1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2012 Regents of the University of California
4   * Copyright (C) 2017 SiFive
5   * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6   */
7  
8  #include <linux/bitops.h>
9  #include <linux/cpumask.h>
10  #include <linux/mm.h>
11  #include <linux/percpu.h>
12  #include <linux/slab.h>
13  #include <linux/spinlock.h>
14  #include <linux/static_key.h>
15  #include <asm/tlbflush.h>
16  #include <asm/cacheflush.h>
17  #include <asm/mmu_context.h>
18  #include <asm/switch_to.h>
19  
20  #ifdef CONFIG_MMU
21  
22  DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
23  
24  static unsigned long num_asids;
25  
26  static atomic_long_t current_version;
27  
28  static DEFINE_RAW_SPINLOCK(context_lock);
29  static cpumask_t context_tlb_flush_pending;
30  static unsigned long *context_asid_map;
31  
32  static DEFINE_PER_CPU(atomic_long_t, active_context);
33  static DEFINE_PER_CPU(unsigned long, reserved_context);
34  
check_update_reserved_context(unsigned long cntx,unsigned long newcntx)35  static bool check_update_reserved_context(unsigned long cntx,
36  					  unsigned long newcntx)
37  {
38  	int cpu;
39  	bool hit = false;
40  
41  	/*
42  	 * Iterate over the set of reserved CONTEXT looking for a match.
43  	 * If we find one, then we can update our mm to use new CONTEXT
44  	 * (i.e. the same CONTEXT in the current_version) but we can't
45  	 * exit the loop early, since we need to ensure that all copies
46  	 * of the old CONTEXT are updated to reflect the mm. Failure to do
47  	 * so could result in us missing the reserved CONTEXT in a future
48  	 * version.
49  	 */
50  	for_each_possible_cpu(cpu) {
51  		if (per_cpu(reserved_context, cpu) == cntx) {
52  			hit = true;
53  			per_cpu(reserved_context, cpu) = newcntx;
54  		}
55  	}
56  
57  	return hit;
58  }
59  
__flush_context(void)60  static void __flush_context(void)
61  {
62  	int i;
63  	unsigned long cntx;
64  
65  	/* Must be called with context_lock held */
66  	lockdep_assert_held(&context_lock);
67  
68  	/* Update the list of reserved ASIDs and the ASID bitmap. */
69  	bitmap_zero(context_asid_map, num_asids);
70  
71  	/* Mark already active ASIDs as used */
72  	for_each_possible_cpu(i) {
73  		cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
74  		/*
75  		 * If this CPU has already been through a rollover, but
76  		 * hasn't run another task in the meantime, we must preserve
77  		 * its reserved CONTEXT, as this is the only trace we have of
78  		 * the process it is still running.
79  		 */
80  		if (cntx == 0)
81  			cntx = per_cpu(reserved_context, i);
82  
83  		__set_bit(cntx2asid(cntx), context_asid_map);
84  		per_cpu(reserved_context, i) = cntx;
85  	}
86  
87  	/* Mark ASID #0 as used because it is used at boot-time */
88  	__set_bit(0, context_asid_map);
89  
90  	/* Queue a TLB invalidation for each CPU on next context-switch */
91  	cpumask_setall(&context_tlb_flush_pending);
92  }
93  
__new_context(struct mm_struct * mm)94  static unsigned long __new_context(struct mm_struct *mm)
95  {
96  	static u32 cur_idx = 1;
97  	unsigned long cntx = atomic_long_read(&mm->context.id);
98  	unsigned long asid, ver = atomic_long_read(&current_version);
99  
100  	/* Must be called with context_lock held */
101  	lockdep_assert_held(&context_lock);
102  
103  	if (cntx != 0) {
104  		unsigned long newcntx = ver | cntx2asid(cntx);
105  
106  		/*
107  		 * If our current CONTEXT was active during a rollover, we
108  		 * can continue to use it and this was just a false alarm.
109  		 */
110  		if (check_update_reserved_context(cntx, newcntx))
111  			return newcntx;
112  
113  		/*
114  		 * We had a valid CONTEXT in a previous life, so try to
115  		 * re-use it if possible.
