1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   * Copyright (C) 2012,2013 - ARM Ltd
4   * Author: Marc Zyngier <marc.zyngier@arm.com>
5   *
6   * Derived from arch/arm/include/asm/kvm_host.h:
7   * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8   * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9   */
10  
11  #ifndef __ARM64_KVM_HOST_H__
12  #define __ARM64_KVM_HOST_H__
13  
14  #include <linux/arm-smccc.h>
15  #include <linux/bitmap.h>
16  #include <linux/types.h>
17  #include <linux/jump_label.h>
18  #include <linux/kvm_types.h>
19  #include <linux/maple_tree.h>
20  #include <linux/percpu.h>
21  #include <linux/psci.h>
22  #include <asm/arch_gicv3.h>
23  #include <asm/barrier.h>
24  #include <asm/cpufeature.h>
25  #include <asm/cputype.h>
26  #include <asm/daifflags.h>
27  #include <asm/fpsimd.h>
28  #include <asm/kvm.h>
29  #include <asm/kvm_asm.h>
30  #include <asm/vncr_mapping.h>
31  
32  #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33  
34  #define KVM_HALT_POLL_NS_DEFAULT 500000
35  
36  #include <kvm/arm_vgic.h>
37  #include <kvm/arm_arch_timer.h>
38  #include <kvm/arm_pmu.h>
39  
40  #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41  
42  #define KVM_VCPU_MAX_FEATURES 7
43  #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44  
45  #define KVM_REQ_SLEEP \
46  	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47  #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
48  #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
49  #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
50  #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
51  #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
52  #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
53  #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
54  #define KVM_REQ_NESTED_S2_UNMAP	KVM_ARCH_REQ(8)
55  
56  #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
57  				     KVM_DIRTY_LOG_INITIALLY_SET)
58  
59  #define KVM_HAVE_MMU_RWLOCK
60  
61  /*
62   * Mode of operation configurable with kvm-arm.mode early param.
63   * See Documentation/admin-guide/kernel-parameters.txt for more information.
64   */
65  enum kvm_mode {
66  	KVM_MODE_DEFAULT,
67  	KVM_MODE_PROTECTED,
68  	KVM_MODE_NV,
69  	KVM_MODE_NONE,
70  };
71  #ifdef CONFIG_KVM
72  enum kvm_mode kvm_get_mode(void);
73  #else
kvm_get_mode(void)74  static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
75  #endif
76  
77  DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78  
79  extern unsigned int __ro_after_init kvm_sve_max_vl;
80  extern unsigned int __ro_after_init kvm_host_sve_max_vl;
81  int __init kvm_arm_init_sve(void);
82  
83  u32 __attribute_const__ kvm_target_cpu(void);
84  void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
85  void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
86  
87  struct kvm_hyp_memcache {
88  	phys_addr_t head;
89  	unsigned long nr_pages;
90  };
91  
push_hyp_memcache(struct kvm_hyp_memcache * mc,phys_addr_t * p,phys_addr_t (* to_pa)(void * virt))92  static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
93  				     phys_addr_t *p,
94  				     phys_addr_t (*to_pa)(void *virt))
95  {
96  	*p = mc->head;
97  	mc->head = to_pa(p);
98  	mc->nr_pages++;
99  }
100  
pop_hyp_memcache(struct kvm_hyp_memcache * mc,void * (* to_va)(phys_addr_t phys))101  static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
102  				     void *(*to_va)(phys_addr_t phys))
103  {
104  	phys_addr_t *p = to_va(mc->head);
105  
106  	if (!mc->nr_pages)
107  		return NULL;
108  
109  	mc->head = *p;
110  	mc->nr_pages--;
111  
112  	return p;
113  }
114  
__topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages,void * (* alloc_fn)(void * arg),phys_addr_t (* to_pa)(void * virt),void * arg)115  static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
116  				       unsigned long min_pages,
117  				       void *(*alloc_fn)(void *arg),
118  				       phys_addr_t (*to_pa)(void *virt),
119  				       void *arg)
120  {
121  	while (mc->nr_pages < min_pages) {
122  		phys_addr_t *p = alloc_fn(arg);
123  
124  		if (!p)
125  			return -ENOMEM;
126  		push_hyp_memcache(mc, p, to_pa);
127  	}
128  
129  	return 0;
130  }
131  
__free_hyp_memcache(struct kvm_hyp_memcache * mc,void (* free_fn)(void * virt,void * arg),void * (* to_va)(phys_addr_t phys),void * arg)132  static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
133  				       void (*free_fn)(void *virt, void *arg),
134  				       void *(*to_va)(phys_addr_t phys),
135  				       void *arg)
136  {
137  	while (mc->nr_pages)
138  		free_fn(pop_hyp_memcache(mc, to_va), arg);
139  }
140  
141  void free_hyp_memcache(struct kvm_hyp_memcache *mc);
142  int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
143  
144  struct kvm_vmid {
145  	atomic64_t id;
146  };
147  
148  struct kvm_s2_mmu {
149  	struct kvm_vmid vmid;
150  
151  	/*
152  	 * stage2 entry level table
153  	 *
154  	 * Two kvm_s2_mmu structures in the same VM can point to the same
155  	 * pgd here.  This happens when running a guest using a
156  	 * translation regime that isn't affected by its own stage-2
157  	 * translation, such as a non-VHE hypervisor running at vEL2, or
158  	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
159  	 * canonical stage-2 page tables.
160  	 */
161  	phys_addr_t	pgd_phys;
162  	struct kvm_pgtable *pgt;
163  
164  	/*
165  	 * VTCR value used on the host. For a non-NV guest (or a NV
166  	 * guest that runs in a context where its own S2 doesn't
167  	 * apply), its T0SZ value reflects that of the IPA size.
168  	 *
169  	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
170  	 * the guest.
