1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   * Copyright (C) 2012 ARM Ltd.
4   */
5  #ifndef __ASM_PGTABLE_H
6  #define __ASM_PGTABLE_H
7  
8  #include <asm/bug.h>
9  #include <asm/proc-fns.h>
10  
11  #include <asm/memory.h>
12  #include <asm/mte.h>
13  #include <asm/pgtable-hwdef.h>
14  #include <asm/pgtable-prot.h>
15  #include <asm/tlbflush.h>
16  
17  /*
18   * VMALLOC range.
19   *
20   * VMALLOC_START: beginning of the kernel vmalloc space
21   * VMALLOC_END: extends to the available space below vmemmap
22   */
23  #define VMALLOC_START		(MODULES_END)
24  #if VA_BITS == VA_BITS_MIN
25  #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26  #else
27  #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28  #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29  #endif
30  
31  #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32  
33  #ifndef __ASSEMBLY__
34  
35  #include <asm/cmpxchg.h>
36  #include <asm/fixmap.h>
37  #include <asm/por.h>
38  #include <linux/mmdebug.h>
39  #include <linux/mm_types.h>
40  #include <linux/sched.h>
41  #include <linux/page_table_check.h>
42  
43  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
44  #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
45  
46  /* Set stride and tlb_level in flush_*_tlb_range */
47  #define flush_pmd_tlb_range(vma, addr, end)	\
48  	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
49  #define flush_pud_tlb_range(vma, addr, end)	\
50  	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
51  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
52  
53  /*
54   * Outside of a few very special situations (e.g. hibernation), we always
55   * use broadcast TLB invalidation instructions, therefore a spurious page
56   * fault on one CPU which has been handled concurrently by another CPU
57   * does not need to perform additional invalidation.
58   */
59  #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
60  
61  /*
62   * ZERO_PAGE is a global shared page that is always zero: used
63   * for zero-mapped memory areas etc..
64   */
65  extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
66  #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
67  
68  #define pte_ERROR(e)	\
69  	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
70  
71  /*
72   * Macros to convert between a physical address and its placement in a
73   * page table entry, taking care of 52-bit addresses.
74   */
75  #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)76  static inline phys_addr_t __pte_to_phys(pte_t pte)
77  {
78  	pte_val(pte) &= ~PTE_MAYBE_SHARED;
79  	return (pte_val(pte) & PTE_ADDR_LOW) |
80  		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81  }
__phys_to_pte_val(phys_addr_t phys)82  static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83  {
84  	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
85  }
86  #else
87  #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_LOW)
88  #define __phys_to_pte_val(phys)	(phys)
89  #endif
90  
91  #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
92  #define pfn_pte(pfn,prot)	\
93  	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94  
95  #define pte_none(pte)		(!pte_val(pte))
96  #define __pte_clear(mm, addr, ptep) \
97  				__set_pte(ptep, __pte(0))
98  #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
99  
100  /*
101   * The following only work if pte_present(). Undefined behaviour otherwise.
102   */
103  #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
104  #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
105  #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
106  #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
107  #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
108  #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
109  #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
110  #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
111  #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
112  #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
113  				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
114  
115  #define pte_cont_addr_end(addr, end)						\
116  ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
117  	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
118  })
119  
120  #define pmd_cont_addr_end(addr, end)						\
121  ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
122  	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
123  })
124  
125  #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
126  #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
127  #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
128  
129  #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
130  #define pte_present_invalid(pte) \
131  	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
132  /*
133   * Execute-only user mappings do not have the PTE_USER bit set. All valid
134   * kernel mappings have the PTE_UXN bit set.
135   */
136  #define pte_valid_not_user(pte) \
137  	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
138  /*
139   * Returns true if the pte is valid and has the contiguous bit set.
140   */
141  #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
142  /*
143   * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
144   * so that we don't erroneously return false for pages that have been
145   * remapped as PROT_NONE but are yet to be flushed from the TLB.
146   * Note that we can't make any assumptions based on the state of the access
147   * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
148   * TLB.
149   */
150  #define pte_accessible(mm, pte)	\
151  	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
152  
por_el0_allows_pkey(u8 pkey,bool write,bool execute)153  static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
154  {
155  	u64 por;
156  
157  	if (!system_supports_poe())
158  		return true;
159  
160  	por = read_sysreg_s(SYS_POR_EL0);
161  
162  	if (write)
163  		return por_elx_allows_write(por, pkey);
164  
165  	if (execute)
166  		return por_elx_allows_exec(por, pkey);
167  
168  	return por_elx_allows_read(por, pkey);
169  }
170  
171  /*
172   * p??_access_permitted() is true for valid user mappings (PTE_USER
173   * bit set, subject to the write permission check). For execute-only
174   * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
175   * not set) must return false. PROT_NONE mappings do not have the
176   * PTE_VALID bit set.
177   */
178  #define pte_access_permitted_no_overlay(pte, write) \
179  	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
180  #define pte_access_permitted(pte, write) \
181  	(pte_access_permitted_no_overlay(pte, write) && \
182  	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
183  #define pmd_access_permitted(pmd, write) \
184  	(pte_access_permitted(pmd_pte(pmd), (write)))
185  #define pud_access_permitted(pud, write) \
186  	(pte_access_permitted(pud_pte(pud), (write)))
187  
clear_pte_bit(pte_t pte,pgprot_t prot)188  static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
189  {
190  	pte_val(pte) &= ~pgprot_val(prot);
191  	return pte;
192  }
193  
set_pte_bit(pte_t pte,pgprot_t prot)194  static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
195  {
196  	pte_val(pte) |= pgprot_val(prot);
197  	return pte;
198  }
199  
clear_pmd_bit(pmd_t pmd,pgprot_t prot)200  static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
201  {
202  	pmd_val(pmd) &= ~pgprot_val(prot);
203  	return pmd;
204  }
205  
set_pmd_bit(pmd_t pmd,pgprot_t prot)206  static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
207  {
208  	pmd_val(pmd) |= pgprot_val(prot);
209  	return pmd;
210  }
211  
pte_mkwrite_novma(pte_t pte)212  static inline pte_t pte_mkwrite_novma(pte_t pte)
213  {
214  	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
215  	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
216  	return pte;
217  }
218  
pte_mkclean(pte_t pte)219  static inline pte_t pte_mkclean(pte_t pte)
220  {
221  	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
222  	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
223  
224  	return pte;
225  }
226  
pte_mkdirty(pte_t pte)227  static inline pte_t pte_mkdirty(pte_t pte)
228  {
229  	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
230  
231  	if (pte_write(pte))
232  		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
233  
234  	return pte;
235  }
236  
pte_wrprotect(pte_t pte)237  static inline pte_t pte_wrprotect(pte_t pte)
238  {
239  	/*
240  	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
241  	 * clear), set the PTE_DIRTY bit.
