1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  *
8  * The System z PCI code is a rewrite from a prototype by
9  * the following people (Kudoz!):
10  *   Alexander Schmidt
11  *   Christoph Raisch
12  *   Hannes Hering
13  *   Hoang-Nam Nguyen
14  *   Jan-Bernd Themann
15  *   Stefan Roscher
16  *   Thomas Klein
17  */
18 
19 #define KMSG_COMPONENT "zpci"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/err.h>
25 #include <linux/export.h>
26 #include <linux/delay.h>
27 #include <linux/seq_file.h>
28 #include <linux/jump_label.h>
29 #include <linux/pci.h>
30 #include <linux/printk.h>
31 #include <linux/lockdep.h>
32 
33 #include <asm/isc.h>
34 #include <asm/airq.h>
35 #include <asm/facility.h>
36 #include <asm/pci_insn.h>
37 #include <asm/pci_clp.h>
38 #include <asm/pci_dma.h>
39 
40 #include "pci_bus.h"
41 #include "pci_iov.h"
42 
43 /* list of all detected zpci devices */
44 static LIST_HEAD(zpci_list);
45 static DEFINE_SPINLOCK(zpci_list_lock);
46 
47 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
48 static DEFINE_SPINLOCK(zpci_domain_lock);
49 
50 #define ZPCI_IOMAP_ENTRIES						\
51 	min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),	\
52 	    ZPCI_IOMAP_MAX_ENTRIES)
53 
54 unsigned int s390_pci_no_rid;
55 
56 static DEFINE_SPINLOCK(zpci_iomap_lock);
57 static unsigned long *zpci_iomap_bitmap;
58 struct zpci_iomap_entry *zpci_iomap_start;
59 EXPORT_SYMBOL_GPL(zpci_iomap_start);
60 
61 DEFINE_STATIC_KEY_FALSE(have_mio);
62 
63 static struct kmem_cache *zdev_fmb_cache;
64 
65 /* AEN structures that must be preserved over KVM module re-insertion */
66 union zpci_sic_iib *zpci_aipb;
67 EXPORT_SYMBOL_GPL(zpci_aipb);
68 struct airq_iv *zpci_aif_sbv;
69 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
70 
get_zdev_by_fid(u32 fid)71 struct zpci_dev *get_zdev_by_fid(u32 fid)
72 {
73 	struct zpci_dev *tmp, *zdev = NULL;
74 
75 	spin_lock(&zpci_list_lock);
76 	list_for_each_entry(tmp, &zpci_list, entry) {
77 		if (tmp->fid == fid) {
78 			zdev = tmp;
79 			zpci_zdev_get(zdev);
80 			break;
81 		}
82 	}
83 	spin_unlock(&zpci_list_lock);
84 	return zdev;
85 }
86 
zpci_remove_reserved_devices(void)87 void zpci_remove_reserved_devices(void)
88 {
89 	struct zpci_dev *tmp, *zdev;
90 	enum zpci_state state;
91 	LIST_HEAD(remove);
92 
93 	spin_lock(&zpci_list_lock);
94 	list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
95 		if (zdev->state == ZPCI_FN_STATE_STANDBY &&
96 		    !clp_get_state(zdev->fid, &state) &&
97 		    state == ZPCI_FN_STATE_RESERVED)
98 			list_move_tail(&zdev->entry, &remove);
99 	}
100 	spin_unlock(&zpci_list_lock);
101 
102 	list_for_each_entry_safe(zdev, tmp, &remove, entry)
103 		zpci_device_reserved(zdev);
104 }
105 
pci_domain_nr(struct pci_bus * bus)106 int pci_domain_nr(struct pci_bus *bus)
107 {
108 	return ((struct zpci_bus *) bus->sysdata)->domain_nr;
109 }
110 EXPORT_SYMBOL_GPL(pci_domain_nr);
111 
pci_proc_domain(struct pci_bus * bus)112 int pci_proc_domain(struct pci_bus *bus)
113 {
114 	return pci_domain_nr(bus);
115 }
116 EXPORT_SYMBOL_GPL(pci_proc_domain);
117 
118 /* Modify PCI: Register I/O address translation parameters */
zpci_register_ioat(struct zpci_dev * zdev,u8 dmaas,u64 base,u64 limit,u64 iota,u8 * status)119 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
120 		       u64 base, u64 limit, u64 iota, u8 *status)
121 {
122 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
123 	struct zpci_fib fib = {0};
124 	u8 cc;
125 
126 	WARN_ON_ONCE(iota & 0x3fff);
127 	fib.pba = base;
128 	/* Work around off by one in ISM virt device */
129 	if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
130 		fib.pal = limit + (1 << 12);
131 	else
132 		fib.pal = limit;
133 	fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
134 	fib.gd = zdev->gisa;
135 	cc = zpci_mod_fc(req, &fib, status);
136 	if (cc)
