1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33
34 #include "disasm.h"
35
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 [_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46
47 struct bpf_mem_alloc bpf_global_percpu_ma;
48 static bool bpf_global_percpu_ma_set;
49
50 /* bpf_check() is a static code analyzer that walks eBPF program
51 * instruction by instruction and updates register/stack state.
52 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
53 *
54 * The first pass is depth-first-search to check that the program is a DAG.
55 * It rejects the following programs:
56 * - larger than BPF_MAXINSNS insns
57 * - if loop is present (detected via back-edge)
58 * - unreachable insns exist (shouldn't be a forest. program = one function)
59 * - out of bounds or malformed jumps
60 * The second pass is all possible path descent from the 1st insn.
61 * Since it's analyzing all paths through the program, the length of the
62 * analysis is limited to 64k insn, which may be hit even if total number of
63 * insn is less then 4K, but there are too many branches that change stack/regs.
64 * Number of 'branches to be analyzed' is limited to 1k
65 *
66 * On entry to each instruction, each register has a type, and the instruction
67 * changes the types of the registers depending on instruction semantics.
68 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
69 * copied to R1.
70 *
71 * All registers are 64-bit.
72 * R0 - return register
73 * R1-R5 argument passing registers
74 * R6-R9 callee saved registers
75 * R10 - frame pointer read-only
76 *
77 * At the start of BPF program the register R1 contains a pointer to bpf_context
78 * and has type PTR_TO_CTX.
79 *
80 * Verifier tracks arithmetic operations on pointers in case:
81 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
82 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
83 * 1st insn copies R10 (which has FRAME_PTR) type into R1
84 * and 2nd arithmetic instruction is pattern matched to recognize
85 * that it wants to construct a pointer to some element within stack.
86 * So after 2nd insn, the register R1 has type PTR_TO_STACK
87 * (and -20 constant is saved for further stack bounds checking).
88 * Meaning that this reg is a pointer to stack plus known immediate constant.
89 *
90 * Most of the time the registers have SCALAR_VALUE type, which
91 * means the register has some value, but it's not a valid pointer.
92 * (like pointer plus pointer becomes SCALAR_VALUE type)
93 *
94 * When verifier sees load or store instructions the type of base register
95 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
96 * four pointer types recognized by check_mem_access() function.
97 *
98 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
99 * and the range of [ptr, ptr + map's value_size) is accessible.
100 *
101 * registers used to pass values to function calls are checked against
102 * function argument constraints.
103 *
104 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
105 * It means that the register type passed to this function must be
106 * PTR_TO_STACK and it will be used inside the function as
107 * 'pointer to map element key'
108 *
109 * For example the argument constraints for bpf_map_lookup_elem():
110 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
111 * .arg1_type = ARG_CONST_MAP_PTR,
112 * .arg2_type = ARG_PTR_TO_MAP_KEY,
113 *
114 * ret_type says that this function returns 'pointer to map elem value or null'
115 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
116 * 2nd argument should be a pointer to stack, which will be used inside
117 * the helper function as a pointer to map element key.
118 *
119 * On the kernel side the helper function looks like:
120 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
121 * {
122 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
123 * void *key = (void *) (unsigned long) r2;
124 * void *value;
125 *
126 * here kernel can access 'key' and 'map' pointers safely, knowing that
127 * [key, key + map->key_size) bytes are valid and were initialized on
128 * the stack of eBPF program.
129 * }
130 *
131 * Corresponding eBPF program may look like:
132 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
133 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
134 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
135 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
136 * here verifier looks at prototype of map_lookup_elem() and sees:
137 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
138 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
139 *
140 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
141 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
142 * and were initialized prior to this call.
143 * If it's ok, then verifier allows this BPF_CALL insn and looks at
144 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
145 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
146 * returns either pointer to map value or NULL.
147 *
148 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
149 * insn, the register holding that pointer in the true branch changes state to
150 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
151 * branch. See check_cond_jmp_op().
152 *
153 * After the call R0 is set to return type of the function and registers R1-R5
154 * are set to NOT_INIT to indicate that they are no longer readable.
155 *
156 * The following reference types represent a potential reference to a kernel
157 * resource which, after first being allocated, must be checked and freed by
158 * the BPF program:
159 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
160 *
161 * When the verifier sees a helper call return a reference type, it allocates a
162 * pointer id for the reference and stores it in the current function state.
163 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
164 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
165 * passes through a NULL-check conditional. For the branch wherein the state is
166 * changed to CONST_IMM, the verifier releases the reference.
167 *
168 * For each helper function that allocates a reference, such as
169 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
170 * bpf_sk_release(). When a reference type passes into the release function,
171 * the verifier also releases the reference. If any unchecked or unreleased
172 * reference remains at the end of the program, the verifier rejects it.
173 */
174
175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
176 struct bpf_verifier_stack_elem {
177 /* verifier state is 'st'
178 * before processing instruction 'insn_idx'
179 * and after processing instruction 'prev_insn_idx'
180 */
181 struct bpf_verifier_state st;
182 int insn_idx;
183 int prev_insn_idx;
184 struct bpf_verifier_stack_elem *next;
185 /* length of verifier log at the time this state was pushed on stack */
186 u32 log_pos;
187 };
188
189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
190 #define BPF_COMPLEXITY_LIMIT_STATES 64
191
192 #define BPF_MAP_KEY_POISON (1ULL << 63)
193 #define BPF_MAP_KEY_SEEN (1ULL << 62)
194
195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512
196
197 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
198 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
199 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
200 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
201 static int ref_set_non_owning(struct bpf_verifier_env *env,
202 struct bpf_reg_state *reg);
203 static void specialize_kfunc(struct bpf_verifier_env *env,
204 u32 func_id, u16 offset, unsigned long *addr);
205 static bool is_trusted_reg(const struct bpf_reg_state *reg);
206
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)207 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
208 {
209 return aux->map_ptr_state.poison;
210 }
211
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)212 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
213 {
214 return aux->map_ptr_state.unpriv;
215 }
216
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,struct bpf_map * map,bool unpriv,bool poison)217 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
218 struct bpf_map *map,
219 bool unpriv, bool poison)
220 {
221 unpriv |= bpf_map_ptr_unpriv(aux);
222 aux->map_ptr_state.unpriv = unpriv;
223 aux->map_ptr_state.poison = poison;
224 aux->map_ptr_state.map_ptr = map;
225 }
226
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
228 {
229 return aux->map_key_state & BPF_MAP_KEY_POISON;
230 }
231
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
233 {
234 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
235 }
236
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
238 {
239 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
240 }
241
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
243 {
244 bool poisoned = bpf_map_key_poisoned(aux);
245
246 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
247 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
248 }
249
bpf_helper_call(const struct bpf_insn * insn)250 static bool bpf_helper_call(const struct bpf_insn *insn)
251 {
252 return insn->code == (BPF_JMP | BPF_CALL) &&
253 insn->src_reg == 0;
254 }
255
bpf_pseudo_call(const struct bpf_insn * insn)256 static bool bpf_pseudo_call(const struct bpf_insn *insn)
257 {
258 return insn->code == (BPF_JMP | BPF_CALL) &&
259 insn->src_reg == BPF_PSEUDO_CALL;
260 }
261
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
263 {
264 return insn->code == (BPF_JMP | BPF_CALL) &&
265 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
266 }
267
268 struct bpf_call_arg_meta {
269 struct bpf_map *map_ptr;
270 bool raw_mode;
271 bool pkt_access;
272 u8 release_regno;
273 int regno;
274 int access_size;
275 int mem_size;
276 u64 msize_max_value;
277 int ref_obj_id;
278 int dynptr_id;
279 int map_uid;
280 int func_id;
281 struct btf *btf;
282 u32 btf_id;
283 struct btf *ret_btf;
284 u32 ret_btf_id;
285 u32 subprogno;
286 struct btf_field *kptr_field;
287 };
288
289 struct bpf_kfunc_call_arg_meta {
290 /* In parameters */
291 struct btf *btf;
292 u32 func_id;
293 u32 kfunc_flags;
294 const struct btf_type *func_proto;
295 const char *func_name;
296 /* Out parameters */
297 u32 ref_obj_id;
298 u8 release_regno;
299 bool r0_rdonly;
300 u32 ret_btf_id;
301 u64 r0_size;
302 u32 subprogno;
303 struct {
304 u64 value;
305 bool found;
306 } arg_constant;
307
308 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
309 * generally to pass info about user-defined local kptr types to later
310 * verification logic
311 * bpf_obj_drop/bpf_percpu_obj_drop
312 * Record the local kptr type to be drop'd
313 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
314 * Record the local kptr type to be refcount_incr'd and use
315 * arg_owning_ref to determine whether refcount_acquire should be
316 * fallible
317 */
318 struct btf *arg_btf;
319 u32 arg_btf_id;
320 bool arg_owning_ref;
321
322 struct {
323 struct btf_field *field;
324 } arg_list_head;
325 struct {
326 struct btf_field *field;
327 } arg_rbtree_root;
328 struct {
329 enum bpf_dynptr_type type;
330 u32 id;
331 u32 ref_obj_id;
332 } initialized_dynptr;
333 struct {
334 u8 spi;
335 u8 frameno;
336 } iter;
337 struct {
338 struct bpf_map *ptr;
339 int uid;
340 } map;
341 u64 mem_size;
342 };
343
344 struct btf *btf_vmlinux;
345
btf_type_name(const struct btf * btf,u32 id)346 static const char *btf_type_name(const struct btf *btf, u32 id)
347 {
348 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
349 }
350
351 static DEFINE_MUTEX(bpf_verifier_lock);
352 static DEFINE_MUTEX(bpf_percpu_ma_lock);
353
verbose(void * private_data,const char * fmt,...)354 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
355 {
356 struct bpf_verifier_env *env = private_data;
357 va_list args;
358
359 if (!bpf_verifier_log_needed(&env->log))
360 return;
361
362 va_start(args, fmt);
363 bpf_verifier_vlog(&env->log, fmt, args);
364 va_end(args);
365 }
