1  /*
2   * OpenPIC emulation
3   *
4   * Copyright (c) 2004 Jocelyn Mayer
5   *               2011 Alexander Graf
6   *
7   * Permission is hereby granted, free of charge, to any person obtaining a copy
8   * of this software and associated documentation files (the "Software"), to deal
9   * in the Software without restriction, including without limitation the rights
10   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11   * copies of the Software, and to permit persons to whom the Software is
12   * furnished to do so, subject to the following conditions:
13   *
14   * The above copyright notice and this permission notice shall be included in
15   * all copies or substantial portions of the Software.
16   *
17   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23   * THE SOFTWARE.
24   */
25  
26  #include <linux/slab.h>
27  #include <linux/mutex.h>
28  #include <linux/kvm_host.h>
29  #include <linux/errno.h>
30  #include <linux/fs.h>
31  #include <linux/anon_inodes.h>
32  #include <linux/uaccess.h>
33  #include <asm/mpic.h>
34  #include <asm/kvm_para.h>
35  #include <asm/kvm_ppc.h>
36  #include <kvm/iodev.h>
37  
38  #define MAX_CPU     32
39  #define MAX_SRC     256
40  #define MAX_TMR     4
41  #define MAX_IPI     4
42  #define MAX_MSI     8
43  #define MAX_IRQ     (MAX_SRC + MAX_IPI + MAX_TMR)
44  #define VID         0x03	/* MPIC version ID */
45  
46  /* OpenPIC capability flags */
47  #define OPENPIC_FLAG_IDR_CRIT     (1 << 0)
48  #define OPENPIC_FLAG_ILR          (2 << 0)
49  
50  /* OpenPIC address map */
51  #define OPENPIC_REG_SIZE             0x40000
52  #define OPENPIC_GLB_REG_START        0x0
53  #define OPENPIC_GLB_REG_SIZE         0x10F0
54  #define OPENPIC_TMR_REG_START        0x10F0
55  #define OPENPIC_TMR_REG_SIZE         0x220
56  #define OPENPIC_MSI_REG_START        0x1600
57  #define OPENPIC_MSI_REG_SIZE         0x200
58  #define OPENPIC_SUMMARY_REG_START    0x3800
59  #define OPENPIC_SUMMARY_REG_SIZE     0x800
60  #define OPENPIC_SRC_REG_START        0x10000
61  #define OPENPIC_SRC_REG_SIZE         (MAX_SRC * 0x20)
62  #define OPENPIC_CPU_REG_START        0x20000
63  #define OPENPIC_CPU_REG_SIZE         (0x100 + ((MAX_CPU - 1) * 0x1000))
64  
65  struct fsl_mpic_info {
66  	int max_ext;
67  };
68  
69  static struct fsl_mpic_info fsl_mpic_20 = {
70  	.max_ext = 12,
71  };
72  
73  static struct fsl_mpic_info fsl_mpic_42 = {
74  	.max_ext = 12,
75  };
76  
77  #define FRR_NIRQ_SHIFT    16
78  #define FRR_NCPU_SHIFT     8
79  #define FRR_VID_SHIFT      0
80  
81  #define VID_REVISION_1_2   2
82  #define VID_REVISION_1_3   3
83  
84  #define VIR_GENERIC      0x00000000	/* Generic Vendor ID */
85  
86  #define GCR_RESET        0x80000000
87  #define GCR_MODE_PASS    0x00000000
88  #define GCR_MODE_MIXED   0x20000000
89  #define GCR_MODE_PROXY   0x60000000
90  
91  #define TBCR_CI           0x80000000	/* count inhibit */
92  #define TCCR_TOG          0x80000000	/* toggles when decrement to zero */
93  
94  #define IDR_EP_SHIFT      31
95  #define IDR_EP_MASK       (1 << IDR_EP_SHIFT)
96  #define IDR_CI0_SHIFT     30
97  #define IDR_CI1_SHIFT     29
98  #define IDR_P1_SHIFT      1
99  #define IDR_P0_SHIFT      0
100  
101  #define ILR_INTTGT_MASK   0x000000ff
102  #define ILR_INTTGT_INT    0x00
103  #define ILR_INTTGT_CINT   0x01	/* critical */
104  #define ILR_INTTGT_MCP    0x02	/* machine check */
105  #define NUM_OUTPUTS       3
106  
107  #define MSIIR_OFFSET       0x140
108  #define MSIIR_SRS_SHIFT    29
109  #define MSIIR_SRS_MASK     (0x7 << MSIIR_SRS_SHIFT)
110  #define MSIIR_IBS_SHIFT    24
111  #define MSIIR_IBS_MASK     (0x1f << MSIIR_IBS_SHIFT)
112  
get_current_cpu(void)113  static int get_current_cpu(void)
114  {
115  #if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
116  	struct kvm_vcpu *vcpu = current->thread.kvm_vcpu;
117  	return vcpu ? vcpu->arch.irq_cpu_id : -1;
118  #else
119  	/* XXX */
120  	return -1;
121  #endif
122  }
123  
124  static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
125  				      u32 val, int idx);
126  static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
127  				     u32 *ptr, int idx);
128  static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
129  				    uint32_t val);
130  
131  enum irq_type {
132  	IRQ_TYPE_NORMAL = 0,
133  	IRQ_TYPE_FSLINT,	/* FSL internal interrupt -- level only */
134  	IRQ_TYPE_FSLSPECIAL,	/* FSL timer/IPI interrupt, edge, no polarity */
135  };
136  
137  struct irq_queue {
138  	/* Round up to the nearest 64 IRQs so that the queue length
139  	 * won't change when moving between 32 and 64 bit hosts.
140  	 */
141  	unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)];
142  	int next;
143  	int priority;
144  };
145  
146  struct irq_source {
147  	uint32_t ivpr;		/* IRQ vector/priority register */
148  	uint32_t idr;		/* IRQ destination register */
149  	uint32_t destmask;	/* bitmap of CPU destinations */
150  	int last_cpu;
151  	int output;		/* IRQ level, e.g. ILR_INTTGT_INT */
152  	int pending;		/* TRUE if IRQ is pending */
153  	enum irq_type type;
154  	bool level:1;		/* level-triggered */
155  	bool nomask:1;	/* critical interrupts ignore mask on some FSL MPICs */
156  };
157  
158  #define IVPR_MASK_SHIFT       31
159  #define IVPR_MASK_MASK        (1 << IVPR_MASK_SHIFT)
160  #define IVPR_ACTIVITY_SHIFT   30
161  #define IVPR_ACTIVITY_MASK    (1 << IVPR_ACTIVITY_SHIFT)
162  #define IVPR_MODE_SHIFT       29
163  #define IVPR_MODE_MASK        (1 << IVPR_MODE_SHIFT)
164  #define IVPR_POLARITY_SHIFT   23
165  #define IVPR_POLARITY_MASK    (1 << IVPR_POLARITY_SHIFT)
166  #define IVPR_SENSE_SHIFT      22
167  #define IVPR_SENSE_MASK       (1 << IVPR_SENSE_SHIFT)
168  
169  #define IVPR_PRIORITY_MASK     (0xF << 16)
170  #define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16))
171  #define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask)
172  
173  /* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */
174  #define IDR_EP      0x80000000	/* external pin */
175  #define IDR_CI      0x40000000	/* critical interrupt */
176  
177  struct irq_dest {
178  	struct kvm_vcpu *vcpu;
179  
180  	int32_t ctpr;		/* CPU current task priority */
181  	struct irq_queue raised;
182  	struct irq_queue servicing;
183  
184  	/* Count of IRQ sources asserting on non-INT outputs */
185  	uint32_t outputs_active[NUM_OUTPUTS];
186  };
187  
188  #define MAX_MMIO_REGIONS 10
189  
190  struct openpic {
191  	struct kvm *kvm;
192  	struct kvm_device *dev;
193  	struct kvm_io_device mmio;
194  	const struct mem_reg *mmio_regions[MAX_MMIO_REGIONS];
195  	int num_mmio_regions;
196  
197  	gpa_t reg_base;
198  	spinlock_t lock;
199  
200  	/* Behavior control */
201  	struct fsl_mpic_info *fsl;
202  	uint32_t model;
203  	uint32_t flags;
204  	uint32_t nb_irqs;
205  	uint32_t vid;
206  	uint32_t vir;		/* Vendor identification register */
207  	uint32_t vector_mask;
208  	uint32_t tfrr_reset;
209  	uint32_t ivpr_reset;
210  	uint32_t idr_reset;
211  	uint32_t brr1;
212  	uint32_t mpic_mode_mask;
213  
214  	/* Global registers */
215  	uint32_t frr;		/* Feature reporting register */