242  	 */
243  	if (pte_hw_dirty(pte))
244  		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
245  
246  	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
247  	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
248  	return pte;
249  }
250  
pte_mkold(pte_t pte)251  static inline pte_t pte_mkold(pte_t pte)
252  {
253  	return clear_pte_bit(pte, __pgprot(PTE_AF));
254  }
255  
pte_mkyoung(pte_t pte)256  static inline pte_t pte_mkyoung(pte_t pte)
257  {
258  	return set_pte_bit(pte, __pgprot(PTE_AF));
259  }
260  
pte_mkspecial(pte_t pte)261  static inline pte_t pte_mkspecial(pte_t pte)
262  {
263  	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
264  }
265  
pte_mkcont(pte_t pte)266  static inline pte_t pte_mkcont(pte_t pte)
267  {
268  	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
269  	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
270  }
271  
pte_mknoncont(pte_t pte)272  static inline pte_t pte_mknoncont(pte_t pte)
273  {
274  	return clear_pte_bit(pte, __pgprot(PTE_CONT));
275  }
276  
pte_mkpresent(pte_t pte)277  static inline pte_t pte_mkpresent(pte_t pte)
278  {
279  	return set_pte_bit(pte, __pgprot(PTE_VALID));
280  }
281  
pte_mkinvalid(pte_t pte)282  static inline pte_t pte_mkinvalid(pte_t pte)
283  {
284  	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
285  	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
286  	return pte;
287  }
288  
pmd_mkcont(pmd_t pmd)289  static inline pmd_t pmd_mkcont(pmd_t pmd)
290  {
291  	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
292  }
293  
pte_mkdevmap(pte_t pte)294  static inline pte_t pte_mkdevmap(pte_t pte)
295  {
296  	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
297  }
298  
299  #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)300  static inline int pte_uffd_wp(pte_t pte)
301  {
302  	return !!(pte_val(pte) & PTE_UFFD_WP);
303  }
304  
pte_mkuffd_wp(pte_t pte)305  static inline pte_t pte_mkuffd_wp(pte_t pte)
306  {
307  	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
308  }
309  
pte_clear_uffd_wp(pte_t pte)310  static inline pte_t pte_clear_uffd_wp(pte_t pte)
311  {
312  	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
313  }
314  #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
315  
__set_pte_nosync(pte_t * ptep,pte_t pte)316  static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
317  {
318  	WRITE_ONCE(*ptep, pte);
319  }
320  
__set_pte(pte_t * ptep,pte_t pte)321  static inline void __set_pte(pte_t *ptep, pte_t pte)
322  {
323  	__set_pte_nosync(ptep, pte);
324  
325  	/*
326  	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
327  	 * or update_mmu_cache() have the necessary barriers.
328  	 */
329  	if (pte_valid_not_user(pte)) {
330  		dsb(ishst);
331  		isb();
332  	}
333  }
334  
__ptep_get(pte_t * ptep)335  static inline pte_t __ptep_get(pte_t *ptep)
336  {
337  	return READ_ONCE(*ptep);
338  }
339  
340  extern void __sync_icache_dcache(pte_t pteval);
341  bool pgattr_change_is_safe(u64 old, u64 new);
342  
343  /*
344   * PTE bits configuration in the presence of hardware Dirty Bit Management
345   * (PTE_WRITE == PTE_DBM):
346   *
347   * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
348   *   0      0      |   1           0          0
349   *   0      1      |   1           1          0
350   *   1      0      |   1           0          1
351   *   1      1      |   0           1          x
352   *
353   * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
354   * the page fault mechanism. Checking the dirty status of a pte becomes:
355   *
356   *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
357   */
358  
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)359  static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
360  					   pte_t pte)
361  {
362  	pte_t old_pte;
363  
364  	if (!IS_ENABLED(CONFIG_DEBUG_VM))
365  		return;
366  
367  	old_pte = __ptep_get(ptep);
368  
369  	if (!pte_valid(old_pte) || !pte_valid(pte))
370  		return;
371  	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
372  		return;
373  
374  	/*
375  	 * Check for potential race with hardware updates of the pte
376  	 * (__ptep_set_access_flags safely changes valid ptes without going
377  	 * through an invalid entry).
378  	 */
379  	VM_WARN_ONCE(!pte_young(pte),
380  		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
381  		     __func__, pte_val(old_pte), pte_val(pte));
382  	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
383  		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
384  		     __func__, pte_val(old_pte), pte_val(pte));
385  	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
386  		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
387  		     __func__, pte_val(old_pte), pte_val(pte));
388  }
389  
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)390  static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
391  {
392  	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
393  		__sync_icache_dcache(pte);
394  
395  	/*
396  	 * If the PTE would provide user space access to the tags associated
397  	 * with it then ensure that the MTE tags are synchronised.  Although
398  	 * pte_access_permitted_no_overlay() returns false for exec only
399  	 * mappings, they don't expose tags (instruction fetches don't check
400  	 * tags).
401  	 */
402  	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
403  	    !pte_special(pte) && pte_tagged(pte))
404  		mte_sync_tags(pte, nr_pages);
405  }
406  
407  /*
408   * Select all bits except the pfn
409   */
410  #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)411  static inline pgprot_t pte_pgprot(pte_t pte)
412  {
413  	unsigned long pfn = pte_pfn(pte);
414  
415  	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
416  }
417  
418  #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)419  static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
420  {
421  	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
422  }
423  
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)424  static inline void __set_ptes(struct mm_struct *mm,
425  			      unsigned long __always_unused addr,
426  			      pte_t *ptep, pte_t pte, unsigned int nr)
427  {
428  	page_table_check_ptes_set(mm, ptep, pte, nr);
429  	__sync_cache_and_tags(pte, nr);
430  
431  	for (;;) {
432  		__check_safe_pte_update(mm, ptep, pte);
433  		__set_pte(ptep, pte);
434  		if (--nr == 0)
435  			break;
436  		ptep++;
437  		pte = pte_advance_pfn(pte, 1);
438  	}
439  }
440  
441  /*
442   * Huge pte definitions.
443   */
444  #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
445  
446  /*
447   * Hugetlb definitions.