366
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_retval_range range,const char * ctx,const char * reg_name)367 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
368 struct bpf_reg_state *reg,
369 struct bpf_retval_range range, const char *ctx,
370 const char *reg_name)
371 {
372 bool unknown = true;
373
374 verbose(env, "%s the register %s has", ctx, reg_name);
375 if (reg->smin_value > S64_MIN) {
376 verbose(env, " smin=%lld", reg->smin_value);
377 unknown = false;
378 }
379 if (reg->smax_value < S64_MAX) {
380 verbose(env, " smax=%lld", reg->smax_value);
381 unknown = false;
382 }
383 if (unknown)
384 verbose(env, " unknown scalar value");
385 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
386 }
387
reg_not_null(const struct bpf_reg_state * reg)388 static bool reg_not_null(const struct bpf_reg_state *reg)
389 {
390 enum bpf_reg_type type;
391
392 type = reg->type;
393 if (type_may_be_null(type))
394 return false;
395
396 type = base_type(type);
397 return type == PTR_TO_SOCKET ||
398 type == PTR_TO_TCP_SOCK ||
399 type == PTR_TO_MAP_VALUE ||
400 type == PTR_TO_MAP_KEY ||
401 type == PTR_TO_SOCK_COMMON ||
402 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
403 type == PTR_TO_MEM;
404 }
405
reg_btf_record(const struct bpf_reg_state * reg)406 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
407 {
408 struct btf_record *rec = NULL;
409 struct btf_struct_meta *meta;
410
411 if (reg->type == PTR_TO_MAP_VALUE) {
412 rec = reg->map_ptr->record;
413 } else if (type_is_ptr_alloc_obj(reg->type)) {
414 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
415 if (meta)
416 rec = meta->record;
417 }
418 return rec;
419 }
420
subprog_is_global(const struct bpf_verifier_env * env,int subprog)421 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
422 {
423 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
424
425 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
426 }
427
subprog_name(const struct bpf_verifier_env * env,int subprog)428 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
429 {
430 struct bpf_func_info *info;
431
432 if (!env->prog->aux->func_info)
433 return "";
434
435 info = &env->prog->aux->func_info[subprog];
436 return btf_type_name(env->prog->aux->btf, info->type_id);
437 }
438
mark_subprog_exc_cb(struct bpf_verifier_env * env,int subprog)439 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
440 {
441 struct bpf_subprog_info *info = subprog_info(env, subprog);
442
443 info->is_cb = true;
444 info->is_async_cb = true;
445 info->is_exception_cb = true;
446 }
447
subprog_is_exc_cb(struct bpf_verifier_env * env,int subprog)448 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
449 {
450 return subprog_info(env, subprog)->is_exception_cb;
451 }
452
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)453 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
454 {
455 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
456 }
457
type_is_rdonly_mem(u32 type)458 static bool type_is_rdonly_mem(u32 type)
459 {
460 return type & MEM_RDONLY;
461 }
462
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)463 static bool is_acquire_function(enum bpf_func_id func_id,
464 const struct bpf_map *map)
465 {
466 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
467
468 if (func_id == BPF_FUNC_sk_lookup_tcp ||
469 func_id == BPF_FUNC_sk_lookup_udp ||
470 func_id == BPF_FUNC_skc_lookup_tcp ||
471 func_id == BPF_FUNC_ringbuf_reserve ||
472 func_id == BPF_FUNC_kptr_xchg)
473 return true;
474
475 if (func_id == BPF_FUNC_map_lookup_elem &&
476 (map_type == BPF_MAP_TYPE_SOCKMAP ||
477 map_type == BPF_MAP_TYPE_SOCKHASH))
478 return true;
479
480 return false;
481 }
482
is_ptr_cast_function(enum bpf_func_id func_id)483 static bool is_ptr_cast_function(enum bpf_func_id func_id)
484 {
485 return func_id == BPF_FUNC_tcp_sock ||
486 func_id == BPF_FUNC_sk_fullsock ||
487 func_id == BPF_FUNC_skc_to_tcp_sock ||
488 func_id == BPF_FUNC_skc_to_tcp6_sock ||
489 func_id == BPF_FUNC_skc_to_udp6_sock ||
490 func_id == BPF_FUNC_skc_to_mptcp_sock ||
491 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
492 func_id == BPF_FUNC_skc_to_tcp_request_sock;
493 }
494
is_dynptr_ref_function(enum bpf_func_id func_id)495 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
496 {
497 return func_id == BPF_FUNC_dynptr_data;
498 }
499
500 static bool is_sync_callback_calling_kfunc(u32 btf_id);
501 static bool is_async_callback_calling_kfunc(u32 btf_id);
502 static bool is_callback_calling_kfunc(u32 btf_id);
503 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
504
505 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
506
is_sync_callback_calling_function(enum bpf_func_id func_id)507 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
508 {
509 return func_id == BPF_FUNC_for_each_map_elem ||
510 func_id == BPF_FUNC_find_vma ||
511 func_id == BPF_FUNC_loop ||
512 func_id == BPF_FUNC_user_ringbuf_drain;
513 }
514
is_async_callback_calling_function(enum bpf_func_id func_id)515 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
516 {
517 return func_id == BPF_FUNC_timer_set_callback;
518 }
519
is_callback_calling_function(enum bpf_func_id func_id)520 static bool is_callback_calling_function(enum bpf_func_id func_id)
521 {
522 return is_sync_callback_calling_function(func_id) ||
523 is_async_callback_calling_function(func_id);
524 }
525
is_sync_callback_calling_insn(struct bpf_insn * insn)526 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
527 {
528 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
529 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
530 }
531
is_async_callback_calling_insn(struct bpf_insn * insn)532 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
533 {
534 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
535 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
536 }
537
is_may_goto_insn(struct bpf_insn * insn)538 static bool is_may_goto_insn(struct bpf_insn *insn)
539 {
540 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
541 }
542
is_may_goto_insn_at(struct bpf_verifier_env * env,int insn_idx)543 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
544 {
545 return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
546 }
547
is_storage_get_function(enum bpf_func_id func_id)548 static bool is_storage_get_function(enum bpf_func_id func_id)
549 {
550 return func_id == BPF_FUNC_sk_storage_get ||
551 func_id == BPF_FUNC_inode_storage_get ||
552 func_id == BPF_FUNC_task_storage_get ||
553 func_id == BPF_FUNC_cgrp_storage_get;
554 }
555
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)556 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
557 const struct bpf_map *map)
558 {
559 int ref_obj_uses = 0;
560
561 if (is_ptr_cast_function(func_id))
562 ref_obj_uses++;
563 if (is_acquire_function(func_id, map))
564 ref_obj_uses++;
565 if (is_dynptr_ref_function(func_id))
566 ref_obj_uses++;
567
568 return ref_obj_uses > 1;
569 }
570
is_cmpxchg_insn(const struct bpf_insn * insn)571 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
572 {
573 return BPF_CLASS(insn->code) == BPF_STX &&
574 BPF_MODE(insn->code) == BPF_ATOMIC &&
575 insn->imm == BPF_CMPXCHG;
576 }
577
__get_spi(s32 off)578 static int __get_spi(s32 off)
579 {
580 return (-off - 1) / BPF_REG_SIZE;
581 }
582
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)583 static struct bpf_func_state *func(struct bpf_verifier_env *env,
584 const struct bpf_reg_state *reg)
585 {
586 struct bpf_verifier_state *cur = env->cur_state;
587
588 return cur->frame[reg->frameno];
589 }
590
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)591 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
592 {
593 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
594
595 /* We need to check that slots between [spi - nr_slots + 1, spi] are
596 * within [0, allocated_stack).
597 *
598 * Please note that the spi grows downwards. For example, a dynptr
599 * takes the size of two stack slots; the first slot will be at
600 * spi and the second slot will be at spi - 1.
601 */
602 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
603 }
604
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)605 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
606 const char *obj_kind, int nr_slots)
607 {
608 int off, spi;
609
610 if (!tnum_is_const(reg->var_off)) {
611 verbose(env, "%s has to be at a constant offset\n", obj_kind);
612 return -EINVAL;
613 }
614
615 off = reg->off + reg->var_off.value;
616 if (off % BPF_REG_SIZE) {
617 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
618 return -EINVAL;
619 }
620
621 spi = __get_spi(off);
622 if (spi + 1 < nr_slots) {
623 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
624 return -EINVAL;
625 }
626
627 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
628 return -ERANGE;
629 return spi;
630 }
631
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)632 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
633 {
634 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
635 }
636
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)637 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
638 {
639 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
640 }
641
arg_to_dynptr_type(enum bpf_arg_type arg_type)642 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
643 {
644 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
645 case DYNPTR_TYPE_LOCAL:
646 return BPF_DYNPTR_TYPE_LOCAL;
647 case DYNPTR_TYPE_RINGBUF:
648 return BPF_DYNPTR_TYPE_RINGBUF;
649 case DYNPTR_TYPE_SKB:
650 return BPF_DYNPTR_TYPE_SKB;
651 case DYNPTR_TYPE_XDP:
652 return BPF_DYNPTR_TYPE_XDP;
653 default:
654 return BPF_DYNPTR_TYPE_INVALID;
655 }
656 }
657
get_dynptr_type_flag(enum bpf_dynptr_type type)658 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
659 {
660 switch (type) {
661 case BPF_DYNPTR_TYPE_LOCAL:
662 return DYNPTR_TYPE_LOCAL;
663 case BPF_DYNPTR_TYPE_RINGBUF:
664 return DYNPTR_TYPE_RINGBUF;
665 case BPF_DYNPTR_TYPE_SKB:
666 return DYNPTR_TYPE_SKB;
667 case BPF_DYNPTR_TYPE_XDP:
668 return DYNPTR_TYPE_XDP;
669 default:
670 return 0;
671 }
672 }
673
dynptr_type_refcounted(enum bpf_dynptr_type type)674 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
675 {
676 return type == BPF_DYNPTR_TYPE_RINGBUF;
677 }
678
679 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
680 enum bpf_dynptr_type type,
681 bool first_slot, int dynptr_id);
682
683 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
684 struct bpf_reg_state *reg);
685
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)686 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
687 struct bpf_reg_state *sreg1,
688 struct bpf_reg_state *sreg2,
689 enum bpf_dynptr_type type)
690 {
691 int id = ++env->id_gen;
692
693 __mark_dynptr_reg(sreg1, type, true, id);
694 __mark_dynptr_reg(sreg2, type, false, id);
695 }
696
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)697 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
698 struct bpf_reg_state *reg,
699 enum bpf_dynptr_type type)
700 {
701 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
702 }
703
704 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
705 struct bpf_func_state *state, int spi);
706
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)707 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
708 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
709 {
710 struct bpf_func_state *state = func(env, reg);
711 enum bpf_dynptr_type type;
712 int spi, i, err;
713
714 spi = dynptr_get_spi(env, reg);
715 if (spi < 0)
716 return spi;
717
718 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
719 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
720 * to ensure that for the following example:
721 * [d1][d1][d2][d2]
722 * spi 3 2 1 0
723 * So marking spi = 2 should lead to destruction of both d1 and d2. In
724 * case they do belong to same dynptr, second call won't see slot_type
725 * as STACK_DYNPTR and will simply skip destruction.
