1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef CONFIG_MMU
15 #define KERNEL_LINK_ADDR	PAGE_OFFSET
16 #define KERN_VIRT_SIZE		(UL(-1))
17 #else
18 
19 #define ADDRESS_SPACE_END	(UL(-1))
20 
21 #ifdef CONFIG_64BIT
22 /* Leave 2GB for kernel and BPF at the end of the address space */
23 #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
24 #else
25 #define KERNEL_LINK_ADDR	PAGE_OFFSET
26 #endif
27 
28 /* Number of entries in the page global directory */
29 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
30 /* Number of entries in the page table */
31 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
32 
33 /*
34  * Half of the kernel address space (1/4 of the entries of the page global
35  * directory) is for the direct mapping.
36  */
37 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38 
39 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
40 #define VMALLOC_END      PAGE_OFFSET
41 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
42 
43 #define BPF_JIT_REGION_SIZE	(SZ_128M)
44 #ifdef CONFIG_64BIT
45 #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46 #define BPF_JIT_REGION_END	(MODULES_END)
47 #else
48 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49 #define BPF_JIT_REGION_END	(VMALLOC_END)
50 #endif
51 
52 /* Modules always live before the kernel */
53 #ifdef CONFIG_64BIT
54 /* This is used to define the end of the KASAN shadow region */
55 #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
56 #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57 #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
58 #else
59 #define MODULES_VADDR		VMALLOC_START
60 #define MODULES_END		VMALLOC_END
61 #endif
62 
63 /*
64  * Roughly size the vmemmap space to be large enough to fit enough
65  * struct pages to map half the virtual address space. Then
66  * position vmemmap directly below the VMALLOC region.
67  */
68 #define VA_BITS_SV32 32
69 #ifdef CONFIG_64BIT
70 #define VA_BITS_SV39 39
71 #define VA_BITS_SV48 48
72 #define VA_BITS_SV57 57
73 
74 #define VA_BITS		(pgtable_l5_enabled ? \
75 				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
76 #else
77 #define VA_BITS		VA_BITS_SV32
78 #endif
79 
80 #define VMEMMAP_SHIFT \
81 	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
82 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
83 #define VMEMMAP_END	VMALLOC_START
84 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
85 
86 /*
87  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
88  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
89  */
90 #define vmemmap		((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT))
91 
92 #define PCI_IO_SIZE      SZ_16M
93 #define PCI_IO_END       VMEMMAP_START
94 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
95 
96 #define FIXADDR_TOP      PCI_IO_START
97 #ifdef CONFIG_64BIT
98 #define MAX_FDT_SIZE	 PMD_SIZE
99 #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
100 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
101 #else
102 #define MAX_FDT_SIZE	 PGDIR_SIZE
103 #define FIX_FDT_SIZE	 MAX_FDT_SIZE
104 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
105 #endif
106 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
107 
108 #endif
109 
110 #ifndef __ASSEMBLY__
111 
112 #include <asm/page.h>
113 #include <asm/tlbflush.h>
114 #include <linux/mm_types.h>
115 #include <asm/compat.h>
116 
117 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
118 
119 #ifdef CONFIG_64BIT
120 #include <asm/pgtable-64.h>
121 
122 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
123 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
124 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
125 
126 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
127 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
128 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
129 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
130 #else
131 #include <asm/pgtable-32.h>
132 #endif /* CONFIG_64BIT */
133 
134 #include <linux/page_table_check.h>
135 
136 #ifdef CONFIG_XIP_KERNEL
137 #define XIP_FIXUP(addr) ({							\