171  	 */
172  	u64	vtcr;
173  
174  	/* The last vcpu id that ran on each physical CPU */
175  	int __percpu *last_vcpu_ran;
176  
177  #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
178  	/*
179  	 * Memory cache used to split
180  	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
181  	 * is used to allocate stage2 page tables while splitting huge
182  	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
183  	 * influences both the capacity of the split page cache, and
184  	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
185  	 * too high.
186  	 *
187  	 * Protected by kvm->slots_lock.
188  	 */
189  	struct kvm_mmu_memory_cache split_page_cache;
190  	uint64_t split_page_chunk_size;
191  
192  	struct kvm_arch *arch;
193  
194  	/*
195  	 * For a shadow stage-2 MMU, the virtual vttbr used by the
196  	 * host to parse the guest S2.
197  	 * This either contains:
198  	 * - the virtual VTTBR programmed by the guest hypervisor with
199           *   CnP cleared
200  	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
201  	 *
202  	 * We also cache the full VTCR which gets used for TLB invalidation,
203  	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
204  	 * to be cached in a TLB" to the letter.
205  	 */
206  	u64	tlb_vttbr;
207  	u64	tlb_vtcr;
208  
209  	/*
210  	 * true when this represents a nested context where virtual
211  	 * HCR_EL2.VM == 1
212  	 */
213  	bool	nested_stage2_enabled;
214  
215  	/*
216  	 * true when this MMU needs to be unmapped before being used for a new
217  	 * purpose.
218  	 */
219  	bool	pending_unmap;
220  
221  	/*
222  	 *  0: Nobody is currently using this, check vttbr for validity
223  	 * >0: Somebody is actively using this.
224  	 */
225  	atomic_t refcnt;
226  };
227  
228  struct kvm_arch_memory_slot {
229  };
230  
231  /**
232   * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
233   *
234   * @std_bmap: Bitmap of standard secure service calls
235   * @std_hyp_bmap: Bitmap of standard hypervisor service calls
236   * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
237   */
238  struct kvm_smccc_features {
239  	unsigned long std_bmap;
240  	unsigned long std_hyp_bmap;
241  	unsigned long vendor_hyp_bmap;
242  };
243  
244  typedef unsigned int pkvm_handle_t;
245  
246  struct kvm_protected_vm {
247  	pkvm_handle_t handle;
248  	struct kvm_hyp_memcache teardown_mc;
249  	bool enabled;
250  };
251  
252  struct kvm_mpidr_data {
253  	u64			mpidr_mask;
254  	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
255  };
256  
kvm_mpidr_index(struct kvm_mpidr_data * data,u64 mpidr)257  static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
258  {
259  	unsigned long index = 0, mask = data->mpidr_mask;
260  	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
261  
262  	bitmap_gather(&index, &aff, &mask, fls(mask));
263  
264  	return index;
265  }
266  
267  struct kvm_sysreg_masks;
268  
269  enum fgt_group_id {
270  	__NO_FGT_GROUP__,
271  	HFGxTR_GROUP,
272  	HDFGRTR_GROUP,
273  	HDFGWTR_GROUP = HDFGRTR_GROUP,
274  	HFGITR_GROUP,
275  	HAFGRTR_GROUP,
276  
277  	/* Must be last */
278  	__NR_FGT_GROUP_IDS__
279  };
280  
281  struct kvm_arch {
282  	struct kvm_s2_mmu mmu;
283  
284  	/*
285  	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
286  	 * architecture. We track them globally, as we present the
287  	 * same feature-set to all vcpus.
288  	 *
289  	 * Index 0 is currently spare.
290  	 */
291  	u64 fgu[__NR_FGT_GROUP_IDS__];
292  
293  	/*
294  	 * Stage 2 paging state for VMs with nested S2 using a virtual
295  	 * VMID.
296  	 */
297  	struct kvm_s2_mmu *nested_mmus;
298  	size_t nested_mmus_size;
299  	int nested_mmus_next;
300  
301  	/* Interrupt controller */
302  	struct vgic_dist	vgic;
303  
304  	/* Timers */
305  	struct arch_timer_vm_data timer_data;
306  
307  	/* Mandated version of PSCI */
308  	u32 psci_version;
309  
310  	/* Protects VM-scoped configuration data */
311  	struct mutex config_lock;
312  
313  	/*
314  	 * If we encounter a data abort without valid instruction syndrome
315  	 * information, report this to user space.  User space can (and
316  	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
317  	 * supported.
318  	 */
319  #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
320  	/* Memory Tagging Extension enabled for the guest */
321  #define KVM_ARCH_FLAG_MTE_ENABLED			1
322  	/* At least one vCPU has ran in the VM */
323  #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
324  	/* The vCPU feature set for the VM is configured */
325  #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
326  	/* PSCI SYSTEM_SUSPEND enabled for the guest */
327  #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
328  	/* VM counter offset */
329  #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
330  	/* Timer PPIs made immutable */
331  #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
332  	/* Initial ID reg values loaded */
333  #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
334  	/* Fine-Grained UNDEF initialised */
335  #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
336  	unsigned long flags;
337  
338  	/* VM-wide vCPU feature set */
339  	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
340  
341  	/* MPIDR to vcpu index mapping, optional */
342  	struct kvm_mpidr_data *mpidr_data;
343  
344  	/*
345  	 * VM-wide PMU filter, implemented as a bitmap and big enough for
346  	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
347  	 */
348  	unsigned long *pmu_filter;
349  	struct arm_pmu *arm_pmu;
350  
351  	cpumask_var_t supported_cpus;
352  
353  	/* PMCR_EL0.N value for the guest */
354  	u8 pmcr_n;
355  
356  	/* Iterator for idreg debugfs */
357  	u8	idreg_debugfs_iter;
358  
359  	/* Hypercall features firmware registers' descriptor */
360  	struct kvm_smccc_features smccc_feat;
361  	struct maple_tree smccc_filter;
362  
363  	/*
364  	 * Emulated CPU ID registers per VM
365  	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
366  	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
367  	 *
368  	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
369  	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
370  	 */
371  #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
372  #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
373  	u64 id_regs[KVM_ARM_ID_REG_NUM];
374  
375  	u64 ctr_el0;
376  
377  	/* Masks for VNCR-baked sysregs */
378  	struct kvm_sysreg_masks	*sysreg_masks;
379  
380  	/*
381  	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
382  	 * the associated pKVM instance in the hypervisor.
