1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Code to handle x86 style IRQs plus some generic interrupt stuff.
4   *
5   * Copyright (C) 1992 Linus Torvalds
6   * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
7   * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
8   * Copyright (C) 1999-2000 Grant Grundler
9   * Copyright (c) 2005 Matthew Wilcox
10   */
11  #include <linux/bitops.h>
12  #include <linux/errno.h>
13  #include <linux/init.h>
14  #include <linux/interrupt.h>
15  #include <linux/kernel_stat.h>
16  #include <linux/seq_file.h>
17  #include <linux/types.h>
18  #include <linux/sched/task_stack.h>
19  #include <asm/io.h>
20  
21  #include <asm/softirq_stack.h>
22  #include <asm/smp.h>
23  #include <asm/ldcw.h>
24  
25  #undef PARISC_IRQ_CR16_COUNTS
26  
27  #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
28  
29  /* Bits in EIEM correlate with cpu_irq_action[].
30  ** Numbered *Big Endian*! (ie bit 0 is MSB)
31  */
32  static volatile unsigned long cpu_eiem = 0;
33  
34  /*
35  ** local ACK bitmap ... habitually set to 1, but reset to zero
36  ** between ->ack() and ->end() of the interrupt to prevent
37  ** re-interruption of a processing interrupt.
38  */
39  static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
40  
cpu_mask_irq(struct irq_data * d)41  static void cpu_mask_irq(struct irq_data *d)
42  {
43  	unsigned long eirr_bit = EIEM_MASK(d->irq);
44  
45  	cpu_eiem &= ~eirr_bit;
46  	/* Do nothing on the other CPUs.  If they get this interrupt,
47  	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
48  	 * handle it, and the set_eiem() at the bottom will ensure it
49  	 * then gets disabled */
50  }
51  
__cpu_unmask_irq(unsigned int irq)52  static void __cpu_unmask_irq(unsigned int irq)
53  {
54  	unsigned long eirr_bit = EIEM_MASK(irq);
55  
56  	cpu_eiem |= eirr_bit;
57  
58  	/* This is just a simple NOP IPI.  But what it does is cause
59  	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
60  	 * of the interrupt handler */
61  	smp_send_all_nop();
62  }
63  
cpu_unmask_irq(struct irq_data * d)64  static void cpu_unmask_irq(struct irq_data *d)
65  {
66  	__cpu_unmask_irq(d->irq);
67  }
68  
cpu_ack_irq(struct irq_data * d)69  void cpu_ack_irq(struct irq_data *d)
70  {
71  	unsigned long mask = EIEM_MASK(d->irq);
72  	int cpu = smp_processor_id();
73  
74  	/* Clear in EIEM so we can no longer process */
75  	per_cpu(local_ack_eiem, cpu) &= ~mask;
76  
77  	/* disable the interrupt */
78  	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
79  
80  	/* and now ack it */
81  	mtctl(mask, 23);
82  }
83  
cpu_eoi_irq(struct irq_data * d)84  void cpu_eoi_irq(struct irq_data *d)
85  {
86  	unsigned long mask = EIEM_MASK(d->irq);
87  	int cpu = smp_processor_id();
88  
89  	/* set it in the eiems---it's no longer in process */
90  	per_cpu(local_ack_eiem, cpu) |= mask;
91  
92  	/* enable the interrupt */
93  	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
94  }
95  
96  #ifdef CONFIG_SMP
cpu_check_affinity(struct irq_data * d,const struct cpumask * dest)97  int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
98  {
99  	int cpu_dest;
100  
101  	/* timer and ipi have to always be received on all CPUs */
102  	if (irqd_is_per_cpu(d))
103  		return -EINVAL;
104  
105  	cpu_dest = cpumask_first_and(dest, cpu_online_mask);
106  	if (cpu_dest >= nr_cpu_ids)
107  		cpu_dest = cpumask_first(cpu_online_mask);
108  
109  	return cpu_dest;
110  }
111  #endif
112  
113  static struct irq_chip cpu_interrupt_type = {
114  	.name			= "CPU",
115  	.irq_mask		= cpu_mask_irq,
116  	.irq_unmask		= cpu_unmask_irq,
117  	.irq_ack		= cpu_ack_irq,
118  	.irq_eoi		= cpu_eoi_irq,
119  	/* XXX: Needs to be written.  We managed without it so far, but
120  	 * we really ought to write it.