216  	uint32_t gcr;		/* Global configuration register  */
217  	uint32_t pir;		/* Processor initialization register */
218  	uint32_t spve;		/* Spurious vector register */
219  	uint32_t tfrr;		/* Timer frequency reporting register */
220  	/* Source registers */
221  	struct irq_source src[MAX_IRQ];
222  	/* Local registers per output pin */
223  	struct irq_dest dst[MAX_CPU];
224  	uint32_t nb_cpus;
225  	/* Timer registers */
226  	struct {
227  		uint32_t tccr;	/* Global timer current count register */
228  		uint32_t tbcr;	/* Global timer base count register */
229  	} timers[MAX_TMR];
230  	/* Shared MSI registers */
231  	struct {
232  		uint32_t msir;	/* Shared Message Signaled Interrupt Register */
233  	} msi[MAX_MSI];
234  	uint32_t max_irq;
235  	uint32_t irq_ipi0;
236  	uint32_t irq_tim0;
237  	uint32_t irq_msi;
238  };
239  
240  
mpic_irq_raise(struct openpic * opp,struct irq_dest * dst,int output)241  static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst,
242  			   int output)
243  {
244  	struct kvm_interrupt irq = {
245  		.irq = KVM_INTERRUPT_SET_LEVEL,
246  	};
247  
248  	if (!dst->vcpu) {
249  		pr_debug("%s: destination cpu %d does not exist\n",
250  			 __func__, (int)(dst - &opp->dst[0]));
251  		return;
252  	}
253  
254  	pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
255  		output);
256  
257  	if (output != ILR_INTTGT_INT)	/* TODO */
258  		return;
259  
260  	kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq);
261  }
262  
mpic_irq_lower(struct openpic * opp,struct irq_dest * dst,int output)263  static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst,
264  			   int output)
265  {
266  	if (!dst->vcpu) {
267  		pr_debug("%s: destination cpu %d does not exist\n",
268  			 __func__, (int)(dst - &opp->dst[0]));
269  		return;
270  	}
271  
272  	pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
273  		output);
274  
275  	if (output != ILR_INTTGT_INT)	/* TODO */
276  		return;
277  
278  	kvmppc_core_dequeue_external(dst->vcpu);
279  }
280  
IRQ_setbit(struct irq_queue * q,int n_IRQ)281  static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ)
282  {
283  	set_bit(n_IRQ, q->queue);
284  }
285  
IRQ_resetbit(struct irq_queue * q,int n_IRQ)286  static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ)
287  {
288  	clear_bit(n_IRQ, q->queue);
289  }
290  
IRQ_check(struct openpic * opp,struct irq_queue * q)291  static void IRQ_check(struct openpic *opp, struct irq_queue *q)
292  {
293  	int irq = -1;
294  	int next = -1;
295  	int priority = -1;
296  
297  	for (;;) {
298  		irq = find_next_bit(q->queue, opp->max_irq, irq + 1);
299  		if (irq == opp->max_irq)
300  			break;
301  
302  		pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n",
303  			irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority);
304  
305  		if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) {
306  			next = irq;
307  			priority = IVPR_PRIORITY(opp->src[irq].ivpr);
308  		}
309  	}
310  
311  	q->next = next;
312  	q->priority = priority;
313  }
314  
IRQ_get_next(struct openpic * opp,struct irq_queue * q)315  static int IRQ_get_next(struct openpic *opp, struct irq_queue *q)
316  {
317  	/* XXX: optimize */
318  	IRQ_check(opp, q);
319  
320  	return q->next;
321  }
322  
IRQ_local_pipe(struct openpic * opp,int n_CPU,int n_IRQ,bool active,bool was_active)323  static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ,
324  			   bool active, bool was_active)
325  {
326  	struct irq_dest *dst;
327  	struct irq_source *src;
328  	int priority;
329  
330  	dst = &opp->dst[n_CPU];
331  	src = &opp->src[n_IRQ];
332  
333  	pr_debug("%s: IRQ %d active %d was %d\n",
334  		__func__, n_IRQ, active, was_active);
335  
336  	if (src->output != ILR_INTTGT_INT) {
337  		pr_debug("%s: output %d irq %d active %d was %d count %d\n",
338  			__func__, src->output, n_IRQ, active, was_active,
339  			dst->outputs_active[src->output]);
340  
341  		/* On Freescale MPIC, critical interrupts ignore priority,
342  		 * IACK, EOI, etc.  Before MPIC v4.1 they also ignore
343  		 * masking.
344  		 */
345  		if (active) {
346  			if (!was_active &&
347  			    dst->outputs_active[src->output]++ == 0) {
348  				pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n",
349  					__func__, src->output, n_CPU, n_IRQ);
350  				mpic_irq_raise(opp, dst, src->output);
351  			}
352  		} else {
353  			if (was_active &&
354  			    --dst->outputs_active[src->output] == 0) {
355  				pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n",
356  					__func__, src->output, n_CPU, n_IRQ);
357  				mpic_irq_lower(opp, dst, src->output);
358  			}
359  		}
360  
361  		return;
362  	}
363  
364  	priority = IVPR_PRIORITY(src->ivpr);
365  
366  	/* Even if the interrupt doesn't have enough priority,
367  	 * it is still raised, in case ctpr is lowered later.
368  	 */
369  	if (active)
370  		IRQ_setbit(&dst->raised, n_IRQ);
371  	else
372  		IRQ_resetbit(&dst->raised, n_IRQ);
373  
374  	IRQ_check(opp, &dst->raised);
375  
376  	if (active && priority <= dst->ctpr) {
377  		pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n",
378  			__func__, n_IRQ, priority, dst->ctpr, n_CPU);
379  		active = 0;
380  	}
381  
382  	if (active) {
383  		if (IRQ_get_next(opp, &dst->servicing) >= 0 &&
384  		    priority <= dst->servicing.priority) {
385  			pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n",
386  				__func__, n_IRQ, dst->servicing.next, n_CPU);
387  		} else {
388  			pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n",
389  				__func__, n_CPU, n_IRQ, dst->raised.next);
390  			mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
391  		}
392  	} else {
393  		IRQ_get_next(opp, &dst->servicing);
394  		if (dst->raised.priority > dst->ctpr &&
395  		    dst->raised.priority > dst->servicing.priority) {
396  			pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n",
397  				__func__, n_IRQ, dst->raised.next,
398  				dst->raised.priority, dst->ctpr,
399  				dst->servicing.priority, n_CPU);
400  			/* IRQ line stays asserted */
401  		} else {
402  			pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n",
403  				__func__, n_IRQ, dst->ctpr,
404  				dst->servicing.priority, n_CPU);
405  			mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
406  		}
407  	}
408  }
409  
410  /* update pic state because registers for n_IRQ have changed value */
openpic_update_irq(struct openpic * opp,int n_IRQ)411  static void openpic_update_irq(struct openpic *opp, int n_IRQ)
412  {
413  	struct irq_source *src;
414  	bool active, was_active;
415  	int i;
416  
417  	src = &opp->src[n_IRQ];
418  	active = src->pending;
419  
420  	if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) {
421  		/* Interrupt source is disabled */
422  		pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ);
423  		active = false;
424  	}
425  
426  	was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK);
427  
428  	/*
429  	 * We don't have a similar check for already-active because
430  	 * ctpr may have changed and we need to withdraw the interrupt.