383  	 */
384  	struct kvm_protected_vm pkvm;
385  };
386  
387  struct kvm_vcpu_fault_info {
388  	u64 esr_el2;		/* Hyp Syndrom Register */
389  	u64 far_el2;		/* Hyp Fault Address Register */
390  	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
391  	u64 disr_el1;		/* Deferred [SError] Status Register */
392  };
393  
394  /*
395   * VNCR() just places the VNCR_capable registers in the enum after
396   * __VNCR_START__, and the value (after correction) to be an 8-byte offset
397   * from the VNCR base. As we don't require the enum to be otherwise ordered,
398   * we need the terrible hack below to ensure that we correctly size the
399   * sys_regs array, no matter what.
400   *
401   * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
402   * treasure trove of bit hacks:
403   * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
404   */
405  #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
406  #define VNCR(r)						\
407  	__before_##r,					\
408  	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
409  	__after_##r = __MAX__(__before_##r - 1, r)
410  
411  enum vcpu_sysreg {
412  	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
413  	MPIDR_EL1,	/* MultiProcessor Affinity Register */
414  	CLIDR_EL1,	/* Cache Level ID Register */
415  	CSSELR_EL1,	/* Cache Size Selection Register */
416  	TPIDR_EL0,	/* Thread ID, User R/W */
417  	TPIDRRO_EL0,	/* Thread ID, User R/O */
418  	TPIDR_EL1,	/* Thread ID, Privileged */
419  	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
420  	PAR_EL1,	/* Physical Address Register */
421  	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
422  	OSLSR_EL1,	/* OS Lock Status Register */
423  	DISR_EL1,	/* Deferred Interrupt Status Register */
424  
425  	/* Performance Monitors Registers */
426  	PMCR_EL0,	/* Control Register */
427  	PMSELR_EL0,	/* Event Counter Selection Register */
428  	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
429  	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
430  	PMCCNTR_EL0,	/* Cycle Counter Register */
431  	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
432  	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
433  	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
434  	PMCNTENSET_EL0,	/* Count Enable Set Register */
435  	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
436  	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
437  	PMUSERENR_EL0,	/* User Enable Register */
438  
439  	/* Pointer Authentication Registers in a strict increasing order. */
440  	APIAKEYLO_EL1,
441  	APIAKEYHI_EL1,
442  	APIBKEYLO_EL1,
443  	APIBKEYHI_EL1,
444  	APDAKEYLO_EL1,
445  	APDAKEYHI_EL1,
446  	APDBKEYLO_EL1,
447  	APDBKEYHI_EL1,
448  	APGAKEYLO_EL1,
449  	APGAKEYHI_EL1,
450  
451  	/* Memory Tagging Extension registers */
452  	RGSR_EL1,	/* Random Allocation Tag Seed Register */
453  	GCR_EL1,	/* Tag Control Register */
454  	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
455  
456  	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
457  
458  	/* FP/SIMD/SVE */
459  	SVCR,
460  	FPMR,
461  
462  	/* 32bit specific registers. */
463  	DACR32_EL2,	/* Domain Access Control Register */
464  	IFSR32_EL2,	/* Instruction Fault Status Register */
465  	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
466  	DBGVCR32_EL2,	/* Debug Vector Catch Register */
467  
468  	/* EL2 registers */
469  	SCTLR_EL2,	/* System Control Register (EL2) */
470  	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
471  	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
472  	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
473  	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
474  	ZCR_EL2,	/* SVE Control Register (EL2) */
475  	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
476  	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
477  	TCR_EL2,	/* Translation Control Register (EL2) */
478  	SPSR_EL2,	/* EL2 saved program status register */
479  	ELR_EL2,	/* EL2 exception link register */
480  	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
481  	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
482  	ESR_EL2,	/* Exception Syndrome Register (EL2) */
483  	FAR_EL2,	/* Fault Address Register (EL2) */
484  	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
485  	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
486  	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
487  	VBAR_EL2,	/* Vector Base Address Register (EL2) */
488  	RVBAR_EL2,	/* Reset Vector Base Address Register */
489  	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
490  	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
491  	SP_EL2,		/* EL2 Stack Pointer */
492  	CNTHP_CTL_EL2,
493  	CNTHP_CVAL_EL2,
494  	CNTHV_CTL_EL2,
495  	CNTHV_CVAL_EL2,
496  
497  	__VNCR_START__,	/* Any VNCR-capable reg goes after this point */
498  
499  	VNCR(SCTLR_EL1),/* System Control Register */
500  	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
501  	VNCR(CPACR_EL1),/* Coprocessor Access Control */
502  	VNCR(ZCR_EL1),	/* SVE Control */
503  	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
504  	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
505  	VNCR(TCR_EL1),	/* Translation Control Register */
506  	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
507  	VNCR(ESR_EL1),	/* Exception Syndrome Register */
508  	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
509  	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
510  	VNCR(FAR_EL1),	/* Fault Address Register */
511  	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
512  	VNCR(VBAR_EL1),	/* Vector Base Address Register */
513  	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
514  	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
515  	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
516  	VNCR(ELR_EL1),
517  	VNCR(SP_EL1),