726 */
727 err = destroy_if_dynptr_stack_slot(env, state, spi);
728 if (err)
729 return err;
730 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
731 if (err)
732 return err;
733
734 for (i = 0; i < BPF_REG_SIZE; i++) {
735 state->stack[spi].slot_type[i] = STACK_DYNPTR;
736 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
737 }
738
739 type = arg_to_dynptr_type(arg_type);
740 if (type == BPF_DYNPTR_TYPE_INVALID)
741 return -EINVAL;
742
743 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
744 &state->stack[spi - 1].spilled_ptr, type);
745
746 if (dynptr_type_refcounted(type)) {
747 /* The id is used to track proper releasing */
748 int id;
749
750 if (clone_ref_obj_id)
751 id = clone_ref_obj_id;
752 else
753 id = acquire_reference_state(env, insn_idx);
754
755 if (id < 0)
756 return id;
757
758 state->stack[spi].spilled_ptr.ref_obj_id = id;
759 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
760 }
761
762 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
763 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
764
765 return 0;
766 }
767
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)768 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
769 {
770 int i;
771
772 for (i = 0; i < BPF_REG_SIZE; i++) {
773 state->stack[spi].slot_type[i] = STACK_INVALID;
774 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
775 }
776
777 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
778 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
779
780 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
781 *
782 * While we don't allow reading STACK_INVALID, it is still possible to
783 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
784 * helpers or insns can do partial read of that part without failing,
785 * but check_stack_range_initialized, check_stack_read_var_off, and
786 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
787 * the slot conservatively. Hence we need to prevent those liveness
788 * marking walks.
789 *
790 * This was not a problem before because STACK_INVALID is only set by
791 * default (where the default reg state has its reg->parent as NULL), or
792 * in clean_live_states after REG_LIVE_DONE (at which point
793 * mark_reg_read won't walk reg->parent chain), but not randomly during
794 * verifier state exploration (like we did above). Hence, for our case
795 * parentage chain will still be live (i.e. reg->parent may be
796 * non-NULL), while earlier reg->parent was NULL, so we need
797 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
798 * done later on reads or by mark_dynptr_read as well to unnecessary
799 * mark registers in verifier state.
800 */
801 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
802 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
803 }
804
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)805 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
806 {
807 struct bpf_func_state *state = func(env, reg);
808 int spi, ref_obj_id, i;
809
810 spi = dynptr_get_spi(env, reg);
811 if (spi < 0)
812 return spi;
813
814 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
815 invalidate_dynptr(env, state, spi);
816 return 0;
817 }
818
819 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
820
821 /* If the dynptr has a ref_obj_id, then we need to invalidate
822 * two things:
823 *
824 * 1) Any dynptrs with a matching ref_obj_id (clones)
825 * 2) Any slices derived from this dynptr.
826 */
827
828 /* Invalidate any slices associated with this dynptr */
829 WARN_ON_ONCE(release_reference(env, ref_obj_id));
830
831 /* Invalidate any dynptr clones */
832 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
833 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
834 continue;
835
836 /* it should always be the case that if the ref obj id
837 * matches then the stack slot also belongs to a
838 * dynptr
839 */
840 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
841 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
842 return -EFAULT;
843 }
844 if (state->stack[i].spilled_ptr.dynptr.first_slot)
845 invalidate_dynptr(env, state, i);
846 }
847
848 return 0;
849 }
850
851 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
852 struct bpf_reg_state *reg);
853
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)854 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
855 {
856 if (!env->allow_ptr_leaks)
857 __mark_reg_not_init(env, reg);
858 else
859 __mark_reg_unknown(env, reg);
860 }
861
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)862 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
863 struct bpf_func_state *state, int spi)
864 {
865 struct bpf_func_state *fstate;
866 struct bpf_reg_state *dreg;
867 int i, dynptr_id;
868
869 /* We always ensure that STACK_DYNPTR is never set partially,
870 * hence just checking for slot_type[0] is enough. This is
871 * different for STACK_SPILL, where it may be only set for
872 * 1 byte, so code has to use is_spilled_reg.
873 */
874 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
875 return 0;
876
877 /* Reposition spi to first slot */
878 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
879 spi = spi + 1;
880
881 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
882 verbose(env, "cannot overwrite referenced dynptr\n");
883 return -EINVAL;
884 }
885
886 mark_stack_slot_scratched(env, spi);
887 mark_stack_slot_scratched(env, spi - 1);
888
889 /* Writing partially to one dynptr stack slot destroys both. */
890 for (i = 0; i < BPF_REG_SIZE; i++) {
891 state->stack[spi].slot_type[i] = STACK_INVALID;
892 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
893 }
894
895 dynptr_id = state->stack[spi].spilled_ptr.id;
896 /* Invalidate any slices associated with this dynptr */
897 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
898 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
899 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
900 continue;
901 if (dreg->dynptr_id == dynptr_id)
902 mark_reg_invalid(env, dreg);
903 }));
904
905 /* Do not release reference state, we are destroying dynptr on stack,
906 * not using some helper to release it. Just reset register.
907 */
908 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
909 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
910
911 /* Same reason as unmark_stack_slots_dynptr above */
912 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
913 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
914
915 return 0;
916 }
917
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)918 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
919 {
920 int spi;
921
922 if (reg->type == CONST_PTR_TO_DYNPTR)
923 return false;
924
925 spi = dynptr_get_spi(env, reg);
926
927 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
928 * error because this just means the stack state hasn't been updated yet.
929 * We will do check_mem_access to check and update stack bounds later.
930 */
931 if (spi < 0 && spi != -ERANGE)
932 return false;
933
934 /* We don't need to check if the stack slots are marked by previous
935 * dynptr initializations because we allow overwriting existing unreferenced
936 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
937 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
938 * touching are completely destructed before we reinitialize them for a new
939 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
940 * instead of delaying it until the end where the user will get "Unreleased
941 * reference" error.
942 */
943 return true;
944 }
945
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)946 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
947 {
948 struct bpf_func_state *state = func(env, reg);
949 int i, spi;
950
951 /* This already represents first slot of initialized bpf_dynptr.
952 *
953 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
954 * check_func_arg_reg_off's logic, so we don't need to check its
955 * offset and alignment.
956 */
957 if (reg->type == CONST_PTR_TO_DYNPTR)
958 return true;
959
960 spi = dynptr_get_spi(env, reg);
961 if (spi < 0)
962 return false;
963 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
964 return false;
965
966 for (i = 0; i < BPF_REG_SIZE; i++) {
967 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
968 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
969 return false;
970 }
971
972 return true;
973 }
974
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)975 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
976 enum bpf_arg_type arg_type)
977 {
978 struct bpf_func_state *state = func(env, reg);
979 enum bpf_dynptr_type dynptr_type;
980 int spi;
981
982 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
983 if (arg_type == ARG_PTR_TO_DYNPTR)
984 return true;
985
986 dynptr_type = arg_to_dynptr_type(arg_type);
987 if (reg->type == CONST_PTR_TO_DYNPTR) {
988 return reg->dynptr.type == dynptr_type;
989 } else {
990 spi = dynptr_get_spi(env, reg);
991 if (spi < 0)
992 return false;
993 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
994 }
995 }
996
997 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
998
999 static bool in_rcu_cs(struct bpf_verifier_env *env);
1000
1001 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1002
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1003 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1004 struct bpf_kfunc_call_arg_meta *meta,
1005 struct bpf_reg_state *reg, int insn_idx,
1006 struct btf *btf, u32 btf_id, int nr_slots)
1007 {
1008 struct bpf_func_state *state = func(env, reg);
1009 int spi, i, j, id;
1010
1011 spi = iter_get_spi(env, reg, nr_slots);
1012 if (spi < 0)
1013 return spi;
1014
1015 id = acquire_reference_state(env, insn_idx);
1016 if (id < 0)
1017 return id;
1018
1019 for (i = 0; i < nr_slots; i++) {
1020 struct bpf_stack_state *slot = &state->stack[spi - i];
1021 struct bpf_reg_state *st = &slot->spilled_ptr;
1022
1023 __mark_reg_known_zero(st);
1024 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1025 if (is_kfunc_rcu_protected(meta)) {
1026 if (in_rcu_cs(env))
1027 st->type |= MEM_RCU;
1028 else
1029 st->type |= PTR_UNTRUSTED;
1030 }
1031 st->live |= REG_LIVE_WRITTEN;
1032 st->ref_obj_id = i == 0 ? id : 0;
1033 st->iter.btf = btf;
1034 st->iter.btf_id = btf_id;
1035 st->iter.state = BPF_ITER_STATE_ACTIVE;
1036 st->iter.depth = 0;
1037
1038 for (j = 0; j < BPF_REG_SIZE; j++)
1039 slot->slot_type[j] = STACK_ITER;
1040
1041 mark_stack_slot_scratched(env, spi - i);
1042 }
1043
1044 return 0;
1045 }
1046
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1047 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1048 struct bpf_reg_state *reg, int nr_slots)
1049 {
1050 struct bpf_func_state *state = func(env, reg);
1051 int spi, i, j;
1052
1053 spi = iter_get_spi(env, reg, nr_slots);
1054 if (spi < 0)
1055 return spi;
1056
1057 for (i = 0; i < nr_slots; i++) {
1058 struct bpf_stack_state *slot = &state->stack[spi - i];
1059 struct bpf_reg_state *st = &slot->spilled_ptr;
1060
1061 if (i == 0)
1062 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1063
1064 __mark_reg_not_init(env, st);
1065
1066 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1067 st->live |= REG_LIVE_WRITTEN;
1068
1069 for (j = 0; j < BPF_REG_SIZE; j++)
1070 slot->slot_type[j] = STACK_INVALID;
1071
1072 mark_stack_slot_scratched(env, spi - i);
1073 }
1074
1075 return 0;
1076 }
1077
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1078 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1079 struct bpf_reg_state *reg, int nr_slots)
1080 {
1081 struct bpf_func_state *state = func(env, reg);
1082 int spi, i, j;
1083
1084 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1085 * will do check_mem_access to check and update stack bounds later, so
1086 * return true for that case.
