corrects regs->ip and calls set_linear_ip() on regs:
1830  			 */
1831  			if (intel_pmu_pebs_fixup_ip(regs))
1832  				regs->flags |= PERF_EFLAGS_EXACT;
1833  		}
1834  	} else {
1835  		/*
1836  		 * When precise_ip == 1, return the PEBS off-by-1 IP,
1837  		 * no fixup attempted:
1838  		 */
1839  		set_linear_ip(regs, pebs->ip);
1840  	}
1841  
1842  
1843  	if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1844  	    x86_pmu.intel_cap.pebs_format >= 1) {
1845  		data->addr = pebs->dla;
1846  		data->sample_flags |= PERF_SAMPLE_ADDR;
1847  	}
1848  
1849  	if (x86_pmu.intel_cap.pebs_format >= 2) {
1850  		/* Only set the TSX weight when no memory weight. */
1851  		if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1852  			data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1853  			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1854  		}
1855  		if (sample_type & PERF_SAMPLE_TRANSACTION) {
1856  			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1857  							      pebs->ax);
1858  			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1859  		}
1860  	}
1861  
1862  	/*
1863  	 * v3 supplies an accurate time stamp, so we use that
1864  	 * for the time stamp.
1865  	 *
1866  	 * We can only do this for the default trace clock.
1867  	 */
1868  	if (x86_pmu.intel_cap.pebs_format >= 3)
1869  		setup_pebs_time(event, data, pebs->tsc);
1870  
1871  	if (has_branch_stack(event))
1872  		perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1873  }
1874  
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1875  static void adaptive_pebs_save_regs(struct pt_regs *regs,
1876  				    struct pebs_gprs *gprs)
1877  {
1878  	regs->ax = gprs->ax;
1879  	regs->bx = gprs->bx;
1880  	regs->cx = gprs->cx;
1881  	regs->dx = gprs->dx;
1882  	regs->si = gprs->si;
1883  	regs->di = gprs->di;
1884  	regs->bp = gprs->bp;
1885  	regs->sp = gprs->sp;
1886  #ifndef CONFIG_X86_32
1887  	regs->r8 = gprs->r8;
1888  	regs->r9 = gprs->r9;
1889  	regs->r10 = gprs->r10;
1890  	regs->r11 = gprs->r11;
1891  	regs->r12 = gprs->r12;
1892  	regs->r13 = gprs->r13;
1893  	regs->r14 = gprs->r14;
1894  	regs->r15 = gprs->r15;
1895  #endif
1896  }
1897  
1898  #define PEBS_LATENCY_MASK			0xffff
1899  #define PEBS_CACHE_LATENCY_OFFSET		32
1900  #define PEBS_RETIRE_LATENCY_OFFSET		32
1901  
1902  /*
1903   * With adaptive PEBS the layout depends on what fields are configured.
1904   */
1905  
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1906  static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1907  					    struct pt_regs *iregs, void *__pebs,
1908  					    struct perf_sample_data *data,
1909  					    struct pt_regs *regs)
1910  {
1911  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1912  	struct pebs_basic *basic = __pebs;
1913  	void *next_record = basic + 1;
1914  	u64 sample_type;
1915  	u64 format_size;
1916  	struct pebs_meminfo *meminfo = NULL;
1917  	struct pebs_gprs *gprs = NULL;
1918  	struct x86_perf_regs *perf_regs;
1919  
1920  	if (basic == NULL)
1921  		return;
1922  
1923  	perf_regs = container_of(regs, struct x86_perf_regs, regs);
1924  	perf_regs->xmm_regs = NULL;
1925  
1926  	sample_type = event->attr.sample_type;
1927  	format_size = basic->format_size;
1928  	perf_sample_data_init(data, 0, event->hw.last_period);
1929  	data->period = event->hw.last_period;
1930  
1931  	setup_pebs_time(event, data, basic->tsc);
1932  
1933  	/*
1934  	 * We must however always use iregs for the unwinder to stay sane; the
1935  	 * record BP,SP,IP can point into thin air when the record is from a
1936  	 * previous PMI context or an (I)RET happened between the record and
1937  	 * PMI.