431  	 */
432  	if (!active && !was_active) {
433  		pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ);
434  		return;
435  	}
436  
437  	if (active)
438  		src->ivpr |= IVPR_ACTIVITY_MASK;
439  	else
440  		src->ivpr &= ~IVPR_ACTIVITY_MASK;
441  
442  	if (src->destmask == 0) {
443  		/* No target */
444  		pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ);
445  		return;
446  	}
447  
448  	if (src->destmask == (1 << src->last_cpu)) {
449  		/* Only one CPU is allowed to receive this IRQ */
450  		IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active);
451  	} else if (!(src->ivpr & IVPR_MODE_MASK)) {
452  		/* Directed delivery mode */
453  		for (i = 0; i < opp->nb_cpus; i++) {
454  			if (src->destmask & (1 << i)) {
455  				IRQ_local_pipe(opp, i, n_IRQ, active,
456  					       was_active);
457  			}
458  		}
459  	} else {
460  		/* Distributed delivery mode */
461  		for (i = src->last_cpu + 1; i != src->last_cpu; i++) {
462  			if (i == opp->nb_cpus)
463  				i = 0;
464  
465  			if (src->destmask & (1 << i)) {
466  				IRQ_local_pipe(opp, i, n_IRQ, active,
467  					       was_active);
468  				src->last_cpu = i;
469  				break;
470  			}
471  		}
472  	}
473  }
474  
openpic_set_irq(void * opaque,int n_IRQ,int level)475  static void openpic_set_irq(void *opaque, int n_IRQ, int level)
476  {
477  	struct openpic *opp = opaque;
478  	struct irq_source *src;
479  
480  	if (n_IRQ >= MAX_IRQ) {
481  		WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ);
482  		return;
483  	}
484  
485  	src = &opp->src[n_IRQ];
486  	pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n",
487  		n_IRQ, level, src->ivpr);
488  	if (src->level) {
489  		/* level-sensitive irq */
490  		src->pending = level;
491  		openpic_update_irq(opp, n_IRQ);
492  	} else {
493  		/* edge-sensitive irq */
494  		if (level) {
495  			src->pending = 1;
496  			openpic_update_irq(opp, n_IRQ);
497  		}
498  
499  		if (src->output != ILR_INTTGT_INT) {
500  			/* Edge-triggered interrupts shouldn't be used
501  			 * with non-INT delivery, but just in case,
502  			 * try to make it do something sane rather than
503  			 * cause an interrupt storm.  This is close to
504  			 * what you'd probably see happen in real hardware.
505  			 */
506  			src->pending = 0;
507  			openpic_update_irq(opp, n_IRQ);
508  		}
509  	}
510  }
511  
openpic_reset(struct openpic * opp)512  static void openpic_reset(struct openpic *opp)
513  {
514  	int i;
515  
516  	opp->gcr = GCR_RESET;
517  	/* Initialise controller registers */
518  	opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) |
519  	    (opp->vid << FRR_VID_SHIFT);
520  
521  	opp->pir = 0;
522  	opp->spve = -1 & opp->vector_mask;
523  	opp->tfrr = opp->tfrr_reset;
524  	/* Initialise IRQ sources */
525  	for (i = 0; i < opp->max_irq; i++) {
526  		opp->src[i].ivpr = opp->ivpr_reset;
527  
528  		switch (opp->src[i].type) {
529  		case IRQ_TYPE_NORMAL:
530  			opp->src[i].level =
531  			    !!(opp->ivpr_reset & IVPR_SENSE_MASK);
532  			break;
533  
534  		case IRQ_TYPE_FSLINT:
535  			opp->src[i].ivpr |= IVPR_POLARITY_MASK;
536  			break;
537  
538  		case IRQ_TYPE_FSLSPECIAL:
539  			break;
540  		}
541  
542  		write_IRQreg_idr(opp, i, opp->idr_reset);
543  	}
544  	/* Initialise IRQ destinations */
545  	for (i = 0; i < MAX_CPU; i++) {
546  		opp->dst[i].ctpr = 15;
547  		memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue));
548  		opp->dst[i].raised.next = -1;
549  		memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue));
550  		opp->dst[i].servicing.next = -1;
551  	}
552  	/* Initialise timers */
553  	for (i = 0; i < MAX_TMR; i++) {
554  		opp->timers[i].tccr = 0;
555  		opp->timers[i].tbcr = TBCR_CI;
556  	}
557  	/* Go out of RESET state */
558  	opp->gcr = 0;
559  }
560  
read_IRQreg_idr(struct openpic * opp,int n_IRQ)561  static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ)
562  {
563  	return opp->src[n_IRQ].idr;
564  }
565  
read_IRQreg_ilr(struct openpic * opp,int n_IRQ)566  static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ)
567  {
568  	if (opp->flags & OPENPIC_FLAG_ILR)
569  		return opp->src[n_IRQ].output;
570  
571  	return 0xffffffff;
572  }
573  
read_IRQreg_ivpr(struct openpic * opp,int n_IRQ)574  static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ)
575  {
576  	return opp->src[n_IRQ].ivpr;
577  }
578  
write_IRQreg_idr(struct openpic * opp,int n_IRQ,uint32_t val)579  static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
580  				    uint32_t val)
581  {
582  	struct irq_source *src = &opp->src[n_IRQ];
583  	uint32_t normal_mask = (1UL << opp->nb_cpus) - 1;
584  	uint32_t crit_mask = 0;
585  	uint32_t mask = normal_mask;
586  	int crit_shift = IDR_EP_SHIFT - opp->nb_cpus;
587  	int i;
588  
589  	if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
590  		crit_mask = mask << crit_shift;
591  		mask |= crit_mask | IDR_EP;
592  	}
593  
594  	src->idr = val & mask;
595  	pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr);
596  
597  	if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
598  		if (src->idr & crit_mask) {
599  			if (src->idr & normal_mask) {
600  				pr_debug("%s: IRQ configured for multiple output types, using critical\n",
601  					__func__);
602  			}
603  
604  			src->output = ILR_INTTGT_CINT;
605  			src->nomask = true;
606  			src->destmask = 0;
607  
608  			for (i = 0; i < opp->nb_cpus; i++) {
609  				int n_ci = IDR_CI0_SHIFT - i;
610  
611  				if (src->idr & (1UL << n_ci))
612  					src->destmask |= 1UL << i;
613  			}
614  		} else {
615  			src->output = ILR_INTTGT_INT;
616  			src->nomask = false;
617  			src->destmask = src->idr & normal_mask;
618  		}
619  	} else {
620  		src->destmask = src->idr;
621  	}
622  }
623  
write_IRQreg_ilr(struct openpic * opp,int n_IRQ,uint32_t val)624  static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ,
625  				    uint32_t val)
626  {
627  	if (opp->flags & OPENPIC_FLAG_ILR) {
628  		struct irq_source *src = &opp->src[n_IRQ];
629  
630  		src->output = val & ILR_INTTGT_MASK;
631  		pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr,
632  			src->output);
633  
634  		/* TODO: on MPIC v4.0 only, set nomask for non-INT */
635  	}
636  }
637  
write_IRQreg_ivpr(struct openpic * opp,int n_IRQ,uint32_t val)638  static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ,
639  				     uint32_t val)
640  {
641  	uint32_t mask;
642  
643  	/* NOTE when implementing newer FSL MPIC models: starting with v4.0,
644  	 * the polarity bit is read-only on internal interrupts.
645  	 */
646  	mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK |
647  	    IVPR_POLARITY_MASK | opp->vector_mask;
648  
649  	/* ACTIVITY bit is read-only */
650  	opp->src[n_IRQ].ivpr =
651  	    (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask);
652  
653  	/* For FSL internal interrupts, The sense bit is reserved and zero,
654  	 * and the interrupt is always level-triggered.  Timers and IPIs
655  	 * have no sense or polarity bits, and are edge-triggered.