448   */
449  #define HUGE_MAX_HSTATE		4
450  #define HPAGE_SHIFT		PMD_SHIFT
451  #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
452  #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
453  #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
454  
pgd_pte(pgd_t pgd)455  static inline pte_t pgd_pte(pgd_t pgd)
456  {
457  	return __pte(pgd_val(pgd));
458  }
459  
p4d_pte(p4d_t p4d)460  static inline pte_t p4d_pte(p4d_t p4d)
461  {
462  	return __pte(p4d_val(p4d));
463  }
464  
pud_pte(pud_t pud)465  static inline pte_t pud_pte(pud_t pud)
466  {
467  	return __pte(pud_val(pud));
468  }
469  
pte_pud(pte_t pte)470  static inline pud_t pte_pud(pte_t pte)
471  {
472  	return __pud(pte_val(pte));
473  }
474  
pud_pmd(pud_t pud)475  static inline pmd_t pud_pmd(pud_t pud)
476  {
477  	return __pmd(pud_val(pud));
478  }
479  
pmd_pte(pmd_t pmd)480  static inline pte_t pmd_pte(pmd_t pmd)
481  {
482  	return __pte(pmd_val(pmd));
483  }
484  
pte_pmd(pte_t pte)485  static inline pmd_t pte_pmd(pte_t pte)
486  {
487  	return __pmd(pte_val(pte));
488  }
489  
mk_pud_sect_prot(pgprot_t prot)490  static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
491  {
492  	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
493  }
494  
mk_pmd_sect_prot(pgprot_t prot)495  static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
496  {
497  	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
498  }
499  
pte_swp_mkexclusive(pte_t pte)500  static inline pte_t pte_swp_mkexclusive(pte_t pte)
501  {
502  	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
503  }
504  
pte_swp_exclusive(pte_t pte)505  static inline int pte_swp_exclusive(pte_t pte)
506  {
507  	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
508  }
509  
pte_swp_clear_exclusive(pte_t pte)510  static inline pte_t pte_swp_clear_exclusive(pte_t pte)
511  {
512  	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
513  }
514  
515  #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)516  static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
517  {
518  	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
519  }
520  
pte_swp_uffd_wp(pte_t pte)521  static inline int pte_swp_uffd_wp(pte_t pte)
522  {
523  	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
524  }
525  
pte_swp_clear_uffd_wp(pte_t pte)526  static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
527  {
528  	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
529  }
530  #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
531  
532  #ifdef CONFIG_NUMA_BALANCING
533  /*
534   * See the comment in include/linux/pgtable.h
535   */
pte_protnone(pte_t pte)536  static inline int pte_protnone(pte_t pte)
537  {
538  	/*
539  	 * pte_present_invalid() tells us that the pte is invalid from HW
540  	 * perspective but present from SW perspective, so the fields are to be
541  	 * interpretted as per the HW layout. The second 2 checks are the unique
542  	 * encoding that we use for PROT_NONE. It is insufficient to only use
543  	 * the first check because we share the same encoding scheme with pmds
544  	 * which support pmd_mkinvalid(), so can be present-invalid without
545  	 * being PROT_NONE.
546  	 */
547  	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
548  }
549  
pmd_protnone(pmd_t pmd)550  static inline int pmd_protnone(pmd_t pmd)
551  {
552  	return pte_protnone(pmd_pte(pmd));
553  }
554  #endif
555  
556  #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
557  
558  /*
559   * THP definitions.
560   */
561  
562  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)563  static inline int pmd_trans_huge(pmd_t pmd)
564  {
565  	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
566  }
567  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
568  
569  #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
570  #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
571  #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
572  #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
573  #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
574  #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
575  #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
576  #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
577  #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
578  #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
579  #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
580  #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
581  #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
582  #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
583  #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
584  #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
585  #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
586  #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
587  #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
588  #define pmd_swp_clear_uffd_wp(pmd) \
589  				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
590  #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
591  
592  #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
593  
594  #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
595  
596  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
597  #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
598  #endif
pmd_mkdevmap(pmd_t pmd)599  static inline pmd_t pmd_mkdevmap(pmd_t pmd)
600  {
601  	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
602  }
603  
604  #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
605  #define pmd_special(pte)	(!!((pmd_val(pte) & PTE_SPECIAL)))
pmd_mkspecial(pmd_t pmd)606  static inline pmd_t pmd_mkspecial(pmd_t pmd)
607  {
608  	return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
609  }
610  #endif
611  
612  #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
613  #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
614  #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
615  #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
616  #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
617  
618  #define pud_young(pud)		pte_young(pud_pte(pud))
619  #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
620  #define pud_write(pud)		pte_write(pud_pte(pud))
621  
622  #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
623  
624  #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
625  #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
626  #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
627  #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
628  
629  #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
630  #define pud_special(pte)	pte_special(pud_pte(pud))
631  #define pud_mkspecial(pte)	pte_pud(pte_mkspecial(pud_pte(pud)))
632  #endif
633  
634  #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)635  static inline pgprot_t pmd_pgprot(pmd_t pmd)
636  {
637  	unsigned long pfn = pmd_pfn(pmd);
638  
639  	return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
640  }
641  
642  #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)643  static inline pgprot_t pud_pgprot(pud_t pud)
644  {
645  	unsigned long pfn = pud_pfn(pud);
646  
647  	return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
648  }
649  
__set_pte_at(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)650  static inline void __set_pte_at(struct mm_struct *mm,
651  				unsigned long __always_unused addr,
652  				pte_t *ptep, pte_t pte, unsigned int nr)
653  {
654  	__sync_cache_and_tags(pte, nr);
655  	__check_safe_pte_update(mm, ptep, pte);
656  	__set_pte(ptep, pte);
657  }
658  
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)659  static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
660  			      pmd_t *pmdp, pmd_t pmd)
661  {
662  	page_table_check_pmd_set(mm, pmdp, pmd);
663  	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
664  						PMD_SIZE >> PAGE_SHIFT);
665  }
666  
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)667  static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
668  			      pud_t *pudp, pud_t pud)
669  {
670  	page_table_check_pud_set(mm, pudp, pud);
671  	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
672  						PUD_SIZE >> PAGE_SHIFT);
673  }
674  
675  #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
676  #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
677  
678  #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
679  #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
680  
681  #define __pgprot_modify(prot,mask,bits) \
682  	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
683  
684  #define pgprot_nx(prot) \
685  	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
686  
687  /*
688   * Mark the prot value as uncacheable and unbufferable.
689   */
690  #define pgprot_noncached(prot) \
691  	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
692  #define pgprot_writecombine(prot) \
693  	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
694  #define pgprot_device(prot) \
695  	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
696  #define pgprot_tagged(prot) \
697  	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
698  #define pgprot_mhp	pgprot_tagged
699  /*
700   * DMA allocations for non-coherent devices use what the Arm architecture calls
701   * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
702   * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
703   * is intended for MMIO and thus forbids speculation, preserves access size,
704   * requires strict alignment and can also force write responses to come from the
705   * endpoint.
