1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * pSeries_lpar.c
4   * Copyright (C) 2001 Todd Inglett, IBM Corporation
5   *
6   * pSeries LPAR support.
7   */
8  
9  /* Enables debugging of low-level hash table routines - careful! */
10  #undef DEBUG
11  #define pr_fmt(fmt) "lpar: " fmt
12  
13  #include <linux/kernel.h>
14  #include <linux/dma-mapping.h>
15  #include <linux/console.h>
16  #include <linux/export.h>
17  #include <linux/jump_label.h>
18  #include <linux/delay.h>
19  #include <linux/stop_machine.h>
20  #include <linux/spinlock.h>
21  #include <linux/cpuhotplug.h>
22  #include <linux/workqueue.h>
23  #include <linux/proc_fs.h>
24  #include <linux/pgtable.h>
25  #include <linux/debugfs.h>
26  
27  #include <asm/processor.h>
28  #include <asm/mmu.h>
29  #include <asm/page.h>
30  #include <asm/setup.h>
31  #include <asm/mmu_context.h>
32  #include <asm/iommu.h>
33  #include <asm/tlb.h>
34  #include <asm/cputable.h>
35  #include <asm/papr-sysparm.h>
36  #include <asm/udbg.h>
37  #include <asm/smp.h>
38  #include <asm/trace.h>
39  #include <asm/firmware.h>
40  #include <asm/plpar_wrappers.h>
41  #include <asm/kexec.h>
42  #include <asm/fadump.h>
43  #include <asm/dtl.h>
44  #include <asm/vphn.h>
45  
46  #include "pseries.h"
47  
48  /* Flag bits for H_BULK_REMOVE */
49  #define HBR_REQUEST	0x4000000000000000UL
50  #define HBR_RESPONSE	0x8000000000000000UL
51  #define HBR_END		0xc000000000000000UL
52  #define HBR_AVPN	0x0200000000000000UL
53  #define HBR_ANDCOND	0x0100000000000000UL
54  
55  
56  /* in hvCall.S */
57  EXPORT_SYMBOL(plpar_hcall);
58  EXPORT_SYMBOL(plpar_hcall9);
59  EXPORT_SYMBOL(plpar_hcall_norets);
60  
61  #ifdef CONFIG_PPC_64S_HASH_MMU
62  /*
63   * H_BLOCK_REMOVE supported block size for this page size in segment who's base
64   * page size is that page size.
65   *
66   * The first index is the segment base page size, the second one is the actual
67   * page size.
68   */
69  static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
70  #endif
71  
72  /*
73   * Due to the involved complexity, and that the current hypervisor is only
74   * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
75   * buffer size to 8 size block.
76   */
77  #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
78  
79  #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
80  static u8 dtl_mask = DTL_LOG_PREEMPT;
81  #else
82  static u8 dtl_mask;
83  #endif
84  
alloc_dtl_buffers(unsigned long * time_limit)85  void alloc_dtl_buffers(unsigned long *time_limit)
86  {
87  	int cpu;
88  	struct paca_struct *pp;
89  	struct dtl_entry *dtl;
90  
91  	for_each_possible_cpu(cpu) {
92  		pp = paca_ptrs[cpu];
93  		if (pp->dispatch_log)
94  			continue;
95  		dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
96  		if (!dtl) {
97  			pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
98  				cpu);
99  #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
100  			pr_warn("Stolen time statistics will be unreliable\n");
101  #endif
102  			break;
103  		}
104  
105  		pp->dtl_ridx = 0;
106  		pp->dispatch_log = dtl;
107  		pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
108  		pp->dtl_curr = dtl;
109  
110  		if (time_limit && time_after(jiffies, *time_limit)) {
111  			cond_resched();
112  			*time_limit = jiffies + HZ;
113  		}
114  	}
115  }
116  
register_dtl_buffer(int cpu)117  void register_dtl_buffer(int cpu)
118  {
119  	long ret;
120  	struct paca_struct *pp;
121  	struct dtl_entry *dtl;
122  	int hwcpu = get_hard_smp_processor_id(cpu);
123  
124  	pp = paca_ptrs[cpu];
125  	dtl = pp->dispatch_log;
126  	if (dtl && dtl_mask) {
127  		pp->dtl_ridx = 0;
128  		pp->dtl_curr = dtl;
129  		lppaca_of(cpu).dtl_idx = 0;
130  
131  		/* hypervisor reads buffer length from this field */
132  		dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
133  		ret = register_dtl(hwcpu, __pa(dtl));
134  		if (ret)
135  			pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
136  			       cpu, hwcpu, ret);
137  
138  		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
139  	}
140  }
141  
142  #ifdef CONFIG_PPC_SPLPAR
143  struct dtl_worker {
144  	struct delayed_work work;
145  	int cpu;
146  };
147  
148  struct vcpu_dispatch_data {
149  	int last_disp_cpu;
150  
151  	int total_disp;
152  
153  	int same_cpu_disp;
154  	int same_chip_disp;
155  	int diff_chip_disp;
156  	int far_chip_disp;
157  
158  	int numa_home_disp;
159  	int numa_remote_disp;
160  	int numa_far_disp;
161  };
162  
163  /*
164   * This represents the number of cpus in the hypervisor. Since there is no
165   * architected way to discover the number of processors in the host, we
166   * provision for dealing with NR_CPUS. This is currently 2048 by default, and
167   * is sufficient for our purposes. This will need to be tweaked if
168   * CONFIG_NR_CPUS is changed.
169   */
170  #define NR_CPUS_H	NR_CPUS
171  
172  DEFINE_RWLOCK(dtl_access_lock);
173  static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
174  static DEFINE_PER_CPU(u64, dtl_entry_ridx);
175  static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
176  static enum cpuhp_state dtl_worker_state;
177  static DEFINE_MUTEX(dtl_enable_mutex);
178  static int vcpudispatch_stats_on __read_mostly;
179  static int vcpudispatch_stats_freq = 50;
180  static __be32 *vcpu_associativity, *pcpu_associativity;
181  
182  
free_dtl_buffers(unsigned long * time_limit)183  static void free_dtl_buffers(unsigned long *time_limit)
184  {
185  #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
186  	int cpu;
187  	struct paca_struct *pp;
188  
189  	for_each_possible_cpu(cpu) {
190  		pp = paca_ptrs[cpu];
191  		if (!pp->dispatch_log)
192  			continue;
193  		kmem_cache_free(dtl_cache, pp->dispatch_log);
194  		pp->dtl_ridx = 0;
195  		pp->dispatch_log = NULL;
196  		pp->dispatch_log_end = NULL;
197  		pp->dtl_curr = NULL;
198  
199  		if (time_limit && time_after(jiffies, *time_limit)) {
200  			cond_resched();
201  			*time_limit = jiffies + HZ;
202  		}
203  	}
204  #endif
205  }
206  
init_cpu_associativity(void)207  static int init_cpu_associativity(void)
208  {
209  	vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
210  			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
211  	pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
212  			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
213  
214  	if (!vcpu_associativity || !pcpu_associativity) {
215  		pr_err("error allocating memory for associativity information\n");
216  		return -ENOMEM;
217  	}
218  
219  	return 0;
220  }
221  
destroy_cpu_associativity(void)222  static void destroy_cpu_associativity(void)
223  {
224  	kfree(vcpu_associativity);
225  	kfree(pcpu_associativity);
226  	vcpu_associativity = pcpu_associativity = NULL;
227  }
228  
__get_cpu_associativity(int cpu,__be32 * cpu_assoc,int flag)229  static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
230  {
231  	__be32 *assoc;
232  	int rc = 0;
233  
234  	assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
235  	if (!assoc[0]) {
236  		rc = hcall_vphn(cpu, flag, &assoc[0]);
237  		if (rc)
238  			return NULL;
239  	}
240  
241  	return assoc;
242  }
243  
get_pcpu_associativity(int cpu)244  static __be32 *get_pcpu_associativity(int cpu)
245  {
246  	return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
247  }
248  
get_vcpu_associativity(int cpu)249  static __be32 *get_vcpu_associativity(int cpu)
250  {
251  	return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
252  }
253  
cpu_relative_dispatch_distance(int last_disp_cpu,int cur_disp_cpu)254  static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
255  {
256  	__be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
257  
258  	if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
259  		return -EINVAL;
260  
261  	last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
262  	cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
263  
264  	if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
265  		return -EIO;
266  
267  	return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
268  }
269  