656  	 */
657  	switch (opp->src[n_IRQ].type) {
658  	case IRQ_TYPE_NORMAL:
659  		opp->src[n_IRQ].level =
660  		    !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK);
661  		break;
662  
663  	case IRQ_TYPE_FSLINT:
664  		opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK;
665  		break;
666  
667  	case IRQ_TYPE_FSLSPECIAL:
668  		opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK);
669  		break;
670  	}
671  
672  	openpic_update_irq(opp, n_IRQ);
673  	pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val,
674  		opp->src[n_IRQ].ivpr);
675  }
676  
openpic_gcr_write(struct openpic * opp,uint64_t val)677  static void openpic_gcr_write(struct openpic *opp, uint64_t val)
678  {
679  	if (val & GCR_RESET) {
680  		openpic_reset(opp);
681  		return;
682  	}
683  
684  	opp->gcr &= ~opp->mpic_mode_mask;
685  	opp->gcr |= val & opp->mpic_mode_mask;
686  }
687  
openpic_gbl_write(void * opaque,gpa_t addr,u32 val)688  static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val)
689  {
690  	struct openpic *opp = opaque;
691  	int err = 0;
692  
693  	pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
694  	if (addr & 0xF)
695  		return 0;
696  
697  	switch (addr) {
698  	case 0x00:	/* Block Revision Register1 (BRR1) is Readonly */
699  		break;
700  	case 0x40:
701  	case 0x50:
702  	case 0x60:
703  	case 0x70:
704  	case 0x80:
705  	case 0x90:
706  	case 0xA0:
707  	case 0xB0:
708  		err = openpic_cpu_write_internal(opp, addr, val,
709  						 get_current_cpu());
710  		break;
711  	case 0x1000:		/* FRR */
712  		break;
713  	case 0x1020:		/* GCR */
714  		openpic_gcr_write(opp, val);
715  		break;
716  	case 0x1080:		/* VIR */
717  		break;
718  	case 0x1090:		/* PIR */
719  		/*
720  		 * This register is used to reset a CPU core --
721  		 * let userspace handle it.
722  		 */
723  		err = -ENXIO;
724  		break;
725  	case 0x10A0:		/* IPI_IVPR */
726  	case 0x10B0:
727  	case 0x10C0:
728  	case 0x10D0: {
729  		int idx;
730  		idx = (addr - 0x10A0) >> 4;
731  		write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val);
732  		break;
733  	}
734  	case 0x10E0:		/* SPVE */
735  		opp->spve = val & opp->vector_mask;
736  		break;
737  	default:
738  		break;
739  	}
740  
741  	return err;
742  }
743  
openpic_gbl_read(void * opaque,gpa_t addr,u32 * ptr)744  static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr)
745  {
746  	struct openpic *opp = opaque;
747  	u32 retval;
748  	int err = 0;
749  
750  	pr_debug("%s: addr %#llx\n", __func__, addr);
751  	retval = 0xFFFFFFFF;
752  	if (addr & 0xF)
753  		goto out;
754  
755  	switch (addr) {
756  	case 0x1000:		/* FRR */
757  		retval = opp->frr;
758  		retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT;
759  		break;
760  	case 0x1020:		/* GCR */
761  		retval = opp->gcr;
762  		break;
763  	case 0x1080:		/* VIR */
764  		retval = opp->vir;
765  		break;
766  	case 0x1090:		/* PIR */
767  		retval = 0x00000000;
768  		break;
769  	case 0x00:		/* Block Revision Register1 (BRR1) */
770  		retval = opp->brr1;
771  		break;
772  	case 0x40:
773  	case 0x50:
774  	case 0x60:
775  	case 0x70:
776  	case 0x80:
777  	case 0x90:
778  	case 0xA0:
779  	case 0xB0:
780  		err = openpic_cpu_read_internal(opp, addr,
781  			&retval, get_current_cpu());
782  		break;
783  	case 0x10A0:		/* IPI_IVPR */
784  	case 0x10B0:
785  	case 0x10C0:
786  	case 0x10D0:
787  		{
788  			int idx;
789  			idx = (addr - 0x10A0) >> 4;
790  			retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx);
791  		}
792  		break;
793  	case 0x10E0:		/* SPVE */
794  		retval = opp->spve;
795  		break;
796  	default:
797  		break;
798  	}
799  
800  out:
801  	pr_debug("%s: => 0x%08x\n", __func__, retval);
802  	*ptr = retval;
803  	return err;
804  }
805  
openpic_tmr_write(void * opaque,gpa_t addr,u32 val)806  static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val)
807  {
808  	struct openpic *opp = opaque;
809  	int idx;
810  
811  	addr += 0x10f0;
812  
813  	pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
814  	if (addr & 0xF)
815  		return 0;
816  
817  	if (addr == 0x10f0) {
818  		/* TFRR */
819  		opp->tfrr = val;
820  		return 0;
821  	}
822  
823  	idx = (addr >> 6) & 0x3;
824  	addr = addr & 0x30;
825  
826  	switch (addr & 0x30) {
827  	case 0x00:		/* TCCR */
828  		break;
829  	case 0x10:		/* TBCR */
830  		if ((opp->timers[idx].tccr & TCCR_TOG) != 0 &&
831  		    (val & TBCR_CI) == 0 &&
832  		    (opp->timers[idx].tbcr & TBCR_CI) != 0)
833  			opp->timers[idx].tccr &= ~TCCR_TOG;
834  
835  		opp->timers[idx].tbcr = val;
836  		break;
837  	case 0x20:		/* TVPR */
838  		write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val);
839  		break;
840  	case 0x30:		/* TDR */
841  		write_IRQreg_idr(opp, opp->irq_tim0 + idx, val);
842  		break;
843  	}
844  
845  	return 0;
846  }
847  
openpic_tmr_read(void * opaque,gpa_t addr,u32 * ptr)848  static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr)
849  {
850  	struct openpic *opp = opaque;
851  	uint32_t retval = -1;
852  	int idx;
853  
854  	pr_debug("%s: addr %#llx\n", __func__, addr);
855  	if (addr & 0xF)
856  		goto out;
857  
858  	idx = (addr >> 6) & 0x3;
859  	if (addr == 0x0) {
860  		/* TFRR */
861  		retval = opp->tfrr;
862  		goto out;
863  	}
864  
865  	switch (addr & 0x30) {
866  	case 0x00:		/* TCCR */
867  		retval = opp->timers[idx].tccr;
868  		break;
869  	case 0x10:		/* TBCR */
870  		retval = opp->timers[idx].tbcr;
871  		break;
872  	case 0x20:		/* TIPV */
873  		retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx);
874  		break;
875  	case 0x30:		/* TIDE (TIDR) */
876  		retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx);
877  		break;
878  	}
879  
880  out:
881  	pr_debug("%s: => 0x%08x\n", __func__, retval);
882  	*ptr = retval;
883  	return 0;
884  }
885  
openpic_src_write(void * opaque,gpa_t addr,u32 val)886  static int openpic_src_write(void *opaque, gpa_t addr, u32 val)
887  {
888  	struct openpic *opp = opaque;
889  	int idx;
890  
891  	pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
892  
893  	addr = addr & 0xffff;
894  	idx = addr >> 5;
895  
896  	switch (addr & 0x1f) {
897  	case 0x00:
898  		write_IRQreg_ivpr(opp, idx, val);
899  		break;
900  	case 0x10:
901  		write_IRQreg_idr(opp, idx, val);
902  		break;
903  	case 0x18:
904  		write_IRQreg_ilr(opp, idx, val);
905  		break;
906  	}
907  
908  	return 0;
909  }
910  
openpic_src_read(void * opaque,gpa_t addr,u32 * ptr)911  static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr)
912  {
913  	struct openpic *opp = opaque;
914  	uint32_t retval;
915  	int idx;
916  
917  	pr_debug("%s: addr %#llx\n", __func__, addr);
918  	retval = 0xFFFFFFFF;
919  
920  	addr = addr & 0xffff;
921  	idx = addr >> 5;
922  
923  	switch (addr & 0x1f) {
924  	case 0x00:
925  		retval = read_IRQreg_ivpr(opp, idx);
926  		break;
927  	case 0x10:
928  		retval = read_IRQreg_idr(opp, idx);
929  		break;