706   */
707  #define pgprot_dmacoherent(prot) \
708  	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
709  			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
710  
711  #define __HAVE_PHYS_MEM_ACCESS_PROT
712  struct file;
713  extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
714  				     unsigned long size, pgprot_t vma_prot);
715  
716  #define pmd_none(pmd)		(!pmd_val(pmd))
717  
718  #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
719  				 PMD_TYPE_TABLE)
720  #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
721  				 PMD_TYPE_SECT)
722  #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
723  #define pmd_bad(pmd)		(!pmd_table(pmd))
724  
725  #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
726  #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
727  
728  #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)729  static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)730  static inline bool pud_table(pud_t pud) { return true; }
731  #else
732  #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
733  				 PUD_TYPE_SECT)
734  #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
735  				 PUD_TYPE_TABLE)
736  #endif
737  
738  extern pgd_t init_pg_dir[];
739  extern pgd_t init_pg_end[];
740  extern pgd_t swapper_pg_dir[];
741  extern pgd_t idmap_pg_dir[];
742  extern pgd_t tramp_pg_dir[];
743  extern pgd_t reserved_pg_dir[];
744  
745  extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
746  
in_swapper_pgdir(void * addr)747  static inline bool in_swapper_pgdir(void *addr)
748  {
749  	return ((unsigned long)addr & PAGE_MASK) ==
750  	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
751  }
752  
set_pmd(pmd_t * pmdp,pmd_t pmd)753  static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
754  {
755  #ifdef __PAGETABLE_PMD_FOLDED
756  	if (in_swapper_pgdir(pmdp)) {
757  		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
758  		return;
759  	}
760  #endif /* __PAGETABLE_PMD_FOLDED */
761  
762  	WRITE_ONCE(*pmdp, pmd);
763  
764  	if (pmd_valid(pmd)) {
765  		dsb(ishst);
766  		isb();
767  	}
768  }
769  
pmd_clear(pmd_t * pmdp)770  static inline void pmd_clear(pmd_t *pmdp)
771  {
772  	set_pmd(pmdp, __pmd(0));
773  }
774  
pmd_page_paddr(pmd_t pmd)775  static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
776  {
777  	return __pmd_to_phys(pmd);
778  }
779  
pmd_page_vaddr(pmd_t pmd)780  static inline unsigned long pmd_page_vaddr(pmd_t pmd)
781  {
782  	return (unsigned long)__va(pmd_page_paddr(pmd));
783  }
784  
785  /* Find an entry in the third-level page table. */
786  #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
787  
788  #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
789  #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
790  #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
791  
792  #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
793  
794  /* use ONLY for statically allocated translation tables */
795  #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
796  
797  /*
798   * Conversion functions: convert a page and protection to a page entry,
799   * and a page entry and page directory to the page they refer to.
800   */
801  #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
802  
803  #if CONFIG_PGTABLE_LEVELS > 2
804  
805  #define pmd_ERROR(e)	\
806  	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
807  
808  #define pud_none(pud)		(!pud_val(pud))
809  #define pud_bad(pud)		(!pud_table(pud))
810  #define pud_present(pud)	pte_present(pud_pte(pud))
811  #ifndef __PAGETABLE_PMD_FOLDED
812  #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
813  #else
814  #define pud_leaf(pud)		false
815  #endif
816  #define pud_valid(pud)		pte_valid(pud_pte(pud))
817  #define pud_user(pud)		pte_user(pud_pte(pud))
818  #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
819  
820  static inline bool pgtable_l4_enabled(void);
821  
set_pud(pud_t * pudp,pud_t pud)822  static inline void set_pud(pud_t *pudp, pud_t pud)
823  {
824  	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
825  		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
826  		return;
827  	}
828  
829  	WRITE_ONCE(*pudp, pud);
830  
831  	if (pud_valid(pud)) {
832  		dsb(ishst);
833  		isb();
834  	}
835  }
836  
pud_clear(pud_t * pudp)837  static inline void pud_clear(pud_t *pudp)
838  {
839  	set_pud(pudp, __pud(0));
840  }
841  
pud_page_paddr(pud_t pud)842  static inline phys_addr_t pud_page_paddr(pud_t pud)
843  {
844  	return __pud_to_phys(pud);
845  }
846  
pud_pgtable(pud_t pud)847  static inline pmd_t *pud_pgtable(pud_t pud)
848  {
849  	return (pmd_t *)__va(pud_page_paddr(pud));
850  }
851  
852  /* Find an entry in the second-level page table. */
853  #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
854  
855  #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
856  #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
857  #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
858  
859  #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
860  
861  /* use ONLY for statically allocated translation tables */
862  #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
863  
864  #else
865  
866  #define pud_valid(pud)		false
867  #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
868  #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
869  
870  /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
871  #define pmd_set_fixmap(addr)		NULL
872  #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
873  #define pmd_clear_fixmap()
874  
875  #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
876  
877  #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
878  
879  #if CONFIG_PGTABLE_LEVELS > 3
880  
pgtable_l4_enabled(void)881  static __always_inline bool pgtable_l4_enabled(void)
882  {
883  	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
884  		return true;
885  	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
886  		return vabits_actual == VA_BITS;
887  	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
888  }
889  
mm_pud_folded(const struct mm_struct * mm)890  static inline bool mm_pud_folded(const struct mm_struct *mm)
891  {
892  	return !pgtable_l4_enabled();
893  }
894  #define mm_pud_folded  mm_pud_folded
895  
896  #define pud_ERROR(e)	\
897  	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
898  
899  #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
900  #define p4d_bad(p4d)		(pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
901  #define p4d_present(p4d)	(!p4d_none(p4d))
902  
set_p4d(p4d_t * p4dp,p4d_t p4d)903  static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
904  {
905  	if (in_swapper_pgdir(p4dp)) {
906  		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
907  		return;
908  	}
909  
910  	WRITE_ONCE(*p4dp, p4d);
911  	dsb(ishst);
912  	isb();
913  }
914  
p4d_clear(p4d_t * p4dp)915  static inline void p4d_clear(p4d_t *p4dp)
916  {
917  	if (pgtable_l4_enabled())
918  		set_p4d(p4dp, __p4d(0));
919  }
920  
p4d_page_paddr(p4d_t p4d)921  static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
922  {
923  	return __p4d_to_phys(p4d);
924  }
925  
926  #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
927  
p4d_to_folded_pud(p4d_t * p4dp,unsigned long addr)928  static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
929  {
930  	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
931  }
932  