138 	extern char _sdata[], _start[], _end[];					\
139 	uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR			\
140 				+ (uintptr_t)&_sdata - (uintptr_t)&_start;	\
141 	uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR				\
142 				+ (uintptr_t)&_end - (uintptr_t)&_start;	\
143 	uintptr_t __a = (uintptr_t)(addr);					\
144 	(__a >= __rom_start_data && __a < __rom_end_data) ?			\
145 		__a - __rom_start_data + CONFIG_PHYS_RAM_BASE :	__a;		\
146 	})
147 #else
148 #define XIP_FIXUP(addr)		(addr)
149 #endif /* CONFIG_XIP_KERNEL */
150 
151 struct pt_alloc_ops {
152 	pte_t *(*get_pte_virt)(phys_addr_t pa);
153 	phys_addr_t (*alloc_pte)(uintptr_t va);
154 #ifndef __PAGETABLE_PMD_FOLDED
155 	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
156 	phys_addr_t (*alloc_pmd)(uintptr_t va);
157 	pud_t *(*get_pud_virt)(phys_addr_t pa);
158 	phys_addr_t (*alloc_pud)(uintptr_t va);
159 	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
160 	phys_addr_t (*alloc_p4d)(uintptr_t va);
161 #endif
162 };
163 
164 extern struct pt_alloc_ops pt_ops __meminitdata;
165 
166 #ifdef CONFIG_MMU
167 /* Number of PGD entries that a user-mode program can use */
168 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
169 
170 /* Page protection bits */
171 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
172 
173 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
174 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
175 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
176 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
177 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
178 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
179 					 _PAGE_EXEC | _PAGE_WRITE)
180 
181 #define PAGE_COPY		PAGE_READ
182 #define PAGE_COPY_EXEC		PAGE_READ_EXEC
183 #define PAGE_SHARED		PAGE_WRITE
184 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
185 
186 #define _PAGE_KERNEL		(_PAGE_READ \
187 				| _PAGE_WRITE \
188 				| _PAGE_PRESENT \
189 				| _PAGE_ACCESSED \
190 				| _PAGE_DIRTY \
191 				| _PAGE_GLOBAL)
192 
193 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
194 #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
195 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
196 #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
197 					 | _PAGE_EXEC)
198 
199 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
200 
201 #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
202 #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
203 
204 extern pgd_t swapper_pg_dir[];
205 extern pgd_t trampoline_pg_dir[];
206 extern pgd_t early_pg_dir[];
207 
208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_present(pmd_t pmd)209 static inline int pmd_present(pmd_t pmd)
210 {
211 	/*
212 	 * Checking for _PAGE_LEAF is needed too because:
213 	 * When splitting a THP, split_huge_page() will temporarily clear
214 	 * the present bit, in this situation, pmd_present() and
215 	 * pmd_trans_huge() still needs to return true.
216 	 */
217 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
218 }
219 #else
pmd_present(pmd_t pmd)220 static inline int pmd_present(pmd_t pmd)
221 {
222 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
223 }
224 #endif
225 
pmd_none(pmd_t pmd)226 static inline int pmd_none(pmd_t pmd)
227 {
228 	return (pmd_val(pmd) == 0);
229 }
230 
pmd_bad(pmd_t pmd)231 static inline int pmd_bad(pmd_t pmd)
232 {
233 	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
234 }
235 
236 #define pmd_leaf	pmd_leaf
pmd_leaf(pmd_t pmd)237 static inline bool pmd_leaf(pmd_t pmd)
238 {
239 	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
240 }
241 
set_pmd(pmd_t * pmdp,pmd_t pmd)242 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
243 {
244 	WRITE_ONCE(*pmdp, pmd);
245 }
246 
pmd_clear(pmd_t * pmdp)247 static inline void pmd_clear(pmd_t *pmdp)
248 {
249 	set_pmd(pmdp, __pmd(0));
250 }
251 
pfn_pgd(unsigned long pfn,pgprot_t prot)252 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
253 {
254 	unsigned long prot_val = pgprot_val(prot);
255 
256 	ALT_THEAD_PMA(prot_val);
257 