930  	case 0x18:
931  		retval = read_IRQreg_ilr(opp, idx);
932  		break;
933  	}
934  
935  	pr_debug("%s: => 0x%08x\n", __func__, retval);
936  	*ptr = retval;
937  	return 0;
938  }
939  
openpic_msi_write(void * opaque,gpa_t addr,u32 val)940  static int openpic_msi_write(void *opaque, gpa_t addr, u32 val)
941  {
942  	struct openpic *opp = opaque;
943  	int idx = opp->irq_msi;
944  	int srs, ibs;
945  
946  	pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
947  	if (addr & 0xF)
948  		return 0;
949  
950  	switch (addr) {
951  	case MSIIR_OFFSET:
952  		srs = val >> MSIIR_SRS_SHIFT;
953  		idx += srs;
954  		ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT;
955  		opp->msi[srs].msir |= 1 << ibs;
956  		openpic_set_irq(opp, idx, 1);
957  		break;
958  	default:
959  		/* most registers are read-only, thus ignored */
960  		break;
961  	}
962  
963  	return 0;
964  }
965  
openpic_msi_read(void * opaque,gpa_t addr,u32 * ptr)966  static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr)
967  {
968  	struct openpic *opp = opaque;
969  	uint32_t r = 0;
970  	int i, srs;
971  
972  	pr_debug("%s: addr %#llx\n", __func__, addr);
973  	if (addr & 0xF)
974  		return -ENXIO;
975  
976  	srs = addr >> 4;
977  
978  	switch (addr) {
979  	case 0x00:
980  	case 0x10:
981  	case 0x20:
982  	case 0x30:
983  	case 0x40:
984  	case 0x50:
985  	case 0x60:
986  	case 0x70:		/* MSIRs */
987  		r = opp->msi[srs].msir;
988  		/* Clear on read */
989  		opp->msi[srs].msir = 0;
990  		openpic_set_irq(opp, opp->irq_msi + srs, 0);
991  		break;
992  	case 0x120:		/* MSISR */
993  		for (i = 0; i < MAX_MSI; i++)
994  			r |= (opp->msi[i].msir ? 1 : 0) << i;
995  		break;
996  	}
997  
998  	pr_debug("%s: => 0x%08x\n", __func__, r);
999  	*ptr = r;
1000  	return 0;
1001  }
1002  
openpic_summary_read(void * opaque,gpa_t addr,u32 * ptr)1003  static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr)
1004  {
1005  	uint32_t r = 0;
1006  
1007  	pr_debug("%s: addr %#llx\n", __func__, addr);
1008  
1009  	/* TODO: EISR/EIMR */
1010  
1011  	*ptr = r;
1012  	return 0;
1013  }
1014  
openpic_summary_write(void * opaque,gpa_t addr,u32 val)1015  static int openpic_summary_write(void *opaque, gpa_t addr, u32 val)
1016  {
1017  	pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
1018  
1019  	/* TODO: EISR/EIMR */
1020  	return 0;
1021  }
1022  
openpic_cpu_write_internal(void * opaque,gpa_t addr,u32 val,int idx)1023  static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
1024  				      u32 val, int idx)
1025  {
1026  	struct openpic *opp = opaque;
1027  	struct irq_source *src;
1028  	struct irq_dest *dst;
1029  	int s_IRQ, n_IRQ;
1030  
1031  	pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx,
1032  		addr, val);
1033  
1034  	if (idx < 0)
1035  		return 0;
1036  
1037  	if (addr & 0xF)
1038  		return 0;
1039  
1040  	dst = &opp->dst[idx];
1041  	addr &= 0xFF0;
1042  	switch (addr) {
1043  	case 0x40:		/* IPIDR */
1044  	case 0x50:
1045  	case 0x60:
1046  	case 0x70:
1047  		idx = (addr - 0x40) >> 4;
1048  		/* we use IDE as mask which CPUs to deliver the IPI to still. */
1049  		opp->src[opp->irq_ipi0 + idx].destmask |= val;
1050  		openpic_set_irq(opp, opp->irq_ipi0 + idx, 1);
1051  		openpic_set_irq(opp, opp->irq_ipi0 + idx, 0);
1052  		break;
1053  	case 0x80:		/* CTPR */
1054  		dst->ctpr = val & 0x0000000F;
1055  
1056  		pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n",
1057  			__func__, idx, dst->ctpr, dst->raised.priority,
1058  			dst->servicing.priority);
1059  
1060  		if (dst->raised.priority <= dst->ctpr) {
1061  			pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n",
1062  				__func__, idx);
1063  			mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1064  		} else if (dst->raised.priority > dst->servicing.priority) {
1065  			pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n",
1066  				__func__, idx, dst->raised.next);
1067  			mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1068  		}
1069  
1070  		break;
1071  	case 0x90:		/* WHOAMI */
1072  		/* Read-only register */
1073  		break;
1074  	case 0xA0:		/* IACK */
1075  		/* Read-only register */
1076  		break;
1077  	case 0xB0: {		/* EOI */
1078  		int notify_eoi;
1079  
1080  		pr_debug("EOI\n");
1081  		s_IRQ = IRQ_get_next(opp, &dst->servicing);
1082  
1083  		if (s_IRQ < 0) {
1084  			pr_debug("%s: EOI with no interrupt in service\n",
1085  				__func__);
1086  			break;
1087  		}
1088  
1089  		IRQ_resetbit(&dst->servicing, s_IRQ);
1090  		/* Notify listeners that the IRQ is over */
1091  		notify_eoi = s_IRQ;
1092  		/* Set up next servicing IRQ */
1093  		s_IRQ = IRQ_get_next(opp, &dst->servicing);
1094  		/* Check queued interrupts. */
1095  		n_IRQ = IRQ_get_next(opp, &dst->raised);
1096  		src = &opp->src[n_IRQ];
1097  		if (n_IRQ != -1 &&
1098  		    (s_IRQ == -1 ||
1099  		     IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) {
1100  			pr_debug("Raise OpenPIC INT output cpu %d irq %d\n",
1101  				idx, n_IRQ);
1102  			mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1103  		}
1104  
1105  		spin_unlock(&opp->lock);
1106  		kvm_notify_acked_irq(opp->kvm, 0, notify_eoi);
1107  		spin_lock(&opp->lock);
1108  
1109  		break;
1110  	}
1111  	default:
1112  		break;
1113  	}
1114  
1115  	return 0;
1116  }
1117  
openpic_cpu_write(void * opaque,gpa_t addr,u32 val)1118  static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val)
1119  {
1120  	struct openpic *opp = opaque;
1121  
1122  	return openpic_cpu_write_internal(opp, addr, val,
1123  					 (addr & 0x1f000) >> 12);
1124  }
1125  
openpic_iack(struct openpic * opp,struct irq_dest * dst,int cpu)1126  static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst,
1127  			     int cpu)
1128  {
1129  	struct irq_source *src;
1130  	int retval, irq;
1131  
1132  	pr_debug("Lower OpenPIC INT output\n");
1133  	mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1134  
1135  	irq = IRQ_get_next(opp, &dst->raised);
1136  	pr_debug("IACK: irq=%d\n", irq);
1137  
1138  	if (irq == -1)
1139  		/* No more interrupt pending */
1140  		return opp->spve;
1141  
1142  	src = &opp->src[irq];
1143  	if (!(src->ivpr & IVPR_ACTIVITY_MASK) ||
1144  	    !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) {
1145  		pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n",
1146  			__func__, irq, dst->ctpr, src->ivpr);
1147  		openpic_update_irq(opp, irq);
1148  		retval = opp->spve;
1149  	} else {
1150  		/* IRQ enter servicing state */
1151  		IRQ_setbit(&dst->servicing, irq);
1152  		retval = IVPR_VECTOR(opp, src->ivpr);
1153  	}
1154  
1155  	if (!src->level) {
1156  		/* edge-sensitive IRQ */
1157  		src->ivpr &= ~IVPR_ACTIVITY_MASK;
1158  		src->pending = 0;
1159  		IRQ_resetbit(&dst->raised, irq);
1160  	}
1161  
1162  	if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) {
1163  		src->destmask &= ~(1 << cpu);
1164  		if (src->destmask && !src->level) {