cpu_home_node_dispatch_distance(int disp_cpu)270  static int cpu_home_node_dispatch_distance(int disp_cpu)
271  {
272  	__be32 *disp_cpu_assoc, *vcpu_assoc;
273  	int vcpu_id = smp_processor_id();
274  
275  	if (disp_cpu >= NR_CPUS_H) {
276  		pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
277  						disp_cpu, NR_CPUS_H);
278  		return -EINVAL;
279  	}
280  
281  	disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
282  	vcpu_assoc = get_vcpu_associativity(vcpu_id);
283  
284  	if (!disp_cpu_assoc || !vcpu_assoc)
285  		return -EIO;
286  
287  	return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
288  }
289  
update_vcpu_disp_stat(int disp_cpu)290  static void update_vcpu_disp_stat(int disp_cpu)
291  {
292  	struct vcpu_dispatch_data *disp;
293  	int distance;
294  
295  	disp = this_cpu_ptr(&vcpu_disp_data);
296  	if (disp->last_disp_cpu == -1) {
297  		disp->last_disp_cpu = disp_cpu;
298  		return;
299  	}
300  
301  	disp->total_disp++;
302  
303  	if (disp->last_disp_cpu == disp_cpu ||
304  		(cpu_first_thread_sibling(disp->last_disp_cpu) ==
305  					cpu_first_thread_sibling(disp_cpu)))
306  		disp->same_cpu_disp++;
307  	else {
308  		distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
309  								disp_cpu);
310  		if (distance < 0)
311  			pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
312  					smp_processor_id());
313  		else {
314  			switch (distance) {
315  			case 0:
316  				disp->same_chip_disp++;
317  				break;
318  			case 1:
319  				disp->diff_chip_disp++;
320  				break;
321  			case 2:
322  				disp->far_chip_disp++;
323  				break;
324  			default:
325  				pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
326  						 smp_processor_id(),
327  						 disp->last_disp_cpu,
328  						 disp_cpu,
329  						 distance);
330  			}
331  		}
332  	}
333  
334  	distance = cpu_home_node_dispatch_distance(disp_cpu);
335  	if (distance < 0)
336  		pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
337  				smp_processor_id());
338  	else {
339  		switch (distance) {
340  		case 0:
341  			disp->numa_home_disp++;
342  			break;
343  		case 1:
344  			disp->numa_remote_disp++;
345  			break;
346  		case 2:
347  			disp->numa_far_disp++;
348  			break;
349  		default:
350  			pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
351  						 smp_processor_id(),
352  						 disp_cpu,
353  						 distance);
354  		}
355  	}
356  
357  	disp->last_disp_cpu = disp_cpu;
358  }
359  
process_dtl_buffer(struct work_struct * work)360  static void process_dtl_buffer(struct work_struct *work)
361  {
362  	struct dtl_entry dtle;
363  	u64 i = __this_cpu_read(dtl_entry_ridx);
364  	struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
365  	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
366  	struct lppaca *vpa = local_paca->lppaca_ptr;
367  	struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
368  
369  	if (!local_paca->dispatch_log)
370  		return;
371  
372  	/* if we have been migrated away, we cancel ourself */
373  	if (d->cpu != smp_processor_id()) {
374  		pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
375  						smp_processor_id());
376  		return;
377  	}
378  
379  	if (i == be64_to_cpu(vpa->dtl_idx))
380  		goto out;
381  
382  	while (i < be64_to_cpu(vpa->dtl_idx)) {
383  		dtle = *dtl;
384  		barrier();
385  		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
386  			/* buffer has overflowed */
387  			pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
388  				d->cpu,
389  				be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
390  			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
391  			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
392  			continue;
393  		}
394  		update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
395  		++i;
396  		++dtl;
397  		if (dtl == dtl_end)
398  			dtl = local_paca->dispatch_log;
399  	}
400  
401  	__this_cpu_write(dtl_entry_ridx, i);
402  
403  out:
404  	schedule_delayed_work_on(d->cpu, to_delayed_work(work),
405  					HZ / vcpudispatch_stats_freq);
406  }
407  
dtl_worker_online(unsigned int cpu)408  static int dtl_worker_online(unsigned int cpu)
409  {
410  	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
411  
412  	memset(d, 0, sizeof(*d));
413  	INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
414  	d->cpu = cpu;
415  
416  #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
417  	per_cpu(dtl_entry_ridx, cpu) = 0;
418  	register_dtl_buffer(cpu);
419  #else
420  	per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
421  #endif
422  
423  	schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
424  	return 0;
425  }
426  
dtl_worker_offline(unsigned int cpu)427  static int dtl_worker_offline(unsigned int cpu)
428  {
429  	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
430  
431  	cancel_delayed_work_sync(&d->work);
432  
433  #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
434  	unregister_dtl(get_hard_smp_processor_id(cpu));
435  #endif
436  
437  	return 0;
438  }
439  
set_global_dtl_mask(u8 mask)440  static void set_global_dtl_mask(u8 mask)
441  {
442  	int cpu;
443  
444  	dtl_mask = mask;
445  	for_each_present_cpu(cpu)
446  		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
447  }
448  
reset_global_dtl_mask(void)449  static void reset_global_dtl_mask(void)
450  {
451  	int cpu;
452  
453  #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
454  	dtl_mask = DTL_LOG_PREEMPT;
455  #else
456  	dtl_mask = 0;
457  #endif
458  	for_each_present_cpu(cpu)
459  		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
460  }
461  
dtl_worker_enable(unsigned long * time_limit)462  static int dtl_worker_enable(unsigned long *time_limit)
463  {
464  	int rc = 0, state;
465  
466  	if (!write_trylock(&dtl_access_lock)) {
467  		rc = -EBUSY;
468  		goto out;
469  	}
470  
471  	set_global_dtl_mask(DTL_LOG_ALL);
472  
473  	/* Setup dtl buffers and register those */
474  	alloc_dtl_buffers(time_limit);
475  
476  	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
477  					dtl_worker_online, dtl_worker_offline);
478  	if (state < 0) {
479  		pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
480  		free_dtl_buffers(time_limit);
481  		reset_global_dtl_mask();
482  		write_unlock(&dtl_access_lock);
483  		rc = -EINVAL;
484  		goto out;
485  	}
486  	dtl_worker_state = state;
487  
488  out:
489  	return rc;
490  }
491  
dtl_worker_disable(unsigned long * time_limit)492  static void dtl_worker_disable(unsigned long *time_limit)
493  {
494  	cpuhp_remove_state(dtl_worker_state);
495  	free_dtl_buffers(time_limit);
496  	reset_global_dtl_mask();
497  	write_unlock(&dtl_access_lock);
498  }
499  
vcpudispatch_stats_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)500  static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
501  		size_t count, loff_t *ppos)
502  {
503  	unsigned long time_limit = jiffies + HZ;
504  	struct vcpu_dispatch_data *disp;
505  	int rc, cmd, cpu;
506  	char buf[16];
507  
508  	if (count > 15)
509  		return -EINVAL;
510  
511  	if (copy_from_user(buf, p, count))
512  		return -EFAULT;
513  
514  	buf[count] = 0;
515  	rc = kstrtoint(buf, 0, &cmd);
516  	if (rc || cmd < 0 || cmd > 1) {
517  		pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
518  		return rc ? rc : -EINVAL;
519  	}
520  
521  	mutex_lock(&dtl_enable_mutex);
522  
523  	if ((cmd == 0 && !vcpudispatch_stats_on) ||
524  			(cmd == 1 && vcpudispatch_stats_on))
525  		goto out;
526  
527  	if (cmd) {
528  		rc = init_cpu_associativity();
529  		if (rc) {
530  			destroy_cpu_associativity();
531  			goto out;
532  		}
533  
534  		for_each_possible_cpu(cpu) {
535  			disp = per_cpu_ptr(&vcpu_disp_data, cpu);
536  			memset(disp, 0, sizeof(*disp));
537  			disp->last_disp_cpu = -1;
538  		}
539  
540  		rc = dtl_worker_enable(&time_limit);
541  		if (rc) {
542  			destroy_cpu_associativity();
543  			goto out;
544  		}
545  	} else {
546  		dtl_worker_disable(&time_limit);
547  		destroy_cpu_associativity();
548  	}
549  
550  	vcpudispatch_stats_on = cmd;
551  
552  out:
553  	mutex_unlock(&dtl_enable_mutex);
554  	if (rc)
555  		return rc;
556  	return count;
557  }
558  