137 		zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
138 	return cc;
139 }
140 EXPORT_SYMBOL_GPL(zpci_register_ioat);
141 
142 /* Modify PCI: Unregister I/O address translation parameters */
zpci_unregister_ioat(struct zpci_dev * zdev,u8 dmaas)143 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
144 {
145 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
146 	struct zpci_fib fib = {0};
147 	u8 cc, status;
148 
149 	fib.gd = zdev->gisa;
150 
151 	cc = zpci_mod_fc(req, &fib, &status);
152 	if (cc)
153 		zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
154 	return cc;
155 }
156 
157 /* Modify PCI: Set PCI function measurement parameters */
zpci_fmb_enable_device(struct zpci_dev * zdev)158 int zpci_fmb_enable_device(struct zpci_dev *zdev)
159 {
160 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
161 	struct zpci_iommu_ctrs *ctrs;
162 	struct zpci_fib fib = {0};
163 	u8 cc, status;
164 
165 	if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
166 		return -EINVAL;
167 
168 	zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
169 	if (!zdev->fmb)
170 		return -ENOMEM;
171 	WARN_ON((u64) zdev->fmb & 0xf);
172 
173 	/* reset software counters */
174 	ctrs = zpci_get_iommu_ctrs(zdev);
175 	if (ctrs) {
176 		atomic64_set(&ctrs->mapped_pages, 0);
177 		atomic64_set(&ctrs->unmapped_pages, 0);
178 		atomic64_set(&ctrs->global_rpcits, 0);
179 		atomic64_set(&ctrs->sync_map_rpcits, 0);
180 		atomic64_set(&ctrs->sync_rpcits, 0);
181 	}
182 
183 
184 	fib.fmb_addr = virt_to_phys(zdev->fmb);
185 	fib.gd = zdev->gisa;
186 	cc = zpci_mod_fc(req, &fib, &status);
187 	if (cc) {
188 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
189 		zdev->fmb = NULL;
190 	}
191 	return cc ? -EIO : 0;
192 }
193 
194 /* Modify PCI: Disable PCI function measurement */
zpci_fmb_disable_device(struct zpci_dev * zdev)195 int zpci_fmb_disable_device(struct zpci_dev *zdev)
196 {
197 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
198 	struct zpci_fib fib = {0};
199 	u8 cc, status;
200 
201 	if (!zdev->fmb)
202 		return -EINVAL;
203 
204 	fib.gd = zdev->gisa;
205 
206 	/* Function measurement is disabled if fmb address is zero */
207 	cc = zpci_mod_fc(req, &fib, &status);
208 	if (cc == 3) /* Function already gone. */
209 		cc = 0;
210 
211 	if (!cc) {
212 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
213 		zdev->fmb = NULL;
214 	}
215 	return cc ? -EIO : 0;
216 }
217 
zpci_cfg_load(struct zpci_dev * zdev,int offset,u32 * val,u8 len)218 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
219 {
220 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
221 	u64 data;
222 	int rc;
223 
224 	rc = __zpci_load(&data, req, offset);
225 	if (!rc) {
226 		data = le64_to_cpu((__force __le64) data);
227 		data >>= (8 - len) * 8;
228 		*val = (u32) data;
229 	} else
230 		*val = 0xffffffff;
231 	return rc;
232 }
233 
zpci_cfg_store(struct zpci_dev * zdev,int offset,u32 val,u8 len)234 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
235 {
236 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
237 	u64 data = val;
238 	int rc;
239 
240 	data <<= (8 - len) * 8;
241 	data = (__force u64) cpu_to_le64(data);
242 	rc = __zpci_store(data, req, offset);
243 	return rc;
244 }
245 
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)246 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
247 				       resource_size_t size,
248 				       resource_size_t align)
249 {
250 	return 0;
251 }
252 
ioremap_prot(phys_addr_t phys_addr,size_t size,unsigned long prot)253 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
254 			   unsigned long prot)
255 {
256 	/*
257 	 * When PCI MIO instructions are unavailable the "physical" address
258 	 * encodes a hint for accessing the PCI memory space it represents.
259 	 * Just pass it unchanged such that ioread/iowrite can decode it.