518  	VNCR(SPSR_EL1),
519  	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
520  	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
521  	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
522  	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
523  	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
524  	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
525  	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
526  	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
527  	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
528  
529  	/* Permission Indirection Extension registers */
530  	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
531  	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
532  
533  	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
534  
535  	VNCR(HFGRTR_EL2),
536  	VNCR(HFGWTR_EL2),
537  	VNCR(HFGITR_EL2),
538  	VNCR(HDFGRTR_EL2),
539  	VNCR(HDFGWTR_EL2),
540  	VNCR(HAFGRTR_EL2),
541  
542  	VNCR(CNTVOFF_EL2),
543  	VNCR(CNTV_CVAL_EL0),
544  	VNCR(CNTV_CTL_EL0),
545  	VNCR(CNTP_CVAL_EL0),
546  	VNCR(CNTP_CTL_EL0),
547  
548  	VNCR(ICH_HCR_EL2),
549  
550  	NR_SYS_REGS	/* Nothing after this line! */
551  };
552  
553  struct kvm_sysreg_masks {
554  	struct {
555  		u64	res0;
556  		u64	res1;
557  	} mask[NR_SYS_REGS - __VNCR_START__];
558  };
559  
560  struct kvm_cpu_context {
561  	struct user_pt_regs regs;	/* sp = sp_el0 */
562  
563  	u64	spsr_abt;
564  	u64	spsr_und;
565  	u64	spsr_irq;
566  	u64	spsr_fiq;
567  
568  	struct user_fpsimd_state fp_regs;
569  
570  	u64 sys_regs[NR_SYS_REGS];
571  
572  	struct kvm_vcpu *__hyp_running_vcpu;
573  
574  	/* This pointer has to be 4kB aligned. */
575  	u64 *vncr_array;
576  };
577  
578  struct cpu_sve_state {
579  	__u64 zcr_el1;
580  
581  	/*
582  	 * Ordering is important since __sve_save_state/__sve_restore_state
583  	 * relies on it.
584  	 */
585  	__u32 fpsr;
586  	__u32 fpcr;
587  
588  	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
589  	__u8 sve_regs[];
590  };
591  
592  /*
593   * This structure is instantiated on a per-CPU basis, and contains
594   * data that is:
595   *
596   * - tied to a single physical CPU, and
597   * - either have a lifetime that does not extend past vcpu_put()
598   * - or is an invariant for the lifetime of the system
599   *
600   * Use host_data_ptr(field) as a way to access a pointer to such a
601   * field.
602   */
603  struct kvm_host_data {
604  	struct kvm_cpu_context host_ctxt;
605  
606  	/*
607  	 * All pointers in this union are hyp VA.
608  	 * sve_state is only used in pKVM and if system_supports_sve().
609  	 */
610  	union {
611  		struct user_fpsimd_state *fpsimd_state;
612  		struct cpu_sve_state *sve_state;
613  	};
614  
615  	union {
616  		/* HYP VA pointer to the host storage for FPMR */
617  		u64	*fpmr_ptr;
618  		/*
619  		 * Used by pKVM only, as it needs to provide storage
620  		 * for the host
621  		 */
622  		u64	fpmr;
623  	};
624  
625  	/* Ownership of the FP regs */
626  	enum {
627  		FP_STATE_FREE,
628  		FP_STATE_HOST_OWNED,
629  		FP_STATE_GUEST_OWNED,
630  	} fp_owner;
631  
632  	/*
633  	 * host_debug_state contains the host registers which are
634  	 * saved and restored during world switches.
635  	 */
636  	 struct {
637  		/* {Break,watch}point registers */
638  		struct kvm_guest_debug_arch regs;
639  		/* Statistical profiling extension */
640  		u64 pmscr_el1;
641  		/* Self-hosted trace */
642  		u64 trfcr_el1;
643  		/* Values of trap registers for the host before guest entry. */
644  		u64 mdcr_el2;
645  	} host_debug_state;
646  };
647  
648  struct kvm_host_psci_config {
649  	/* PSCI version used by host. */
650  	u32 version;
651  	u32 smccc_version;
652  
653  	/* Function IDs used by host if version is v0.1. */
654  	struct psci_0_1_function_ids function_ids_0_1;
655  
656  	bool psci_0_1_cpu_suspend_implemented;
657  	bool psci_0_1_cpu_on_implemented;
658  	bool psci_0_1_cpu_off_implemented;
659  	bool psci_0_1_migrate_implemented;
660  };
661  
662  extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
663  #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
664  
665  extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
666  #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
667  
668  extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
669  #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
670  
671  struct vcpu_reset_state {
672  	unsigned long	pc;
673  	unsigned long	r0;
674  	bool		be;
675  	bool		reset;
676  };
677  
678  struct kvm_vcpu_arch {
679  	struct kvm_cpu_context ctxt;
680  
681  	/*
682  	 * Guest floating point state
683  	 *
684  	 * The architecture has two main floating point extensions,
685  	 * the original FPSIMD and SVE.  These have overlapping
686  	 * register views, with the FPSIMD V registers occupying the
687  	 * low 128 bits of the SVE Z registers.  When the core
688  	 * floating point code saves the register state of a task it
689  	 * records which view it saved in fp_type.
690  	 */
691  	void *sve_state;
692  	enum fp_type fp_type;
693  	unsigned int sve_max_vl;
694  
695  	/* Stage 2 paging state used by the hardware on next switch */
696  	struct kvm_s2_mmu *hw_mmu;
697  
698  	/* Values of trap registers for the guest. */
699  	u64 hcr_el2;
700  	u64 hcrx_el2;
701  	u64 mdcr_el2;
702  	u64 cptr_el2;
703  
704  	/* Exception Information */
705  	struct kvm_vcpu_fault_info fault;
706  
707  	/* Configuration flags, set once and for all before the vcpu can run */
708  	u8 cflags;
709  
710  	/* Input flags to the hypervisor code, potentially cleared after use */
711  	u8 iflags;
712  
713  	/* State flags for kernel bookkeeping, unused by the hypervisor code */
714  	u8 sflags;
715  
716  	/*
717  	 * Don't run the guest (internal implementation need).