p4d_pgtable(p4d_t p4d)933  static inline pud_t *p4d_pgtable(p4d_t p4d)
934  {
935  	return (pud_t *)__va(p4d_page_paddr(p4d));
936  }
937  
pud_offset_phys(p4d_t * p4dp,unsigned long addr)938  static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
939  {
940  	BUG_ON(!pgtable_l4_enabled());
941  
942  	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
943  }
944  
945  static inline
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long addr)946  pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
947  {
948  	if (!pgtable_l4_enabled())
949  		return p4d_to_folded_pud(p4dp, addr);
950  	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
951  }
952  #define pud_offset_lockless pud_offset_lockless
953  
pud_offset(p4d_t * p4dp,unsigned long addr)954  static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
955  {
956  	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
957  }
958  #define pud_offset	pud_offset
959  
pud_set_fixmap(unsigned long addr)960  static inline pud_t *pud_set_fixmap(unsigned long addr)
961  {
962  	if (!pgtable_l4_enabled())
963  		return NULL;
964  	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
965  }
966  
pud_set_fixmap_offset(p4d_t * p4dp,unsigned long addr)967  static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
968  {
969  	if (!pgtable_l4_enabled())
970  		return p4d_to_folded_pud(p4dp, addr);
971  	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
972  }
973  
pud_clear_fixmap(void)974  static inline void pud_clear_fixmap(void)
975  {
976  	if (pgtable_l4_enabled())
977  		clear_fixmap(FIX_PUD);
978  }
979  
980  /* use ONLY for statically allocated translation tables */
pud_offset_kimg(p4d_t * p4dp,u64 addr)981  static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
982  {
983  	if (!pgtable_l4_enabled())
984  		return p4d_to_folded_pud(p4dp, addr);
985  	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
986  }
987  
988  #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
989  
990  #else
991  
pgtable_l4_enabled(void)992  static inline bool pgtable_l4_enabled(void) { return false; }
993  
994  #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
995  
996  /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
997  #define pud_set_fixmap(addr)		NULL
998  #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
999  #define pud_clear_fixmap()
1000  
1001  #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
1002  
1003  #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1004  
1005  #if CONFIG_PGTABLE_LEVELS > 4
1006  
pgtable_l5_enabled(void)1007  static __always_inline bool pgtable_l5_enabled(void)
1008  {
1009  	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1010  		return vabits_actual == VA_BITS;
1011  	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1012  }
1013  
mm_p4d_folded(const struct mm_struct * mm)1014  static inline bool mm_p4d_folded(const struct mm_struct *mm)
1015  {
1016  	return !pgtable_l5_enabled();
1017  }
1018  #define mm_p4d_folded  mm_p4d_folded
1019  
1020  #define p4d_ERROR(e)	\
1021  	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1022  
1023  #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
1024  #define pgd_bad(pgd)		(pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
1025  #define pgd_present(pgd)	(!pgd_none(pgd))
1026  
set_pgd(pgd_t * pgdp,pgd_t pgd)1027  static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1028  {
1029  	if (in_swapper_pgdir(pgdp)) {
1030  		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1031  		return;
1032  	}
1033  
1034  	WRITE_ONCE(*pgdp, pgd);
1035  	dsb(ishst);
1036  	isb();
1037  }
1038  
pgd_clear(pgd_t * pgdp)1039  static inline void pgd_clear(pgd_t *pgdp)
1040  {
1041  	if (pgtable_l5_enabled())
1042  		set_pgd(pgdp, __pgd(0));
1043  }
1044  
pgd_page_paddr(pgd_t pgd)1045  static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1046  {
1047  	return __pgd_to_phys(pgd);
1048  }
1049  
1050  #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1051  
pgd_to_folded_p4d(pgd_t * pgdp,unsigned long addr)1052  static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1053  {
1054  	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1055  }
1056  
p4d_offset_phys(pgd_t * pgdp,unsigned long addr)1057  static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1058  {
1059  	BUG_ON(!pgtable_l5_enabled());
1060  
1061  	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1062  }
1063  
1064  static inline
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1065  p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1066  {
1067  	if (!pgtable_l5_enabled())
1068  		return pgd_to_folded_p4d(pgdp, addr);
1069  	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1070  }
1071  #define p4d_offset_lockless p4d_offset_lockless
1072  
p4d_offset(pgd_t * pgdp,unsigned long addr)1073  static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1074  {
1075  	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1076  }
1077  
p4d_set_fixmap(unsigned long addr)1078  static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1079  {
1080  	if (!pgtable_l5_enabled())
1081  		return NULL;
1082  	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1083  }
1084  
p4d_set_fixmap_offset(pgd_t * pgdp,unsigned long addr)1085  static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1086  {
1087  	if (!pgtable_l5_enabled())
1088  		return pgd_to_folded_p4d(pgdp, addr);
1089  	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1090  }
1091  
p4d_clear_fixmap(void)1092  static inline void p4d_clear_fixmap(void)
1093  {
1094  	if (pgtable_l5_enabled())
1095  		clear_fixmap(FIX_P4D);
1096  }
1097  
1098  /* use ONLY for statically allocated translation tables */
p4d_offset_kimg(pgd_t * pgdp,u64 addr)1099  static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1100  {
1101  	if (!pgtable_l5_enabled())
1102  		return pgd_to_folded_p4d(pgdp, addr);
1103  	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1104  }
1105  
1106  #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1107  
1108  #else
1109  
pgtable_l5_enabled(void)1110  static inline bool pgtable_l5_enabled(void) { return false; }
1111  
1112  #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1113  
1114  /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1115  #define p4d_set_fixmap(addr)		NULL
1116  #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1117  #define p4d_clear_fixmap()
1118  
1119  #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1120  
1121  static inline
p4d_offset_lockless_folded(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1122  p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1123  {
1124  	/*
1125  	 * With runtime folding of the pud, pud_offset_lockless() passes
1126  	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1127  	 * will offset the pointer assuming that it points into
1128  	 * a page-table page. However, the fast GUP path passes us a
1129  	 * pgd_t allocated on the stack and so we must use the original
1130  	 * pointer in 'pgdp' to construct the p4d pointer instead of
1131  	 * using the generic p4d_offset_lockless() implementation.
1132  	 *
1133  	 * Note: reusing the original pointer means that we may
1134  	 * dereference the same (live) page-table entry multiple times.
1135  	 * This is safe because it is still only loaded once in the
1136  	 * context of each level and the CPU guarantees same-address
1137  	 * read-after-read ordering.