vcpudispatch_stats_display(struct seq_file * p,void * v)559  static int vcpudispatch_stats_display(struct seq_file *p, void *v)
560  {
561  	int cpu;
562  	struct vcpu_dispatch_data *disp;
563  
564  	if (!vcpudispatch_stats_on) {
565  		seq_puts(p, "off\n");
566  		return 0;
567  	}
568  
569  	for_each_online_cpu(cpu) {
570  		disp = per_cpu_ptr(&vcpu_disp_data, cpu);
571  		seq_printf(p, "cpu%d", cpu);
572  		seq_put_decimal_ull(p, " ", disp->total_disp);
573  		seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
574  		seq_put_decimal_ull(p, " ", disp->same_chip_disp);
575  		seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
576  		seq_put_decimal_ull(p, " ", disp->far_chip_disp);
577  		seq_put_decimal_ull(p, " ", disp->numa_home_disp);
578  		seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
579  		seq_put_decimal_ull(p, " ", disp->numa_far_disp);
580  		seq_puts(p, "\n");
581  	}
582  
583  	return 0;
584  }
585  
vcpudispatch_stats_open(struct inode * inode,struct file * file)586  static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
587  {
588  	return single_open(file, vcpudispatch_stats_display, NULL);
589  }
590  
591  static const struct proc_ops vcpudispatch_stats_proc_ops = {
592  	.proc_open	= vcpudispatch_stats_open,
593  	.proc_read	= seq_read,
594  	.proc_write	= vcpudispatch_stats_write,
595  	.proc_lseek	= seq_lseek,
596  	.proc_release	= single_release,
597  };
598  
vcpudispatch_stats_freq_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)599  static ssize_t vcpudispatch_stats_freq_write(struct file *file,
600  		const char __user *p, size_t count, loff_t *ppos)
601  {
602  	int rc, freq;
603  	char buf[16];
604  
605  	if (count > 15)
606  		return -EINVAL;
607  
608  	if (copy_from_user(buf, p, count))
609  		return -EFAULT;
610  
611  	buf[count] = 0;
612  	rc = kstrtoint(buf, 0, &freq);
613  	if (rc || freq < 1 || freq > HZ) {
614  		pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
615  				HZ);
616  		return rc ? rc : -EINVAL;
617  	}
618  
619  	vcpudispatch_stats_freq = freq;
620  
621  	return count;
622  }
623  
vcpudispatch_stats_freq_display(struct seq_file * p,void * v)624  static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
625  {
626  	seq_printf(p, "%d\n", vcpudispatch_stats_freq);
627  	return 0;
628  }
629  
vcpudispatch_stats_freq_open(struct inode * inode,struct file * file)630  static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
631  {
632  	return single_open(file, vcpudispatch_stats_freq_display, NULL);
633  }
634  
635  static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
636  	.proc_open	= vcpudispatch_stats_freq_open,
637  	.proc_read	= seq_read,
638  	.proc_write	= vcpudispatch_stats_freq_write,
639  	.proc_lseek	= seq_lseek,
640  	.proc_release	= single_release,
641  };
642  
vcpudispatch_stats_procfs_init(void)643  static int __init vcpudispatch_stats_procfs_init(void)
644  {
645  	if (!lppaca_shared_proc())
646  		return 0;
647  
648  	if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
649  					&vcpudispatch_stats_proc_ops))
650  		pr_err("vcpudispatch_stats: error creating procfs file\n");
651  	else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
652  					&vcpudispatch_stats_freq_proc_ops))
653  		pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
654  
655  	return 0;
656  }
657  
658  machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
659  
660  #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
pseries_paravirt_steal_clock(int cpu)661  u64 pseries_paravirt_steal_clock(int cpu)
662  {
663  	struct lppaca *lppaca = &lppaca_of(cpu);
664  
665  	/*
666  	 * VPA steal time counters are reported at TB frequency. Hence do a
667  	 * conversion to ns before returning
668  	 */
669  	return tb_to_ns(be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) +
670  			be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb)));
671  }
672  #endif
673  
674  #endif /* CONFIG_PPC_SPLPAR */
675  
vpa_init(int cpu)676  void vpa_init(int cpu)
677  {
678  	int hwcpu = get_hard_smp_processor_id(cpu);
679  	unsigned long addr;
680  	long ret;
681  
682  	/*
683  	 * The spec says it "may be problematic" if CPU x registers the VPA of
684  	 * CPU y. We should never do that, but wail if we ever do.
685  	 */
686  	WARN_ON(cpu != smp_processor_id());
687  
688  	if (cpu_has_feature(CPU_FTR_ALTIVEC))
689  		lppaca_of(cpu).vmxregs_in_use = 1;
690  
691  	if (cpu_has_feature(CPU_FTR_ARCH_207S))
692  		lppaca_of(cpu).ebb_regs_in_use = 1;
693  
694  	addr = __pa(&lppaca_of(cpu));
695  	ret = register_vpa(hwcpu, addr);
696  
697  	if (ret) {
698  		pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
699  		       "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
700  		return;
701  	}
702  
703  #ifdef CONFIG_PPC_64S_HASH_MMU
704  	/*
705  	 * PAPR says this feature is SLB-Buffer but firmware never
706  	 * reports that.  All SPLPAR support SLB shadow buffer.
707  	 */
708  	if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
709  		addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
710  		ret = register_slb_shadow(hwcpu, addr);
711  		if (ret)
712  			pr_err("WARNING: SLB shadow buffer registration for "
713  			       "cpu %d (hw %d) of area %lx failed with %ld\n",
714  			       cpu, hwcpu, addr, ret);
715  	}
716  #endif /* CONFIG_PPC_64S_HASH_MMU */
717  
718  	/*
719  	 * Register dispatch trace log, if one has been allocated.
720  	 */
721  	register_dtl_buffer(cpu);
722  }
723  
724  #ifdef CONFIG_PPC_BOOK3S_64
725  
pseries_lpar_register_process_table(unsigned long base,unsigned long page_size,unsigned long table_size)726  static int __init pseries_lpar_register_process_table(unsigned long base,
727  			unsigned long page_size, unsigned long table_size)
728  {
729  	long rc;
730  	unsigned long flags = 0;
731  
732  	if (table_size)
733  		flags |= PROC_TABLE_NEW;
734  	if (radix_enabled()) {
735  		flags |= PROC_TABLE_RADIX;
736  		if (mmu_has_feature(MMU_FTR_GTSE))
737  			flags |= PROC_TABLE_GTSE;
738  	} else
739  		flags |= PROC_TABLE_HPT_SLB;
740  	for (;;) {
741  		rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
742  					page_size, table_size);
743  		if (!H_IS_LONG_BUSY(rc))
744  			break;
745  		mdelay(get_longbusy_msecs(rc));
746  	}
747  	if (rc != H_SUCCESS) {
748  		pr_err("Failed to register process table (rc=%ld)\n", rc);
749  		BUG();
750  	}
751  	return rc;
752  }
753  
754  #ifdef CONFIG_PPC_64S_HASH_MMU
755  
pSeries_lpar_hpte_insert(unsigned long hpte_group,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int apsize,int ssize)756  static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
757  				     unsigned long vpn, unsigned long pa,
758  				     unsigned long rflags, unsigned long vflags,
759  				     int psize, int apsize, int ssize)
760  {
761  	unsigned long lpar_rc;
762  	unsigned long flags;
763  	unsigned long slot;
764  	unsigned long hpte_v, hpte_r;
765  
766  	if (!(vflags & HPTE_V_BOLTED))
767  		pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
768  			 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
769  			 hpte_group, vpn,  pa, rflags, vflags, psize);
770  
771  	hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
772  	hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
773  
774  	if (!(vflags & HPTE_V_BOLTED))
775  		pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
776  
777  	/* Now fill in the actual HPTE */
778  	/* Set CEC cookie to 0         */
779  	/* Zero page = 0               */
780  	/* I-cache Invalidate = 0      */
781  	/* I-cache synchronize = 0     */
782  	/* Exact = 0                   */
783  	flags = 0;
784  
785  	if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
786  		flags |= H_COALESCE_CAND;
787  
788  	lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
789  	if (unlikely(lpar_rc == H_PTEG_FULL)) {
790  		pr_devel("Hash table group is full\n");
791  		return -1;
792  	}
793  
794  	/*
795  	 * Since we try and ioremap PHBs we don't own, the pte insert
796  	 * will fail. However we must catch the failure in hash_page
797  	 * or we will loop forever, so return -2 in this case.