258 	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
259 }
260 
_pgd_pfn(pgd_t pgd)261 static inline unsigned long _pgd_pfn(pgd_t pgd)
262 {
263 	return __page_val_to_pfn(pgd_val(pgd));
264 }
265 
pmd_page(pmd_t pmd)266 static inline struct page *pmd_page(pmd_t pmd)
267 {
268 	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
269 }
270 
pmd_page_vaddr(pmd_t pmd)271 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
272 {
273 	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
274 }
275 
pmd_pte(pmd_t pmd)276 static inline pte_t pmd_pte(pmd_t pmd)
277 {
278 	return __pte(pmd_val(pmd));
279 }
280 
pud_pte(pud_t pud)281 static inline pte_t pud_pte(pud_t pud)
282 {
283 	return __pte(pud_val(pud));
284 }
285 
286 #ifdef CONFIG_RISCV_ISA_SVNAPOT
287 #include <asm/cpufeature.h>
288 
has_svnapot(void)289 static __always_inline bool has_svnapot(void)
290 {
291 	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
292 }
293 
pte_napot(pte_t pte)294 static inline unsigned long pte_napot(pte_t pte)
295 {
296 	return pte_val(pte) & _PAGE_NAPOT;
297 }
298 
pte_mknapot(pte_t pte,unsigned int order)299 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
300 {
301 	int pos = order - 1 + _PAGE_PFN_SHIFT;
302 	unsigned long napot_bit = BIT(pos);
303 	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
304 
305 	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
306 }
307 
308 #else
309 
has_svnapot(void)310 static __always_inline bool has_svnapot(void) { return false; }
311 
pte_napot(pte_t pte)312 static inline unsigned long pte_napot(pte_t pte)
313 {
314 	return 0;
315 }
316 
317 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
318 
319 /* Yields the page frame number (PFN) of a page table entry */
pte_pfn(pte_t pte)320 static inline unsigned long pte_pfn(pte_t pte)
321 {
322 	unsigned long res  = __page_val_to_pfn(pte_val(pte));
323 
324 	if (has_svnapot() && pte_napot(pte))
325 		res = res & (res - 1UL);
326 
327 	return res;
328 }
329 
330 #define pte_page(x)     pfn_to_page(pte_pfn(x))
331 
332 /* Constructs a page table entry */
pfn_pte(unsigned long pfn,pgprot_t prot)333 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
334 {
335 	unsigned long prot_val = pgprot_val(prot);
336 
337 	ALT_THEAD_PMA(prot_val);
338 
339 	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
340 }
341 
342 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
343 
pte_present(pte_t pte)344 static inline int pte_present(pte_t pte)
345 {
346 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
347 }
348 
349 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)350 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
351 {
352 	if (pte_val(a) & _PAGE_PRESENT)
353 		return true;
354 
355 	if ((pte_val(a) & _PAGE_PROT_NONE) &&
356 	    atomic_read(&mm->tlb_flush_pending))
357 		return true;
358 
359 	return false;
360 }
361 
pte_none(pte_t pte)362 static inline int pte_none(pte_t pte)
363 {
364 	return (pte_val(pte) == 0);
365 }
366 
pte_write(pte_t pte)367 static inline int pte_write(pte_t pte)
368 {
369 	return pte_val(pte) & _PAGE_WRITE;
370 }
371 
pte_exec(pte_t pte)372 static inline int pte_exec(pte_t pte)
373 {
374 	return pte_val(pte) & _PAGE_EXEC;
375 }
376 
pte_user(pte_t pte)377 static inline int pte_user(pte_t pte)
378 {
379 	return pte_val(pte) & _PAGE_USER;
380 }
381 
pte_huge(pte_t pte)382 static inline int pte_huge(pte_t pte)
383 {
384 	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
385 }
386 
pte_dirty(pte_t pte)387 static inline int pte_dirty(pte_t pte)
388 {
389 	return pte_val(pte) & _PAGE_DIRTY;
390 }
391 
pte_young(pte_t pte)392 static inline int pte_young(pte_t pte)
393 {
394 	return pte_val(pte) & _PAGE_ACCESSED;
395 }
396 
pte_special(pte_t pte)397 static inline int pte_special(pte_t pte)
398 {
399 	return pte_val(pte) & _PAGE_SPECIAL;
400 }
401 
402 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)403 static inline int pte_devmap(pte_t pte)
404 {
405 	return pte_val(pte) & _PAGE_DEVMAP;
406 }
407 #endif
408 
409 /* static inline pte_t pte_rdprotect(pte_t pte) */
410 
pte_wrprotect(pte_t pte)411 static inline pte_t pte_wrprotect(pte_t pte)