121  	 */
122  	.irq_retrigger	= NULL,
123  };
124  
125  DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
126  #define irq_stats(x)		(&per_cpu(irq_stat, x))
127  
128  /*
129   * /proc/interrupts printing for arch specific interrupts
130   */
arch_show_interrupts(struct seq_file * p,int prec)131  int arch_show_interrupts(struct seq_file *p, int prec)
132  {
133  	int j;
134  
135  #ifdef CONFIG_DEBUG_STACKOVERFLOW
136  	seq_printf(p, "%*s: ", prec, "STK");
137  	for_each_online_cpu(j)
138  		seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
139  	seq_puts(p, "  Kernel stack usage\n");
140  # ifdef CONFIG_IRQSTACKS
141  	seq_printf(p, "%*s: ", prec, "IST");
142  	for_each_online_cpu(j)
143  		seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
144  	seq_puts(p, "  Interrupt stack usage\n");
145  # endif
146  #endif
147  #ifdef CONFIG_SMP
148  	if (num_online_cpus() > 1) {
149  		seq_printf(p, "%*s: ", prec, "RES");
150  		for_each_online_cpu(j)
151  			seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
152  		seq_puts(p, "  Rescheduling interrupts\n");
153  		seq_printf(p, "%*s: ", prec, "CAL");
154  		for_each_online_cpu(j)
155  			seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
156  		seq_puts(p, "  Function call interrupts\n");
157  	}
158  #endif
159  	seq_printf(p, "%*s: ", prec, "UAH");
160  	for_each_online_cpu(j)
161  		seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
162  	seq_puts(p, "  Unaligned access handler traps\n");
163  	seq_printf(p, "%*s: ", prec, "FPA");
164  	for_each_online_cpu(j)
165  		seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
166  	seq_puts(p, "  Floating point assist traps\n");
167  	seq_printf(p, "%*s: ", prec, "TLB");
168  	for_each_online_cpu(j)
169  		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
170  	seq_puts(p, "  TLB shootdowns\n");
171  	return 0;
172  }
173  
show_interrupts(struct seq_file * p,void * v)174  int show_interrupts(struct seq_file *p, void *v)
175  {
176  	int i = *(loff_t *) v, j;
177  	unsigned long flags;
178  
179  	if (i == 0) {
180  		seq_puts(p, "    ");
181  		for_each_online_cpu(j)
182  			seq_printf(p, "       CPU%d", j);
183  
184  #ifdef PARISC_IRQ_CR16_COUNTS
185  		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
186  #endif
187  		seq_putc(p, '\n');
188  	}
189  
190  	if (i < NR_IRQS) {
191  		struct irq_desc *desc = irq_to_desc(i);
192  		struct irqaction *action;
193  
194  		raw_spin_lock_irqsave(&desc->lock, flags);
195  		action = desc->action;
196  		if (!action)
197  			goto skip;
198  		seq_printf(p, "%3d: ", i);
199  
200  		for_each_online_cpu(j)
201  			seq_printf(p, "%10u ", irq_desc_kstat_cpu(desc, j));
202  
203  		seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
204  #ifndef PARISC_IRQ_CR16_COUNTS
205  		seq_printf(p, "  %s", action->name);
206  
207  		while ((action = action->next))
208  			seq_printf(p, ", %s", action->name);
209  #else
210  		for ( ;action; action = action->next) {
211  			unsigned int k, avg, min, max;
212  
213  			min = max = action->cr16_hist[0];
214  
215  			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
216  				int hist = action->cr16_hist[k];
217  
218  				if (hist) {
219  					avg += hist;
220  				} else
221  					break;
222  
223  				if (hist > max) max = hist;
224  				if (hist < min) min = hist;
225  			}
226  
227  			avg /= k;
228  			seq_printf(p, " %s[%d/%d/%d]", action->name,
229  					min,avg,max);
230  		}
231  #endif
232  
233  		seq_putc(p, '\n');
234   skip:
235  		raw_spin_unlock_irqrestore(&desc->lock, flags);
236  	}
237  
238  	if (i == NR_IRQS)
239  		arch_show_interrupts(p, 3);
240  
241  	return 0;
242  }
243  
244  
245  
246  /*
247  ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
248  ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
249  **
250  ** To use txn_XXX() interfaces, get a Virtual IRQ first.