1087 */
1088 spi = iter_get_spi(env, reg, nr_slots);
1089 if (spi == -ERANGE)
1090 return true;
1091 if (spi < 0)
1092 return false;
1093
1094 for (i = 0; i < nr_slots; i++) {
1095 struct bpf_stack_state *slot = &state->stack[spi - i];
1096
1097 for (j = 0; j < BPF_REG_SIZE; j++)
1098 if (slot->slot_type[j] == STACK_ITER)
1099 return false;
1100 }
1101
1102 return true;
1103 }
1104
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1105 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1106 struct btf *btf, u32 btf_id, int nr_slots)
1107 {
1108 struct bpf_func_state *state = func(env, reg);
1109 int spi, i, j;
1110
1111 spi = iter_get_spi(env, reg, nr_slots);
1112 if (spi < 0)
1113 return -EINVAL;
1114
1115 for (i = 0; i < nr_slots; i++) {
1116 struct bpf_stack_state *slot = &state->stack[spi - i];
1117 struct bpf_reg_state *st = &slot->spilled_ptr;
1118
1119 if (st->type & PTR_UNTRUSTED)
1120 return -EPROTO;
1121 /* only main (first) slot has ref_obj_id set */
1122 if (i == 0 && !st->ref_obj_id)
1123 return -EINVAL;
1124 if (i != 0 && st->ref_obj_id)
1125 return -EINVAL;
1126 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1127 return -EINVAL;
1128
1129 for (j = 0; j < BPF_REG_SIZE; j++)
1130 if (slot->slot_type[j] != STACK_ITER)
1131 return -EINVAL;
1132 }
1133
1134 return 0;
1135 }
1136
1137 /* Check if given stack slot is "special":
1138 * - spilled register state (STACK_SPILL);
1139 * - dynptr state (STACK_DYNPTR);
1140 * - iter state (STACK_ITER).
1141 */
is_stack_slot_special(const struct bpf_stack_state * stack)1142 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1143 {
1144 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1145
1146 switch (type) {
1147 case STACK_SPILL:
1148 case STACK_DYNPTR:
1149 case STACK_ITER:
1150 return true;
1151 case STACK_INVALID:
1152 case STACK_MISC:
1153 case STACK_ZERO:
1154 return false;
1155 default:
1156 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1157 return true;
1158 }
1159 }
1160
1161 /* The reg state of a pointer or a bounded scalar was saved when
1162 * it was spilled to the stack.
1163 */
is_spilled_reg(const struct bpf_stack_state * stack)1164 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1165 {
1166 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1167 }
1168
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1169 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1170 {
1171 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1172 stack->spilled_ptr.type == SCALAR_VALUE;
1173 }
1174
is_spilled_scalar_reg64(const struct bpf_stack_state * stack)1175 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1176 {
1177 return stack->slot_type[0] == STACK_SPILL &&
1178 stack->spilled_ptr.type == SCALAR_VALUE;
1179 }
1180
1181 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1182 * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1183 * more precise STACK_ZERO.
1184 * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1185 * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1186 */
mark_stack_slot_misc(struct bpf_verifier_env * env,u8 * stype)1187 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1188 {
1189 if (*stype == STACK_ZERO)
1190 return;
1191 if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1192 return;
1193 *stype = STACK_MISC;
1194 }
1195
scrub_spilled_slot(u8 * stype)1196 static void scrub_spilled_slot(u8 *stype)
1197 {
1198 if (*stype != STACK_INVALID)
1199 *stype = STACK_MISC;
1200 }
1201
1202 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1203 * small to hold src. This is different from krealloc since we don't want to preserve
1204 * the contents of dst.
1205 *
1206 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1207 * not be allocated.
1208 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1209 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1210 {
1211 size_t alloc_bytes;
1212 void *orig = dst;
1213 size_t bytes;
1214
1215 if (ZERO_OR_NULL_PTR(src))
1216 goto out;
1217
1218 if (unlikely(check_mul_overflow(n, size, &bytes)))
1219 return NULL;
1220
1221 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1222 dst = krealloc(orig, alloc_bytes, flags);
1223 if (!dst) {
1224 kfree(orig);
1225 return NULL;
1226 }
1227
1228 memcpy(dst, src, bytes);
1229 out:
1230 return dst ? dst : ZERO_SIZE_PTR;
1231 }
1232
1233 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1234 * small to hold new_n items. new items are zeroed out if the array grows.
1235 *
1236 * Contrary to krealloc_array, does not free arr if new_n is zero.
1237 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1238 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1239 {
1240 size_t alloc_size;
1241 void *new_arr;
1242
1243 if (!new_n || old_n == new_n)
1244 goto out;
1245
1246 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1247 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1248 if (!new_arr) {
1249 kfree(arr);
1250 return NULL;
1251 }
1252 arr = new_arr;
1253
1254 if (new_n > old_n)
1255 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1256
1257 out:
1258 return arr ? arr : ZERO_SIZE_PTR;
1259 }
1260
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1261 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1262 {
1263 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1264 sizeof(struct bpf_reference_state), GFP_KERNEL);
1265 if (!dst->refs)
1266 return -ENOMEM;
1267
1268 dst->acquired_refs = src->acquired_refs;
1269 return 0;
1270 }
1271
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1272 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1273 {
1274 size_t n = src->allocated_stack / BPF_REG_SIZE;
1275
1276 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1277 GFP_KERNEL);
1278 if (!dst->stack)
1279 return -ENOMEM;
1280
1281 dst->allocated_stack = src->allocated_stack;
1282 return 0;
1283 }
1284
resize_reference_state(struct bpf_func_state * state,size_t n)1285 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1286 {
1287 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1288 sizeof(struct bpf_reference_state));
1289 if (!state->refs)
1290 return -ENOMEM;
1291
1292 state->acquired_refs = n;
1293 return 0;
1294 }
1295
1296 /* Possibly update state->allocated_stack to be at least size bytes. Also
1297 * possibly update the function's high-water mark in its bpf_subprog_info.
1298 */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1299 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1300 {
1301 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1302
1303 /* The stack size is always a multiple of BPF_REG_SIZE. */
1304 size = round_up(size, BPF_REG_SIZE);
1305 n = size / BPF_REG_SIZE;
1306
1307 if (old_n >= n)
1308 return 0;
1309
1310 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1311 if (!state->stack)
1312 return -ENOMEM;
1313
1314 state->allocated_stack = size;
1315
1316 /* update known max for given subprogram */
1317 if (env->subprog_info[state->subprogno].stack_depth < size)
1318 env->subprog_info[state->subprogno].stack_depth = size;
1319
1320 return 0;
1321 }
1322
1323 /* Acquire a pointer id from the env and update the state->refs to include
1324 * this new pointer reference.
1325 * On success, returns a valid pointer id to associate with the register
1326 * On failure, returns a negative errno.
1327 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1328 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1329 {
1330 struct bpf_func_state *state = cur_func(env);
1331 int new_ofs = state->acquired_refs;
1332 int id, err;
1333
1334 err = resize_reference_state(state, state->acquired_refs + 1);
1335 if (err)
1336 return err;
1337 id = ++env->id_gen;
1338 state->refs[new_ofs].id = id;
1339 state->refs[new_ofs].insn_idx = insn_idx;
1340 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1341
1342 return id;
1343 }
1344
1345 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1346 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1347 {
1348 int i, last_idx;
1349
1350 last_idx = state->acquired_refs - 1;
1351 for (i = 0; i < state->acquired_refs; i++) {
1352 if (state->refs[i].id == ptr_id) {
1353 /* Cannot release caller references in callbacks */
1354 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1355 return -EINVAL;
1356 if (last_idx && i != last_idx)
1357 memcpy(&state->refs[i], &state->refs[last_idx],
1358 sizeof(*state->refs));
1359 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1360 state->acquired_refs--;
1361 return 0;
1362 }
1363 }
1364 return -EINVAL;
1365 }
1366
free_func_state(struct bpf_func_state * state)1367 static void free_func_state(struct bpf_func_state *state)
1368 {
1369 if (!state)
1370 return;
1371 kfree(state->refs);
1372 kfree(state->stack);
1373 kfree(state);
1374 }
1375
clear_jmp_history(struct bpf_verifier_state * state)1376 static void clear_jmp_history(struct bpf_verifier_state *state)
1377 {
1378 kfree(state->jmp_history);
1379 state->jmp_history = NULL;
1380 state->jmp_history_cnt = 0;
1381 }
1382
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1383 static void free_verifier_state(struct bpf_verifier_state *state,
1384 bool free_self)
1385 {
1386 int i;
1387
1388 for (i = 0; i <= state->curframe; i++) {
1389 free_func_state(state->frame[i]);
1390 state->frame[i] = NULL;
1391 }
1392 clear_jmp_history(state);
1393 if (free_self)
1394 kfree(state);
1395 }
1396
1397 /* copy verifier state from src to dst growing dst stack space
1398 * when necessary to accommodate larger src stack
1399 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1400 static int copy_func_state(struct bpf_func_state *dst,
1401 const struct bpf_func_state *src)
1402 {
1403 int err;
1404
1405 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1406 err = copy_reference_state(dst, src);
1407 if (err)
1408 return err;
1409 return copy_stack_state(dst, src);
1410 }
1411
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1412 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1413 const struct bpf_verifier_state *src)
1414 {
1415 struct bpf_func_state *dst;
1416 int i, err;
1417
1418 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1419 src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1420 GFP_USER);
1421 if (!dst_state->jmp_history)
1422 return -ENOMEM;
1423 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1424
1425 /* if dst has more stack frames then src frame, free them, this is also
1426 * necessary in case of exceptional exits using bpf_throw.