1938  	 */
1939  	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1940  		perf_sample_save_callchain(data, event, iregs);
1941  
1942  	*regs = *iregs;
1943  	/* The ip in basic is EventingIP */
1944  	set_linear_ip(regs, basic->ip);
1945  	regs->flags = PERF_EFLAGS_EXACT;
1946  
1947  	if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
1948  		if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
1949  			data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK;
1950  		else
1951  			data->weight.var3_w = 0;
1952  	}
1953  
1954  	/*
1955  	 * The record for MEMINFO is in front of GP
1956  	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1957  	 * Save the pointer here but process later.
1958  	 */
1959  	if (format_size & PEBS_DATACFG_MEMINFO) {
1960  		meminfo = next_record;
1961  		next_record = meminfo + 1;
1962  	}
1963  
1964  	if (format_size & PEBS_DATACFG_GP) {
1965  		gprs = next_record;
1966  		next_record = gprs + 1;
1967  
1968  		if (event->attr.precise_ip < 2) {
1969  			set_linear_ip(regs, gprs->ip);
1970  			regs->flags &= ~PERF_EFLAGS_EXACT;
1971  		}
1972  
1973  		if (sample_type & PERF_SAMPLE_REGS_INTR)
1974  			adaptive_pebs_save_regs(regs, gprs);
1975  	}
1976  
1977  	if (format_size & PEBS_DATACFG_MEMINFO) {
1978  		if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1979  			u64 weight = meminfo->latency;
1980  
1981  			if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1982  				data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1983  				weight >>= PEBS_CACHE_LATENCY_OFFSET;
1984  			}
1985  
1986  			/*
1987  			 * Although meminfo::latency is defined as a u64,
1988  			 * only the lower 32 bits include the valid data
1989  			 * in practice on Ice Lake and earlier platforms.
1990  			 */
1991  			if (sample_type & PERF_SAMPLE_WEIGHT) {
1992  				data->weight.full = weight ?:
1993  					intel_get_tsx_weight(meminfo->tsx_tuning);
1994  			} else {
1995  				data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1996  					intel_get_tsx_weight(meminfo->tsx_tuning);
1997  			}
1998  			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1999  		}
2000  
2001  		if (sample_type & PERF_SAMPLE_DATA_SRC) {
2002  			data->data_src.val = get_data_src(event, meminfo->aux);
2003  			data->sample_flags |= PERF_SAMPLE_DATA_SRC;
2004  		}
2005  
2006  		if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
2007  			data->addr = meminfo->address;
2008  			data->sample_flags |= PERF_SAMPLE_ADDR;
2009  		}
2010  
2011  		if (sample_type & PERF_SAMPLE_TRANSACTION) {
2012  			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
2013  							  gprs ? gprs->ax : 0);
2014  			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
2015  		}
2016  	}
2017  
2018  	if (format_size & PEBS_DATACFG_XMMS) {
2019  		struct pebs_xmm *xmm = next_record;
2020  
2021  		next_record = xmm + 1;
2022  		perf_regs->xmm_regs = xmm->xmm;
2023  	}
2024  
2025  	if (format_size & PEBS_DATACFG_LBRS) {
2026  		struct lbr_entry *lbr = next_record;
2027  		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
2028  					& 0xff) + 1;
2029  		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
2030  
2031  		if (has_branch_stack(event)) {
2032  			intel_pmu_store_pebs_lbrs(lbr);
2033  			intel_pmu_lbr_save_brstack(data, cpuc, event);
2034  		}
2035  	}
2036  
2037  	WARN_ONCE(next_record != __pebs + (format_size >> 48),
2038  			"PEBS record size %llu, expected %llu, config %llx\n",
2039  			format_size >> 48,
2040  			(u64)(next_record - __pebs),
2041  			basic->format_size);
2042  }
2043  
2044  static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)2045  get_next_pebs_record_by_bit(void *base, void *top, int bit)
2046  {
2047  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2048  	void *at;
2049  	u64 pebs_status;
2050  
2051  	/*
2052  	 * fmt0 does not have a status bitfield (does not use
2053  	 * perf_record_nhm format)
2054  	 */
2055  	if (x86_pmu.intel_cap.pebs_format < 1)
2056  		return base;
2057  
2058  	if (base == NULL)
2059  		return NULL;
2060  