1138  	 */
1139  	return p4d_offset(pgdp, addr);
1140  }
1141  #define p4d_offset_lockless p4d_offset_lockless_folded
1142  
1143  #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1144  
1145  #define pgd_ERROR(e)	\
1146  	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1147  
1148  #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1149  #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1150  
pte_modify(pte_t pte,pgprot_t newprot)1151  static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1152  {
1153  	/*
1154  	 * Normal and Normal-Tagged are two different memory types and indices
1155  	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1156  	 */
1157  	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1158  			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1159  			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1160  
1161  	/* preserve the hardware dirty information */
1162  	if (pte_hw_dirty(pte))
1163  		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1164  
1165  	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1166  	/*
1167  	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1168  	 * dirtiness again.
1169  	 */
1170  	if (pte_sw_dirty(pte))
1171  		pte = pte_mkdirty(pte);
1172  	return pte;
1173  }
1174  
pmd_modify(pmd_t pmd,pgprot_t newprot)1175  static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1176  {
1177  	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1178  }
1179  
1180  extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1181  				 unsigned long address, pte_t *ptep,
1182  				 pte_t entry, int dirty);
1183  
1184  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1185  #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)1186  static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1187  					unsigned long address, pmd_t *pmdp,
1188  					pmd_t entry, int dirty)
1189  {
1190  	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1191  							pmd_pte(entry), dirty);
1192  }
1193  
pud_devmap(pud_t pud)1194  static inline int pud_devmap(pud_t pud)
1195  {
1196  	return 0;
1197  }
1198  
pgd_devmap(pgd_t pgd)1199  static inline int pgd_devmap(pgd_t pgd)
1200  {
1201  	return 0;
1202  }
1203  #endif
1204  
1205  #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1206  static inline bool pte_user_accessible_page(pte_t pte)
1207  {
1208  	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1209  }
1210  
pmd_user_accessible_page(pmd_t pmd)1211  static inline bool pmd_user_accessible_page(pmd_t pmd)
1212  {
1213  	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1214  }
1215  
pud_user_accessible_page(pud_t pud)1216  static inline bool pud_user_accessible_page(pud_t pud)
1217  {
1218  	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1219  }
1220  #endif
1221  
1222  /*
1223   * Atomic pte/pmd modifications.
1224   */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1225  static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1226  					      unsigned long address,
1227  					      pte_t *ptep)
1228  {
1229  	pte_t old_pte, pte;
1230  
1231  	pte = __ptep_get(ptep);
1232  	do {
1233  		old_pte = pte;
1234  		pte = pte_mkold(pte);
1235  		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1236  					       pte_val(old_pte), pte_val(pte));
1237  	} while (pte_val(pte) != pte_val(old_pte));
1238  
1239  	return pte_young(pte);
1240  }
1241  
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1242  static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1243  					 unsigned long address, pte_t *ptep)
1244  {
1245  	int young = __ptep_test_and_clear_young(vma, address, ptep);
1246  
1247  	if (young) {
1248  		/*
1249  		 * We can elide the trailing DSB here since the worst that can
1250  		 * happen is that a CPU continues to use the young entry in its
1251  		 * TLB and we mistakenly reclaim the associated page. The
1252  		 * window for such an event is bounded by the next
1253  		 * context-switch, which provides a DSB to complete the TLB
1254  		 * invalidation.
1255  		 */
1256  		flush_tlb_page_nosync(vma, address);
1257  	}
1258  
1259  	return young;
1260  }
1261  
1262  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263  #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1264  static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1265  					    unsigned long address,
1266  					    pmd_t *pmdp)
1267  {
1268  	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1269  }
1270  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1271  
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1272  static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1273  				       unsigned long address, pte_t *ptep)
1274  {
1275  	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1276  
1277  	page_table_check_pte_clear(mm, pte);
1278  
1279  	return pte;
1280  }
1281  
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1282  static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1283  				pte_t *ptep, unsigned int nr, int full)
1284  {
1285  	for (;;) {
1286  		__ptep_get_and_clear(mm, addr, ptep);
1287  		if (--nr == 0)
1288  			break;
1289  		ptep++;
1290  		addr += PAGE_SIZE;
1291  	}
1292  }
1293  
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1294  static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1295  				unsigned long addr, pte_t *ptep,
1296  				unsigned int nr, int full)
1297  {
1298  	pte_t pte, tmp_pte;
1299  
1300  	pte = __ptep_get_and_clear(mm, addr, ptep);
1301  	while (--nr) {
1302  		ptep++;
1303  		addr += PAGE_SIZE;
1304  		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1305  		if (pte_dirty(tmp_pte))
1306  			pte = pte_mkdirty(pte);
1307  		if (pte_young(tmp_pte))
1308  			pte = pte_mkyoung(pte);
1309  	}
1310  	return pte;
1311  }
1312  
1313  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1314  #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1315  static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1316  					    unsigned long address, pmd_t *pmdp)
1317  {
1318  	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1319  
1320  	page_table_check_pmd_clear(mm, pmd);
1321  
1322  	return pmd;
1323  }
1324  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1325  
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1326  static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1327  					unsigned long address, pte_t *ptep,
1328  					pte_t pte)
1329  {
1330  	pte_t old_pte;
1331  
1332  	do {
1333  		old_pte = pte;
1334  		pte = pte_wrprotect(pte);
1335  		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1336  					       pte_val(old_pte), pte_val(pte));
1337  	} while (pte_val(pte) != pte_val(old_pte));
1338  }
1339  
1340  /*
1341   * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1342   * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1343   */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1344  static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1345  					unsigned long address, pte_t *ptep)
1346  {
1347  	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1348  }
1349  
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1350  static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1351  				pte_t *ptep, unsigned int nr)
1352  {
1353  	unsigned int i;
1354  
1355  	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1356  		__ptep_set_wrprotect(mm, address, ptep);
1357  }
1358  
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1359  static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1360  					   unsigned long addr, pte_t *ptep,
1361  					   pte_t pte, cydp_t flags)
1362  {
1363  	pte_t old_pte;
1364  
1365  	do {
1366  		old_pte = pte;
1367  
1368  		if (flags & CYDP_CLEAR_YOUNG)
1369  			pte = pte_mkold(pte);
1370  		if (flags & CYDP_CLEAR_DIRTY)
1371  			pte = pte_mkclean(pte);
1372  
1373  		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1374  					       pte_val(old_pte), pte_val(pte));
1375  	} while (pte_val(pte) != pte_val(old_pte));
1376  }
1377  
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1378  static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1379  					    unsigned long addr, pte_t *ptep,
1380  					    unsigned int nr, cydp_t flags)
1381  {
1382  	pte_t pte;
1383  
1384  	for (;;) {
1385  		pte = __ptep_get(ptep);
1386  
1387  		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1388  			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1389  		else
1390  			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1391  
1392  		if (--nr == 0)
1393  			break;
1394  		ptep++;
1395  		addr += PAGE_SIZE;
1396  	}
1397  }
1398  
1399  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1400  #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1401  static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1402  				      unsigned long address, pmd_t *pmdp)
1403  {
1404  	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1405  }
1406  
1407  #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1408  static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1409  		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1410  {
1411  	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1412  	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1413  }
1414  #endif
1415  
1416  /*
1417   * Encode and decode a swap entry:
1418   *	bits 0-1:	present (must be zero)
1419   *	bits 2:		remember PG_anon_exclusive
1420   *	bit  3:		remember uffd-wp state
1421   *	bits 6-10:	swap type
1422   *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1423   *	bits 12-61:	swap offset
1424   */
1425  #define __SWP_TYPE_SHIFT	6
1426  #define __SWP_TYPE_BITS		5
1427  #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1428  #define __SWP_OFFSET_SHIFT	12
1429  #define __SWP_OFFSET_BITS	50
1430  #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1431  
1432  #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1433  #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1434  #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1435  
1436  #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1437  #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1438  
1439  #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1440  #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1441  #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1442  #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1443  
1444  /*
1445   * Ensure that there are not more swap files than can be encoded in the kernel
1446   * PTEs.