1427 */
1428 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1429 free_func_state(dst_state->frame[i]);
1430 dst_state->frame[i] = NULL;
1431 }
1432 dst_state->speculative = src->speculative;
1433 dst_state->active_rcu_lock = src->active_rcu_lock;
1434 dst_state->active_preempt_lock = src->active_preempt_lock;
1435 dst_state->in_sleepable = src->in_sleepable;
1436 dst_state->curframe = src->curframe;
1437 dst_state->active_lock.ptr = src->active_lock.ptr;
1438 dst_state->active_lock.id = src->active_lock.id;
1439 dst_state->branches = src->branches;
1440 dst_state->parent = src->parent;
1441 dst_state->first_insn_idx = src->first_insn_idx;
1442 dst_state->last_insn_idx = src->last_insn_idx;
1443 dst_state->dfs_depth = src->dfs_depth;
1444 dst_state->callback_unroll_depth = src->callback_unroll_depth;
1445 dst_state->used_as_loop_entry = src->used_as_loop_entry;
1446 dst_state->may_goto_depth = src->may_goto_depth;
1447 for (i = 0; i <= src->curframe; i++) {
1448 dst = dst_state->frame[i];
1449 if (!dst) {
1450 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1451 if (!dst)
1452 return -ENOMEM;
1453 dst_state->frame[i] = dst;
1454 }
1455 err = copy_func_state(dst, src->frame[i]);
1456 if (err)
1457 return err;
1458 }
1459 return 0;
1460 }
1461
state_htab_size(struct bpf_verifier_env * env)1462 static u32 state_htab_size(struct bpf_verifier_env *env)
1463 {
1464 return env->prog->len;
1465 }
1466
explored_state(struct bpf_verifier_env * env,int idx)1467 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1468 {
1469 struct bpf_verifier_state *cur = env->cur_state;
1470 struct bpf_func_state *state = cur->frame[cur->curframe];
1471
1472 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1473 }
1474
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1475 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1476 {
1477 int fr;
1478
1479 if (a->curframe != b->curframe)
1480 return false;
1481
1482 for (fr = a->curframe; fr >= 0; fr--)
1483 if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1484 return false;
1485
1486 return true;
1487 }
1488
1489 /* Open coded iterators allow back-edges in the state graph in order to
1490 * check unbounded loops that iterators.
1491 *
1492 * In is_state_visited() it is necessary to know if explored states are
1493 * part of some loops in order to decide whether non-exact states
1494 * comparison could be used:
1495 * - non-exact states comparison establishes sub-state relation and uses
1496 * read and precision marks to do so, these marks are propagated from
1497 * children states and thus are not guaranteed to be final in a loop;
1498 * - exact states comparison just checks if current and explored states
1499 * are identical (and thus form a back-edge).
1500 *
1501 * Paper "A New Algorithm for Identifying Loops in Decompilation"
1502 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1503 * algorithm for loop structure detection and gives an overview of
1504 * relevant terminology. It also has helpful illustrations.
1505 *
1506 * [1] https://api.semanticscholar.org/CorpusID:15784067
1507 *
1508 * We use a similar algorithm but because loop nested structure is
1509 * irrelevant for verifier ours is significantly simpler and resembles
1510 * strongly connected components algorithm from Sedgewick's textbook.
1511 *
1512 * Define topmost loop entry as a first node of the loop traversed in a
1513 * depth first search starting from initial state. The goal of the loop
1514 * tracking algorithm is to associate topmost loop entries with states
1515 * derived from these entries.
1516 *
1517 * For each step in the DFS states traversal algorithm needs to identify
1518 * the following situations:
1519 *
1520 * initial initial initial
1521 * | | |
1522 * V V V
1523 * ... ... .---------> hdr
1524 * | | | |
1525 * V V | V
1526 * cur .-> succ | .------...
1527 * | | | | | |
1528 * V | V | V V
1529 * succ '-- cur | ... ...
1530 * | | |
1531 * | V V
1532 * | succ <- cur
1533 * | |
1534 * | V
1535 * | ...
1536 * | |
1537 * '----'
1538 *
1539 * (A) successor state of cur (B) successor state of cur or it's entry
1540 * not yet traversed are in current DFS path, thus cur and succ
1541 * are members of the same outermost loop
1542 *
1543 * initial initial
1544 * | |
1545 * V V
1546 * ... ...
1547 * | |
1548 * V V
1549 * .------... .------...
1550 * | | | |
1551 * V V V V
1552 * .-> hdr ... ... ...
1553 * | | | | |
1554 * | V V V V
1555 * | succ <- cur succ <- cur
1556 * | | |
1557 * | V V
1558 * | ... ...
1559 * | | |
1560 * '----' exit
1561 *
1562 * (C) successor state of cur is a part of some loop but this loop
1563 * does not include cur or successor state is not in a loop at all.
1564 *
1565 * Algorithm could be described as the following python code:
1566 *
1567 * traversed = set() # Set of traversed nodes
1568 * entries = {} # Mapping from node to loop entry
1569 * depths = {} # Depth level assigned to graph node
1570 * path = set() # Current DFS path
1571 *
1572 * # Find outermost loop entry known for n
1573 * def get_loop_entry(n):
1574 * h = entries.get(n, None)
1575 * while h in entries and entries[h] != h:
1576 * h = entries[h]
1577 * return h
1578 *
1579 * # Update n's loop entry if h's outermost entry comes
1580 * # before n's outermost entry in current DFS path.
1581 * def update_loop_entry(n, h):
1582 * n1 = get_loop_entry(n) or n
1583 * h1 = get_loop_entry(h) or h
1584 * if h1 in path and depths[h1] <= depths[n1]:
1585 * entries[n] = h1
1586 *
1587 * def dfs(n, depth):
1588 * traversed.add(n)
1589 * path.add(n)
1590 * depths[n] = depth
1591 * for succ in G.successors(n):
1592 * if succ not in traversed:
1593 * # Case A: explore succ and update cur's loop entry
1594 * # only if succ's entry is in current DFS path.
1595 * dfs(succ, depth + 1)
1596 * h = get_loop_entry(succ)
1597 * update_loop_entry(n, h)
1598 * else:
1599 * # Case B or C depending on `h1 in path` check in update_loop_entry().
1600 * update_loop_entry(n, succ)
1601 * path.remove(n)
1602 *
1603 * To adapt this algorithm for use with verifier:
1604 * - use st->branch == 0 as a signal that DFS of succ had been finished
1605 * and cur's loop entry has to be updated (case A), handle this in
1606 * update_branch_counts();
1607 * - use st->branch > 0 as a signal that st is in the current DFS path;
1608 * - handle cases B and C in is_state_visited();
1609 * - update topmost loop entry for intermediate states in get_loop_entry().
1610 */
get_loop_entry(struct bpf_verifier_state * st)1611 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1612 {
1613 struct bpf_verifier_state *topmost = st->loop_entry, *old;
1614
1615 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1616 topmost = topmost->loop_entry;
1617 /* Update loop entries for intermediate states to avoid this
1618 * traversal in future get_loop_entry() calls.
1619 */
1620 while (st && st->loop_entry != topmost) {
1621 old = st->loop_entry;
1622 st->loop_entry = topmost;
1623 st = old;
1624 }
1625 return topmost;
1626 }
1627
update_loop_entry(struct bpf_verifier_state * cur,struct bpf_verifier_state * hdr)1628 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1629 {
1630 struct bpf_verifier_state *cur1, *hdr1;
1631
1632 cur1 = get_loop_entry(cur) ?: cur;
1633 hdr1 = get_loop_entry(hdr) ?: hdr;
1634 /* The head1->branches check decides between cases B and C in
1635 * comment for get_loop_entry(). If hdr1->branches == 0 then
1636 * head's topmost loop entry is not in current DFS path,
1637 * hence 'cur' and 'hdr' are not in the same loop and there is
1638 * no need to update cur->loop_entry.
1639 */
1640 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1641 cur->loop_entry = hdr;
1642 hdr->used_as_loop_entry = true;
1643 }
1644 }
1645
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1646 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1647 {
1648 while (st) {
1649 u32 br = --st->branches;
1650
1651 /* br == 0 signals that DFS exploration for 'st' is finished,
1652 * thus it is necessary to update parent's loop entry if it
1653 * turned out that st is a part of some loop.
1654 * This is a part of 'case A' in get_loop_entry() comment.