798  	 */
799  	if (unlikely(lpar_rc != H_SUCCESS)) {
800  		pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
801  		return -2;
802  	}
803  	if (!(vflags & HPTE_V_BOLTED))
804  		pr_devel(" -> slot: %lu\n", slot & 7);
805  
806  	/* Because of iSeries, we have to pass down the secondary
807  	 * bucket bit here as well
808  	 */
809  	return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
810  }
811  
812  static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
813  
pSeries_lpar_hpte_remove(unsigned long hpte_group)814  static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
815  {
816  	unsigned long slot_offset;
817  	unsigned long lpar_rc;
818  	int i;
819  	unsigned long dummy1, dummy2;
820  
821  	/* pick a random slot to start at */
822  	slot_offset = mftb() & 0x7;
823  
824  	for (i = 0; i < HPTES_PER_GROUP; i++) {
825  
826  		/* don't remove a bolted entry */
827  		lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
828  					   HPTE_V_BOLTED, &dummy1, &dummy2);
829  		if (lpar_rc == H_SUCCESS)
830  			return i;
831  
832  		/*
833  		 * The test for adjunct partition is performed before the
834  		 * ANDCOND test.  H_RESOURCE may be returned, so we need to
835  		 * check for that as well.
836  		 */
837  		BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
838  
839  		slot_offset++;
840  		slot_offset &= 0x7;
841  	}
842  
843  	return -1;
844  }
845  
846  /* Called during kexec sequence with MMU off */
manual_hpte_clear_all(void)847  static notrace void manual_hpte_clear_all(void)
848  {
849  	unsigned long size_bytes = 1UL << ppc64_pft_size;
850  	unsigned long hpte_count = size_bytes >> 4;
851  	struct {
852  		unsigned long pteh;
853  		unsigned long ptel;
854  	} ptes[4];
855  	long lpar_rc;
856  	unsigned long i, j;
857  
858  	/* Read in batches of 4,
859  	 * invalidate only valid entries not in the VRMA
860  	 * hpte_count will be a multiple of 4
861           */
862  	for (i = 0; i < hpte_count; i += 4) {
863  		lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
864  		if (lpar_rc != H_SUCCESS) {
865  			pr_info("Failed to read hash page table at %ld err %ld\n",
866  				i, lpar_rc);
867  			continue;
868  		}
869  		for (j = 0; j < 4; j++){
870  			if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
871  				HPTE_V_VRMA_MASK)
872  				continue;
873  			if (ptes[j].pteh & HPTE_V_VALID)
874  				plpar_pte_remove_raw(0, i + j, 0,
875  					&(ptes[j].pteh), &(ptes[j].ptel));
876  		}
877  	}
878  }
879  
880  /* Called during kexec sequence with MMU off */
hcall_hpte_clear_all(void)881  static notrace int hcall_hpte_clear_all(void)
882  {
883  	int rc;
884  
885  	do {
886  		rc = plpar_hcall_norets(H_CLEAR_HPT);
887  	} while (rc == H_CONTINUE);
888  
889  	return rc;
890  }
891  
892  /* Called during kexec sequence with MMU off */
pseries_hpte_clear_all(void)893  static notrace void pseries_hpte_clear_all(void)
894  {
895  	int rc;
896  
897  	rc = hcall_hpte_clear_all();
898  	if (rc != H_SUCCESS)
899  		manual_hpte_clear_all();
900  
901  #ifdef __LITTLE_ENDIAN__
902  	/*
903  	 * Reset exceptions to big endian.
904  	 *
905  	 * FIXME this is a hack for kexec, we need to reset the exception
906  	 * endian before starting the new kernel and this is a convenient place
907  	 * to do it.
908  	 *
909  	 * This is also called on boot when a fadump happens. In that case we
910  	 * must not change the exception endian mode.
911  	 */
912  	if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
913  		pseries_big_endian_exceptions();
914  #endif
915  }
916  
917  /*
918   * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
919   * the low 3 bits of flags happen to line up.  So no transform is needed.
920   * We can probably optimize here and assume the high bits of newpp are
921   * already zero.  For now I am paranoid.
922   */
pSeries_lpar_hpte_updatepp(unsigned long slot,unsigned long newpp,unsigned long vpn,int psize,int apsize,int ssize,unsigned long inv_flags)923  static long pSeries_lpar_hpte_updatepp(unsigned long slot,
924  				       unsigned long newpp,
925  				       unsigned long vpn,
926  				       int psize, int apsize,
927  				       int ssize, unsigned long inv_flags)
928  {
929  	unsigned long lpar_rc;
930  	unsigned long flags;
931  	unsigned long want_v;
932  
933  	want_v = hpte_encode_avpn(vpn, psize, ssize);
934  
935  	flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
936  	flags |= (newpp & HPTE_R_KEY_HI) >> 48;
937  	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
938  		/* Move pp0 into bit 8 (IBM 55) */
939  		flags |= (newpp & HPTE_R_PP0) >> 55;
940  
941  	pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
942  		 want_v, slot, flags, psize);
943  
944  	lpar_rc = plpar_pte_protect(flags, slot, want_v);
945  
946  	if (lpar_rc == H_NOT_FOUND) {
947  		pr_devel("not found !\n");
948  		return -1;
949  	}
950  
951  	pr_devel("ok\n");
952  
953  	BUG_ON(lpar_rc != H_SUCCESS);
954  
955  	return 0;
956  }
957  
__pSeries_lpar_hpte_find(unsigned long want_v,unsigned long hpte_group)958  static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
959  {
960  	long lpar_rc;
961  	unsigned long i, j;
962  	struct {
963  		unsigned long pteh;
964  		unsigned long ptel;
965  	} ptes[4];
966  
967  	for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
968  
969  		lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
970  		if (lpar_rc != H_SUCCESS) {
971  			pr_info("Failed to read hash page table at %ld err %ld\n",
972  				hpte_group, lpar_rc);
973  			continue;
974  		}
975  
976  		for (j = 0; j < 4; j++) {
977  			if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
978  			    (ptes[j].pteh & HPTE_V_VALID))
979  				return i + j;
980  		}
981  	}
982  
983  	return -1;
984  }
985  
pSeries_lpar_hpte_find(unsigned long vpn,int psize,int ssize)986  static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
987  {
988  	long slot;
989  	unsigned long hash;
990  	unsigned long want_v;
991  	unsigned long hpte_group;
992  
993  	hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
994  	want_v = hpte_encode_avpn(vpn, psize, ssize);
995  
996  	/*
997  	 * We try to keep bolted entries always in primary hash
998  	 * But in some case we can find them in secondary too.
999  	 */
1000  	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1001  	slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
1002  	if (slot < 0) {
1003  		/* Try in secondary */
1004  		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1005  		slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
1006  		if (slot < 0)
1007  			return -1;
1008  	}
1009  	return hpte_group + slot;
1010  }
1011  
pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,unsigned long ea,int psize,int ssize)1012  static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
1013  					     unsigned long ea,
1014  					     int psize, int ssize)
1015  {
1016  	unsigned long vpn;
1017  	unsigned long lpar_rc, slot, vsid, flags;
1018  
1019  	vsid = get_kernel_vsid(ea, ssize);
1020  	vpn = hpt_vpn(ea, vsid, ssize);
1021  
1022  	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1023  	BUG_ON(slot == -1);
1024  
1025  	flags = newpp & (HPTE_R_PP | HPTE_R_N);
1026  	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
1027  		/* Move pp0 into bit 8 (IBM 55) */
1028  		flags |= (newpp & HPTE_R_PP0) >> 55;
1029  
1030  	flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
1031  
1032  	lpar_rc = plpar_pte_protect(flags, slot, 0);
1033  
1034  	BUG_ON(lpar_rc != H_SUCCESS);
1035  }
1036  
pSeries_lpar_hpte_invalidate(unsigned long slot,unsigned long vpn,int psize,int apsize,int ssize,int local)1037  static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
1038  					 int psize, int apsize,
1039  					 int ssize, int local)
1040  {
1041  	unsigned long want_v;
1042  	unsigned long lpar_rc;
1043  	unsigned long dummy1, dummy2;
1044  
1045  	pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
1046  		 slot, vpn, psize, local);
1047  
1048  	want_v = hpte_encode_avpn(vpn, psize, ssize);
1049  	lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1050  	if (lpar_rc == H_NOT_FOUND)
1051  		return;
1052  
1053  	BUG_ON(lpar_rc != H_SUCCESS);
1054  }
1055  
1056  
1057  /*
1058   * As defined in the PAPR's section 14.5.4.1.8
1059   * The control mask doesn't include the returned reference and change bit from
1060   * the processed PTE.