260 	 */
261 	if (!static_branch_unlikely(&have_mio))
262 		return (void __iomem *)phys_addr;
263 
264 	return generic_ioremap_prot(phys_addr, size, __pgprot(prot));
265 }
266 EXPORT_SYMBOL(ioremap_prot);
267 
iounmap(volatile void __iomem * addr)268 void iounmap(volatile void __iomem *addr)
269 {
270 	if (static_branch_likely(&have_mio))
271 		generic_iounmap(addr);
272 }
273 EXPORT_SYMBOL(iounmap);
274 
275 /* Create a virtual mapping cookie for a PCI BAR */
pci_iomap_range_fh(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)276 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
277 					unsigned long offset, unsigned long max)
278 {
279 	struct zpci_dev *zdev =	to_zpci(pdev);
280 	int idx;
281 
282 	idx = zdev->bars[bar].map_idx;
283 	spin_lock(&zpci_iomap_lock);
284 	/* Detect overrun */
285 	WARN_ON(!++zpci_iomap_start[idx].count);
286 	zpci_iomap_start[idx].fh = zdev->fh;
287 	zpci_iomap_start[idx].bar = bar;
288 	spin_unlock(&zpci_iomap_lock);
289 
290 	return (void __iomem *) ZPCI_ADDR(idx) + offset;
291 }
292 
pci_iomap_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)293 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
294 					 unsigned long offset,
295 					 unsigned long max)
296 {
297 	unsigned long barsize = pci_resource_len(pdev, bar);
298 	struct zpci_dev *zdev = to_zpci(pdev);
299 	void __iomem *iova;
300 
301 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
302 	return iova ? iova + offset : iova;
303 }
304 
pci_iomap_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)305 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
306 			      unsigned long offset, unsigned long max)
307 {
308 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
309 		return NULL;
310 
311 	if (static_branch_likely(&have_mio))
312 		return pci_iomap_range_mio(pdev, bar, offset, max);
313 	else
314 		return pci_iomap_range_fh(pdev, bar, offset, max);
315 }
316 EXPORT_SYMBOL(pci_iomap_range);
317 
pci_iomap(struct pci_dev * dev,int bar,unsigned long maxlen)318 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
319 {
320 	return pci_iomap_range(dev, bar, 0, maxlen);
321 }
322 EXPORT_SYMBOL(pci_iomap);
323 
pci_iomap_wc_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)324 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
325 					    unsigned long offset, unsigned long max)
326 {
327 	unsigned long barsize = pci_resource_len(pdev, bar);
328 	struct zpci_dev *zdev = to_zpci(pdev);
329 	void __iomem *iova;
330 
331 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
332 	return iova ? iova + offset : iova;
333 }
334 
pci_iomap_wc_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)335 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
336 				 unsigned long offset, unsigned long max)
337 {
338 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
339 		return NULL;
340 
341 	if (static_branch_likely(&have_mio))
342 		return pci_iomap_wc_range_mio(pdev, bar, offset, max);
343 	else
344 		return pci_iomap_range_fh(pdev, bar, offset, max);
345 }
346 EXPORT_SYMBOL(pci_iomap_wc_range);
347 
pci_iomap_wc(struct pci_dev * dev,int bar,unsigned long maxlen)348 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
349 {
350 	return pci_iomap_wc_range(dev, bar, 0, maxlen);
351 }
352 EXPORT_SYMBOL(pci_iomap_wc);
353 
pci_iounmap_fh(struct pci_dev * pdev,void __iomem * addr)354 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
355 {
356 	unsigned int idx = ZPCI_IDX(addr);
357 
358 	spin_lock(&zpci_iomap_lock);
359 	/* Detect underrun */
360 	WARN_ON(!zpci_iomap_start[idx].count);
361 	if (!--zpci_iomap_start[idx].count) {
362 		zpci_iomap_start[idx].fh = 0;
363 		zpci_iomap_start[idx].bar = 0;
364 	}
365 	spin_unlock(&zpci_iomap_lock);
366 }
367 
pci_iounmap_mio(struct pci_dev * pdev,void __iomem * addr)368 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
369 {
370 	iounmap(addr);
371 }
372 
pci_iounmap(struct pci_dev * pdev,void __iomem * addr)373 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
374 {
375 	if (static_branch_likely(&have_mio))
376 		pci_iounmap_mio(pdev, addr);
377 	else
378 		pci_iounmap_fh(pdev, addr);
379 }
380 EXPORT_SYMBOL(pci_iounmap);
381 
pci_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)382 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
383 		    int size, u32 *val)
384 {
385 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
386 
387 	return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
388 }
389 
pci_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)390 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
391 		     int size, u32 val)
392 {
393 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
394 