2061  	for (at = base; at < top; at += cpuc->pebs_record_size) {
2062  		unsigned long status = get_pebs_status(at);
2063  
2064  		if (test_bit(bit, (unsigned long *)&status)) {
2065  			/* PEBS v3 has accurate status bits */
2066  			if (x86_pmu.intel_cap.pebs_format >= 3)
2067  				return at;
2068  
2069  			if (status == (1 << bit))
2070  				return at;
2071  
2072  			/* clear non-PEBS bit and re-check */
2073  			pebs_status = status & cpuc->pebs_enabled;
2074  			pebs_status &= PEBS_COUNTER_MASK;
2075  			if (pebs_status == (1 << bit))
2076  				return at;
2077  		}
2078  	}
2079  	return NULL;
2080  }
2081  
intel_pmu_auto_reload_read(struct perf_event * event)2082  void intel_pmu_auto_reload_read(struct perf_event *event)
2083  {
2084  	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
2085  
2086  	perf_pmu_disable(event->pmu);
2087  	intel_pmu_drain_pebs_buffer();
2088  	perf_pmu_enable(event->pmu);
2089  }
2090  
2091  /*
2092   * Special variant of intel_pmu_save_and_restart() for auto-reload.
2093   */
2094  static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)2095  intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
2096  {
2097  	struct hw_perf_event *hwc = &event->hw;
2098  	int shift = 64 - x86_pmu.cntval_bits;
2099  	u64 period = hwc->sample_period;
2100  	u64 prev_raw_count, new_raw_count;
2101  	s64 new, old;
2102  
2103  	WARN_ON(!period);
2104  
2105  	/*
2106  	 * drain_pebs() only happens when the PMU is disabled.
2107  	 */
2108  	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2109  
2110  	prev_raw_count = local64_read(&hwc->prev_count);
2111  	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
2112  	local64_set(&hwc->prev_count, new_raw_count);
2113  
2114  	/*
2115  	 * Since the counter increments a negative counter value and
2116  	 * overflows on the sign switch, giving the interval:
2117  	 *
2118  	 *   [-period, 0]
2119  	 *
2120  	 * the difference between two consecutive reads is:
2121  	 *
2122  	 *   A) value2 - value1;
2123  	 *      when no overflows have happened in between,
2124  	 *
2125  	 *   B) (0 - value1) + (value2 - (-period));
2126  	 *      when one overflow happened in between,
2127  	 *
2128  	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2129  	 *      when @n overflows happened in between.
2130  	 *
2131  	 * Here A) is the obvious difference, B) is the extension to the
2132  	 * discrete interval, where the first term is to the top of the
2133  	 * interval and the second term is from the bottom of the next
2134  	 * interval and C) the extension to multiple intervals, where the
2135  	 * middle term is the whole intervals covered.
2136  	 *
2137  	 * An equivalent of C, by reduction, is:
2138  	 *
2139  	 *   value2 - value1 + n * period
2140  	 */
2141  	new = ((s64)(new_raw_count << shift) >> shift);
2142  	old = ((s64)(prev_raw_count << shift) >> shift);
2143  	local64_add(new - old + count * period, &event->count);
2144  
2145  	local64_set(&hwc->period_left, -new);
2146  
2147  	perf_event_update_userpage(event);
2148  
2149  	return 0;
2150  }
2151  
2152  static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,void (* setup_sample)(struct perf_event *,struct pt_regs *,void *,struct perf_sample_data *,struct pt_regs *))2153  __intel_pmu_pebs_event(struct perf_event *event,
2154  		       struct pt_regs *iregs,
2155  		       struct perf_sample_data *data,
2156  		       void *base, void *top,
2157  		       int bit, int count,
2158  		       void (*setup_sample)(struct perf_event *,
2159  					    struct pt_regs *,
2160  					    void *,
2161  					    struct perf_sample_data *,
2162  					    struct pt_regs *))
2163  {
2164  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2165  	struct hw_perf_event *hwc = &event->hw;
2166  	struct x86_perf_regs perf_regs;
2167  	struct pt_regs *regs = &perf_regs.regs;
2168  	void *at = get_next_pebs_record_by_bit(base, top, bit);
2169  	static struct pt_regs dummy_iregs;
2170  
2171  	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2172  		/*
2173  		 * Now, auto-reload is only enabled in fixed period mode.