718  	 *
719  	 * Contrary to the flags above, this is set/cleared outside of
720  	 * a vcpu context, and thus cannot be mixed with the flags
721  	 * themselves (or the flag accesses need to be made atomic).
722  	 */
723  	bool pause;
724  
725  	/*
726  	 * We maintain more than a single set of debug registers to support
727  	 * debugging the guest from the host and to maintain separate host and
728  	 * guest state during world switches. vcpu_debug_state are the debug
729  	 * registers of the vcpu as the guest sees them.
730  	 *
731  	 * external_debug_state contains the debug values we want to debug the
732  	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
733  	 *
734  	 * debug_ptr points to the set of debug registers that should be loaded
735  	 * onto the hardware when running the guest.
736  	 */
737  	struct kvm_guest_debug_arch *debug_ptr;
738  	struct kvm_guest_debug_arch vcpu_debug_state;
739  	struct kvm_guest_debug_arch external_debug_state;
740  
741  	/* VGIC state */
742  	struct vgic_cpu vgic_cpu;
743  	struct arch_timer_cpu timer_cpu;
744  	struct kvm_pmu pmu;
745  
746  	/*
747  	 * Guest registers we preserve during guest debugging.
748  	 *
749  	 * These shadow registers are updated by the kvm_handle_sys_reg
750  	 * trap handler if the guest accesses or updates them while we
751  	 * are using guest debug.
752  	 */
753  	struct {
754  		u32	mdscr_el1;
755  		bool	pstate_ss;
756  	} guest_debug_preserved;
757  
758  	/* vcpu power state */
759  	struct kvm_mp_state mp_state;
760  	spinlock_t mp_state_lock;
761  
762  	/* Cache some mmu pages needed inside spinlock regions */
763  	struct kvm_mmu_memory_cache mmu_page_cache;
764  
765  	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
766  	u64 vsesr_el2;
767  
768  	/* Additional reset state */
769  	struct vcpu_reset_state	reset_state;
770  
771  	/* Guest PV state */
772  	struct {
773  		u64 last_steal;
774  		gpa_t base;
775  	} steal;
776  
777  	/* Per-vcpu CCSIDR override or NULL */
778  	u32 *ccsidr;
779  };
780  
781  /*
782   * Each 'flag' is composed of a comma-separated triplet:
783   *
784   * - the flag-set it belongs to in the vcpu->arch structure
785   * - the value for that flag
786   * - the mask for that flag
787   *
788   *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
789   * unpack_vcpu_flag() extract the flag value from the triplet for
790   * direct use outside of the flag accessors.
791   */
792  #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
793  
794  #define __unpack_flag(_set, _f, _m)	_f
795  #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
796  
797  #define __build_check_flag(v, flagset, f, m)			\
798  	do {							\
799  		typeof(v->arch.flagset) *_fset;			\
800  								\
801  		/* Check that the flags fit in the mask */	\
802  		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
803  		/* Check that the flags fit in the type */	\
804  		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
805  	} while (0)
806  
807  #define __vcpu_get_flag(v, flagset, f, m)			\
808  	({							\
809  		__build_check_flag(v, flagset, f, m);		\
810  								\
811  		READ_ONCE(v->arch.flagset) & (m);		\
812  	})
813  
814  /*
815   * Note that the set/clear accessors must be preempt-safe in order to
816   * avoid nesting them with load/put which also manipulate flags...
817   */
818  #ifdef __KVM_NVHE_HYPERVISOR__
819  /* the nVHE hypervisor is always non-preemptible */
820  #define __vcpu_flags_preempt_disable()
821  #define __vcpu_flags_preempt_enable()
822  #else
823  #define __vcpu_flags_preempt_disable()	preempt_disable()
824  #define __vcpu_flags_preempt_enable()	preempt_enable()
825  #endif
826  
827  #define __vcpu_set_flag(v, flagset, f, m)			\
828  	do {							\
829  		typeof(v->arch.flagset) *fset;			\
830  								\
831  		__build_check_flag(v, flagset, f, m);		\
832  								\
833  		fset = &v->arch.flagset;			\
834  		__vcpu_flags_preempt_disable();			\
835  		if (HWEIGHT(m) > 1)				\
836  			*fset &= ~(m);				\
837  		*fset |= (f);					\
838  		__vcpu_flags_preempt_enable();			\
839  	} while (0)
840  
841  #define __vcpu_clear_flag(v, flagset, f, m)			\
842  	do {							\
843  		typeof(v->arch.flagset) *fset;			\
844  								\
845  		__build_check_flag(v, flagset, f, m);		\
846  								\
847  		fset = &v->arch.flagset;			\
848  		__vcpu_flags_preempt_disable();			\
849  		*fset &= ~(m);					\
850  		__vcpu_flags_preempt_enable();			\
851  	} while (0)
852  
853  #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
854  #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
855  #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
856  
857  /* SVE exposed to guest */
858  #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
859  /* SVE config completed */
860  #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
861  /* PTRAUTH exposed to guest */
862  #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
863  /* KVM_ARM_VCPU_INIT completed */
864  #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
865  
866  /* Exception pending */
867  #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
868  /*
869   * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
870   * be set together with an exception...