395 	return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
396 }
397 
398 static struct pci_ops pci_root_ops = {
399 	.read = pci_read,
400 	.write = pci_write,
401 };
402 
zpci_map_resources(struct pci_dev * pdev)403 static void zpci_map_resources(struct pci_dev *pdev)
404 {
405 	struct zpci_dev *zdev = to_zpci(pdev);
406 	resource_size_t len;
407 	int i;
408 
409 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
410 		len = pci_resource_len(pdev, i);
411 		if (!len)
412 			continue;
413 
414 		if (zpci_use_mio(zdev))
415 			pdev->resource[i].start =
416 				(resource_size_t __force) zdev->bars[i].mio_wt;
417 		else
418 			pdev->resource[i].start = (resource_size_t __force)
419 				pci_iomap_range_fh(pdev, i, 0, 0);
420 		pdev->resource[i].end = pdev->resource[i].start + len - 1;
421 	}
422 
423 	zpci_iov_map_resources(pdev);
424 }
425 
zpci_unmap_resources(struct pci_dev * pdev)426 static void zpci_unmap_resources(struct pci_dev *pdev)
427 {
428 	struct zpci_dev *zdev = to_zpci(pdev);
429 	resource_size_t len;
430 	int i;
431 
432 	if (zpci_use_mio(zdev))
433 		return;
434 
435 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
436 		len = pci_resource_len(pdev, i);
437 		if (!len)
438 			continue;
439 		pci_iounmap_fh(pdev, (void __iomem __force *)
440 			       pdev->resource[i].start);
441 	}
442 }
443 
zpci_alloc_iomap(struct zpci_dev * zdev)444 static int zpci_alloc_iomap(struct zpci_dev *zdev)
445 {
446 	unsigned long entry;
447 
448 	spin_lock(&zpci_iomap_lock);
449 	entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
450 	if (entry == ZPCI_IOMAP_ENTRIES) {
451 		spin_unlock(&zpci_iomap_lock);
452 		return -ENOSPC;
453 	}
454 	set_bit(entry, zpci_iomap_bitmap);
455 	spin_unlock(&zpci_iomap_lock);
456 	return entry;
457 }
458 
zpci_free_iomap(struct zpci_dev * zdev,int entry)459 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
460 {
461 	spin_lock(&zpci_iomap_lock);
462 	memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
463 	clear_bit(entry, zpci_iomap_bitmap);
464 	spin_unlock(&zpci_iomap_lock);
465 }
466 
zpci_do_update_iomap_fh(struct zpci_dev * zdev,u32 fh)467 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
468 {
469 	int bar, idx;
470 
471 	spin_lock(&zpci_iomap_lock);
472 	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
473 		if (!zdev->bars[bar].size)
474 			continue;
475 		idx = zdev->bars[bar].map_idx;
476 		if (!zpci_iomap_start[idx].count)
477 			continue;
478 		WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
479 	}
480 	spin_unlock(&zpci_iomap_lock);
481 }
482 
zpci_update_fh(struct zpci_dev * zdev,u32 fh)483 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
484 {
485 	if (!fh || zdev->fh == fh)
486 		return;
487 
488 	zdev->fh = fh;
489 	if (zpci_use_mio(zdev))
490 		return;
491 	if (zdev->has_resources && zdev_enabled(zdev))
492 		zpci_do_update_iomap_fh(zdev, fh);
493 }
494 
__alloc_res(struct zpci_dev * zdev,unsigned long start,unsigned long size,unsigned long flags)495 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
496 				    unsigned long size, unsigned long flags)
497 {
498 	struct resource *r;
499 
500 	r = kzalloc(sizeof(*r), GFP_KERNEL);
501 	if (!r)
502 		return NULL;
503 
504 	r->start = start;
505 	r->end = r->start + size - 1;
506 	r->flags = flags;
507 	r->name = zdev->res_name;
508 
509 	if (request_resource(&iomem_resource, r)) {
510 		kfree(r);
511 		return NULL;
512 	}
513 	return r;
514 }
515 
zpci_setup_bus_resources(struct zpci_dev * zdev)516 int zpci_setup_bus_resources(struct zpci_dev *zdev)
517 {
518 	unsigned long addr, size, flags;
519 	struct resource *res;
520 	int i, entry;
521 
522 	snprintf(zdev->res_name, sizeof(zdev->res_name),
523 		 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
524 
525 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
526 		if (!zdev->bars[i].size)
527 			continue;
528 		entry = zpci_alloc_iomap(zdev);
529 		if (entry < 0)
530 			return entry;
531 		zdev->bars[i].map_idx = entry;
532 
533 		/* only MMIO is supported */
534 		flags = IORESOURCE_MEM;
535 		if (zdev->bars[i].val & 8)
536 			flags |= IORESOURCE_PREFETCH;
537 		if (zdev->bars[i].val & 4)
538 			flags |= IORESOURCE_MEM_64;
539 
540 		if (zpci_use_mio(zdev))
541 			addr = (unsigned long) zdev->bars[i].mio_wt;
542 		else
543 			addr = ZPCI_ADDR(entry);
544 		size = 1UL << zdev->bars[i].size;
545 
546 		res = __alloc_res(zdev, addr, size, flags);
547 		if (!res) {
548 			zpci_free_iomap(zdev, entry);
549 			return -ENOMEM;
550 		}
551 		zdev->bars[i].res = res;
552 	}
553 	zdev->has_resources = 1;
554 
555 	return 0;
556 }
557 
zpci_cleanup_bus_resources(struct zpci_dev * zdev)558 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
559 {