1447   */
1448  #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1449  
1450  #ifdef CONFIG_ARM64_MTE
1451  
1452  #define __HAVE_ARCH_PREPARE_TO_SWAP
1453  extern int arch_prepare_to_swap(struct folio *folio);
1454  
1455  #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1456  static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1457  {
1458  	if (system_supports_mte())
1459  		mte_invalidate_tags(type, offset);
1460  }
1461  
arch_swap_invalidate_area(int type)1462  static inline void arch_swap_invalidate_area(int type)
1463  {
1464  	if (system_supports_mte())
1465  		mte_invalidate_tags_area(type);
1466  }
1467  
1468  #define __HAVE_ARCH_SWAP_RESTORE
1469  extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1470  
1471  #endif /* CONFIG_ARM64_MTE */
1472  
1473  /*
1474   * On AArch64, the cache coherency is handled via the __set_ptes() function.
1475   */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1476  static inline void update_mmu_cache_range(struct vm_fault *vmf,
1477  		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1478  		unsigned int nr)
1479  {
1480  	/*
1481  	 * We don't do anything here, so there's a very small chance of
1482  	 * us retaking a user fault which we just fixed up. The alternative
1483  	 * is doing a dsb(ishst), but that penalises the fastpath.
1484  	 */
1485  }
1486  
1487  #define update_mmu_cache(vma, addr, ptep) \
1488  	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1489  #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1490  
1491  #ifdef CONFIG_ARM64_PA_BITS_52
1492  #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1493  #else
1494  #define phys_to_ttbr(addr)	(addr)
1495  #endif
1496  
1497  /*
1498   * On arm64 without hardware Access Flag, copying from user will fail because
1499   * the pte is old and cannot be marked young. So we always end up with zeroed
1500   * page after fork() + CoW for pfn mappings. We don't always have a
1501   * hardware-managed access flag on arm64.
1502   */
1503  #define arch_has_hw_pte_young		cpu_has_hw_af
1504  
1505  /*
1506   * Experimentally, it's cheap to set the access flag in hardware and we
1507   * benefit from prefaulting mappings as 'old' to start with.
1508   */
1509  #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1510  
pud_sect_supported(void)1511  static inline bool pud_sect_supported(void)
1512  {
1513  	return PAGE_SIZE == SZ_4K;
1514  }
1515  
1516  
1517  #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1518  #define ptep_modify_prot_start ptep_modify_prot_start
1519  extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1520  				    unsigned long addr, pte_t *ptep);
1521  
1522  #define ptep_modify_prot_commit ptep_modify_prot_commit
1523  extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1524  				    unsigned long addr, pte_t *ptep,
1525  				    pte_t old_pte, pte_t new_pte);
1526  
1527  #ifdef CONFIG_ARM64_CONTPTE
1528  
1529  /*
1530   * The contpte APIs are used to transparently manage the contiguous bit in ptes
1531   * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1532   * a private implementation detail of the public ptep API (see below).
1533   */
1534  extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1535  				pte_t *ptep, pte_t pte);
1536  extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1537  				pte_t *ptep, pte_t pte);
1538  extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1539  extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1540  extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1541  				pte_t *ptep, pte_t pte, unsigned int nr);
1542  extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1543  				pte_t *ptep, unsigned int nr, int full);
1544  extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1545  				unsigned long addr, pte_t *ptep,
1546  				unsigned int nr, int full);
1547  extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1548  				unsigned long addr, pte_t *ptep);
1549  extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1550  				unsigned long addr, pte_t *ptep);
1551  extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1552  				pte_t *ptep, unsigned int nr);
1553  extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1554  				unsigned long addr, pte_t *ptep,
1555  				pte_t entry, int dirty);
1556  extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1557  				unsigned long addr, pte_t *ptep,
1558  				unsigned int nr, cydp_t flags);
1559  
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1560  static __always_inline void contpte_try_fold(struct mm_struct *mm,
1561  				unsigned long addr, pte_t *ptep, pte_t pte)
1562  {
1563  	/*
1564  	 * Only bother trying if both the virtual and physical addresses are
1565  	 * aligned and correspond to the last entry in a contig range. The core
1566  	 * code mostly modifies ranges from low to high, so this is the likely
1567  	 * the last modification in the contig range, so a good time to fold.
1568  	 * We can't fold special mappings, because there is no associated folio.
1569  	 */
1570  
1571  	const unsigned long contmask = CONT_PTES - 1;
1572  	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1573  
1574  	if (unlikely(valign)) {
1575  		bool palign = (pte_pfn(pte) & contmask) == contmask;
1576  
1577  		if (unlikely(palign &&
1578  		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1579  			__contpte_try_fold(mm, addr, ptep, pte);
1580  	}
1581  }
1582  
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1583  static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1584  				unsigned long addr, pte_t *ptep, pte_t pte)
1585  {
1586  	if (unlikely(pte_valid_cont(pte)))
1587  		__contpte_try_unfold(mm, addr, ptep, pte);
1588  }
1589  
1590  #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1591  static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1592  {
1593  	if (!pte_valid_cont(pte))
1594  		return 1;
1595  
1596  	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1597  }
1598  
1599  /*
1600   * The below functions constitute the public API that arm64 presents to the
1601   * core-mm to manipulate PTE entries within their page tables (or at least this
1602   * is the subset of the API that arm64 needs to implement). These public
1603   * versions will automatically and transparently apply the contiguous bit where
1604   * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1605   * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1606   * private versions, which are prefixed with double underscore. All of these
1607   * APIs except for ptep_get_lockless() are expected to be called with the PTL
1608   * held. Although the contiguous bit is considered private to the
1609   * implementation, it is deliberately allowed to leak through the getters (e.g.