412 {
413 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
414 }
415 
416 /* static inline pte_t pte_mkread(pte_t pte) */
417 
pte_mkwrite_novma(pte_t pte)418 static inline pte_t pte_mkwrite_novma(pte_t pte)
419 {
420 	return __pte(pte_val(pte) | _PAGE_WRITE);
421 }
422 
423 /* static inline pte_t pte_mkexec(pte_t pte) */
424 
pte_mkdirty(pte_t pte)425 static inline pte_t pte_mkdirty(pte_t pte)
426 {
427 	return __pte(pte_val(pte) | _PAGE_DIRTY);
428 }
429 
pte_mkclean(pte_t pte)430 static inline pte_t pte_mkclean(pte_t pte)
431 {
432 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
433 }
434 
pte_mkyoung(pte_t pte)435 static inline pte_t pte_mkyoung(pte_t pte)
436 {
437 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
438 }
439 
pte_mkold(pte_t pte)440 static inline pte_t pte_mkold(pte_t pte)
441 {
442 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
443 }
444 
pte_mkspecial(pte_t pte)445 static inline pte_t pte_mkspecial(pte_t pte)
446 {
447 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
448 }
449 
pte_mkdevmap(pte_t pte)450 static inline pte_t pte_mkdevmap(pte_t pte)
451 {
452 	return __pte(pte_val(pte) | _PAGE_DEVMAP);
453 }
454 
pte_mkhuge(pte_t pte)455 static inline pte_t pte_mkhuge(pte_t pte)
456 {
457 	return pte;
458 }
459 
460 #ifdef CONFIG_RISCV_ISA_SVNAPOT
461 #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
462 					napot_cont_size(napot_cont_order(pte)) :\
463 					PAGE_SIZE)
464 #endif
465 
466 #ifdef CONFIG_NUMA_BALANCING
467 /*
468  * See the comment in include/asm-generic/pgtable.h
469  */
pte_protnone(pte_t pte)470 static inline int pte_protnone(pte_t pte)
471 {
472 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
473 }
474 
pmd_protnone(pmd_t pmd)475 static inline int pmd_protnone(pmd_t pmd)
476 {
477 	return pte_protnone(pmd_pte(pmd));
478 }
479 #endif
480 
481 /* Modify page protection bits */
pte_modify(pte_t pte,pgprot_t newprot)482 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
483 {
484 	unsigned long newprot_val = pgprot_val(newprot);
485 
486 	ALT_THEAD_PMA(newprot_val);
487 
488 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
489 }
490 
491 #define pgd_ERROR(e) \
492 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
493 
494 
495 /* Commit new configuration to MMU hardware */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int nr)496 static inline void update_mmu_cache_range(struct vm_fault *vmf,
497 		struct vm_area_struct *vma, unsigned long address,
498 		pte_t *ptep, unsigned int nr)
499 {
500 	asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1)
501 		 : : : : svvptc);
502 
503 	/*
504 	 * The kernel assumes that TLBs don't cache invalid entries, but
505 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
506 	 * cache flush; it is necessary even after writing invalid entries.
507 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
508 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
509 	 */
510 	while (nr--)
511 		local_flush_tlb_page(address + nr * PAGE_SIZE);
512 
513 svvptc:;
514 	/*
515 	 * Svvptc guarantees that the new valid pte will be visible within
516 	 * a bounded timeframe, so when the uarch does not cache invalid
517 	 * entries, we don't have to do anything.
518 	 */
519 }
520 #define update_mmu_cache(vma, addr, ptep) \
521 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
522 
523 #define update_mmu_tlb_range(vma, addr, ptep, nr) \
524 	update_mmu_cache_range(NULL, vma, addr, ptep, nr)
525 
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)526 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
527 		unsigned long address, pmd_t *pmdp)
528 {
529 	pte_t *ptep = (pte_t *)pmdp;
530 
531 	update_mmu_cache(vma, address, ptep);
532 }
533 
534 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)535 static inline int pte_same(pte_t pte_a, pte_t pte_b)
536 {
537 	return pte_val(pte_a) == pte_val(pte_b);
538 }
539 
540 /*
541  * Certain architectures need to do special things when PTEs within
542  * a page table are directly modified.  Thus, the following hook is
543  * made available.