560 	struct resource *res;
561 	int i;
562 
563 	pci_lock_rescan_remove();
564 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
565 		res = zdev->bars[i].res;
566 		if (!res)
567 			continue;
568 
569 		release_resource(res);
570 		pci_bus_remove_resource(zdev->zbus->bus, res);
571 		zpci_free_iomap(zdev, zdev->bars[i].map_idx);
572 		zdev->bars[i].res = NULL;
573 		kfree(res);
574 	}
575 	zdev->has_resources = 0;
576 	pci_unlock_rescan_remove();
577 }
578 
pcibios_device_add(struct pci_dev * pdev)579 int pcibios_device_add(struct pci_dev *pdev)
580 {
581 	struct zpci_dev *zdev = to_zpci(pdev);
582 	struct resource *res;
583 	int i;
584 
585 	/* The pdev has a reference to the zdev via its bus */
586 	zpci_zdev_get(zdev);
587 	if (pdev->is_physfn)
588 		pdev->no_vf_scan = 1;
589 
590 	zpci_map_resources(pdev);
591 
592 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
593 		res = &pdev->resource[i];
594 		if (res->parent || !res->flags)
595 			continue;
596 		pci_claim_resource(pdev, i);
597 	}
598 
599 	return 0;
600 }
601 
pcibios_release_device(struct pci_dev * pdev)602 void pcibios_release_device(struct pci_dev *pdev)
603 {
604 	struct zpci_dev *zdev = to_zpci(pdev);
605 
606 	zpci_unmap_resources(pdev);
607 	zpci_zdev_put(zdev);
608 }
609 
pcibios_enable_device(struct pci_dev * pdev,int mask)610 int pcibios_enable_device(struct pci_dev *pdev, int mask)
611 {
612 	struct zpci_dev *zdev = to_zpci(pdev);
613 
614 	zpci_debug_init_device(zdev, dev_name(&pdev->dev));
615 	zpci_fmb_enable_device(zdev);
616 
617 	return pci_enable_resources(pdev, mask);
618 }
619 
pcibios_disable_device(struct pci_dev * pdev)620 void pcibios_disable_device(struct pci_dev *pdev)
621 {
622 	struct zpci_dev *zdev = to_zpci(pdev);
623 
624 	zpci_fmb_disable_device(zdev);
625 	zpci_debug_exit_device(zdev);
626 }
627 
__zpci_register_domain(int domain)628 static int __zpci_register_domain(int domain)
629 {
630 	spin_lock(&zpci_domain_lock);
631 	if (test_bit(domain, zpci_domain)) {
632 		spin_unlock(&zpci_domain_lock);
633 		pr_err("Domain %04x is already assigned\n", domain);
634 		return -EEXIST;
635 	}
636 	set_bit(domain, zpci_domain);
637 	spin_unlock(&zpci_domain_lock);
638 	return domain;
639 }
640 
__zpci_alloc_domain(void)641 static int __zpci_alloc_domain(void)
642 {
643 	int domain;
644 
645 	spin_lock(&zpci_domain_lock);
646 	/*
647 	 * We can always auto allocate domains below ZPCI_NR_DEVICES.
648 	 * There is either a free domain or we have reached the maximum in
649 	 * which case we would have bailed earlier.
650 	 */
651 	domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
652 	set_bit(domain, zpci_domain);
653 	spin_unlock(&zpci_domain_lock);
654 	return domain;
655 }
656 
zpci_alloc_domain(int domain)657 int zpci_alloc_domain(int domain)
658 {
659 	if (zpci_unique_uid) {
660 		if (domain)
661 			return __zpci_register_domain(domain);
662 		pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
663 		update_uid_checking(false);
664 	}
665 	return __zpci_alloc_domain();
666 }
667 
zpci_free_domain(int domain)668 void zpci_free_domain(int domain)
669 {
670 	spin_lock(&zpci_domain_lock);
671 	clear_bit(domain, zpci_domain);
672 	spin_unlock(&zpci_domain_lock);
673 }
674 
675 
zpci_enable_device(struct zpci_dev * zdev)676 int zpci_enable_device(struct zpci_dev *zdev)
677 {
678 	u32 fh = zdev->fh;
679 	int rc = 0;
680 
681 	if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
682 		rc = -EIO;
683 	else
684 		zpci_update_fh(zdev, fh);
685 	return rc;
686 }
687 EXPORT_SYMBOL_GPL(zpci_enable_device);
688 
zpci_disable_device(struct zpci_dev * zdev)689 int zpci_disable_device(struct zpci_dev *zdev)
690 {
691 	u32 fh = zdev->fh;
692 	int cc, rc = 0;
693 
694 	cc = clp_disable_fh(zdev, &fh);
695 	if (!cc) {
696 		zpci_update_fh(zdev, fh);
697 	} else if (cc == CLP_RC_SETPCIFN_ALRDY) {
698 		pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
699 			zdev->fid);
700 		/* Function is already disabled - update handle */
701 		rc = clp_refresh_fh(zdev->fid, &fh);
702 		if (!rc) {
703 			zpci_update_fh(zdev, fh);
704 			rc = -EINVAL;
705 		}
706 	} else {
707 		rc = -EIO;
708 	}
709 	return rc;
710 }
711 EXPORT_SYMBOL_GPL(zpci_disable_device);
712 
713 /**
714  * zpci_hot_reset_device - perform a reset of the given zPCI function
715  * @zdev: the slot which should be reset
716  *
717  * Performs a low level reset of the zPCI function. The reset is low level in
718  * the sense that the zPCI function can be reset without detaching it from the
719  * common PCI subsystem. The reset may be performed while under control of
720  * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
721  * table is reinstated at the end of the reset.