871   */
872  #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
873  /* Target EL/MODE (not a single flag, but let's abuse the macro) */
874  #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
875  
876  /* Helpers to encode exceptions with minimum fuss */
877  #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
878  #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
879  #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
880  
881  /*
882   * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
883   * values:
884   *
885   * For AArch32 EL1:
886   */
887  #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
888  #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
889  #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
890  /* For AArch64: */
891  #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
892  #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
893  #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
894  #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
895  /* For AArch64 with NV: */
896  #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
897  #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
898  #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
899  #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
900  /* Guest debug is live */
901  #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
902  /* Save SPE context if active  */
903  #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
904  /* Save TRBE context if active  */
905  #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
906  
907  /* SVE enabled for host EL0 */
908  #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
909  /* SME enabled for EL0 */
910  #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
911  /* Physical CPU not in supported_cpus */
912  #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
913  /* WFIT instruction trapped */
914  #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
915  /* vcpu system registers loaded on physical CPU */
916  #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
917  /* Software step state is Active-pending */
918  #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
919  /* PMUSERENR for the guest EL0 is on physical CPU */
920  #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
921  /* WFI instruction trapped */
922  #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
923  
924  
925  /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
926  #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
927  			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
928  
929  #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
930  
931  #define vcpu_sve_zcr_elx(vcpu)						\
932  	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
933  
934  #define vcpu_sve_state_size(vcpu) ({					\
935  	size_t __size_ret;						\
936  	unsigned int __vcpu_vq;						\
937  									\
938  	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
939  		__size_ret = 0;						\
940  	} else {							\
941  		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
942  		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
943  	}								\
944  									\
945  	__size_ret;							\
946  })
947  
948  #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
949  				 KVM_GUESTDBG_USE_SW_BP | \
950  				 KVM_GUESTDBG_USE_HW | \
951  				 KVM_GUESTDBG_SINGLESTEP)
952  
953  #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
954  			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
955  
956  #ifdef CONFIG_ARM64_PTR_AUTH
957  #define vcpu_has_ptrauth(vcpu)						\
958  	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
959  	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
960  	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
961  #else
962  #define vcpu_has_ptrauth(vcpu)		false
963  #endif
964  
965  #define vcpu_on_unsupported_cpu(vcpu)					\
966  	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
967  
968  #define vcpu_set_on_unsupported_cpu(vcpu)				\
969  	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
970  
971  #define vcpu_clear_on_unsupported_cpu(vcpu)				\
972  	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
973  
974  #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
975  
976  /*
977   * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
978   * memory backed version of a register, and not the one most recently
979   * accessed by a running VCPU.  For example, for userspace access or
980   * for system registers that are never context switched, but only
981   * emulated.
982   *
983   * Don't bother with VNCR-based accesses in the nVHE code, it has no
984   * business dealing with NV.
985   */
___ctxt_sys_reg(const struct kvm_cpu_context * ctxt,int r)986  static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
987  {
988  #if !defined (__KVM_NVHE_HYPERVISOR__)
989  	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
990  		     r >= __VNCR_START__ && ctxt->vncr_array))
991  		return &ctxt->vncr_array[r - __VNCR_START__];
992  #endif
993  	return (u64 *)&ctxt->sys_regs[r];
994  }
995  
996  #define __ctxt_sys_reg(c,r)						\
997  	({								\
998  		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
999  			     (r) >= NR_SYS_REGS);			\
1000  		___ctxt_sys_reg(c, r);					\
1001  	})
1002  
1003  #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1004  
1005  u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *, enum vcpu_sysreg);
1006  #define __vcpu_sys_reg(v,r)						\
1007  	(*({								\
1008  		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1009  		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
1010  		if (vcpu_has_nv((v)) && (r) >= __VNCR_START__)		\
1011  			*__r = kvm_vcpu_sanitise_vncr_reg((v), (r));	\
1012  		__r;							\
1013  	}))
1014  
1015  u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1016  void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1017  
__vcpu_read_sys_reg_from_cpu(int reg,u64 * val)1018  static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1019  {
1020  	/*
1021  	 * *** VHE ONLY ***
1022  	 *
1023  	 * System registers listed in the switch are not saved on every
1024  	 * exit from the guest but are only saved on vcpu_put.
1025  	 *
1026  	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1027  	 * should never be listed below, because the guest cannot modify its
1028  	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1029  	 * thread when emulating cross-VCPU communication.
1030  	 */
1031  	if (!has_vhe())
1032  		return false;
1033  
1034  	switch (reg) {
1035  	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
1036  	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
1037  	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
1038  	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
1039  	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
1040  	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
1041  	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
1042  	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
1043  	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
1044  	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
1045  	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
1046  	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1047  	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
1048  	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
1049  	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
1050  	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
1051  	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
1052  	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
1053  	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
1054  	case PAR_EL1:		*val = read_sysreg_par();		break;
1055  	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
1056  	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
1057  	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
1058  	case ZCR_EL1:		*val = read_sysreg_s(SYS_ZCR_EL12);	break;
1059  	default:		return false;
1060  	}
1061  
1062  	return true;
1063  }
1064  
__vcpu_write_sys_reg_to_cpu(u64 val,int reg)1065  static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1066  {
1067  	/*
1068  	 * *** VHE ONLY ***
1069  	 *
1070  	 * System registers listed in the switch are not restored on every
1071  	 * entry to the guest but are only restored on vcpu_load.
1072  	 *
1073  	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1074  	 * should never be listed below, because the MPIDR should only be set
1075  	 * once, before running the VCPU, and never changed later.