2174  		 * The reload value is always hwc->sample_period.
2175  		 * May need to change it, if auto-reload is enabled in
2176  		 * freq mode later.
2177  		 */
2178  		intel_pmu_save_and_restart_reload(event, count);
2179  	} else if (!intel_pmu_save_and_restart(event))
2180  		return;
2181  
2182  	if (!iregs)
2183  		iregs = &dummy_iregs;
2184  
2185  	while (count > 1) {
2186  		setup_sample(event, iregs, at, data, regs);
2187  		perf_event_output(event, data, regs);
2188  		at += cpuc->pebs_record_size;
2189  		at = get_next_pebs_record_by_bit(at, top, bit);
2190  		count--;
2191  	}
2192  
2193  	setup_sample(event, iregs, at, data, regs);
2194  	if (iregs == &dummy_iregs) {
2195  		/*
2196  		 * The PEBS records may be drained in the non-overflow context,
2197  		 * e.g., large PEBS + context switch. Perf should treat the
2198  		 * last record the same as other PEBS records, and doesn't
2199  		 * invoke the generic overflow handler.
2200  		 */
2201  		perf_event_output(event, data, regs);
2202  	} else {
2203  		/*
2204  		 * All but the last records are processed.
2205  		 * The last one is left to be able to call the overflow handler.
2206  		 */
2207  		if (perf_event_overflow(event, data, regs))
2208  			x86_pmu_stop(event, 0);
2209  	}
2210  }
2211  
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)2212  static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2213  {
2214  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2215  	struct debug_store *ds = cpuc->ds;
2216  	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2217  	struct pebs_record_core *at, *top;
2218  	int n;
2219  
2220  	if (!x86_pmu.pebs_active)
2221  		return;
2222  
2223  	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2224  	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2225  
2226  	/*
2227  	 * Whatever else happens, drain the thing
2228  	 */
2229  	ds->pebs_index = ds->pebs_buffer_base;
2230  
2231  	if (!test_bit(0, cpuc->active_mask))
2232  		return;
2233  
2234  	WARN_ON_ONCE(!event);
2235  
2236  	if (!event->attr.precise_ip)
2237  		return;
2238  
2239  	n = top - at;
2240  	if (n <= 0) {
2241  		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2242  			intel_pmu_save_and_restart_reload(event, 0);
2243  		return;
2244  	}
2245  
2246  	__intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2247  			       setup_pebs_fixed_sample_data);
2248  }
2249  
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,int size)2250  static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2251  {
2252  	struct perf_event *event;
2253  	int bit;
2254  
2255  	/*
2256  	 * The drain_pebs() could be called twice in a short period
2257  	 * for auto-reload event in pmu::read(). There are no
2258  	 * overflows have happened in between.
2259  	 * It needs to call intel_pmu_save_and_restart_reload() to
2260  	 * update the event->count for this case.