722  *
723  * After the reset the functions internal state is reset to an initial state
724  * equivalent to its state during boot when first probing a driver.
725  * Consequently after reset the PCI function requires re-initialization via the
726  * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
727  * and enabling the function via e.g. pci_enable_device_flags(). The caller
728  * must guard against concurrent reset attempts.
729  *
730  * In most cases this function should not be called directly but through
731  * pci_reset_function() or pci_reset_bus() which handle the save/restore and
732  * locking - asserted by lockdep.
733  *
734  * Return: 0 on success and an error value otherwise
735  */
zpci_hot_reset_device(struct zpci_dev * zdev)736 int zpci_hot_reset_device(struct zpci_dev *zdev)
737 {
738 	u8 status;
739 	int rc;
740 
741 	lockdep_assert_held(&zdev->state_lock);
742 	zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
743 	if (zdev_enabled(zdev)) {
744 		/* Disables device access, DMAs and IRQs (reset state) */
745 		rc = zpci_disable_device(zdev);
746 		/*
747 		 * Due to a z/VM vs LPAR inconsistency in the error state the
748 		 * FH may indicate an enabled device but disable says the
749 		 * device is already disabled don't treat it as an error here.
750 		 */
751 		if (rc == -EINVAL)
752 			rc = 0;
753 		if (rc)
754 			return rc;
755 	}
756 
757 	rc = zpci_enable_device(zdev);
758 	if (rc)
759 		return rc;
760 
761 	if (zdev->dma_table)
762 		rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
763 					virt_to_phys(zdev->dma_table), &status);
764 	if (rc) {
765 		zpci_disable_device(zdev);
766 		return rc;
767 	}
768 
769 	return 0;
770 }
771 
772 /**
773  * zpci_create_device() - Create a new zpci_dev and add it to the zbus
774  * @fid: Function ID of the device to be created
775  * @fh: Current Function Handle of the device to be created
776  * @state: Initial state after creation either Standby or Configured
777  *
778  * Creates a new zpci device and adds it to its, possibly newly created, zbus
779  * as well as zpci_list.
780  *
781  * Returns: the zdev on success or an error pointer otherwise
782  */
zpci_create_device(u32 fid,u32 fh,enum zpci_state state)783 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
784 {
785 	struct zpci_dev *zdev;
786 	int rc;
787 
788 	zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
789 	zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
790 	if (!zdev)
791 		return ERR_PTR(-ENOMEM);
792 
793 	/* FID and Function Handle are the static/dynamic identifiers */
794 	zdev->fid = fid;
795 	zdev->fh = fh;
796 
797 	/* Query function properties and update zdev */
798 	rc = clp_query_pci_fn(zdev);
799 	if (rc)
800 		goto error;
801 	zdev->state =  state;
802 
803 	kref_init(&zdev->kref);
804 	mutex_init(&zdev->state_lock);
805 	mutex_init(&zdev->fmb_lock);
806 	mutex_init(&zdev->kzdev_lock);
807 
808 	rc = zpci_init_iommu(zdev);
809 	if (rc)
810 		goto error;
811 
812 	rc = zpci_bus_device_register(zdev, &pci_root_ops);
813 	if (rc)
814 		goto error_destroy_iommu;
815 
816 	spin_lock(&zpci_list_lock);
817 	list_add_tail(&zdev->entry, &zpci_list);
818 	spin_unlock(&zpci_list_lock);
819 
820 	return zdev;
821 
822 error_destroy_iommu:
823 	zpci_destroy_iommu(zdev);
824 error:
825 	zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
826 	kfree(zdev);
827 	return ERR_PTR(rc);
828 }
829 
zpci_is_device_configured(struct zpci_dev * zdev)830 bool zpci_is_device_configured(struct zpci_dev *zdev)
831 {
832 	enum zpci_state state = zdev->state;
833 
834 	return state != ZPCI_FN_STATE_RESERVED &&
835 		state != ZPCI_FN_STATE_STANDBY;
836 }
837 
838 /**
839  * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
840  * @zdev: The zpci_dev to be configured
841  * @fh: The general function handle supplied by the platform
842  *
843  * Given a device in the configuration state Configured, enables, scans and
844  * adds it to the common code PCI subsystem if possible. If any failure occurs,
845  * the zpci_dev is left disabled.