1165  			/* trigger on CPUs that didn't know about it yet */
1166  			openpic_set_irq(opp, irq, 1);
1167  			openpic_set_irq(opp, irq, 0);
1168  			/* if all CPUs knew about it, set active bit again */
1169  			src->ivpr |= IVPR_ACTIVITY_MASK;
1170  		}
1171  	}
1172  
1173  	return retval;
1174  }
1175  
kvmppc_mpic_set_epr(struct kvm_vcpu * vcpu)1176  void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu)
1177  {
1178  	struct openpic *opp = vcpu->arch.mpic;
1179  	int cpu = vcpu->arch.irq_cpu_id;
1180  	unsigned long flags;
1181  
1182  	spin_lock_irqsave(&opp->lock, flags);
1183  
1184  	if ((opp->gcr & opp->mpic_mode_mask) == GCR_MODE_PROXY)
1185  		kvmppc_set_epr(vcpu, openpic_iack(opp, &opp->dst[cpu], cpu));
1186  
1187  	spin_unlock_irqrestore(&opp->lock, flags);
1188  }
1189  
openpic_cpu_read_internal(void * opaque,gpa_t addr,u32 * ptr,int idx)1190  static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
1191  				     u32 *ptr, int idx)
1192  {
1193  	struct openpic *opp = opaque;
1194  	struct irq_dest *dst;
1195  	uint32_t retval;
1196  
1197  	pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr);
1198  	retval = 0xFFFFFFFF;
1199  
1200  	if (idx < 0)
1201  		goto out;
1202  
1203  	if (addr & 0xF)
1204  		goto out;
1205  
1206  	dst = &opp->dst[idx];
1207  	addr &= 0xFF0;
1208  	switch (addr) {
1209  	case 0x80:		/* CTPR */
1210  		retval = dst->ctpr;
1211  		break;
1212  	case 0x90:		/* WHOAMI */
1213  		retval = idx;
1214  		break;
1215  	case 0xA0:		/* IACK */
1216  		retval = openpic_iack(opp, dst, idx);
1217  		break;
1218  	case 0xB0:		/* EOI */
1219  		retval = 0;
1220  		break;
1221  	default:
1222  		break;
1223  	}
1224  	pr_debug("%s: => 0x%08x\n", __func__, retval);
1225  
1226  out:
1227  	*ptr = retval;
1228  	return 0;
1229  }
1230  
openpic_cpu_read(void * opaque,gpa_t addr,u32 * ptr)1231  static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr)
1232  {
1233  	struct openpic *opp = opaque;
1234  
1235  	return openpic_cpu_read_internal(opp, addr, ptr,
1236  					 (addr & 0x1f000) >> 12);
1237  }
1238  
1239  struct mem_reg {
1240  	int (*read)(void *opaque, gpa_t addr, u32 *ptr);
1241  	int (*write)(void *opaque, gpa_t addr, u32 val);
1242  	gpa_t start_addr;
1243  	int size;
1244  };
1245  
1246  static const struct mem_reg openpic_gbl_mmio = {
1247  	.write = openpic_gbl_write,
1248  	.read = openpic_gbl_read,
1249  	.start_addr = OPENPIC_GLB_REG_START,
1250  	.size = OPENPIC_GLB_REG_SIZE,
1251  };
1252  
1253  static const struct mem_reg openpic_tmr_mmio = {
1254  	.write = openpic_tmr_write,
1255  	.read = openpic_tmr_read,
1256  	.start_addr = OPENPIC_TMR_REG_START,
1257  	.size = OPENPIC_TMR_REG_SIZE,
1258  };
1259  
1260  static const struct mem_reg openpic_cpu_mmio = {
1261  	.write = openpic_cpu_write,
1262  	.read = openpic_cpu_read,
1263  	.start_addr = OPENPIC_CPU_REG_START,
1264  	.size = OPENPIC_CPU_REG_SIZE,
1265  };
1266  
1267  static const struct mem_reg openpic_src_mmio = {
1268  	.write = openpic_src_write,
1269  	.read = openpic_src_read,
1270  	.start_addr = OPENPIC_SRC_REG_START,
1271  	.size = OPENPIC_SRC_REG_SIZE,
1272  };
1273  
1274  static const struct mem_reg openpic_msi_mmio = {
1275  	.read = openpic_msi_read,
1276  	.write = openpic_msi_write,
1277  	.start_addr = OPENPIC_MSI_REG_START,
1278  	.size = OPENPIC_MSI_REG_SIZE,
1279  };
1280  
1281  static const struct mem_reg openpic_summary_mmio = {
1282  	.read = openpic_summary_read,
1283  	.write = openpic_summary_write,
1284  	.start_addr = OPENPIC_SUMMARY_REG_START,
1285  	.size = OPENPIC_SUMMARY_REG_SIZE,
1286  };
1287  
add_mmio_region(struct openpic * opp,const struct mem_reg * mr)1288  static void add_mmio_region(struct openpic *opp, const struct mem_reg *mr)
1289  {
1290  	if (opp->num_mmio_regions >= MAX_MMIO_REGIONS) {
1291  		WARN(1, "kvm mpic: too many mmio regions\n");
1292  		return;
1293  	}
1294  
1295  	opp->mmio_regions[opp->num_mmio_regions++] = mr;
1296  }
1297  
fsl_common_init(struct openpic * opp)1298  static void fsl_common_init(struct openpic *opp)
1299  {
1300  	int i;
1301  	int virq = MAX_SRC;
1302  
1303  	add_mmio_region(opp, &openpic_msi_mmio);
1304  	add_mmio_region(opp, &openpic_summary_mmio);
1305  
1306  	opp->vid = VID_REVISION_1_2;
1307  	opp->vir = VIR_GENERIC;
1308  	opp->vector_mask = 0xFFFF;
1309  	opp->tfrr_reset = 0;
1310  	opp->ivpr_reset = IVPR_MASK_MASK;
1311  	opp->idr_reset = 1 << 0;
1312  	opp->max_irq = MAX_IRQ;
1313  
1314  	opp->irq_ipi0 = virq;
1315  	virq += MAX_IPI;
1316  	opp->irq_tim0 = virq;
1317  	virq += MAX_TMR;
1318  
1319  	BUG_ON(virq > MAX_IRQ);
1320  
1321  	opp->irq_msi = 224;
1322  
1323  	for (i = 0; i < opp->fsl->max_ext; i++)
1324  		opp->src[i].level = false;
1325  
1326  	/* Internal interrupts, including message and MSI */
1327  	for (i = 16; i < MAX_SRC; i++) {
1328  		opp->src[i].type = IRQ_TYPE_FSLINT;
1329  		opp->src[i].level = true;
1330  	}
1331  
1332  	/* timers and IPIs */
1333  	for (i = MAX_SRC; i < virq; i++) {
1334  		opp->src[i].type = IRQ_TYPE_FSLSPECIAL;
1335  		opp->src[i].level = false;
1336  	}
1337  }
1338  
kvm_mpic_read_internal(struct openpic * opp,gpa_t addr,u32 * ptr)1339  static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr)
1340  {
1341  	int i;
1342  
1343  	for (i = 0; i < opp->num_mmio_regions; i++) {
1344  		const struct mem_reg *mr = opp->mmio_regions[i];
1345  
1346  		if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1347  			continue;
1348  
1349  		return mr->read(opp, addr - mr->start_addr, ptr);
1350  	}
1351  
1352  	return -ENXIO;
1353  }
1354  
kvm_mpic_write_internal(struct openpic * opp,gpa_t addr,u32 val)1355  static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val)
1356  {
1357  	int i;
1358  
1359  	for (i = 0; i < opp->num_mmio_regions; i++) {
1360  		const struct mem_reg *mr = opp->mmio_regions[i];
1361  
1362  		if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1363  			continue;
1364  
1365  		return mr->write(opp, addr - mr->start_addr, val);
1366  	}
1367  
1368  	return -ENXIO;
1369  }
1370  
kvm_mpic_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,void * ptr)1371  static int kvm_mpic_read(struct kvm_vcpu *vcpu,
1372  			 struct kvm_io_device *this,
1373  			 gpa_t addr, int len, void *ptr)
1374  {
1375  	struct openpic *opp = container_of(this, struct openpic, mmio);
1376  	int ret;
1377  	union {
1378  		u32 val;
1379  		u8 bytes[4];
1380  	} u;
1381  
1382  	if (addr & (len - 1)) {
1383  		pr_debug("%s: bad alignment %llx/%d\n",
1384  			 __func__, addr, len);
1385  		return -EINVAL;
1386  	}
1387  
1388  	spin_lock_irq(&opp->lock);
1389  	ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val);
1390  	spin_unlock_irq(&opp->lock);
1391  
1392  	/*
1393  	 * Technically only 32-bit accesses are allowed, but be nice to
1394  	 * people dumping registers a byte at a time -- it works in real
1395  	 * hardware (reads only, not writes).