1655 */
1656 if (br == 0 && st->parent && st->loop_entry)
1657 update_loop_entry(st->parent, st->loop_entry);
1658
1659 /* WARN_ON(br > 1) technically makes sense here,
1660 * but see comment in push_stack(), hence:
1661 */
1662 WARN_ONCE((int)br < 0,
1663 "BUG update_branch_counts:branches_to_explore=%d\n",
1664 br);
1665 if (br)
1666 break;
1667 st = st->parent;
1668 }
1669 }
1670
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)1671 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1672 int *insn_idx, bool pop_log)
1673 {
1674 struct bpf_verifier_state *cur = env->cur_state;
1675 struct bpf_verifier_stack_elem *elem, *head = env->head;
1676 int err;
1677
1678 if (env->head == NULL)
1679 return -ENOENT;
1680
1681 if (cur) {
1682 err = copy_verifier_state(cur, &head->st);
1683 if (err)
1684 return err;
1685 }
1686 if (pop_log)
1687 bpf_vlog_reset(&env->log, head->log_pos);
1688 if (insn_idx)
1689 *insn_idx = head->insn_idx;
1690 if (prev_insn_idx)
1691 *prev_insn_idx = head->prev_insn_idx;
1692 elem = head->next;
1693 free_verifier_state(&head->st, false);
1694 kfree(head);
1695 env->head = elem;
1696 env->stack_size--;
1697 return 0;
1698 }
1699
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)1700 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1701 int insn_idx, int prev_insn_idx,
1702 bool speculative)
1703 {
1704 struct bpf_verifier_state *cur = env->cur_state;
1705 struct bpf_verifier_stack_elem *elem;
1706 int err;
1707
1708 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1709 if (!elem)
1710 goto err;
1711
1712 elem->insn_idx = insn_idx;
1713 elem->prev_insn_idx = prev_insn_idx;
1714 elem->next = env->head;
1715 elem->log_pos = env->log.end_pos;
1716 env->head = elem;
1717 env->stack_size++;
1718 err = copy_verifier_state(&elem->st, cur);
1719 if (err)
1720 goto err;
1721 elem->st.speculative |= speculative;
1722 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1723 verbose(env, "The sequence of %d jumps is too complex.\n",
1724 env->stack_size);
1725 goto err;
1726 }
1727 if (elem->st.parent) {
1728 ++elem->st.parent->branches;
1729 /* WARN_ON(branches > 2) technically makes sense here,
1730 * but
1731 * 1. speculative states will bump 'branches' for non-branch
1732 * instructions
1733 * 2. is_state_visited() heuristics may decide not to create
1734 * a new state for a sequence of branches and all such current
1735 * and cloned states will be pointing to a single parent state
1736 * which might have large 'branches' count.
1737 */
1738 }
1739 return &elem->st;
1740 err:
1741 free_verifier_state(env->cur_state, true);
1742 env->cur_state = NULL;
1743 /* pop all elements and return */
1744 while (!pop_stack(env, NULL, NULL, false));
1745 return NULL;
1746 }
1747
1748 #define CALLER_SAVED_REGS 6
1749 static const int caller_saved[CALLER_SAVED_REGS] = {
1750 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1751 };
1752
1753 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1754 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1755 {
1756 reg->var_off = tnum_const(imm);
1757 reg->smin_value = (s64)imm;
1758 reg->smax_value = (s64)imm;
1759 reg->umin_value = imm;
1760 reg->umax_value = imm;
1761
1762 reg->s32_min_value = (s32)imm;
1763 reg->s32_max_value = (s32)imm;
1764 reg->u32_min_value = (u32)imm;
1765 reg->u32_max_value = (u32)imm;
1766 }
1767
1768 /* Mark the unknown part of a register (variable offset or scalar value) as
1769 * known to have the value @imm.
1770 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1771 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1772 {
1773 /* Clear off and union(map_ptr, range) */
1774 memset(((u8 *)reg) + sizeof(reg->type), 0,
1775 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1776 reg->id = 0;
1777 reg->ref_obj_id = 0;
1778 ___mark_reg_known(reg, imm);
1779 }
1780
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1781 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1782 {
1783 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1784 reg->s32_min_value = (s32)imm;
1785 reg->s32_max_value = (s32)imm;
1786 reg->u32_min_value = (u32)imm;
1787 reg->u32_max_value = (u32)imm;
1788 }
1789
1790 /* Mark the 'variable offset' part of a register as zero. This should be
1791 * used only on registers holding a pointer type.
1792 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1793 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1794 {
1795 __mark_reg_known(reg, 0);
1796 }
1797
__mark_reg_const_zero(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1798 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1799 {
1800 __mark_reg_known(reg, 0);
1801 reg->type = SCALAR_VALUE;
1802 /* all scalars are assumed imprecise initially (unless unprivileged,
1803 * in which case everything is forced to be precise)
1804 */
1805 reg->precise = !env->bpf_capable;
1806 }
1807
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1808 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1809 struct bpf_reg_state *regs, u32 regno)
1810 {
1811 if (WARN_ON(regno >= MAX_BPF_REG)) {
1812 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1813 /* Something bad happened, let's kill all regs */
1814 for (regno = 0; regno < MAX_BPF_REG; regno++)
1815 __mark_reg_not_init(env, regs + regno);
1816 return;
1817 }
1818 __mark_reg_known_zero(regs + regno);
1819 }
1820
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)1821 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1822 bool first_slot, int dynptr_id)
1823 {
1824 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1825 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1826 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1827 */
1828 __mark_reg_known_zero(reg);
1829 reg->type = CONST_PTR_TO_DYNPTR;
1830 /* Give each dynptr a unique id to uniquely associate slices to it. */
1831 reg->id = dynptr_id;
1832 reg->dynptr.type = type;
1833 reg->dynptr.first_slot = first_slot;
1834 }
1835
mark_ptr_not_null_reg(struct bpf_reg_state * reg)1836 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1837 {
1838 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1839 const struct bpf_map *map = reg->map_ptr;
1840
1841 if (map->inner_map_meta) {
1842 reg->type = CONST_PTR_TO_MAP;
1843 reg->map_ptr = map->inner_map_meta;
1844 /* transfer reg's id which is unique for every map_lookup_elem
1845 * as UID of the inner map.
1846 */
1847 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1848 reg->map_uid = reg->id;
1849 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
1850 reg->map_uid = reg->id;
1851 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1852 reg->type = PTR_TO_XDP_SOCK;
1853 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1854 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1855 reg->type = PTR_TO_SOCKET;
1856 } else {
1857 reg->type = PTR_TO_MAP_VALUE;
1858 }
1859 return;
1860 }
1861
1862 reg->type &= ~PTR_MAYBE_NULL;
1863 }
1864
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)1865 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1866 struct btf_field_graph_root *ds_head)
1867 {
1868 __mark_reg_known_zero(®s[regno]);
1869 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1870 regs[regno].btf = ds_head->btf;
1871 regs[regno].btf_id = ds_head->value_btf_id;
1872 regs[regno].off = ds_head->node_offset;
1873 }
1874
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1875 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1876 {
1877 return type_is_pkt_pointer(reg->type);
1878 }
1879
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1880 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1881 {
1882 return reg_is_pkt_pointer(reg) ||
1883 reg->type == PTR_TO_PACKET_END;
1884 }
1885
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)1886 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1887 {
1888 return base_type(reg->type) == PTR_TO_MEM &&
1889 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1890 }
1891
1892 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1893 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1894 enum bpf_reg_type which)
1895 {
1896 /* The register can already have a range from prior markings.
1897 * This is fine as long as it hasn't been advanced from its
1898 * origin.
1899 */
1900 return reg->type == which &&
1901 reg->id == 0 &&
1902 reg->off == 0 &&
1903 tnum_equals_const(reg->var_off, 0);
1904 }
1905
1906 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1907 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1908 {
1909 reg->smin_value = S64_MIN;
1910 reg->smax_value = S64_MAX;
1911 reg->umin_value = 0;
1912 reg->umax_value = U64_MAX;
1913
1914 reg->s32_min_value = S32_MIN;
1915 reg->s32_max_value = S32_MAX;
1916 reg->u32_min_value = 0;
1917 reg->u32_max_value = U32_MAX;
1918 }
1919
__mark_reg64_unbounded(struct bpf_reg_state * reg)1920 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1921 {
1922 reg->smin_value = S64_MIN;
1923 reg->smax_value = S64_MAX;
1924 reg->umin_value = 0;
1925 reg->umax_value = U64_MAX;
1926 }
1927
__mark_reg32_unbounded(struct bpf_reg_state * reg)1928 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1929 {
1930 reg->s32_min_value = S32_MIN;
1931 reg->s32_max_value = S32_MAX;
1932 reg->u32_min_value = 0;
1933 reg->u32_max_value = U32_MAX;
1934 }
1935
__update_reg32_bounds(struct bpf_reg_state * reg)1936 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1937 {
1938 struct tnum var32_off = tnum_subreg(reg->var_off);
1939
1940 /* min signed is max(sign bit) | min(other bits) */
1941 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1942 var32_off.value | (var32_off.mask & S32_MIN));
1943 /* max signed is min(sign bit) | max(other bits) */
1944 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1945 var32_off.value | (var32_off.mask & S32_MAX));
1946 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1947 reg->u32_max_value = min(reg->u32_max_value,
1948 (u32)(var32_off.value | var32_off.mask));
1949 }
1950
__update_reg64_bounds(struct bpf_reg_state * reg)1951 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1952 {
1953 /* min signed is max(sign bit) | min(other bits) */
1954 reg->smin_value = max_t(s64, reg->smin_value,
1955 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1956 /* max signed is min(sign bit) | max(other bits) */
1957 reg->smax_value = min_t(s64, reg->smax_value,
1958 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1959 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1960 reg->umax_value = min(reg->umax_value,
1961 reg->var_off.value | reg->var_off.mask);
1962 }
1963
__update_reg_bounds(struct bpf_reg_state * reg)1964 static void __update_reg_bounds(struct bpf_reg_state *reg)
1965 {
1966 __update_reg32_bounds(reg);
1967 __update_reg64_bounds(reg);
1968 }
1969
1970 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1971 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1972 {
1973 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1974 * bits to improve our u32/s32 boundaries.
1975 *
1976 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1977 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1978 * [10, 20] range. But this property holds for any 64-bit range as
1979 * long as upper 32 bits in that entire range of values stay the same.
1980 *
1981 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1982 * in decimal) has the same upper 32 bits throughout all the values in
1983 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1984 * range.
1985 *
1986 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1987 * following the rules outlined below about u64/s64 correspondence
1988 * (which equally applies to u32 vs s32 correspondence). In general it
1989 * depends on actual hexadecimal values of 32-bit range. They can form
1990 * only valid u32, or only valid s32 ranges in some cases.
1991 *
1992 * So we use all these insights to derive bounds for subregisters here.