1610   * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1611   * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1612   * its possible a pte will be passed to a setter with the contiguous bit set, so
1613   * we explicitly clear the contiguous bit in those cases to prevent accidentally
1614   * setting it in the pgtable.
1615   */
1616  
1617  #define ptep_get ptep_get
ptep_get(pte_t * ptep)1618  static inline pte_t ptep_get(pte_t *ptep)
1619  {
1620  	pte_t pte = __ptep_get(ptep);
1621  
1622  	if (likely(!pte_valid_cont(pte)))
1623  		return pte;
1624  
1625  	return contpte_ptep_get(ptep, pte);
1626  }
1627  
1628  #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1629  static inline pte_t ptep_get_lockless(pte_t *ptep)
1630  {
1631  	pte_t pte = __ptep_get(ptep);
1632  
1633  	if (likely(!pte_valid_cont(pte)))
1634  		return pte;
1635  
1636  	return contpte_ptep_get_lockless(ptep);
1637  }
1638  
set_pte(pte_t * ptep,pte_t pte)1639  static inline void set_pte(pte_t *ptep, pte_t pte)
1640  {
1641  	/*
1642  	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1643  	 * it requires tlb maintenance). set_pte() is not used in core code, so
1644  	 * this should never even be called. Regardless do our best to service
1645  	 * any call and emit a warning if there is any attempt to set a pte on
1646  	 * top of an existing contig range.
1647  	 */
1648  	pte_t orig_pte = __ptep_get(ptep);
1649  
1650  	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1651  	__set_pte(ptep, pte_mknoncont(pte));
1652  }
1653  
1654  #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1655  static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1656  				pte_t *ptep, pte_t pte, unsigned int nr)
1657  {
1658  	pte = pte_mknoncont(pte);
1659  
1660  	if (likely(nr == 1)) {
1661  		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1662  		__set_ptes(mm, addr, ptep, pte, 1);
1663  		contpte_try_fold(mm, addr, ptep, pte);
1664  	} else {
1665  		contpte_set_ptes(mm, addr, ptep, pte, nr);
1666  	}
1667  }
1668  
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1669  static inline void pte_clear(struct mm_struct *mm,
1670  				unsigned long addr, pte_t *ptep)
1671  {
1672  	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1673  	__pte_clear(mm, addr, ptep);
1674  }
1675  
1676  #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1677  static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1678  				pte_t *ptep, unsigned int nr, int full)
1679  {
1680  	if (likely(nr == 1)) {
1681  		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1682  		__clear_full_ptes(mm, addr, ptep, nr, full);
1683  	} else {
1684  		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1685  	}
1686  }
1687  
1688  #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1689  static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1690  				unsigned long addr, pte_t *ptep,
1691  				unsigned int nr, int full)
1692  {
1693  	pte_t pte;
1694  
1695  	if (likely(nr == 1)) {
1696  		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1697  		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1698  	} else {
1699  		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1700  	}
1701  
1702  	return pte;
1703  }
1704  
1705  #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1706  static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1707  				unsigned long addr, pte_t *ptep)
1708  {
1709  	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1710  	return __ptep_get_and_clear(mm, addr, ptep);
1711  }
1712  
1713  #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1714  static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1715  				unsigned long addr, pte_t *ptep)
1716  {
1717  	pte_t orig_pte = __ptep_get(ptep);
1718  
1719  	if (likely(!pte_valid_cont(orig_pte)))
1720  		return __ptep_test_and_clear_young(vma, addr, ptep);
1721  
1722  	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1723  }
1724  
1725  #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1726  static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1727  				unsigned long addr, pte_t *ptep)
1728  {
1729  	pte_t orig_pte = __ptep_get(ptep);
1730  
1731  	if (likely(!pte_valid_cont(orig_pte)))
1732  		return __ptep_clear_flush_young(vma, addr, ptep);
1733  
1734  	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1735  }
1736  
1737  #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1738  static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1739  				unsigned long addr, pte_t *ptep, unsigned int nr)
1740  {
1741  	if (likely(nr == 1)) {
1742  		/*
1743  		 * Optimization: wrprotect_ptes() can only be called for present
1744  		 * ptes so we only need to check contig bit as condition for
1745  		 * unfold, and we can remove the contig bit from the pte we read
1746  		 * to avoid re-reading. This speeds up fork() which is sensitive
1747  		 * for order-0 folios. Equivalent to contpte_try_unfold().
1748  		 */
1749  		pte_t orig_pte = __ptep_get(ptep);
1750  
1751  		if (unlikely(pte_cont(orig_pte))) {
1752  			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1753  			orig_pte = pte_mknoncont(orig_pte);
1754  		}
1755  		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1756  	} else {
1757  		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1758  	}
1759  }
1760  
1761  #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1762  static inline void ptep_set_wrprotect(struct mm_struct *mm,
1763  				unsigned long addr, pte_t *ptep)
1764  {
1765  	wrprotect_ptes(mm, addr, ptep, 1);
1766  }
1767  
1768  #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1769  static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1770  				unsigned long addr, pte_t *ptep,
1771  				pte_t entry, int dirty)
1772  {
1773  	pte_t orig_pte = __ptep_get(ptep);
1774  
1775  	entry = pte_mknoncont(entry);
1776  
1777  	if (likely(!pte_valid_cont(orig_pte)))
1778  		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1779  
1780  	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1781  }
1782  
1783  #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1784  static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1785  					  unsigned long addr, pte_t *ptep,
1786  					  unsigned int nr, cydp_t flags)
1787  {
1788  	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1789  		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1790  	else
1791  		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1792  }
1793  
1794  #else /* CONFIG_ARM64_CONTPTE */
1795  
1796  #define ptep_get				__ptep_get
1797  #define set_pte					__set_pte
1798  #define set_ptes				__set_ptes
1799  #define pte_clear				__pte_clear
1800  #define clear_full_ptes				__clear_full_ptes
1801  #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1802  #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1803  #define ptep_get_and_clear			__ptep_get_and_clear
1804  #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1805  #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1806  #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1807  #define ptep_clear_flush_young			__ptep_clear_flush_young
1808  #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1809  #define ptep_set_wrprotect			__ptep_set_wrprotect
1810  #define wrprotect_ptes				__wrprotect_ptes
1811  #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1812  #define ptep_set_access_flags			__ptep_set_access_flags
1813  #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1814  
1815  #endif /* CONFIG_ARM64_CONTPTE */
1816  
1817  #endif /* !__ASSEMBLY__ */
1818  
1819  #endif /* __ASM_PGTABLE_H */
1820