1396  	 */
1397  	if (len == 4) {
1398  		*(u32 *)ptr = u.val;
1399  		pr_debug("%s: addr %llx ret %d len 4 val %x\n",
1400  			 __func__, addr, ret, u.val);
1401  	} else if (len == 1) {
1402  		*(u8 *)ptr = u.bytes[addr & 3];
1403  		pr_debug("%s: addr %llx ret %d len 1 val %x\n",
1404  			 __func__, addr, ret, u.bytes[addr & 3]);
1405  	} else {
1406  		pr_debug("%s: bad length %d\n", __func__, len);
1407  		return -EINVAL;
1408  	}
1409  
1410  	return ret;
1411  }
1412  
kvm_mpic_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,const void * ptr)1413  static int kvm_mpic_write(struct kvm_vcpu *vcpu,
1414  			  struct kvm_io_device *this,
1415  			  gpa_t addr, int len, const void *ptr)
1416  {
1417  	struct openpic *opp = container_of(this, struct openpic, mmio);
1418  	int ret;
1419  
1420  	if (len != 4) {
1421  		pr_debug("%s: bad length %d\n", __func__, len);
1422  		return -EOPNOTSUPP;
1423  	}
1424  	if (addr & 3) {
1425  		pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len);
1426  		return -EOPNOTSUPP;
1427  	}
1428  
1429  	spin_lock_irq(&opp->lock);
1430  	ret = kvm_mpic_write_internal(opp, addr - opp->reg_base,
1431  				      *(const u32 *)ptr);
1432  	spin_unlock_irq(&opp->lock);
1433  
1434  	pr_debug("%s: addr %llx ret %d val %x\n",
1435  		 __func__, addr, ret, *(const u32 *)ptr);
1436  
1437  	return ret;
1438  }
1439  
1440  static const struct kvm_io_device_ops mpic_mmio_ops = {
1441  	.read = kvm_mpic_read,
1442  	.write = kvm_mpic_write,
1443  };
1444  
map_mmio(struct openpic * opp)1445  static void map_mmio(struct openpic *opp)
1446  {
1447  	kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops);
1448  
1449  	kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS,
1450  				opp->reg_base, OPENPIC_REG_SIZE,
1451  				&opp->mmio);
1452  }
1453  
unmap_mmio(struct openpic * opp)1454  static void unmap_mmio(struct openpic *opp)
1455  {
1456  	kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio);
1457  }
1458  
set_base_addr(struct openpic * opp,struct kvm_device_attr * attr)1459  static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr)
1460  {
1461  	u64 base;
1462  
1463  	if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64)))
1464  		return -EFAULT;
1465  
1466  	if (base & 0x3ffff) {
1467  		pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n",
1468  			 __func__, base);
1469  		return -EINVAL;
1470  	}
1471  
1472  	if (base == opp->reg_base)
1473  		return 0;
1474  
1475  	mutex_lock(&opp->kvm->slots_lock);
1476  
1477  	unmap_mmio(opp);
1478  	opp->reg_base = base;
1479  
1480  	pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n",
1481  		 __func__, base);
1482  
1483  	if (base == 0)
1484  		goto out;
1485  
1486  	map_mmio(opp);
1487  
1488  out:
1489  	mutex_unlock(&opp->kvm->slots_lock);
1490  	return 0;
1491  }
1492  
1493  #define ATTR_SET		0
1494  #define ATTR_GET		1
1495  
access_reg(struct openpic * opp,gpa_t addr,u32 * val,int type)1496  static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type)
1497  {
1498  	int ret;
1499  
1500  	if (addr & 3)
1501  		return -ENXIO;
1502  
1503  	spin_lock_irq(&opp->lock);
1504  
1505  	if (type == ATTR_SET)
1506  		ret = kvm_mpic_write_internal(opp, addr, *val);
1507  	else
1508  		ret = kvm_mpic_read_internal(opp, addr, val);
1509  
1510  	spin_unlock_irq(&opp->lock);
1511  
1512  	pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val);
1513  
1514  	return ret;
1515  }
1516  
mpic_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1517  static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1518  {
1519  	struct openpic *opp = dev->private;
1520  	u32 attr32;
1521  
1522  	switch (attr->group) {
1523  	case KVM_DEV_MPIC_GRP_MISC:
1524  		switch (attr->attr) {
1525  		case KVM_DEV_MPIC_BASE_ADDR:
1526  			return set_base_addr(opp, attr);
1527  		}
1528  
1529  		break;
1530  
1531  	case KVM_DEV_MPIC_GRP_REGISTER:
1532  		if (get_user(attr32, (u32 __user *)(long)attr->addr))
1533  			return -EFAULT;
1534  
1535  		return access_reg(opp, attr->attr, &attr32, ATTR_SET);
1536  
1537  	case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1538  		if (attr->attr > MAX_SRC)
1539  			return -EINVAL;
1540  
1541  		if (get_user(attr32, (u32 __user *)(long)attr->addr))
1542  			return -EFAULT;
1543  
1544  		if (attr32 != 0 && attr32 != 1)
1545  			return -EINVAL;
1546  
1547  		spin_lock_irq(&opp->lock);
1548  		openpic_set_irq(opp, attr->attr, attr32);
1549  		spin_unlock_irq(&opp->lock);
1550  		return 0;
1551  	}
1552  
1553  	return -ENXIO;
1554  }
1555  
mpic_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1556  static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1557  {
1558  	struct openpic *opp = dev->private;
1559  	u64 attr64;
1560  	u32 attr32;
1561  	int ret;
1562  
1563  	switch (attr->group) {
1564  	case KVM_DEV_MPIC_GRP_MISC:
1565  		switch (attr->attr) {
1566  		case KVM_DEV_MPIC_BASE_ADDR:
1567  			mutex_lock(&opp->kvm->slots_lock);
1568  			attr64 = opp->reg_base;
1569  			mutex_unlock(&opp->kvm->slots_lock);
1570  
1571  			if (copy_to_user((u64 __user *)(long)attr->addr,
1572  					 &attr64, sizeof(u64)))
1573  				return -EFAULT;
1574  
1575  			return 0;
1576  		}
1577  
1578  		break;
1579  
1580  	case KVM_DEV_MPIC_GRP_REGISTER:
1581  		ret = access_reg(opp, attr->attr, &attr32, ATTR_GET);
1582  		if (ret)
1583  			return ret;
1584  
1585  		if (put_user(attr32, (u32 __user *)(long)attr->addr))
1586  			return -EFAULT;
1587  
1588  		return 0;
1589  
1590  	case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1591  		if (attr->attr > MAX_SRC)
1592  			return -EINVAL;
1593  
1594  		spin_lock_irq(&opp->lock);
1595  		attr32 = opp->src[attr->attr].pending;
1596  		spin_unlock_irq(&opp->lock);
1597  
1598  		if (put_user(attr32, (u32 __user *)(long)attr->addr))
1599  			return -EFAULT;
1600  
1601  		return 0;
1602  	}
1603  
1604  	return -ENXIO;
1605  }
1606  
mpic_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1607  static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1608  {
1609  	switch (attr->group) {
1610  	case KVM_DEV_MPIC_GRP_MISC:
1611  		switch (attr->attr) {
1612  		case KVM_DEV_MPIC_BASE_ADDR:
1613  			return 0;
1614  		}
1615  
1616  		break;
1617  
1618  	case KVM_DEV_MPIC_GRP_REGISTER:
1619  		return 0;
1620  
1621  	case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1622  		if (attr->attr > MAX_SRC)
1623  			break;
1624  
1625  		return 0;
1626  	}
1627  
1628  	return -ENXIO;
1629  }
1630  
mpic_destroy(struct kvm_device * dev)1631  static void mpic_destroy(struct kvm_device *dev)