544  */
set_pte(pte_t * ptep,pte_t pteval)545 static inline void set_pte(pte_t *ptep, pte_t pteval)
546 {
547 	WRITE_ONCE(*ptep, pteval);
548 }
549 
550 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
551 
__set_pte_at(struct mm_struct * mm,pte_t * ptep,pte_t pteval)552 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
553 {
554 	if (pte_present(pteval) && pte_exec(pteval))
555 		flush_icache_pte(mm, pteval);
556 
557 	set_pte(ptep, pteval);
558 }
559 
560 #define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
561 
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval,unsigned int nr)562 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
563 		pte_t *ptep, pte_t pteval, unsigned int nr)
564 {
565 	page_table_check_ptes_set(mm, ptep, pteval, nr);
566 
567 	for (;;) {
568 		__set_pte_at(mm, ptep, pteval);
569 		if (--nr == 0)
570 			break;
571 		ptep++;
572 		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
573 	}
574 }
575 #define set_ptes set_ptes
576 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)577 static inline void pte_clear(struct mm_struct *mm,
578 	unsigned long addr, pte_t *ptep)
579 {
580 	__set_pte_at(mm, ptep, __pte(0));
581 }
582 
583 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
584 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
585 				 pte_t *ptep, pte_t entry, int dirty);
586 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
587 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
588 				     pte_t *ptep);
589 
590 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)591 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
592 				       unsigned long address, pte_t *ptep)
593 {
594 	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
595 
596 	page_table_check_pte_clear(mm, pte);
597 
598 	return pte;
599 }
600 
601 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)602 static inline void ptep_set_wrprotect(struct mm_struct *mm,
603 				      unsigned long address, pte_t *ptep)
604 {
605 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
606 }
607 
608 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)609 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
610 					 unsigned long address, pte_t *ptep)
611 {
612 	/*
613 	 * This comment is borrowed from x86, but applies equally to RISC-V:
614 	 *
615 	 * Clearing the accessed bit without a TLB flush
616 	 * doesn't cause data corruption. [ It could cause incorrect
617 	 * page aging and the (mistaken) reclaim of hot pages, but the
618 	 * chance of that should be relatively low. ]
619 	 *
620 	 * So as a performance optimization don't flush the TLB when
621 	 * clearing the accessed bit, it will eventually be flushed by
622 	 * a context switch or a VM operation anyway. [ In the rare
623 	 * event of it not getting flushed for a long time the delay
624 	 * shouldn't really matter because there's no real memory
625 	 * pressure for swapout to react to. ]
626 	 */
627 	return ptep_test_and_clear_young(vma, address, ptep);
628 }
629 
630 #define pgprot_nx pgprot_nx
pgprot_nx(pgprot_t _prot)631 static inline pgprot_t pgprot_nx(pgprot_t _prot)
632 {
633 	return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
634 }
635 
636 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t _prot)637 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
638 {
639 	unsigned long prot = pgprot_val(_prot);
640 
641 	prot &= ~_PAGE_MTMASK;
642 	prot |= _PAGE_IO;
643 
644 	return __pgprot(prot);
645 }
646 
647 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t _prot)648 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
649 {
650 	unsigned long prot = pgprot_val(_prot);
651 
652 	prot &= ~_PAGE_MTMASK;
653 	prot |= _PAGE_NOCACHE;
654 
655 	return __pgprot(prot);
656 }
657 
658 /*
659  * THP functions
660  */
pte_pmd(pte_t pte)661 static inline pmd_t pte_pmd(pte_t pte)
662 {
663 	return __pmd(pte_val(pte));
664 }
665 
pmd_mkhuge(pmd_t pmd)666 static inline pmd_t pmd_mkhuge(pmd_t pmd)
667 {
668 	return pmd;
669 }
670 
pmd_mkinvalid(pmd_t pmd)671 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
672 {
673 	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
674 }
675 
676 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
677 
pmd_pfn(pmd_t pmd)678 static inline unsigned long pmd_pfn(pmd_t pmd)
679 {
680 	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
681 }
682 
683 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
684 
685 #define pud_pfn pud_pfn
pud_pfn(pud_t pud)686 static inline unsigned long pud_pfn(pud_t pud)
687 {
688 	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
689 }
690 
pmd_modify(pmd_t pmd,pgprot_t newprot)691 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