251  ** Then use that to get the Transaction address and data.
252  */
253  
cpu_claim_irq(unsigned int irq,struct irq_chip * type,void * data)254  int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
255  {
256  	if (irq_has_action(irq))
257  		return -EBUSY;
258  	if (irq_get_chip(irq) != &cpu_interrupt_type)
259  		return -EBUSY;
260  
261  	/* for iosapic interrupts */
262  	if (type) {
263  		irq_set_chip_and_handler(irq, type, handle_percpu_irq);
264  		irq_set_chip_data(irq, data);
265  		__cpu_unmask_irq(irq);
266  	}
267  	return 0;
268  }
269  
txn_claim_irq(int irq)270  int txn_claim_irq(int irq)
271  {
272  	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
273  }
274  
275  /*
276   * The bits_wide parameter accommodates the limitations of the HW/SW which
277   * use these bits:
278   * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
279   * V-class (EPIC):          6 bits
280   * N/L/A-class (iosapic):   8 bits
281   * PCI 2.2 MSI:            16 bits
282   * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
283   *
284   * On the service provider side:
285   * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
286   * o PA 2.0 wide mode                   6-bits (per processor)
287   * o IA64                               8-bits (0-256 total)
288   *
289   * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
290   * by the processor...and the N/L-class I/O subsystem supports more bits than
291   * PA2.0 has. The first case is the problem.
292   */
txn_alloc_irq(unsigned int bits_wide)293  int txn_alloc_irq(unsigned int bits_wide)
294  {
295  	int irq;
296  
297  	/* never return irq 0 cause that's the interval timer */
298  	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
299  		if (cpu_claim_irq(irq, NULL, NULL) < 0)
300  			continue;
301  		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
302  			continue;
303  		return irq;
304  	}
305  
306  	/* unlikely, but be prepared */
307  	return -1;
308  }
309  
310  
txn_affinity_addr(unsigned int irq,int cpu)311  unsigned long txn_affinity_addr(unsigned int irq, int cpu)
312  {
313  #ifdef CONFIG_SMP
314  	struct irq_data *d = irq_get_irq_data(irq);
315  	irq_data_update_affinity(d, cpumask_of(cpu));
316  #endif
317  
318  	return per_cpu(cpu_data, cpu).txn_addr;
319  }
320  
321  
txn_alloc_addr(unsigned int virt_irq)322  unsigned long txn_alloc_addr(unsigned int virt_irq)
323  {
324  	static int next_cpu = -1;
325  
326  	next_cpu++; /* assign to "next" CPU we want this bugger on */
327  
328  	/* validate entry */
329  	while ((next_cpu < nr_cpu_ids) &&
330  		(!per_cpu(cpu_data, next_cpu).txn_addr ||
331  		 !cpu_online(next_cpu)))
332  		next_cpu++;
333  
334  	if (next_cpu >= nr_cpu_ids)
335  		next_cpu = 0;	/* nothing else, assign monarch */
336  
337  	return txn_affinity_addr(virt_irq, next_cpu);
338  }
339  
340  
txn_alloc_data(unsigned int virt_irq)341  unsigned int txn_alloc_data(unsigned int virt_irq)
342  {
343  	return virt_irq - CPU_IRQ_BASE;
344  }
345  
eirr_to_irq(unsigned long eirr)346  static inline int eirr_to_irq(unsigned long eirr)
347  {
348  	int bit = fls_long(eirr);
349  	return (BITS_PER_LONG - bit) + TIMER_IRQ;
350  }
351  
352  #ifdef CONFIG_IRQSTACKS
353  /*
354   * IRQ STACK - used for irq handler
355   */
356  #ifdef CONFIG_64BIT
357  #define IRQ_STACK_SIZE      (4096 << 4) /* 64k irq stack size */
358  #else
359  #define IRQ_STACK_SIZE      (4096 << 3) /* 32k irq stack size */
360  #endif
361  