1632  {
1633  	struct openpic *opp = dev->private;
1634  
1635  	dev->kvm->arch.mpic = NULL;
1636  	kfree(opp);
1637  	kfree(dev);
1638  }
1639  
mpic_set_default_irq_routing(struct openpic * opp)1640  static int mpic_set_default_irq_routing(struct openpic *opp)
1641  {
1642  	struct kvm_irq_routing_entry *routing;
1643  
1644  	/* Create a nop default map, so that dereferencing it still works */
1645  	routing = kzalloc((sizeof(*routing)), GFP_KERNEL);
1646  	if (!routing)
1647  		return -ENOMEM;
1648  
1649  	kvm_set_irq_routing(opp->kvm, routing, 0, 0);
1650  
1651  	kfree(routing);
1652  	return 0;
1653  }
1654  
mpic_create(struct kvm_device * dev,u32 type)1655  static int mpic_create(struct kvm_device *dev, u32 type)
1656  {
1657  	struct openpic *opp;
1658  	int ret;
1659  
1660  	/* We only support one MPIC at a time for now */
1661  	if (dev->kvm->arch.mpic)
1662  		return -EINVAL;
1663  
1664  	opp = kzalloc(sizeof(struct openpic), GFP_KERNEL);
1665  	if (!opp)
1666  		return -ENOMEM;
1667  
1668  	dev->private = opp;
1669  	opp->kvm = dev->kvm;
1670  	opp->dev = dev;
1671  	opp->model = type;
1672  	spin_lock_init(&opp->lock);
1673  
1674  	add_mmio_region(opp, &openpic_gbl_mmio);
1675  	add_mmio_region(opp, &openpic_tmr_mmio);
1676  	add_mmio_region(opp, &openpic_src_mmio);
1677  	add_mmio_region(opp, &openpic_cpu_mmio);
1678  
1679  	switch (opp->model) {
1680  	case KVM_DEV_TYPE_FSL_MPIC_20:
1681  		opp->fsl = &fsl_mpic_20;
1682  		opp->brr1 = 0x00400200;
1683  		opp->flags |= OPENPIC_FLAG_IDR_CRIT;
1684  		opp->nb_irqs = 80;
1685  		opp->mpic_mode_mask = GCR_MODE_MIXED;
1686  
1687  		fsl_common_init(opp);
1688  
1689  		break;
1690  
1691  	case KVM_DEV_TYPE_FSL_MPIC_42:
1692  		opp->fsl = &fsl_mpic_42;
1693  		opp->brr1 = 0x00400402;
1694  		opp->flags |= OPENPIC_FLAG_ILR;
1695  		opp->nb_irqs = 196;
1696  		opp->mpic_mode_mask = GCR_MODE_PROXY;
1697  
1698  		fsl_common_init(opp);
1699  
1700  		break;
1701  
1702  	default:
1703  		ret = -ENODEV;
1704  		goto err;
1705  	}
1706  
1707  	ret = mpic_set_default_irq_routing(opp);
1708  	if (ret)
1709  		goto err;
1710  
1711  	openpic_reset(opp);
1712  
1713  	smp_wmb();
1714  	dev->kvm->arch.mpic = opp;
1715  
1716  	return 0;
1717  
1718  err:
1719  	kfree(opp);
1720  	return ret;
1721  }
1722  
1723  struct kvm_device_ops kvm_mpic_ops = {
1724  	.name = "kvm-mpic",
1725  	.create = mpic_create,
1726  	.destroy = mpic_destroy,
1727  	.set_attr = mpic_set_attr,
1728  	.get_attr = mpic_get_attr,
1729  	.has_attr = mpic_has_attr,
1730  };
1731  
kvmppc_mpic_connect_vcpu(struct kvm_device * dev,struct kvm_vcpu * vcpu,u32 cpu)1732  int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu,
1733  			     u32 cpu)
1734  {
1735  	struct openpic *opp = dev->private;
1736  	int ret = 0;
1737  
1738  	if (dev->ops != &kvm_mpic_ops)
1739  		return -EPERM;
1740  	if (opp->kvm != vcpu->kvm)
1741  		return -EPERM;
1742  	if (cpu < 0 || cpu >= MAX_CPU)
1743  		return -EPERM;
1744  
1745  	spin_lock_irq(&opp->lock);
1746  
1747  	if (opp->dst[cpu].vcpu) {
1748  		ret = -EEXIST;
1749  		goto out;
1750  	}
1751  	if (vcpu->arch.irq_type) {
1752  		ret = -EBUSY;
1753  		goto out;
1754  	}
1755  
1756  	opp->dst[cpu].vcpu = vcpu;
1757  	opp->nb_cpus = max(opp->nb_cpus, cpu + 1);
1758  
1759  	vcpu->arch.mpic = opp;
1760  	vcpu->arch.irq_cpu_id = cpu;
1761  	vcpu->arch.irq_type = KVMPPC_IRQ_MPIC;
1762  
1763  	/* This might need to be changed if GCR gets extended */
1764  	if (opp->mpic_mode_mask == GCR_MODE_PROXY)
1765  		vcpu->arch.epr_flags |= KVMPPC_EPR_KERNEL;
1766  
1767  out:
1768  	spin_unlock_irq(&opp->lock);
1769  	return ret;
1770  }
1771  
1772  /*
1773   * This should only happen immediately before the mpic is destroyed,
1774   * so we shouldn't need to worry about anything still trying to
1775   * access the vcpu pointer.
1776   */
kvmppc_mpic_disconnect_vcpu(struct openpic * opp,struct kvm_vcpu * vcpu)1777  void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu)
1778  {
1779  	BUG_ON(!opp->dst[vcpu->arch.irq_cpu_id].vcpu);
1780  
1781  	opp->dst[vcpu->arch.irq_cpu_id].vcpu = NULL;
1782  }
1783  
1784  /*
1785   * Return value:
1786   *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1787   *  = 0   Interrupt was coalesced (previous irq is still pending)
1788   *  > 0   Number of CPUs interrupt was delivered to
1789   */
mpic_set_irq(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)1790  static int mpic_set_irq(struct kvm_kernel_irq_routing_entry *e,
1791  			struct kvm *kvm, int irq_source_id, int level,
1792  			bool line_status)
1793  {
1794  	u32 irq = e->irqchip.pin;
1795  	struct openpic *opp = kvm->arch.mpic;
1796  	unsigned long flags;
1797  
1798  	spin_lock_irqsave(&opp->lock, flags);
1799  	openpic_set_irq(opp, irq, level);
1800  	spin_unlock_irqrestore(&opp->lock, flags);
1801  
1802  	/* All code paths we care about don't check for the return value */
1803  	return 0;
1804  }
1805  
kvm_set_msi(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)1806  int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
1807  		struct kvm *kvm, int irq_source_id, int level, bool line_status)
1808  {
1809  	struct openpic *opp = kvm->arch.mpic;
1810  	unsigned long flags;
1811  
1812  	spin_lock_irqsave(&opp->lock, flags);
1813  
1814  	/*
1815  	 * XXX We ignore the target address for now, as we only support
1816  	 *     a single MSI bank.
1817  	 */
1818  	openpic_msi_write(kvm->arch.mpic, MSIIR_OFFSET, e->msi.data);
1819  	spin_unlock_irqrestore(&opp->lock, flags);
1820  
1821  	/* All code paths we care about don't check for the return value */
1822  	return 0;
1823  }
1824  
kvm_set_routing_entry(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,const struct kvm_irq_routing_entry * ue)1825  int kvm_set_routing_entry(struct kvm *kvm,
1826  			  struct kvm_kernel_irq_routing_entry *e,
1827  			  const struct kvm_irq_routing_entry *ue)
1828  {
1829  	int r = -EINVAL;
1830  
1831  	switch (ue->type) {
1832  	case KVM_IRQ_ROUTING_IRQCHIP:
1833  		e->set = mpic_set_irq;
1834  		e->irqchip.irqchip = ue->u.irqchip.irqchip;
1835  		e->irqchip.pin = ue->u.irqchip.pin;
1836  		if (e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS)
1837  			goto out;
1838  		break;
1839  	case KVM_IRQ_ROUTING_MSI:
1840  		e->set = kvm_set_msi;
1841  		e->msi.address_lo = ue->u.msi.address_lo;
1842  		e->msi.address_hi = ue->u.msi.address_hi;
1843  		e->msi.data = ue->u.msi.data;
1844  		break;
1845  	default:
1846  		goto out;
1847  	}
1848  
1849  	r = 0;
1850  out:
1851  	return r;
1852  }
1853