1061   */
1062  #define HBLKR_AVPN		0x0100000000000000UL
1063  #define HBLKR_CTRL_MASK		0xf800000000000000UL
1064  #define HBLKR_CTRL_SUCCESS	0x8000000000000000UL
1065  #define HBLKR_CTRL_ERRNOTFOUND	0x8800000000000000UL
1066  #define HBLKR_CTRL_ERRBUSY	0xa000000000000000UL
1067  
1068  /*
1069   * Returned true if we are supporting this block size for the specified segment
1070   * base page size and actual page size.
1071   *
1072   * Currently, we only support 8 size block.
1073   */
is_supported_hlbkrm(int bpsize,int psize)1074  static inline bool is_supported_hlbkrm(int bpsize, int psize)
1075  {
1076  	return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1077  }
1078  
1079  /**
1080   * H_BLOCK_REMOVE caller.
1081   * @idx should point to the latest @param entry set with a PTEX.
1082   * If PTE cannot be processed because another CPUs has already locked that
1083   * group, those entries are put back in @param starting at index 1.
1084   * If entries has to be retried and @retry_busy is set to true, these entries
1085   * are retried until success. If @retry_busy is set to false, the returned
1086   * is the number of entries yet to process.
1087   */
call_block_remove(unsigned long idx,unsigned long * param,bool retry_busy)1088  static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1089  				       bool retry_busy)
1090  {
1091  	unsigned long i, rc, new_idx;
1092  	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1093  
1094  	if (idx < 2) {
1095  		pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1096  		return 0;
1097  	}
1098  again:
1099  	new_idx = 0;
1100  	if (idx > PLPAR_HCALL9_BUFSIZE) {
1101  		pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1102  		idx = PLPAR_HCALL9_BUFSIZE;
1103  	} else if (idx < PLPAR_HCALL9_BUFSIZE)
1104  		param[idx] = HBR_END;
1105  
1106  	rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1107  			  param[0], /* AVA */
1108  			  param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1109  			  param[5],  param[6],  param[7],  param[8]);
1110  	if (rc == H_SUCCESS)
1111  		return 0;
1112  
1113  	BUG_ON(rc != H_PARTIAL);
1114  
1115  	/* Check that the unprocessed entries were 'not found' or 'busy' */
1116  	for (i = 0; i < idx-1; i++) {
1117  		unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1118  
1119  		if (ctrl == HBLKR_CTRL_ERRBUSY) {
1120  			param[++new_idx] = param[i+1];
1121  			continue;
1122  		}
1123  
1124  		BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1125  		       && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1126  	}
1127  
1128  	/*
1129  	 * If there were entries found busy, retry these entries if requested,
1130  	 * of if all the entries have to be retried.
1131  	 */
1132  	if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1133  		idx = new_idx + 1;
1134  		goto again;
1135  	}
1136  
1137  	return new_idx;
1138  }
1139  
1140  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1141  /*
1142   * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1143   * to make sure that we avoid bouncing the hypervisor tlbie lock.
1144   */
1145  #define PPC64_HUGE_HPTE_BATCH 12
1146  
hugepage_block_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1147  static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1148  				      int count, int psize, int ssize)
1149  {
1150  	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1151  	unsigned long shift, current_vpgb, vpgb;
1152  	int i, pix = 0;
1153  
1154  	shift = mmu_psize_defs[psize].shift;
1155  
1156  	for (i = 0; i < count; i++) {
1157  		/*
1158  		 * Shifting 3 bits more on the right to get a
1159  		 * 8 pages aligned virtual addresse.
1160  		 */
1161  		vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1162  		if (!pix || vpgb != current_vpgb) {
1163  			/*
1164  			 * Need to start a new 8 pages block, flush
1165  			 * the current one if needed.
1166  			 */
1167  			if (pix)
1168  				(void)call_block_remove(pix, param, true);
1169  			current_vpgb = vpgb;
1170  			param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1171  			pix = 1;
1172  		}
1173  
1174  		param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1175  		if (pix == PLPAR_HCALL9_BUFSIZE) {
1176  			pix = call_block_remove(pix, param, false);
1177  			/*
1178  			 * pix = 0 means that all the entries were
1179  			 * removed, we can start a new block.
1180  			 * Otherwise, this means that there are entries
1181  			 * to retry, and pix points to latest one, so
1182  			 * we should increment it and try to continue
1183  			 * the same block.
1184  			 */
1185  			if (pix)
1186  				pix++;
1187  		}
1188  	}
1189  	if (pix)
1190  		(void)call_block_remove(pix, param, true);
1191  }
1192  
hugepage_bulk_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1193  static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1194  				     int count, int psize, int ssize)
1195  {
1196  	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1197  	int i = 0, pix = 0, rc;
1198  
1199  	for (i = 0; i < count; i++) {
1200  
1201  		if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1202  			pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1203  						     ssize, 0);
1204  		} else {
1205  			param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1206  			param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1207  			pix += 2;
1208  			if (pix == 8) {
1209  				rc = plpar_hcall9(H_BULK_REMOVE, param,
1210  						  param[0], param[1], param[2],
1211  						  param[3], param[4], param[5],
1212  						  param[6], param[7]);
1213  				BUG_ON(rc != H_SUCCESS);
1214  				pix = 0;
1215  			}
1216  		}
1217  	}
1218  	if (pix) {
1219  		param[pix] = HBR_END;
1220  		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1221  				  param[2], param[3], param[4], param[5],
1222  				  param[6], param[7]);
1223  		BUG_ON(rc != H_SUCCESS);
1224  	}
1225  }
1226  
__pSeries_lpar_hugepage_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1227  static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1228  						      unsigned long *vpn,
1229  						      int count, int psize,
1230  						      int ssize)
1231  {
1232  	unsigned long flags = 0;
1233  	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1234  
1235  	if (lock_tlbie)
1236  		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1237  
1238  	/* Assuming THP size is 16M */
1239  	if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1240  		hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1241  	else
1242  		hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1243  
1244  	if (lock_tlbie)
1245  		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1246  }
1247  
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1248  static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1249  					     unsigned long addr,
1250  					     unsigned char *hpte_slot_array,
1251  					     int psize, int ssize, int local)
1252  {
1253  	int i, index = 0;
1254  	unsigned long s_addr = addr;
1255  	unsigned int max_hpte_count, valid;
1256  	unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1257  	unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1258  	unsigned long shift, hidx, vpn = 0, hash, slot;
1259  
1260  	shift = mmu_psize_defs[psize].shift;
1261  	max_hpte_count = 1U << (PMD_SHIFT - shift);
1262  
1263  	for (i = 0; i < max_hpte_count; i++) {
1264  		valid = hpte_valid(hpte_slot_array, i);
1265  		if (!valid)
1266  			continue;
1267  		hidx =  hpte_hash_index(hpte_slot_array, i);
1268  
1269  		/* get the vpn */
1270  		addr = s_addr + (i * (1ul << shift));
1271  		vpn = hpt_vpn(addr, vsid, ssize);
1272  		hash = hpt_hash(vpn, shift, ssize);
1273  		if (hidx & _PTEIDX_SECONDARY)
1274  			hash = ~hash;
1275  
1276  		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1277  		slot += hidx & _PTEIDX_GROUP_IX;
1278  
1279  		slot_array[index] = slot;
1280  		vpn_array[index] = vpn;
1281  		if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1282  			/*
1283  			 * Now do a bluk invalidate
1284  			 */
1285  			__pSeries_lpar_hugepage_invalidate(slot_array,
1286  							   vpn_array,
1287  							   PPC64_HUGE_HPTE_BATCH,
1288  							   psize, ssize);
1289  			index = 0;
1290  		} else
1291  			index++;
1292  	}
1293  	if (index)
1294  		__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1295  						   index, psize, ssize);
1296  }
1297  #else
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1298  static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1299  					     unsigned long addr,
1300  					     unsigned char *hpte_slot_array,
1301  					     int psize, int ssize, int local)
1302  {
1303  	WARN(1, "%s called without THP support\n", __func__);
1304  }
1305  #endif
1306  
pSeries_lpar_hpte_removebolted(unsigned long ea,int psize,int ssize)1307  static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1308  					  int psize, int ssize)
1309  {
1310  	unsigned long vpn;
1311  	unsigned long slot, vsid;
1312  
1313  	vsid = get_kernel_vsid(ea, ssize);
1314  	vpn = hpt_vpn(ea, vsid, ssize);
1315  
1316  	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1317  	if (slot == -1)
1318  		return -ENOENT;
1319  
1320  	/*
1321  	 * lpar doesn't use the passed actual page size
1322  	 */
1323  	pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1324  	return 0;
1325  }
1326  
1327  
compute_slot(real_pte_t pte,unsigned long vpn,unsigned long index,unsigned long shift,int ssize)1328  static inline unsigned long compute_slot(real_pte_t pte,
1329  					 unsigned long vpn,
1330  					 unsigned long index,
1331  					 unsigned long shift,
1332  					 int ssize)
1333  {
1334  	unsigned long slot, hash, hidx;
1335  
1336  	hash = hpt_hash(vpn, shift, ssize);
1337  	hidx = __rpte_to_hidx(pte, index);
1338  	if (hidx & _PTEIDX_SECONDARY)
1339  		hash = ~hash;
1340  	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1341  	slot += hidx & _PTEIDX_GROUP_IX;
1342  	return slot;
1343  }
1344  
1345  /**
1346   * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1347   * "all within the same naturally aligned 8 page virtual address block".