2261  	 */
2262  	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2263  		event = cpuc->events[bit];
2264  		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2265  			intel_pmu_save_and_restart_reload(event, 0);
2266  	}
2267  }
2268  
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)2269  static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2270  {
2271  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2272  	struct debug_store *ds = cpuc->ds;
2273  	struct perf_event *event;
2274  	void *base, *at, *top;
2275  	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2276  	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2277  	int max_pebs_events = intel_pmu_max_num_pebs(NULL);
2278  	int bit, i, size;
2279  	u64 mask;
2280  
2281  	if (!x86_pmu.pebs_active)
2282  		return;
2283  
2284  	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2285  	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2286  
2287  	ds->pebs_index = ds->pebs_buffer_base;
2288  
2289  	mask = x86_pmu.pebs_events_mask;
2290  	size = max_pebs_events;
2291  	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2292  		mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED;
2293  		size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL);
2294  	}
2295  
2296  	if (unlikely(base >= top)) {
2297  		intel_pmu_pebs_event_update_no_drain(cpuc, size);
2298  		return;
2299  	}
2300  
2301  	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2302  		struct pebs_record_nhm *p = at;
2303  		u64 pebs_status;
2304  
2305  		pebs_status = p->status & cpuc->pebs_enabled;
2306  		pebs_status &= mask;
2307  
2308  		/* PEBS v3 has more accurate status bits */
2309  		if (x86_pmu.intel_cap.pebs_format >= 3) {
2310  			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2311  				counts[bit]++;
2312  
2313  			continue;
2314  		}
2315  
2316  		/*
2317  		 * On some CPUs the PEBS status can be zero when PEBS is
2318  		 * racing with clearing of GLOBAL_STATUS.
2319  		 *
2320  		 * Normally we would drop that record, but in the
2321  		 * case when there is only a single active PEBS event
2322  		 * we can assume it's for that event.
2323  		 */
2324  		if (!pebs_status && cpuc->pebs_enabled &&
2325  			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2326  			pebs_status = p->status = cpuc->pebs_enabled;
2327  
2328  		bit = find_first_bit((unsigned long *)&pebs_status,
2329  				     max_pebs_events);
2330  
2331  		if (!(x86_pmu.pebs_events_mask & (1 << bit)))
2332  			continue;
2333  
2334  		/*
2335  		 * The PEBS hardware does not deal well with the situation
2336  		 * when events happen near to each other and multiple bits
2337  		 * are set. But it should happen rarely.
2338  		 *
2339  		 * If these events include one PEBS and multiple non-PEBS
2340  		 * events, it doesn't impact PEBS record. The record will
2341  		 * be handled normally. (slow path)
2342  		 *
2343  		 * If these events include two or more PEBS events, the
2344  		 * records for the events can be collapsed into a single
2345  		 * one, and it's not possible to reconstruct all events
2346  		 * that caused the PEBS record. It's called collision.
2347  		 * If collision happened, the record will be dropped.
2348  		 */
2349  		if (pebs_status != (1ULL << bit)) {
2350  			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2351  				error[i]++;
2352  			continue;
2353  		}
2354  
2355  		counts[bit]++;
2356  	}
2357  
2358  	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2359  		if ((counts[bit] == 0) && (error[bit] == 0))
2360  			continue;
2361  
2362  		event = cpuc->events[bit];
2363  		if (WARN_ON_ONCE(!event))
2364  			continue;
2365  
2366  		if (WARN_ON_ONCE(!event->attr.precise_ip))
2367  			continue;
2368  
2369  		/* log dropped samples number */
2370  		if (error[bit]) {
2371  			perf_log_lost_samples(event, error[bit]);
2372  
2373  			if (iregs && perf_event_account_interrupt(event))
2374  				x86_pmu_stop(event, 0);
2375  		}
2376  
2377  		if (counts[bit]) {
2378  			__intel_pmu_pebs_event(event, iregs, data, base,
2379  					       top, bit, counts[bit],
2380  					       setup_pebs_fixed_sample_data);
2381  		}
2382  	}
2383  }
2384  
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2385  static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2386  {
2387  	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2388  	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2389  	struct debug_store *ds = cpuc->ds;
2390  	struct perf_event *event;
2391  	void *base, *at, *top;
2392  	int bit;
2393  	u64 mask;
2394  
2395  	if (!x86_pmu.pebs_active)
2396  		return;
2397  
2398  	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2399  	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2400  