692 {
693 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
694 }
695 
696 #define pmd_write pmd_write
pmd_write(pmd_t pmd)697 static inline int pmd_write(pmd_t pmd)
698 {
699 	return pte_write(pmd_pte(pmd));
700 }
701 
702 #define pud_write pud_write
pud_write(pud_t pud)703 static inline int pud_write(pud_t pud)
704 {
705 	return pte_write(pud_pte(pud));
706 }
707 
708 #define pmd_dirty pmd_dirty
pmd_dirty(pmd_t pmd)709 static inline int pmd_dirty(pmd_t pmd)
710 {
711 	return pte_dirty(pmd_pte(pmd));
712 }
713 
714 #define pmd_young pmd_young
pmd_young(pmd_t pmd)715 static inline int pmd_young(pmd_t pmd)
716 {
717 	return pte_young(pmd_pte(pmd));
718 }
719 
pmd_user(pmd_t pmd)720 static inline int pmd_user(pmd_t pmd)
721 {
722 	return pte_user(pmd_pte(pmd));
723 }
724 
pmd_mkold(pmd_t pmd)725 static inline pmd_t pmd_mkold(pmd_t pmd)
726 {
727 	return pte_pmd(pte_mkold(pmd_pte(pmd)));
728 }
729 
pmd_mkyoung(pmd_t pmd)730 static inline pmd_t pmd_mkyoung(pmd_t pmd)
731 {
732 	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
733 }
734 
pmd_mkwrite_novma(pmd_t pmd)735 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
736 {
737 	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
738 }
739 
pmd_wrprotect(pmd_t pmd)740 static inline pmd_t pmd_wrprotect(pmd_t pmd)
741 {
742 	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
743 }
744 
pmd_mkclean(pmd_t pmd)745 static inline pmd_t pmd_mkclean(pmd_t pmd)
746 {
747 	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
748 }
749 
pmd_mkdirty(pmd_t pmd)750 static inline pmd_t pmd_mkdirty(pmd_t pmd)
751 {
752 	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
753 }
754 
pmd_mkdevmap(pmd_t pmd)755 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
756 {
757 	return pte_pmd(pte_mkdevmap(pmd_pte(pmd)));
758 }
759 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)760 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
761 				pmd_t *pmdp, pmd_t pmd)
762 {
763 	page_table_check_pmd_set(mm, pmdp, pmd);
764 	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
765 }
766 
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)767 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
768 				pud_t *pudp, pud_t pud)
769 {
770 	page_table_check_pud_set(mm, pudp, pud);
771 	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
772 }
773 
774 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)775 static inline bool pte_user_accessible_page(pte_t pte)
776 {
777 	return pte_present(pte) && pte_user(pte);
778 }
779 
pmd_user_accessible_page(pmd_t pmd)780 static inline bool pmd_user_accessible_page(pmd_t pmd)
781 {
782 	return pmd_leaf(pmd) && pmd_user(pmd);
783 }
784 
pud_user_accessible_page(pud_t pud)785 static inline bool pud_user_accessible_page(pud_t pud)
786 {
787 	return pud_leaf(pud) && pud_user(pud);
788 }
789 #endif
790 
791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)792 static inline int pmd_trans_huge(pmd_t pmd)
793 {
794 	return pmd_leaf(pmd);
795 }
796 
797 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)798 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
799 					unsigned long address, pmd_t *pmdp,
800 					pmd_t entry, int dirty)
801 {
802 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
803 }
804 
805 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)806 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
807 					unsigned long address, pmd_t *pmdp)
808 {
809 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
810 }
811 
812 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)813 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
814 					unsigned long address, pmd_t *pmdp)
815 {
816 	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
817 
818 	page_table_check_pmd_clear(mm, pmd);
819 
820 	return pmd;
821 }
822 
823 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)824 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
825 					unsigned long address, pmd_t *pmdp)
826 {
827 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
828 }
829 
830 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)831 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
832 				unsigned long address, pmd_t *pmdp, pmd_t pmd)
833 {
834 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
835 	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
836 }
837 
838 #define pmdp_collapse_flush pmdp_collapse_flush
839 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
840 				 unsigned long address, pmd_t *pmdp);
841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
842 
843 /*
844  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
845  * are !pte_none() && !pte_present().