1348   */
do_block_remove(unsigned long number,struct ppc64_tlb_batch * batch,unsigned long * param)1349  static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1350  			    unsigned long *param)
1351  {
1352  	unsigned long vpn;
1353  	unsigned long i, pix = 0;
1354  	unsigned long index, shift, slot, current_vpgb, vpgb;
1355  	real_pte_t pte;
1356  	int psize, ssize;
1357  
1358  	psize = batch->psize;
1359  	ssize = batch->ssize;
1360  
1361  	for (i = 0; i < number; i++) {
1362  		vpn = batch->vpn[i];
1363  		pte = batch->pte[i];
1364  		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1365  			/*
1366  			 * Shifting 3 bits more on the right to get a
1367  			 * 8 pages aligned virtual addresse.
1368  			 */
1369  			vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1370  			if (!pix || vpgb != current_vpgb) {
1371  				/*
1372  				 * Need to start a new 8 pages block, flush
1373  				 * the current one if needed.
1374  				 */
1375  				if (pix)
1376  					(void)call_block_remove(pix, param,
1377  								true);
1378  				current_vpgb = vpgb;
1379  				param[0] = hpte_encode_avpn(vpn, psize,
1380  							    ssize);
1381  				pix = 1;
1382  			}
1383  
1384  			slot = compute_slot(pte, vpn, index, shift, ssize);
1385  			param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1386  
1387  			if (pix == PLPAR_HCALL9_BUFSIZE) {
1388  				pix = call_block_remove(pix, param, false);
1389  				/*
1390  				 * pix = 0 means that all the entries were
1391  				 * removed, we can start a new block.
1392  				 * Otherwise, this means that there are entries
1393  				 * to retry, and pix points to latest one, so
1394  				 * we should increment it and try to continue
1395  				 * the same block.
1396  				 */
1397  				if (pix)
1398  					pix++;
1399  			}
1400  		} pte_iterate_hashed_end();
1401  	}
1402  
1403  	if (pix)
1404  		(void)call_block_remove(pix, param, true);
1405  }
1406  
1407  /*
1408   * TLB Block Invalidate Characteristics
1409   *
1410   * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1411   * is able to process for each couple segment base page size, actual page size.
1412   *
1413   * The ibm,get-system-parameter properties is returning a buffer with the
1414   * following layout:
1415   *
1416   * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1417   * -----------------
1418   * TLB Block Invalidate Specifiers:
1419   * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1420   * [ 1 byte Number of page sizes (N) that are supported for the specified
1421   *          TLB invalidate block size ]
1422   * [ 1 byte Encoded segment base page size and actual page size
1423   *          MSB=0 means 4k segment base page size and actual page size
1424   *          MSB=1 the penc value in mmu_psize_def ]
1425   * ...
1426   * -----------------
1427   * Next TLB Block Invalidate Specifiers...
1428   * -----------------
1429   * [ 0 ]
1430   */
set_hblkrm_bloc_size(int bpsize,int psize,unsigned int block_size)1431  static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1432  					unsigned int block_size)
1433  {
1434  	if (block_size > hblkrm_size[bpsize][psize])
1435  		hblkrm_size[bpsize][psize] = block_size;
1436  }
1437  
1438  /*
1439   * Decode the Encoded segment base page size and actual page size.
1440   * PAPR specifies:
1441   *   - bit 7 is the L bit
1442   *   - bits 0-5 are the penc value
1443   * If the L bit is 0, this means 4K segment base page size and actual page size
1444   * otherwise the penc value should be read.
1445   */
1446  #define HBLKRM_L_MASK		0x80
1447  #define HBLKRM_PENC_MASK	0x3f
check_lp_set_hblkrm(unsigned int lp,unsigned int block_size)1448  static inline void __init check_lp_set_hblkrm(unsigned int lp,
1449  					      unsigned int block_size)
1450  {
1451  	unsigned int bpsize, psize;
1452  
1453  	/* First, check the L bit, if not set, this means 4K */
1454  	if ((lp & HBLKRM_L_MASK) == 0) {
1455  		set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1456  		return;
1457  	}
1458  
1459  	lp &= HBLKRM_PENC_MASK;
1460  	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1461  		struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1462  
1463  		for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1464  			if (def->penc[psize] == lp) {
1465  				set_hblkrm_bloc_size(bpsize, psize, block_size);
1466  				return;
1467  			}
1468  		}
1469  	}
1470  }
1471  
1472  /*
1473   * The size of the TLB Block Invalidate Characteristics is variable. But at the
1474   * maximum it will be the number of possible page sizes *2 + 10 bytes.
1475   * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1476   * (128 bytes) for the buffer to get plenty of space.
1477   */
1478  #define SPLPAR_TLB_BIC_MAXLENGTH	128
1479  
pseries_lpar_read_hblkrm_characteristics(void)1480  void __init pseries_lpar_read_hblkrm_characteristics(void)
1481  {
1482  	static struct papr_sysparm_buf buf __initdata;
1483  	int len, idx, bpsize;
1484  
1485  	if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1486  		return;
1487  
1488  	if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf))
1489  		return;
1490  
1491  	len = be16_to_cpu(buf.len);
1492  	if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1493  		pr_warn("%s too large returned buffer %d", __func__, len);
1494  		return;
1495  	}
1496  
1497  	idx = 0;
1498  	while (idx < len) {
1499  		u8 block_shift = buf.val[idx++];
1500  		u32 block_size;
1501  		unsigned int npsize;
1502  
1503  		if (!block_shift)
1504  			break;
1505  
1506  		block_size = 1 << block_shift;
1507  
1508  		for (npsize = buf.val[idx++];
1509  		     npsize > 0 && idx < len; npsize--)
1510  			check_lp_set_hblkrm((unsigned int)buf.val[idx++],
1511  					    block_size);
1512  	}
1513  
1514  	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1515  		for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1516  			if (hblkrm_size[bpsize][idx])
1517  				pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1518  					bpsize, idx, hblkrm_size[bpsize][idx]);
1519  }
1520  
1521  /*
1522   * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1523   * lock.