1993 */
1994 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1995 /* u64 to u32 casting preserves validity of low 32 bits as
1996 * a range, if upper 32 bits are the same
1997 */
1998 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
1999 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2000
2001 if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2002 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2003 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2004 }
2005 }
2006 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2007 /* low 32 bits should form a proper u32 range */
2008 if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2009 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2010 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2011 }
2012 /* low 32 bits should form a proper s32 range */
2013 if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2014 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2015 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2016 }
2017 }
2018 /* Special case where upper bits form a small sequence of two
2019 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2020 * 0x00000000 is also valid), while lower bits form a proper s32 range
2021 * going from negative numbers to positive numbers. E.g., let's say we
2022 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2023 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2024 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2025 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2026 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2027 * upper 32 bits. As a random example, s64 range
2028 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2029 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2030 */
2031 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2032 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2033 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2034 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2035 }
2036 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2037 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2038 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2039 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2040 }
2041 /* if u32 range forms a valid s32 range (due to matching sign bit),
2042 * try to learn from that
2043 */
2044 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2045 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2046 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2047 }
2048 /* If we cannot cross the sign boundary, then signed and unsigned bounds
2049 * are the same, so combine. This works even in the negative case, e.g.
2050 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2051 */
2052 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2053 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2054 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2055 }
2056 }
2057
__reg64_deduce_bounds(struct bpf_reg_state * reg)2058 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2059 {
2060 /* If u64 range forms a valid s64 range (due to matching sign bit),
2061 * try to learn from that. Let's do a bit of ASCII art to see when
2062 * this is happening. Let's take u64 range first:
2063 *
2064 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2065 * |-------------------------------|--------------------------------|
2066 *
2067 * Valid u64 range is formed when umin and umax are anywhere in the
2068 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2069 * straightforward. Let's see how s64 range maps onto the same range
2070 * of values, annotated below the line for comparison:
2071 *
2072 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2073 * |-------------------------------|--------------------------------|
2074 * 0 S64_MAX S64_MIN -1
2075 *
2076 * So s64 values basically start in the middle and they are logically
2077 * contiguous to the right of it, wrapping around from -1 to 0, and
2078 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2079 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2080 * more visually as mapped to sign-agnostic range of hex values.
2081 *
2082 * u64 start u64 end
2083 * _______________________________________________________________
2084 * / \
2085 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX
2086 * |-------------------------------|--------------------------------|
2087 * 0 S64_MAX S64_MIN -1
2088 * / \
2089 * >------------------------------ ------------------------------->
2090 * s64 continues... s64 end s64 start s64 "midpoint"
2091 *
2092 * What this means is that, in general, we can't always derive
2093 * something new about u64 from any random s64 range, and vice versa.
2094 *
2095 * But we can do that in two particular cases. One is when entire
2096 * u64/s64 range is *entirely* contained within left half of the above
2097 * diagram or when it is *entirely* contained in the right half. I.e.:
2098 *
2099 * |-------------------------------|--------------------------------|
2100 * ^ ^ ^ ^
2101 * A B C D
2102 *
2103 * [A, B] and [C, D] are contained entirely in their respective halves
2104 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2105 * will be non-negative both as u64 and s64 (and in fact it will be
2106 * identical ranges no matter the signedness). [C, D] treated as s64
2107 * will be a range of negative values, while in u64 it will be
2108 * non-negative range of values larger than 0x8000000000000000.
2109 *
2110 * Now, any other range here can't be represented in both u64 and s64
2111 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2112 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2113 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2114 * for example. Similarly, valid s64 range [D, A] (going from negative
2115 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2116 * ranges as u64. Currently reg_state can't represent two segments per
2117 * numeric domain, so in such situations we can only derive maximal
2118 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2119 *
2120 * So we use these facts to derive umin/umax from smin/smax and vice
2121 * versa only if they stay within the same "half". This is equivalent
2122 * to checking sign bit: lower half will have sign bit as zero, upper
2123 * half have sign bit 1. Below in code we simplify this by just
2124 * casting umin/umax as smin/smax and checking if they form valid
2125 * range, and vice versa. Those are equivalent checks.
2126 */
2127 if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2128 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2129 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2130 }
2131 /* If we cannot cross the sign boundary, then signed and unsigned bounds
2132 * are the same, so combine. This works even in the negative case, e.g.
2133 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2134 */
2135 if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2136 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2137 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2138 }
2139 }
2140
__reg_deduce_mixed_bounds(struct bpf_reg_state * reg)2141 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2142 {
2143 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2144 * values on both sides of 64-bit range in hope to have tighter range.
2145 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2146 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2147 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2148 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2149 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2150 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2151 * We just need to make sure that derived bounds we are intersecting
2152 * with are well-formed ranges in respective s64 or u64 domain, just
2153 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2154 */
2155 __u64 new_umin, new_umax;
2156 __s64 new_smin, new_smax;
2157
2158 /* u32 -> u64 tightening, it's always well-formed */
2159 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2160 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2161 reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2162 reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2163 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2164 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2165 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2166 reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2167 reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2168
2169 /* if s32 can be treated as valid u32 range, we can use it as well */
2170 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2171 /* s32 -> u64 tightening */
2172 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2173 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2174 reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2175 reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2176 /* s32 -> s64 tightening */
2177 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2178 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2179 reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2180 reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2181 }
2182
2183 /* Here we would like to handle a special case after sign extending load,
2184 * when upper bits for a 64-bit range are all 1s or all 0s.
2185 *
2186 * Upper bits are all 1s when register is in a range:
2187 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2188 * Upper bits are all 0s when register is in a range:
2189 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2190 * Together this forms are continuous range:
2191 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2192 *
2193 * Now, suppose that register range is in fact tighter:
2194 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2195 * Also suppose that it's 32-bit range is positive,
2196 * meaning that lower 32-bits of the full 64-bit register
2197 * are in the range:
2198 * [0x0000_0000, 0x7fff_ffff] (W)
2199 *
2200 * If this happens, then any value in a range:
2201 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2202 * is smaller than a lowest bound of the range (R):
2203 * 0xffff_ffff_8000_0000
2204 * which means that upper bits of the full 64-bit register
2205 * can't be all 1s, when lower bits are in range (W).
2206 *
2207 * Note that:
2208 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2209 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2210 * These relations are used in the conditions below.
2211 */
2212 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2213 reg->smin_value = reg->s32_min_value;
2214 reg->smax_value = reg->s32_max_value;
2215 reg->umin_value = reg->s32_min_value;
2216 reg->umax_value = reg->s32_max_value;
2217 reg->var_off = tnum_intersect(reg->var_off,
2218 tnum_range(reg->smin_value, reg->smax_value));
2219 }
2220 }
2221
__reg_deduce_bounds(struct bpf_reg_state * reg)2222 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2223 {
2224 __reg32_deduce_bounds(reg);
2225 __reg64_deduce_bounds(reg);
2226 __reg_deduce_mixed_bounds(reg);
2227 }
2228
2229 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2230 static void __reg_bound_offset(struct bpf_reg_state *reg)
2231 {
2232 struct tnum var64_off = tnum_intersect(reg->var_off,
2233 tnum_range(reg->umin_value,
2234 reg->umax_value));
2235 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2236 tnum_range(reg->u32_min_value,
2237 reg->u32_max_value));
2238
2239 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2240 }
2241
reg_bounds_sync(struct bpf_reg_state * reg)2242 static void reg_bounds_sync(struct bpf_reg_state *reg)
2243 {
2244 /* We might have learned new bounds from the var_off. */
2245 __update_reg_bounds(reg);
2246 /* We might have learned something about the sign bit. */
2247 __reg_deduce_bounds(reg);
2248 __reg_deduce_bounds(reg);
2249 /* We might have learned some bits from the bounds. */
2250 __reg_bound_offset(reg);
2251 /* Intersecting with the old var_off might have improved our bounds
2252 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2253 * then new var_off is (0; 0x7f...fc) which improves our umax.
2254 */
2255 __update_reg_bounds(reg);
2256 }
2257
reg_bounds_sanity_check(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * ctx)2258 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2259 struct bpf_reg_state *reg, const char *ctx)
2260 {
2261 const char *msg;
2262
2263 if (reg->umin_value > reg->umax_value ||
2264 reg->smin_value > reg->smax_value ||
2265 reg->u32_min_value > reg->u32_max_value ||
2266 reg->s32_min_value > reg->s32_max_value) {
2267 msg = "range bounds violation";
2268 goto out;
2269 }
2270
2271 if (tnum_is_const(reg->var_off)) {
2272 u64 uval = reg->var_off.value;
2273 s64 sval = (s64)uval;
2274
2275 if (reg->umin_value != uval || reg->umax_value != uval ||
2276 reg->smin_value != sval || reg->smax_value != sval) {
2277 msg = "const tnum out of sync with range bounds";
2278 goto out;
2279 }
2280 }
2281
2282 if (tnum_subreg_is_const(reg->var_off)) {
2283 u32 uval32 = tnum_subreg(reg->var_off).value;
2284 s32 sval32 = (s32)uval32;
2285
2286 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2287 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2288 msg = "const subreg tnum out of sync with range bounds";
2289 goto out;
2290 }
2291 }
2292
2293 return 0;
2294 out:
2295 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2296 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2297 ctx, msg, reg->umin_value, reg->umax_value,
2298 reg->smin_value, reg->smax_value,
2299 reg->u32_min_value, reg->u32_max_value,
2300 reg->s32_min_value, reg->s32_max_value,
2301 reg->var_off.value, reg->var_off.mask);
2302 if (env->test_reg_invariants)
2303 return -EFAULT;
2304 __mark_reg_unbounded(reg);
2305 return 0;
2306 }
2307
__reg32_bound_s64(s32 a)2308 static bool __reg32_bound_s64(s32 a)
2309 {
2310 return a >= 0 && a <= S32_MAX;
2311 }
2312
__reg_assign_32_into_64(struct bpf_reg_state * reg)2313 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2314 {
2315 reg->umin_value = reg->u32_min_value;
2316 reg->umax_value = reg->u32_max_value;
2317
2318 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2319 * be positive otherwise set to worse case bounds and refine later
2320 * from tnum.
2321 */
2322 if (__reg32_bound_s64(reg->s32_min_value) &&
2323 __reg32_bound_s64(reg->s32_max_value)) {
2324 reg->smin_value = reg->s32_min_value;
2325 reg->smax_value = reg->s32_max_value;
2326 } else {
2327 reg->smin_value = 0;
2328 reg->smax_value = U32_MAX;
2329 }
2330 }
2331
2332 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown_imprecise(struct bpf_reg_state * reg)2333 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2334 {
2335 /*
2336 * Clear type, off, and union(map_ptr, range) and
2337 * padding between 'type' and union
2338 */
2339 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2340 reg->type = SCALAR_VALUE;
2341 reg->id = 0;
2342 reg->ref_obj_id = 0;
2343 reg->var_off = tnum_unknown;
2344 reg->frameno = 0;
2345 reg->precise = false;
2346 __mark_reg_unbounded(reg);
2347 }
2348
2349 /* Mark a register as having a completely unknown (scalar) value,
2350 * initialize .precise as true when not bpf capable.