846  *
847  * Format of swap PTE:
848  *	bit            0:	_PAGE_PRESENT (zero)
849  *	bit       1 to 3:       _PAGE_LEAF (zero)
850  *	bit            5:	_PAGE_PROT_NONE (zero)
851  *	bit            6:	exclusive marker
852  *	bits      7 to 11:	swap type
853  *	bits 12 to XLEN-1:	swap offset
854  */
855 #define __SWP_TYPE_SHIFT	7
856 #define __SWP_TYPE_BITS		5
857 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
858 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
859 
860 #define MAX_SWAPFILES_CHECK()	\
861 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
862 
863 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
864 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
865 #define __swp_entry(type, offset) ((swp_entry_t) \
866 	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
867 	  ((offset) << __SWP_OFFSET_SHIFT) })
868 
869 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
870 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
871 
pte_swp_exclusive(pte_t pte)872 static inline int pte_swp_exclusive(pte_t pte)
873 {
874 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
875 }
876 
pte_swp_mkexclusive(pte_t pte)877 static inline pte_t pte_swp_mkexclusive(pte_t pte)
878 {
879 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
880 }
881 
pte_swp_clear_exclusive(pte_t pte)882 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
883 {
884 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
885 }
886 
887 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
888 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
889 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
890 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
891 
892 /*
893  * In the RV64 Linux scheme, we give the user half of the virtual-address space
894  * and give the kernel the other (upper) half.
895  */
896 #ifdef CONFIG_64BIT
897 #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
898 #else
899 #define KERN_VIRT_START	FIXADDR_START
900 #endif
901 
902 /*
903  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
904  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
905  * Task size is:
906  * -        0x9fc00000	(~2.5GB) for RV32.
907  * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
908  * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
909  * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
910  *
911  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
912  * Instruction Set Manual Volume II: Privileged Architecture" states that
913  * "load and store effective addresses, which are 64bits, must have bits
914  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
915  * Similarly for SV57, bits 63–57 must be equal to bit 56.
916  */
917 #ifdef CONFIG_64BIT
918 #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
919 #define TASK_SIZE_MAX	LONG_MAX
920 
921 #ifdef CONFIG_COMPAT
922 #define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
923 #define TASK_SIZE	(is_compat_task() ? \
924 			 TASK_SIZE_32 : TASK_SIZE_64)
925 #else
926 #define TASK_SIZE	TASK_SIZE_64
927 #endif
928 
929 #else
930 #define TASK_SIZE	FIXADDR_START
931 #endif
932 
933 #else /* CONFIG_MMU */
934 
935 #define PAGE_SHARED		__pgprot(0)
936 #define PAGE_KERNEL		__pgprot(0)
937 #define swapper_pg_dir		NULL
938 #define TASK_SIZE		_AC(-1, UL)
939 #define VMALLOC_START		_AC(0, UL)
940 #define VMALLOC_END		TASK_SIZE
941 
942 #endif /* !CONFIG_MMU */
943 
944 extern char _start[];
945 extern void *_dtb_early_va;
946 extern uintptr_t _dtb_early_pa;
947 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
948 #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
949 #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
950 #else
951 #define dtb_early_va	_dtb_early_va
952 #define dtb_early_pa	_dtb_early_pa
953 #endif /* CONFIG_XIP_KERNEL */
954 extern u64 satp_mode;
955 
956 void paging_init(void);
957 void misc_mem_init(void);
958 
959 /*
960  * ZERO_PAGE is a global shared page that is always zero,
961  * used for zero-mapped memory areas, etc.
962  */
963 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
964 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
965 
966 #endif /* !__ASSEMBLY__ */
967 
968 #endif /* _ASM_RISCV_PGTABLE_H */
969