116  		 */
117  		if (!__test_and_set_bit(cntx2asid(cntx), context_asid_map))
118  			return newcntx;
119  	}
120  
121  	/*
122  	 * Allocate a free ASID. If we can't find one then increment
123  	 * current_version and flush all ASIDs.
124  	 */
125  	asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
126  	if (asid != num_asids)
127  		goto set_asid;
128  
129  	/* We're out of ASIDs, so increment current_version */
130  	ver = atomic_long_add_return_relaxed(BIT(SATP_ASID_BITS), &current_version);
131  
132  	/* Flush everything  */
133  	__flush_context();
134  
135  	/* We have more ASIDs than CPUs, so this will always succeed */
136  	asid = find_next_zero_bit(context_asid_map, num_asids, 1);
137  
138  set_asid:
139  	__set_bit(asid, context_asid_map);
140  	cur_idx = asid;
141  	return asid | ver;
142  }
143  
set_mm_asid(struct mm_struct * mm,unsigned int cpu)144  static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
145  {
146  	unsigned long flags;
147  	bool need_flush_tlb = false;
148  	unsigned long cntx, old_active_cntx;
149  
150  	cntx = atomic_long_read(&mm->context.id);
151  
152  	/*
153  	 * If our active_context is non-zero and the context matches the
154  	 * current_version, then we update the active_context entry with a
155  	 * relaxed cmpxchg.
156  	 *
157  	 * Following is how we handle racing with a concurrent rollover:
158  	 *
159  	 * - We get a zero back from the cmpxchg and end up waiting on the
160  	 *   lock. Taking the lock synchronises with the rollover and so
161  	 *   we are forced to see the updated verion.
162  	 *
163  	 * - We get a valid context back from the cmpxchg then we continue
164  	 *   using old ASID because __flush_context() would have marked ASID
165  	 *   of active_context as used and next context switch we will
166  	 *   allocate new context.
167  	 */
168  	old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
169  	if (old_active_cntx &&
170  	    (cntx2version(cntx) == atomic_long_read(&current_version)) &&
171  	    atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
172  					old_active_cntx, cntx))
173  		goto switch_mm_fast;
174  
175  	raw_spin_lock_irqsave(&context_lock, flags);
176  
177  	/* Check that our ASID belongs to the current_version. */
178  	cntx = atomic_long_read(&mm->context.id);
179  	if (cntx2version(cntx) != atomic_long_read(&current_version)) {
180  		cntx = __new_context(mm);
181  		atomic_long_set(&mm->context.id, cntx);
182  	}
183  
184  	if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
185  		need_flush_tlb = true;
186  
187  	atomic_long_set(&per_cpu(active_context, cpu), cntx);
188  
189  	raw_spin_unlock_irqrestore(&context_lock, flags);
190  
191  switch_mm_fast:
192  	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
193  		  (cntx2asid(cntx) << SATP_ASID_SHIFT) |
194  		  satp_mode);
195  
196  	if (need_flush_tlb)
197  		local_flush_tlb_all();
198  }
199  
set_mm_noasid(struct mm_struct * mm)200  static void set_mm_noasid(struct mm_struct *mm)
201  {
202  	/* Switch the page table and blindly nuke entire local TLB */
203  	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode);
204  	local_flush_tlb_all_asid(0);
205  }
206  
set_mm(struct mm_struct * prev,struct mm_struct * next,unsigned int cpu)207  static inline void set_mm(struct mm_struct *prev,
208  			  struct mm_struct *next, unsigned int cpu)
209  {
210  	/*
211  	 * The mm_cpumask indicates which harts' TLBs contain the virtual
212  	 * address mapping of the mm. Compared to noasid, using asid
213  	 * can't guarantee that stale TLB entries are invalidated because
214  	 * the asid mechanism wouldn't flush TLB for every switch_mm for
215  	 * performance. So when using asid, keep all CPUs footmarks in
216  	 * cpumask() until mm reset.