846  *
847  * Return: 0 on success, or an error code otherwise
848  */
zpci_scan_configured_device(struct zpci_dev * zdev,u32 fh)849 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
850 {
851 	zpci_update_fh(zdev, fh);
852 	return zpci_bus_scan_device(zdev);
853 }
854 
855 /**
856  * zpci_deconfigure_device() - Deconfigure a zpci_dev
857  * @zdev: The zpci_dev to configure
858  *
859  * Deconfigure a zPCI function that is currently configured and possibly known
860  * to the common code PCI subsystem.
861  * If any failure occurs the device is left as is.
862  *
863  * Return: 0 on success, or an error code otherwise
864  */
zpci_deconfigure_device(struct zpci_dev * zdev)865 int zpci_deconfigure_device(struct zpci_dev *zdev)
866 {
867 	int rc;
868 
869 	lockdep_assert_held(&zdev->state_lock);
870 	if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
871 		return 0;
872 
873 	if (zdev->zbus->bus)
874 		zpci_bus_remove_device(zdev, false);
875 
876 	if (zdev_enabled(zdev)) {
877 		rc = zpci_disable_device(zdev);
878 		if (rc)
879 			return rc;
880 	}
881 
882 	rc = sclp_pci_deconfigure(zdev->fid);
883 	zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
884 	if (rc)
885 		return rc;
886 	zdev->state = ZPCI_FN_STATE_STANDBY;
887 
888 	return 0;
889 }
890 
891 /**
892  * zpci_device_reserved() - Mark device as reserved
893  * @zdev: the zpci_dev that was reserved
894  *
895  * Handle the case that a given zPCI function was reserved by another system.
896  * After a call to this function the zpci_dev can not be found via
897  * get_zdev_by_fid() anymore but may still be accessible via existing
898  * references though it will not be functional anymore.
899  */
zpci_device_reserved(struct zpci_dev * zdev)900 void zpci_device_reserved(struct zpci_dev *zdev)
901 {
902 	/*
903 	 * Remove device from zpci_list as it is going away. This also
904 	 * makes sure we ignore subsequent zPCI events for this device.
905 	 */
906 	spin_lock(&zpci_list_lock);
907 	list_del(&zdev->entry);
908 	spin_unlock(&zpci_list_lock);
909 	zdev->state = ZPCI_FN_STATE_RESERVED;
910 	zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
911 	zpci_zdev_put(zdev);
912 }
913 
zpci_release_device(struct kref * kref)914 void zpci_release_device(struct kref *kref)
915 {
916 	struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
917 	int ret;
918 
919 	if (zdev->has_hp_slot)
920 		zpci_exit_slot(zdev);
921 
922 	if (zdev->zbus->bus)
923 		zpci_bus_remove_device(zdev, false);
924 
925 	if (zdev_enabled(zdev))
926 		zpci_disable_device(zdev);
927 
928 	switch (zdev->state) {
929 	case ZPCI_FN_STATE_CONFIGURED:
930 		ret = sclp_pci_deconfigure(zdev->fid);
931 		zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
932 		fallthrough;
933 	case ZPCI_FN_STATE_STANDBY:
934 		if (zdev->has_hp_slot)
935 			zpci_exit_slot(zdev);
936 		spin_lock(&zpci_list_lock);
937 		list_del(&zdev->entry);
938 		spin_unlock(&zpci_list_lock);
939 		zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
940 		fallthrough;
941 	case ZPCI_FN_STATE_RESERVED:
942 		if (zdev->has_resources)
943 			zpci_cleanup_bus_resources(zdev);
944 		zpci_bus_device_unregister(zdev);
945 		zpci_destroy_iommu(zdev);
946 		fallthrough;
947 	default:
948 		break;
949 	}
950 	zpci_dbg(3, "rem fid:%x\n", zdev->fid);
951 	kfree_rcu(zdev, rcu);
952 }
953 
zpci_report_error(struct pci_dev * pdev,struct zpci_report_error_header * report)954 int zpci_report_error(struct pci_dev *pdev,
955 		      struct zpci_report_error_header *report)
956 {
957 	struct zpci_dev *zdev = to_zpci(pdev);
958 
959 	return sclp_pci_report(report, zdev->fh, zdev->fid);
960 }
961 EXPORT_SYMBOL(zpci_report_error);
962 
963 /**
964  * zpci_clear_error_state() - Clears the zPCI error state of the device
965  * @zdev: The zdev for which the zPCI error state should be reset
966  *
967  * Clear the zPCI error state of the device. If clearing the zPCI error state
968  * fails the device is left in the error state. In this case it may make sense
969  * to call zpci_io_perm_failure() on the associated pdev if it exists.