362  union irq_stack_union {
363  	unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
364  	volatile unsigned int slock[4];
365  	volatile unsigned int lock[1];
366  };
367  
368  static DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
369  		.slock = { 1,1,1,1 },
370  	};
371  #endif
372  
373  
374  int sysctl_panic_on_stackoverflow = 1;
375  
stack_overflow_check(struct pt_regs * regs)376  static inline void stack_overflow_check(struct pt_regs *regs)
377  {
378  #ifdef CONFIG_DEBUG_STACKOVERFLOW
379  	#define STACK_MARGIN	(256*6)
380  
381  	unsigned long stack_start = (unsigned long) task_stack_page(current);
382  	unsigned long sp = regs->gr[30];
383  	unsigned long stack_usage;
384  	unsigned int *last_usage;
385  	int cpu = smp_processor_id();
386  
387  	/* if sr7 != 0, we interrupted a userspace process which we do not want
388  	 * to check for stack overflow. We will only check the kernel stack. */
389  	if (regs->sr[7])
390  		return;
391  
392  	/* exit if already in panic */
393  	if (sysctl_panic_on_stackoverflow < 0)
394  		return;
395  
396  	/* calculate kernel stack usage */
397  	stack_usage = sp - stack_start;
398  #ifdef CONFIG_IRQSTACKS
399  	if (likely(stack_usage <= THREAD_SIZE))
400  		goto check_kernel_stack; /* found kernel stack */
401  
402  	/* check irq stack usage */
403  	stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
404  	stack_usage = sp - stack_start;
405  
406  	last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
407  	if (unlikely(stack_usage > *last_usage))
408  		*last_usage = stack_usage;
409  
410  	if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
411  		return;
412  
413  	pr_emerg("stackcheck: %s will most likely overflow irq stack "
414  		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
415  		current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
416  	goto panic_check;
417  
418  check_kernel_stack:
419  #endif
420  
421  	/* check kernel stack usage */
422  	last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
423  
424  	if (unlikely(stack_usage > *last_usage))
425  		*last_usage = stack_usage;
426  
427  	if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
428  		return;
429  
430  	pr_emerg("stackcheck: %s will most likely overflow kernel stack "
431  		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
432  		current->comm, sp, stack_start, stack_start + THREAD_SIZE);
433  
434  #ifdef CONFIG_IRQSTACKS
435  panic_check:
436  #endif
437  	if (sysctl_panic_on_stackoverflow) {
438  		sysctl_panic_on_stackoverflow = -1; /* disable further checks */
439  		panic("low stack detected by irq handler - check messages\n");
440  	}
441  #endif
442  }
443  
444  #ifdef CONFIG_IRQSTACKS
445  /* in entry.S: */
446  void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
447  
execute_on_irq_stack(void * func,unsigned long param1)448  static void execute_on_irq_stack(void *func, unsigned long param1)
449  {
450  	union irq_stack_union *union_ptr;
451  	unsigned long irq_stack;
452  	volatile unsigned int *irq_stack_in_use;
453  
454  	union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
455  	irq_stack = (unsigned long) &union_ptr->stack;
456  	irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
457  			FRAME_ALIGN); /* align for stack frame usage */
458  
459  	/* We may be called recursive. If we are already using the irq stack,
460  	 * just continue to use it. Use spinlocks to serialize
461  	 * the irq stack usage.