217  	 */
218  	cpumask_set_cpu(cpu, mm_cpumask(next));
219  	if (static_branch_unlikely(&use_asid_allocator)) {
220  		set_mm_asid(next, cpu);
221  	} else {
222  		cpumask_clear_cpu(cpu, mm_cpumask(prev));
223  		set_mm_noasid(next);
224  	}
225  }
226  
asids_init(void)227  static int __init asids_init(void)
228  {
229  	unsigned long asid_bits, old;
230  
231  	/* Figure-out number of ASID bits in HW */
232  	old = csr_read(CSR_SATP);
233  	asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
234  	csr_write(CSR_SATP, asid_bits);
235  	asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT)  & SATP_ASID_MASK;
236  	asid_bits = fls_long(asid_bits);
237  	csr_write(CSR_SATP, old);
238  
239  	/*
240  	 * In the process of determining number of ASID bits (above)
241  	 * we polluted the TLB of current HART so let's do TLB flushed
242  	 * to remove unwanted TLB enteries.
243  	 */
244  	local_flush_tlb_all();
245  
246  	/* Pre-compute ASID details */
247  	if (asid_bits) {
248  		num_asids = 1 << asid_bits;
249  	}
250  
251  	/*
252  	 * Use ASID allocator only if number of HW ASIDs are
253  	 * at-least twice more than CPUs
254  	 */
255  	if (num_asids > (2 * num_possible_cpus())) {
256  		atomic_long_set(&current_version, BIT(SATP_ASID_BITS));
257  
258  		context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
259  		if (!context_asid_map)
260  			panic("Failed to allocate bitmap for %lu ASIDs\n",
261  			      num_asids);
262  
263  		__set_bit(0, context_asid_map);
264  
265  		static_branch_enable(&use_asid_allocator);
266  
267  		pr_info("ASID allocator using %lu bits (%lu entries)\n",
268  			asid_bits, num_asids);
269  	} else {
270  		pr_info("ASID allocator disabled (%lu bits)\n", asid_bits);
271  	}
272  
273  	return 0;
274  }
275  early_initcall(asids_init);
276  #else
set_mm(struct mm_struct * prev,struct mm_struct * next,unsigned int cpu)277  static inline void set_mm(struct mm_struct *prev,
278  			  struct mm_struct *next, unsigned int cpu)
279  {
280  	/* Nothing to do here when there is no MMU */
281  }
282  #endif
283  
284  /*
285   * When necessary, performs a deferred icache flush for the given MM context,
286   * on the local CPU.  RISC-V has no direct mechanism for instruction cache
287   * shoot downs, so instead we send an IPI that informs the remote harts they
288   * need to flush their local instruction caches.  To avoid pathologically slow
289   * behavior in a common case (a bunch of single-hart processes on a many-hart
290   * machine, ie 'make -j') we avoid the IPIs for harts that are not currently
291   * executing a MM context and instead schedule a deferred local instruction
292   * cache flush to be performed before execution resumes on each hart.  This
293   * actually performs that local instruction cache flush, which implicitly only
294   * refers to the current hart.
295   *
296   * The "cpu" argument must be the current local CPU number.
297   */
flush_icache_deferred(struct mm_struct * mm,unsigned int cpu,struct task_struct * task)298  static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu,
299  					 struct task_struct *task)
300  {
301  #ifdef CONFIG_SMP
302  	if (cpumask_test_and_clear_cpu(cpu, &mm->context.icache_stale_mask)) {
303  		/*
304  		 * Ensure the remote hart's writes are visible to this hart.
305  		 * This pairs with a barrier in flush_icache_mm.
306  		 */
307  		smp_mb();
308  
309  		/*
310  		 * If cache will be flushed in switch_to, no need to flush here.
311  		 */
312  		if (!(task && switch_to_should_flush_icache(task)))
313  			local_flush_icache_all();
314  	}
315  #endif
316  }
317  
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * task)318  void switch_mm(struct mm_struct *prev, struct mm_struct *next,
319  	struct task_struct *task)
320  {
321  	unsigned int cpu;
322  
323  	if (unlikely(prev == next))
324  		return;
325  
326  	membarrier_arch_switch_mm(prev, next, task);
327  
328  	/*
329  	 * Mark the current MM context as inactive, and the next as
330  	 * active.  This is at least used by the icache flushing
331  	 * routines in order to determine who should be flushed.
332  	 */
333  	cpu = smp_processor_id();
334  
335  	set_mm(prev, next, cpu);
336  
337  	flush_icache_deferred(next, cpu, task);
338  }
339