1524   */
pSeries_lpar_flush_hash_range(unsigned long number,int local)1525  static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1526  {
1527  	unsigned long vpn;
1528  	unsigned long i, pix, rc;
1529  	unsigned long flags = 0;
1530  	struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1531  	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1532  	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1533  	unsigned long index, shift, slot;
1534  	real_pte_t pte;
1535  	int psize, ssize;
1536  
1537  	if (lock_tlbie)
1538  		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1539  
1540  	if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1541  		do_block_remove(number, batch, param);
1542  		goto out;
1543  	}
1544  
1545  	psize = batch->psize;
1546  	ssize = batch->ssize;
1547  	pix = 0;
1548  	for (i = 0; i < number; i++) {
1549  		vpn = batch->vpn[i];
1550  		pte = batch->pte[i];
1551  		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1552  			slot = compute_slot(pte, vpn, index, shift, ssize);
1553  			if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1554  				/*
1555  				 * lpar doesn't use the passed actual page size
1556  				 */
1557  				pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1558  							     0, ssize, local);
1559  			} else {
1560  				param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1561  				param[pix+1] = hpte_encode_avpn(vpn, psize,
1562  								ssize);
1563  				pix += 2;
1564  				if (pix == 8) {
1565  					rc = plpar_hcall9(H_BULK_REMOVE, param,
1566  						param[0], param[1], param[2],
1567  						param[3], param[4], param[5],
1568  						param[6], param[7]);
1569  					BUG_ON(rc != H_SUCCESS);
1570  					pix = 0;
1571  				}
1572  			}
1573  		} pte_iterate_hashed_end();
1574  	}
1575  	if (pix) {
1576  		param[pix] = HBR_END;
1577  		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1578  				  param[2], param[3], param[4], param[5],
1579  				  param[6], param[7]);
1580  		BUG_ON(rc != H_SUCCESS);
1581  	}
1582  
1583  out:
1584  	if (lock_tlbie)
1585  		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1586  }
1587  
disable_bulk_remove(char * str)1588  static int __init disable_bulk_remove(char *str)
1589  {
1590  	if (strcmp(str, "off") == 0 &&
1591  	    firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1592  		pr_info("Disabling BULK_REMOVE firmware feature");
1593  		powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1594  	}
1595  	return 1;
1596  }
1597  
1598  __setup("bulk_remove=", disable_bulk_remove);
1599  
1600  #define HPT_RESIZE_TIMEOUT	10000 /* ms */
1601  
1602  struct hpt_resize_state {
1603  	unsigned long shift;
1604  	int commit_rc;
1605  };
1606  
pseries_lpar_resize_hpt_commit(void * data)1607  static int pseries_lpar_resize_hpt_commit(void *data)
1608  {
1609  	struct hpt_resize_state *state = data;
1610  
1611  	state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1612  	if (state->commit_rc != H_SUCCESS)
1613  		return -EIO;
1614  
1615  	/* Hypervisor has transitioned the HTAB, update our globals */
1616  	ppc64_pft_size = state->shift;
1617  	htab_size_bytes = 1UL << ppc64_pft_size;
1618  	htab_hash_mask = (htab_size_bytes >> 7) - 1;
1619  
1620  	return 0;
1621  }
1622  
1623  /*
1624   * Must be called in process context. The caller must hold the
1625   * cpus_lock.
1626   */
pseries_lpar_resize_hpt(unsigned long shift)1627  static int pseries_lpar_resize_hpt(unsigned long shift)
1628  {
1629  	struct hpt_resize_state state = {
1630  		.shift = shift,
1631  		.commit_rc = H_FUNCTION,
1632  	};
1633  	unsigned int delay, total_delay = 0;
1634  	int rc;
1635  	ktime_t t0, t1, t2;
1636  
1637  	might_sleep();
1638  
1639  	if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1640  		return -ENODEV;
1641  
1642  	pr_info("Attempting to resize HPT to shift %lu\n", shift);
1643  
1644  	t0 = ktime_get();
1645  
1646  	rc = plpar_resize_hpt_prepare(0, shift);
1647  	while (H_IS_LONG_BUSY(rc)) {
1648  		delay = get_longbusy_msecs(rc);
1649  		total_delay += delay;
1650  		if (total_delay > HPT_RESIZE_TIMEOUT) {
1651  			/* prepare with shift==0 cancels an in-progress resize */
1652  			rc = plpar_resize_hpt_prepare(0, 0);
1653  			if (rc != H_SUCCESS)
1654  				pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1655  				       rc);
1656  			return -ETIMEDOUT;
1657  		}
1658  		msleep(delay);
1659  		rc = plpar_resize_hpt_prepare(0, shift);
1660  	}
1661  
1662  	switch (rc) {
1663  	case H_SUCCESS:
1664  		/* Continue on */
1665  		break;
1666  
1667  	case H_PARAMETER:
1668  		pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1669  		return -EINVAL;
1670  	case H_RESOURCE:
1671  		pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1672  		return -EPERM;
1673  	default:
1674  		pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1675  		return -EIO;
1676  	}
1677  
1678  	t1 = ktime_get();
1679  
1680  	rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1681  				     &state, NULL);
1682  
1683  	t2 = ktime_get();
1684  
1685  	if (rc != 0) {
1686  		switch (state.commit_rc) {
1687  		case H_PTEG_FULL:
1688  			return -ENOSPC;
1689  
1690  		default:
1691  			pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1692  				state.commit_rc);
1693  			return -EIO;
1694  		};
1695  	}
1696  
1697  	pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1698  		shift, (long long) ktime_ms_delta(t1, t0),
1699  		(long long) ktime_ms_delta(t2, t1));
1700  
1701  	return 0;
1702  }
1703  
hpte_init_pseries(void)1704  void __init hpte_init_pseries(void)
1705  {
1706  	mmu_hash_ops.hpte_invalidate	 = pSeries_lpar_hpte_invalidate;
1707  	mmu_hash_ops.hpte_updatepp	 = pSeries_lpar_hpte_updatepp;
1708  	mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1709  	mmu_hash_ops.hpte_insert	 = pSeries_lpar_hpte_insert;
1710  	mmu_hash_ops.hpte_remove	 = pSeries_lpar_hpte_remove;
1711  	mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1712  	mmu_hash_ops.flush_hash_range	 = pSeries_lpar_flush_hash_range;
1713  	mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1714  	mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1715  
1716  	if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1717  		mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1718  
1719  	/*
1720  	 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1721  	 * to inform the hypervisor that we wish to use the HPT.
1722  	 */
1723  	if (cpu_has_feature(CPU_FTR_ARCH_300))
1724  		pseries_lpar_register_process_table(0, 0, 0);
1725  }
1726  #endif /* CONFIG_PPC_64S_HASH_MMU */
1727  
1728  #ifdef CONFIG_PPC_RADIX_MMU
radix_init_pseries(void)1729  void __init radix_init_pseries(void)
1730  {
1731  	pr_info("Using radix MMU under hypervisor\n");
1732  
1733  	pseries_lpar_register_process_table(__pa(process_tb),
1734  						0, PRTB_SIZE_SHIFT - 12);
1735  }
1736  #endif
1737  
1738  #ifdef CONFIG_PPC_SMLPAR
1739  #define CMO_FREE_HINT_DEFAULT 1
1740  static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1741  
cmo_free_hint(char * str)1742  static int __init cmo_free_hint(char *str)
1743  {
1744  	char *parm;
1745  	parm = strstrip(str);
1746  
1747  	if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1748  		pr_info("%s: CMO free page hinting is not active.\n", __func__);
1749  		cmo_free_hint_flag = 0;
1750  		return 1;
1751  	}
1752  
1753  	cmo_free_hint_flag = 1;
1754  	pr_info("%s: CMO free page hinting is active.\n", __func__);
1755  
1756  	if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1757  		return 1;
1758  
1759  	return 0;
1760  }
1761  
1762  __setup("cmo_free_hint=", cmo_free_hint);
1763  
pSeries_set_page_state(struct page * page,int order,unsigned long state)1764  static void pSeries_set_page_state(struct page *page, int order,
1765  				   unsigned long state)
1766  {
1767  	int i, j;
1768  	unsigned long cmo_page_sz, addr;
1769  
1770  	cmo_page_sz = cmo_get_page_size();
1771  	addr = __pa((unsigned long)page_address(page));
1772  
1773  	for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1774  		for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1775  			plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1776  	}
1777  }
1778  
arch_free_page(struct page * page,int order)1779  void arch_free_page(struct page *page, int order)
1780  {
1781  	if (radix_enabled())
1782  		return;
1783  	if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1784  		return;
1785  
1786  	pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1787  }
1788  EXPORT_SYMBOL(arch_free_page);
1789  
1790  #endif /* CONFIG_PPC_SMLPAR */
1791  #endif /* CONFIG_PPC_BOOK3S_64 */
1792  
1793  #ifdef CONFIG_TRACEPOINTS
1794  #ifdef CONFIG_JUMP_LABEL
1795  struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1796  
hcall_tracepoint_regfunc(void)1797  int hcall_tracepoint_regfunc(void)
1798  {
1799  	static_key_slow_inc(&hcall_tracepoint_key);
1800  	return 0;
1801  }
1802  
hcall_tracepoint_unregfunc(void)1803  void hcall_tracepoint_unregfunc(void)
1804  {
1805  	static_key_slow_dec(&hcall_tracepoint_key);
1806  }
1807  #else
1808  /*
1809   * We optimise our hcall path by placing hcall_tracepoint_refcount
1810   * directly in the TOC so we can check if the hcall tracepoints are
1811   * enabled via a single load.