1076  	 */
1077  	if (!has_vhe())
1078  		return false;
1079  
1080  	switch (reg) {
1081  	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
1082  	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
1083  	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
1084  	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
1085  	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
1086  	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
1087  	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
1088  	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
1089  	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
1090  	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
1091  	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
1092  	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1093  	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
1094  	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1095  	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1096  	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1097  	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1098  	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1099  	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1100  	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1101  	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1102  	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1103  	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1104  	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
1105  	default:		return false;
1106  	}
1107  
1108  	return true;
1109  }
1110  
1111  struct kvm_vm_stat {
1112  	struct kvm_vm_stat_generic generic;
1113  };
1114  
1115  struct kvm_vcpu_stat {
1116  	struct kvm_vcpu_stat_generic generic;
1117  	u64 hvc_exit_stat;
1118  	u64 wfe_exit_stat;
1119  	u64 wfi_exit_stat;
1120  	u64 mmio_exit_user;
1121  	u64 mmio_exit_kernel;
1122  	u64 signal_exits;
1123  	u64 exits;
1124  };
1125  
1126  unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1127  int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1128  int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1129  int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1130  
1131  unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1132  int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1133  
1134  int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1135  			      struct kvm_vcpu_events *events);
1136  
1137  int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1138  			      struct kvm_vcpu_events *events);
1139  
1140  void kvm_arm_halt_guest(struct kvm *kvm);
1141  void kvm_arm_resume_guest(struct kvm *kvm);
1142  
1143  #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
1144  
1145  #ifndef __KVM_NVHE_HYPERVISOR__
1146  #define kvm_call_hyp_nvhe(f, ...)						\
1147  	({								\
1148  		struct arm_smccc_res res;				\
1149  									\
1150  		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1151  				  ##__VA_ARGS__, &res);			\
1152  		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1153  									\
1154  		res.a1;							\
1155  	})
1156  
1157  /*
1158   * The couple of isb() below are there to guarantee the same behaviour
1159   * on VHE as on !VHE, where the eret to EL1 acts as a context
1160   * synchronization event.
1161   */
1162  #define kvm_call_hyp(f, ...)						\
1163  	do {								\
1164  		if (has_vhe()) {					\
1165  			f(__VA_ARGS__);					\
1166  			isb();						\
1167  		} else {						\
1168  			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1169  		}							\
1170  	} while(0)
1171  
1172  #define kvm_call_hyp_ret(f, ...)					\
1173  	({								\
1174  		typeof(f(__VA_ARGS__)) ret;				\
1175  									\
1176  		if (has_vhe()) {					\
1177  			ret = f(__VA_ARGS__);				\
1178  			isb();						\
1179  		} else {						\
1180  			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1181  		}							\
1182  									\
1183  		ret;							\
1184  	})
1185  #else /* __KVM_NVHE_HYPERVISOR__ */
1186  #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1187  #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1188  #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1189  #endif /* __KVM_NVHE_HYPERVISOR__ */
1190  
1191  int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1192  void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1193  
1194  int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1195  int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1196  int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1197  int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1198  int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1199  int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1200  int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1201  
1202  void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1203  void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1204  
1205  int __init kvm_sys_reg_table_init(void);
1206  struct sys_reg_desc;
1207  int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1208  				  unsigned int idx);
1209  int __init populate_nv_trap_config(void);
1210  
1211  bool lock_all_vcpus(struct kvm *kvm);
1212  void unlock_all_vcpus(struct kvm *kvm);
1213  
1214  void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1215  
1216  /* MMIO helpers */
1217  void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1218  unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1219  
1220  int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1221  int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1222  
1223  /*
1224   * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1225   * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1226   * loaded is considered to be "in guest".
1227   */
kvm_arch_pmi_in_guest(struct kvm_vcpu * vcpu)1228  static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1229  {
1230  	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1231  }
1232  
1233  long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1234  gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1235  void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1236  
1237  bool kvm_arm_pvtime_supported(void);
1238  int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1239  			    struct kvm_device_attr *attr);
1240  int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1241  			    struct kvm_device_attr *attr);
1242  int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1243  			    struct kvm_device_attr *attr);
1244  
1245  extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1246  int __init kvm_arm_vmid_alloc_init(void);
1247  void __init kvm_arm_vmid_alloc_free(void);
1248  bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1249  void kvm_arm_vmid_clear_active(void);
1250  
kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch * vcpu_arch)1251  static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1252  {
1253  	vcpu_arch->steal.base = INVALID_GPA;
1254  }
1255  
kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch * vcpu_arch)1256  static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1257  {
1258  	return (vcpu_arch->steal.base != INVALID_GPA);
1259  }
1260  
1261  void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1262  
1263  struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1264  
1265  DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1266  
1267  /*
1268   * How we access per-CPU host data depends on the where we access it from,
1269   * and the mode we're in:
1270   *
1271   * - VHE and nVHE hypervisor bits use their locally defined instance
1272   *
1273   * - the rest of the kernel use either the VHE or nVHE one, depending on
1274   *   the mode we're running in.
1275   *
1276   *   Unless we're in protected mode, fully deprivileged, and the nVHE
1277   *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1278   *   In this case, the EL1 code uses the *VHE* data as its private state
1279   *   (which makes sense in a way as there shouldn't be any shared state
1280   *   between the host and the hypervisor).
1281   *
1282   * Yes, this is all totally trivial. Shoot me now.