462  	 */
463  	irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
464  	if (!__ldcw(irq_stack_in_use)) {
465  		void (*direct_call)(unsigned long p1) = func;
466  
467  		/* We are using the IRQ stack already.
468  		 * Do direct call on current stack. */
469  		direct_call(param1);
470  		return;
471  	}
472  
473  	/* This is where we switch to the IRQ stack. */
474  	call_on_stack(param1, func, irq_stack);
475  
476  	/* free up irq stack usage. */
477  	*irq_stack_in_use = 1;
478  }
479  
480  #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
do_softirq_own_stack(void)481  void do_softirq_own_stack(void)
482  {
483  	execute_on_irq_stack(__do_softirq, 0);
484  }
485  #endif
486  #endif /* CONFIG_IRQSTACKS */
487  
488  /* ONLY called from entry.S:intr_extint() */
do_cpu_irq_mask(struct pt_regs * regs)489  asmlinkage void do_cpu_irq_mask(struct pt_regs *regs)
490  {
491  	struct pt_regs *old_regs;
492  	unsigned long eirr_val;
493  	int irq, cpu = smp_processor_id();
494  	struct irq_data *irq_data;
495  #ifdef CONFIG_SMP
496  	cpumask_t dest;
497  #endif
498  
499  	old_regs = set_irq_regs(regs);
500  	local_irq_disable();
501  	irq_enter_rcu();
502  
503  	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
504  	if (!eirr_val)
505  		goto set_out;
506  	irq = eirr_to_irq(eirr_val);
507  
508  	irq_data = irq_get_irq_data(irq);
509  
510  	/* Filter out spurious interrupts, mostly from serial port at bootup */
511  	if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
512  		goto set_out;
513  
514  #ifdef CONFIG_SMP
515  	cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
516  	if (irqd_is_per_cpu(irq_data) &&
517  	    !cpumask_test_cpu(smp_processor_id(), &dest)) {
518  		int cpu = cpumask_first(&dest);
519  
520  		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
521  		       irq, smp_processor_id(), cpu);
522  		gsc_writel(irq + CPU_IRQ_BASE,
523  			   per_cpu(cpu_data, cpu).hpa);
524  		goto set_out;
525  	}
526  #endif
527  	stack_overflow_check(regs);
528  
529  #ifdef CONFIG_IRQSTACKS
530  	execute_on_irq_stack(&generic_handle_irq, irq);
531  #else
532  	generic_handle_irq(irq);
533  #endif /* CONFIG_IRQSTACKS */
534  
535   out:
536  	irq_exit_rcu();
537  	set_irq_regs(old_regs);
538  	return;
539  
540   set_out:
541  	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
542  	goto out;
543  }
544  
claim_cpu_irqs(void)545  static void claim_cpu_irqs(void)
546  {
547  	unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL;
548  	int i;
549  
550  	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
551  		irq_set_chip_and_handler(i, &cpu_interrupt_type,
552  					 handle_percpu_irq);
553  	}
554  
555  	irq_set_handler(TIMER_IRQ, handle_percpu_irq);
556  	if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL))
557  		pr_err("Failed to register timer interrupt\n");
558  #ifdef CONFIG_SMP
559  	irq_set_handler(IPI_IRQ, handle_percpu_irq);
560  	if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL))
561  		pr_err("Failed to register IPI interrupt\n");
562  #endif
563  }
564  
init_IRQ(void)565  void init_IRQ(void)
566  {
567  	local_irq_disable();	/* PARANOID - should already be disabled */
568  	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
569  #ifdef CONFIG_SMP
570  	if (!cpu_eiem) {
571  		claim_cpu_irqs();
572  		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
573  	}
574  #else
575  	claim_cpu_irqs();
576  	cpu_eiem = EIEM_MASK(TIMER_IRQ);
577  #endif
578          set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
579  }
580