2401  	ds->pebs_index = ds->pebs_buffer_base;
2402  
2403  	mask = hybrid(cpuc->pmu, pebs_events_mask) |
2404  	       (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED);
2405  
2406  	if (unlikely(base >= top)) {
2407  		intel_pmu_pebs_event_update_no_drain(cpuc, X86_PMC_IDX_MAX);
2408  		return;
2409  	}
2410  
2411  	for (at = base; at < top; at += cpuc->pebs_record_size) {
2412  		u64 pebs_status;
2413  
2414  		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2415  		pebs_status &= mask;
2416  
2417  		for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX)
2418  			counts[bit]++;
2419  	}
2420  
2421  	for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) {
2422  		if (counts[bit] == 0)
2423  			continue;
2424  
2425  		event = cpuc->events[bit];
2426  		if (WARN_ON_ONCE(!event))
2427  			continue;
2428  
2429  		if (WARN_ON_ONCE(!event->attr.precise_ip))
2430  			continue;
2431  
2432  		__intel_pmu_pebs_event(event, iregs, data, base,
2433  				       top, bit, counts[bit],
2434  				       setup_pebs_adaptive_sample_data);
2435  	}
2436  }
2437  
2438  /*
2439   * BTS, PEBS probe and setup
2440   */
2441  
intel_ds_init(void)2442  void __init intel_ds_init(void)
2443  {
2444  	/*
2445  	 * No support for 32bit formats
2446  	 */
2447  	if (!boot_cpu_has(X86_FEATURE_DTES64))
2448  		return;
2449  
2450  	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2451  	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2452  	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2453  	if (x86_pmu.version <= 4)
2454  		x86_pmu.pebs_no_isolation = 1;
2455  
2456  	if (x86_pmu.pebs) {
2457  		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2458  		char *pebs_qual = "";
2459  		int format = x86_pmu.intel_cap.pebs_format;
2460  
2461  		if (format < 4)
2462  			x86_pmu.intel_cap.pebs_baseline = 0;
2463  
2464  		switch (format) {
2465  		case 0:
2466  			pr_cont("PEBS fmt0%c, ", pebs_type);
2467  			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2468  			/*
2469  			 * Using >PAGE_SIZE buffers makes the WRMSR to
2470  			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2471  			 * mysteriously hang on Core2.
2472  			 *
2473  			 * As a workaround, we don't do this.
2474  			 */
2475  			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2476  			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2477  			break;
2478  
2479  		case 1:
2480  			pr_cont("PEBS fmt1%c, ", pebs_type);
2481  			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2482  			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2483  			break;
2484  
2485  		case 2:
2486  			pr_cont("PEBS fmt2%c, ", pebs_type);
2487  			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2488  			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2489  			break;
2490  
2491  		case 3:
2492  			pr_cont("PEBS fmt3%c, ", pebs_type);
2493  			x86_pmu.pebs_record_size =
2494  						sizeof(struct pebs_record_skl);
2495  			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2496  			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2497  			break;
2498  
2499  		case 5:
2500  			x86_pmu.pebs_ept = 1;
2501  			fallthrough;
2502  		case 4:
2503  			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2504  			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2505  			if (x86_pmu.intel_cap.pebs_baseline) {
2506  				x86_pmu.large_pebs_flags |=
2507  					PERF_SAMPLE_BRANCH_STACK |
2508  					PERF_SAMPLE_TIME;
2509  				x86_pmu.flags |= PMU_FL_PEBS_ALL;
2510  				x86_pmu.pebs_capable = ~0ULL;
2511  				pebs_qual = "-baseline";
2512  				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2513  			} else {
2514  				/* Only basic record supported */
2515  				x86_pmu.large_pebs_flags &=
2516  					~(PERF_SAMPLE_ADDR |
2517  					  PERF_SAMPLE_TIME |
2518  					  PERF_SAMPLE_DATA_SRC |
2519  					  PERF_SAMPLE_TRANSACTION |
2520  					  PERF_SAMPLE_REGS_USER |
2521  					  PERF_SAMPLE_REGS_INTR);
2522  			}
2523  			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2524  
2525  			if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2526  				pr_cont("PEBS-via-PT, ");
2527  				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2528  			}
2529  
2530  			break;
2531  
2532  		default:
2533  			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2534  			x86_pmu.pebs = 0;
2535  		}
2536  	}
2537  }
2538  
perf_restore_debug_store(void)2539  void perf_restore_debug_store(void)
2540  {
2541  	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2542  
2543  	if (!x86_pmu.bts && !x86_pmu.pebs)
2544  		return;
2545  
2546  	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2547  }
2548