1283   */
1284  #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1285  #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1286  #else
1287  #define host_data_ptr(f)						\
1288  	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1289  	 &this_cpu_ptr(&kvm_host_data)->f :				\
1290  	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1291  #endif
1292  
1293  /* Check whether the FP regs are owned by the guest */
guest_owns_fp_regs(void)1294  static inline bool guest_owns_fp_regs(void)
1295  {
1296  	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1297  }
1298  
1299  /* Check whether the FP regs are owned by the host */
host_owns_fp_regs(void)1300  static inline bool host_owns_fp_regs(void)
1301  {
1302  	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1303  }
1304  
kvm_init_host_cpu_context(struct kvm_cpu_context * cpu_ctxt)1305  static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1306  {
1307  	/* The host's MPIDR is immutable, so let's set it up at boot time */
1308  	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1309  }
1310  
kvm_system_needs_idmapped_vectors(void)1311  static inline bool kvm_system_needs_idmapped_vectors(void)
1312  {
1313  	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1314  }
1315  
kvm_arch_sync_events(struct kvm * kvm)1316  static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1317  
1318  void kvm_arm_init_debug(void);
1319  void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1320  void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1321  void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1322  void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1323  
1324  #define kvm_vcpu_os_lock_enabled(vcpu)		\
1325  	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1326  
1327  int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1328  			       struct kvm_device_attr *attr);
1329  int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1330  			       struct kvm_device_attr *attr);
1331  int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1332  			       struct kvm_device_attr *attr);
1333  
1334  int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1335  			       struct kvm_arm_copy_mte_tags *copy_tags);
1336  int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1337  				    struct kvm_arm_counter_offset *offset);
1338  int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1339  					struct reg_mask_range *range);
1340  
1341  /* Guest/host FPSIMD coordination helpers */
1342  int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1343  void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1344  void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1345  void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1346  void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1347  
kvm_pmu_counter_deferred(struct perf_event_attr * attr)1348  static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1349  {
1350  	return (!has_vhe() && attr->exclude_host);
1351  }
1352  
1353  /* Flags for host debug state */
1354  void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1355  void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1356  
1357  #ifdef CONFIG_KVM
1358  void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1359  void kvm_clr_pmu_events(u64 clr);
1360  bool kvm_set_pmuserenr(u64 val);
1361  #else
kvm_set_pmu_events(u64 set,struct perf_event_attr * attr)1362  static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
kvm_clr_pmu_events(u64 clr)1363  static inline void kvm_clr_pmu_events(u64 clr) {}
kvm_set_pmuserenr(u64 val)1364  static inline bool kvm_set_pmuserenr(u64 val)
1365  {
1366  	return false;
1367  }
1368  #endif
1369  
1370  void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1371  void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1372  
1373  int __init kvm_set_ipa_limit(void);
1374  u32 kvm_get_pa_bits(struct kvm *kvm);
1375  
1376  #define __KVM_HAVE_ARCH_VM_ALLOC
1377  struct kvm *kvm_arch_alloc_vm(void);
1378  
1379  #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1380  
1381  #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1382  
1383  #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1384  
1385  #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1386  
1387  int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1388  bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1389  
1390  #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1391  
1392  #define kvm_has_mte(kvm)					\
1393  	(system_supports_mte() &&				\
1394  	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1395  
1396  #define kvm_supports_32bit_el0()				\
1397  	(system_supports_32bit_el0() &&				\
1398  	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1399  
1400  #define kvm_vm_has_ran_once(kvm)					\
1401  	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1402  
__vcpu_has_feature(const struct kvm_arch * ka,int feature)1403  static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1404  {
1405  	return test_bit(feature, ka->vcpu_features);
1406  }
1407  
1408  #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1409  
1410  #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1411  
1412  int kvm_trng_call(struct kvm_vcpu *vcpu);
1413  #ifdef CONFIG_KVM
1414  extern phys_addr_t hyp_mem_base;
1415  extern phys_addr_t hyp_mem_size;
1416  void __init kvm_hyp_reserve(void);
1417  #else
kvm_hyp_reserve(void)1418  static inline void kvm_hyp_reserve(void) { }
1419  #endif
1420  
1421  void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1422  bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1423  
__vm_id_reg(struct kvm_arch * ka,u32 reg)1424  static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1425  {
1426  	switch (reg) {
1427  	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1428  		return &ka->id_regs[IDREG_IDX(reg)];
1429  	case SYS_CTR_EL0:
1430  		return &ka->ctr_el0;
1431  	default:
1432  		WARN_ON_ONCE(1);
1433  		return NULL;
1434  	}
1435  }
1436  
1437  #define kvm_read_vm_id_reg(kvm, reg)					\
1438  	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1439  
1440  void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1441  
1442  #define __expand_field_sign_unsigned(id, fld, val)			\
1443  	((u64)SYS_FIELD_VALUE(id, fld, val))
1444  
1445  #define __expand_field_sign_signed(id, fld, val)			\
1446  	({								\
1447  		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1448  		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1449  	})
1450  
1451  #define get_idreg_field_unsigned(kvm, id, fld)				\
1452  	({								\
1453  		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1454  		FIELD_GET(id##_##fld##_MASK, __val);			\
1455  	})
1456  
1457  #define get_idreg_field_signed(kvm, id, fld)				\
1458  	({								\
1459  		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1460  		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1461  	})
1462  
1463  #define get_idreg_field_enum(kvm, id, fld)				\
1464  	get_idreg_field_unsigned(kvm, id, fld)
1465  
1466  #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1467  	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1468  
1469  #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1470  	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1471  
1472  #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1473  	(id##_##fld##_SIGNED ?						\
1474  	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1475  	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1476  
1477  #define kvm_has_feat(kvm, id, fld, limit)				\
1478  	kvm_cmp_feat(kvm, id, fld, >=, limit)
1479  
1480  #define kvm_has_feat_enum(kvm, id, fld, val)				\
1481  	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1482  
1483  #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1484  	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1485  	kvm_cmp_feat(kvm, id, fld, <=, max))
1486  
1487  /* Check for a given level of PAuth support */
1488  #define kvm_has_pauth(k, l)						\
1489  	({								\
1490  		bool pa, pi, pa3;					\
1491  									\
1492  		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1493  		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1494  		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1495  		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1496  		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1497  		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1498  									\
1499  		(pa + pi + pa3) == 1;					\
1500  	})
1501  
1502  #define kvm_has_fpmr(k)					\
1503  	(system_supports_fpmr() &&			\
1504  	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1505  
1506  #endif /* __ARM64_KVM_HOST_H__ */
1507