970  *
971  * Returns: 0 on success, -EIO otherwise
972  */
zpci_clear_error_state(struct zpci_dev * zdev)973 int zpci_clear_error_state(struct zpci_dev *zdev)
974 {
975 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
976 	struct zpci_fib fib = {0};
977 	u8 status;
978 	int cc;
979 
980 	cc = zpci_mod_fc(req, &fib, &status);
981 	if (cc) {
982 		zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
983 		return -EIO;
984 	}
985 
986 	return 0;
987 }
988 
989 /**
990  * zpci_reset_load_store_blocked() - Re-enables L/S from error state
991  * @zdev: The zdev for which to unblock load/store access
992  *
993  * Re-enables load/store access for a PCI function in the error state while
994  * keeping DMA blocked. In this state drivers can poke MMIO space to determine
995  * if error recovery is possible while catching any rogue DMA access from the
996  * device.
997  *
998  * Returns: 0 on success, -EIO otherwise
999  */
zpci_reset_load_store_blocked(struct zpci_dev * zdev)1000 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1001 {
1002 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1003 	struct zpci_fib fib = {0};
1004 	u8 status;
1005 	int cc;
1006 
1007 	cc = zpci_mod_fc(req, &fib, &status);
1008 	if (cc) {
1009 		zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1010 		return -EIO;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
zpci_mem_init(void)1016 static int zpci_mem_init(void)
1017 {
1018 	BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1019 		     __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1020 
1021 	zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1022 					   __alignof__(struct zpci_fmb), 0, NULL);
1023 	if (!zdev_fmb_cache)
1024 		goto error_fmb;
1025 
1026 	zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1027 				   sizeof(*zpci_iomap_start), GFP_KERNEL);
1028 	if (!zpci_iomap_start)
1029 		goto error_iomap;
1030 
1031 	zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1032 				    sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1033 	if (!zpci_iomap_bitmap)
1034 		goto error_iomap_bitmap;
1035 
1036 	if (static_branch_likely(&have_mio))
1037 		clp_setup_writeback_mio();
1038 
1039 	return 0;
1040 error_iomap_bitmap:
1041 	kfree(zpci_iomap_start);
1042 error_iomap:
1043 	kmem_cache_destroy(zdev_fmb_cache);
1044 error_fmb:
1045 	return -ENOMEM;
1046 }
1047 
zpci_mem_exit(void)1048 static void zpci_mem_exit(void)
1049 {
1050 	kfree(zpci_iomap_bitmap);
1051 	kfree(zpci_iomap_start);
1052 	kmem_cache_destroy(zdev_fmb_cache);
1053 }
1054 
1055 static unsigned int s390_pci_probe __initdata = 1;
1056 unsigned int s390_pci_force_floating __initdata;
1057 static unsigned int s390_pci_initialized;
1058 
pcibios_setup(char * str)1059 char * __init pcibios_setup(char *str)
1060 {
1061 	if (!strcmp(str, "off")) {
1062 		s390_pci_probe = 0;
1063 		return NULL;
1064 	}
1065 	if (!strcmp(str, "nomio")) {
1066 		get_lowcore()->machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1067 		return NULL;
1068 	}
1069 	if (!strcmp(str, "force_floating")) {
1070 		s390_pci_force_floating = 1;
1071 		return NULL;
1072 	}
1073 	if (!strcmp(str, "norid")) {
1074 		s390_pci_no_rid = 1;
1075 		return NULL;
1076 	}
1077 	return str;
1078 }
1079 
zpci_is_enabled(void)1080 bool zpci_is_enabled(void)
1081 {
1082 	return s390_pci_initialized;
1083 }
1084 
pci_base_init(void)1085 static int __init pci_base_init(void)
1086 {
1087 	int rc;
1088 
1089 	if (!s390_pci_probe)
1090 		return 0;
1091 
1092 	if (!test_facility(69) || !test_facility(71)) {
1093 		pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1094 		return 0;
1095 	}
1096 
1097 	if (MACHINE_HAS_PCI_MIO) {
1098 		static_branch_enable(&have_mio);
1099 		system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1100 	}
1101 
1102 	rc = zpci_debug_init();
1103 	if (rc)
1104 		goto out;
1105 
1106 	rc = zpci_mem_init();
1107 	if (rc)
1108 		goto out_mem;
1109 
1110 	rc = zpci_irq_init();
1111 	if (rc)
1112 		goto out_irq;
1113 
1114 	rc = clp_scan_pci_devices();
1115 	if (rc)
1116 		goto out_find;
1117 	zpci_bus_scan_busses();
1118 
1119 	s390_pci_initialized = 1;
1120 	return 0;
1121 
1122 out_find:
1123 	zpci_irq_exit();
1124 out_irq:
1125 	zpci_mem_exit();
1126 out_mem:
1127 	zpci_debug_exit();
1128 out:
1129 	return rc;
1130 }
1131 subsys_initcall_sync(pci_base_init);
1132