1812   */
1813  
1814  /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1815  extern long hcall_tracepoint_refcount;
1816  
hcall_tracepoint_regfunc(void)1817  int hcall_tracepoint_regfunc(void)
1818  {
1819  	hcall_tracepoint_refcount++;
1820  	return 0;
1821  }
1822  
hcall_tracepoint_unregfunc(void)1823  void hcall_tracepoint_unregfunc(void)
1824  {
1825  	hcall_tracepoint_refcount--;
1826  }
1827  #endif
1828  
1829  /*
1830   * Keep track of hcall tracing depth and prevent recursion. Warn if any is
1831   * detected because it may indicate a problem. This will not catch all
1832   * problems with tracing code making hcalls, because the tracing might have
1833   * been invoked from a non-hcall, so the first hcall could recurse into it
1834   * without warning here, but this better than nothing.
1835   *
1836   * Hcalls with specific problems being traced should use the _notrace
1837   * plpar_hcall variants.
1838   */
1839  static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1840  
1841  
__trace_hcall_entry(unsigned long opcode,unsigned long * args)1842  notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1843  {
1844  	unsigned long flags;
1845  	unsigned int *depth;
1846  
1847  	local_irq_save(flags);
1848  
1849  	depth = this_cpu_ptr(&hcall_trace_depth);
1850  
1851  	if (WARN_ON_ONCE(*depth))
1852  		goto out;
1853  
1854  	(*depth)++;
1855  	preempt_disable();
1856  	trace_hcall_entry(opcode, args);
1857  	(*depth)--;
1858  
1859  out:
1860  	local_irq_restore(flags);
1861  }
1862  
__trace_hcall_exit(long opcode,long retval,unsigned long * retbuf)1863  notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1864  {
1865  	unsigned long flags;
1866  	unsigned int *depth;
1867  
1868  	local_irq_save(flags);
1869  
1870  	depth = this_cpu_ptr(&hcall_trace_depth);
1871  
1872  	if (*depth) /* Don't warn again on the way out */
1873  		goto out;
1874  
1875  	(*depth)++;
1876  	trace_hcall_exit(opcode, retval, retbuf);
1877  	preempt_enable();
1878  	(*depth)--;
1879  
1880  out:
1881  	local_irq_restore(flags);
1882  }
1883  #endif
1884  
1885  /**
1886   * h_get_mpp
1887   * H_GET_MPP hcall returns info in 7 parms
1888   */
h_get_mpp(struct hvcall_mpp_data * mpp_data)1889  long h_get_mpp(struct hvcall_mpp_data *mpp_data)
1890  {
1891  	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1892  	long rc;
1893  
1894  	rc = plpar_hcall9(H_GET_MPP, retbuf);
1895  
1896  	mpp_data->entitled_mem = retbuf[0];
1897  	mpp_data->mapped_mem = retbuf[1];
1898  
1899  	mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1900  	mpp_data->pool_num = retbuf[2] & 0xffff;
1901  
1902  	mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1903  	mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1904  	mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1905  
1906  	mpp_data->pool_size = retbuf[4];
1907  	mpp_data->loan_request = retbuf[5];
1908  	mpp_data->backing_mem = retbuf[6];
1909  
1910  	return rc;
1911  }
1912  EXPORT_SYMBOL(h_get_mpp);
1913  
h_get_mpp_x(struct hvcall_mpp_x_data * mpp_x_data)1914  int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1915  {
1916  	int rc;
1917  	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1918  
1919  	rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1920  
1921  	mpp_x_data->coalesced_bytes = retbuf[0];
1922  	mpp_x_data->pool_coalesced_bytes = retbuf[1];
1923  	mpp_x_data->pool_purr_cycles = retbuf[2];
1924  	mpp_x_data->pool_spurr_cycles = retbuf[3];
1925  
1926  	return rc;
1927  }
1928  
1929  #ifdef CONFIG_PPC_64S_HASH_MMU
vsid_unscramble(unsigned long vsid,int ssize)1930  static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize)
1931  {
1932  	unsigned long protovsid;
1933  	unsigned long va_bits = VA_BITS;
1934  	unsigned long modinv, vsid_modulus;
1935  	unsigned long max_mod_inv, tmp_modinv;
1936  
1937  	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1938  		va_bits = 65;
1939  
1940  	if (ssize == MMU_SEGSIZE_256M) {
1941  		modinv = VSID_MULINV_256M;
1942  		vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1943  	} else {
1944  		modinv = VSID_MULINV_1T;
1945  		vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1946  	}
1947  
1948  	/*
1949  	 * vsid outside our range.
1950  	 */
1951  	if (vsid >= vsid_modulus)
1952  		return 0;
1953  
1954  	/*
1955  	 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1956  	 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1957  	 *   protovsid = (vsid * modinv) % vsid_modulus
1958  	 */
1959  
1960  	/* Check if (vsid * modinv) overflow (63 bits) */
1961  	max_mod_inv = 0x7fffffffffffffffull / vsid;
1962  	if (modinv < max_mod_inv)
1963  		return (vsid * modinv) % vsid_modulus;
1964  
1965  	tmp_modinv = modinv/max_mod_inv;
1966  	modinv %= max_mod_inv;
1967  
1968  	protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1969  	protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1970  
1971  	return protovsid;
1972  }
1973  
reserve_vrma_context_id(void)1974  static int __init reserve_vrma_context_id(void)
1975  {
1976  	unsigned long protovsid;
1977  
1978  	/*
1979  	 * Reserve context ids which map to reserved virtual addresses. For now
1980  	 * we only reserve the context id which maps to the VRMA VSID. We ignore
1981  	 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1982  	 * enable adjunct support via the "ibm,client-architecture-support"
1983  	 * interface.
1984  	 */
1985  	protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1986  	hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1987  	return 0;
1988  }
1989  machine_device_initcall(pseries, reserve_vrma_context_id);
1990  #endif
1991  
1992  #ifdef CONFIG_DEBUG_FS
1993  /* debugfs file interface for vpa data */
vpa_file_read(struct file * filp,char __user * buf,size_t len,loff_t * pos)1994  static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1995  			      loff_t *pos)
1996  {
1997  	int cpu = (long)filp->private_data;
1998  	struct lppaca *lppaca = &lppaca_of(cpu);
1999  
2000  	return simple_read_from_buffer(buf, len, pos, lppaca,
2001  				sizeof(struct lppaca));
2002  }
2003  
2004  static const struct file_operations vpa_fops = {
2005  	.open		= simple_open,
2006  	.read		= vpa_file_read,
2007  	.llseek		= default_llseek,
2008  };
2009  
vpa_debugfs_init(void)2010  static int __init vpa_debugfs_init(void)
2011  {
2012  	char name[16];
2013  	long i;
2014  	struct dentry *vpa_dir;
2015  
2016  	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2017  		return 0;
2018  
2019  	vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
2020  
2021  	/* set up the per-cpu vpa file*/
2022  	for_each_possible_cpu(i) {
2023  		sprintf(name, "cpu-%ld", i);
2024  		debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2025  	}
2026  
2027  	return 0;
2028  }
2029  machine_arch_initcall(pseries, vpa_debugfs_init);
2030  #endif /* CONFIG_DEBUG_FS */
2031