2351 */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2352 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2353 struct bpf_reg_state *reg)
2354 {
2355 __mark_reg_unknown_imprecise(reg);
2356 reg->precise = !env->bpf_capable;
2357 }
2358
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2359 static void mark_reg_unknown(struct bpf_verifier_env *env,
2360 struct bpf_reg_state *regs, u32 regno)
2361 {
2362 if (WARN_ON(regno >= MAX_BPF_REG)) {
2363 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2364 /* Something bad happened, let's kill all regs except FP */
2365 for (regno = 0; regno < BPF_REG_FP; regno++)
2366 __mark_reg_not_init(env, regs + regno);
2367 return;
2368 }
2369 __mark_reg_unknown(env, regs + regno);
2370 }
2371
__mark_reg_s32_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,s32 s32_min,s32 s32_max)2372 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2373 struct bpf_reg_state *regs,
2374 u32 regno,
2375 s32 s32_min,
2376 s32 s32_max)
2377 {
2378 struct bpf_reg_state *reg = regs + regno;
2379
2380 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2381 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2382
2383 reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2384 reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2385
2386 reg_bounds_sync(reg);
2387
2388 return reg_bounds_sanity_check(env, reg, "s32_range");
2389 }
2390
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2391 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2392 struct bpf_reg_state *reg)
2393 {
2394 __mark_reg_unknown(env, reg);
2395 reg->type = NOT_INIT;
2396 }
2397
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2398 static void mark_reg_not_init(struct bpf_verifier_env *env,
2399 struct bpf_reg_state *regs, u32 regno)
2400 {
2401 if (WARN_ON(regno >= MAX_BPF_REG)) {
2402 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2403 /* Something bad happened, let's kill all regs except FP */
2404 for (regno = 0; regno < BPF_REG_FP; regno++)
2405 __mark_reg_not_init(env, regs + regno);
2406 return;
2407 }
2408 __mark_reg_not_init(env, regs + regno);
2409 }
2410
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2411 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2412 struct bpf_reg_state *regs, u32 regno,
2413 enum bpf_reg_type reg_type,
2414 struct btf *btf, u32 btf_id,
2415 enum bpf_type_flag flag)
2416 {
2417 if (reg_type == SCALAR_VALUE) {
2418 mark_reg_unknown(env, regs, regno);
2419 return;
2420 }
2421 mark_reg_known_zero(env, regs, regno);
2422 regs[regno].type = PTR_TO_BTF_ID | flag;
2423 regs[regno].btf = btf;
2424 regs[regno].btf_id = btf_id;
2425 if (type_may_be_null(flag))
2426 regs[regno].id = ++env->id_gen;
2427 }
2428
2429 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2430 static void init_reg_state(struct bpf_verifier_env *env,
2431 struct bpf_func_state *state)
2432 {
2433 struct bpf_reg_state *regs = state->regs;
2434 int i;
2435
2436 for (i = 0; i < MAX_BPF_REG; i++) {
2437 mark_reg_not_init(env, regs, i);
2438 regs[i].live = REG_LIVE_NONE;
2439 regs[i].parent = NULL;
2440 regs[i].subreg_def = DEF_NOT_SUBREG;
2441 }
2442
2443 /* frame pointer */
2444 regs[BPF_REG_FP].type = PTR_TO_STACK;
2445 mark_reg_known_zero(env, regs, BPF_REG_FP);
2446 regs[BPF_REG_FP].frameno = state->frameno;
2447 }
2448
retval_range(s32 minval,s32 maxval)2449 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2450 {
2451 return (struct bpf_retval_range){ minval, maxval };
2452 }
2453
2454 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2455 static void init_func_state(struct bpf_verifier_env *env,
2456 struct bpf_func_state *state,
2457 int callsite, int frameno, int subprogno)
2458 {
2459 state->callsite = callsite;
2460 state->frameno = frameno;
2461 state->subprogno = subprogno;
2462 state->callback_ret_range = retval_range(0, 0);
2463 init_reg_state(env, state);
2464 mark_verifier_state_scratched(env);
2465 }
2466
2467 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog,bool is_sleepable)2468 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2469 int insn_idx, int prev_insn_idx,
2470 int subprog, bool is_sleepable)
2471 {
2472 struct bpf_verifier_stack_elem *elem;
2473 struct bpf_func_state *frame;
2474
2475 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2476 if (!elem)
2477 goto err;
2478
2479 elem->insn_idx = insn_idx;
2480 elem->prev_insn_idx = prev_insn_idx;
2481 elem->next = env->head;
2482 elem->log_pos = env->log.end_pos;
2483 env->head = elem;
2484 env->stack_size++;
2485 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2486 verbose(env,
2487 "The sequence of %d jumps is too complex for async cb.\n",
2488 env->stack_size);
2489 goto err;
2490 }
2491 /* Unlike push_stack() do not copy_verifier_state().
2492 * The caller state doesn't matter.
2493 * This is async callback. It starts in a fresh stack.
2494 * Initialize it similar to do_check_common().
2495 */
2496 elem->st.branches = 1;
2497 elem->st.in_sleepable = is_sleepable;
2498 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2499 if (!frame)
2500 goto err;
2501 init_func_state(env, frame,
2502 BPF_MAIN_FUNC /* callsite */,
2503 0 /* frameno within this callchain */,
2504 subprog /* subprog number within this prog */);
2505 elem->st.frame[0] = frame;
2506 return &elem->st;
2507 err:
2508 free_verifier_state(env->cur_state, true);
2509 env->cur_state = NULL;
2510 /* pop all elements and return */
2511 while (!pop_stack(env, NULL, NULL, false));
2512 return NULL;
2513 }
2514
2515
2516 enum reg_arg_type {
2517 SRC_OP, /* register is used as source operand */
2518 DST_OP, /* register is used as destination operand */
2519 DST_OP_NO_MARK /* same as above, check only, don't mark */
2520 };
2521
cmp_subprogs(const void * a,const void * b)2522 static int cmp_subprogs(const void *a, const void *b)
2523 {
2524 return ((struct bpf_subprog_info *)a)->start -
2525 ((struct bpf_subprog_info *)b)->start;
2526 }
2527
find_subprog(struct bpf_verifier_env * env,int off)2528 static int find_subprog(struct bpf_verifier_env *env, int off)
2529 {
2530 struct bpf_subprog_info *p;
2531
2532 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2533 sizeof(env->subprog_info[0]), cmp_subprogs);
2534 if (!p)
2535 return -ENOENT;
2536 return p - env->subprog_info;
2537
2538 }
2539
add_subprog(struct bpf_verifier_env * env,int off)2540 static int add_subprog(struct bpf_verifier_env *env, int off)
2541 {
2542 int insn_cnt = env->prog->len;
2543 int ret;
2544
2545 if (off >= insn_cnt || off < 0) {
2546 verbose(env, "call to invalid destination\n");
2547 return -EINVAL;
2548 }
2549 ret = find_subprog(env, off);
2550 if (ret >= 0)
2551 return ret;
2552 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2553 verbose(env, "too many subprograms\n");
2554 return -E2BIG;
2555 }
2556 /* determine subprog starts. The end is one before the next starts */
2557 env->subprog_info[env->subprog_cnt++].start = off;
2558 sort(env->subprog_info, env->subprog_cnt,
2559 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2560 return env->subprog_cnt - 1;
2561 }
2562
bpf_find_exception_callback_insn_off(struct bpf_verifier_env * env)2563 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2564 {
2565 struct bpf_prog_aux *aux = env->prog->aux;
2566 struct btf *btf = aux->btf;
2567 const struct btf_type *t;
2568 u32 main_btf_id, id;
2569 const char *name;
2570 int ret, i;
2571
2572 /* Non-zero func_info_cnt implies valid btf */
2573 if (!aux->func_info_cnt)
2574 return 0;
2575 main_btf_id = aux->func_info[0].type_id;
2576
2577 t = btf_type_by_id(btf, main_btf_id);
2578 if (!t) {
2579 verbose(env, "invalid btf id for main subprog in func_info\n");
2580 return -EINVAL;
2581 }
2582
2583 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2584 if (IS_ERR(name)) {
2585 ret = PTR_ERR(name);
2586 /* If there is no tag present, there is no exception callback */
2587 if (ret == -ENOENT)
2588 ret = 0;
2589 else if (ret == -EEXIST)
2590 verbose(env, "multiple exception callback tags for main subprog\n");
2591 return ret;
2592 }
2593
2594 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2595 if (ret < 0) {
2596 verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2597 return ret;
2598 }
2599 id = ret;
2600 t = btf_type_by_id(btf, id);
2601 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2602 verbose(env, "exception callback '%s' must have global linkage\n", name);
2603 return -EINVAL;
2604 }
2605 ret = 0;
2606 for (i = 0; i < aux->func_info_cnt; i++) {
2607 if (aux->func_info[i].type_id != id)
2608 continue;
2609 ret = aux->func_info[i].insn_off;
2610 /* Further func_info and subprog checks will also happen
2611 * later, so assume this is the right insn_off for now.
2612 */
2613 if (!ret) {
2614 verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2615 ret = -EINVAL;
2616 }
2617 }
2618 if (!ret) {
2619 verbose(env, "exception callback type id not found in func_info\n");
2620 ret = -EINVAL;
2621 }
2622 return ret;
2623 }
2624
2625 #define MAX_KFUNC_DESCS 256
2626 #define MAX_KFUNC_BTFS 256
2627
2628 struct bpf_kfunc_desc {
2629 struct btf_func_model func_model;
2630 u32 func_id;
2631 s32 imm;
2632 u16 offset;
2633 unsigned long addr;
2634 };
2635
2636 struct bpf_kfunc_btf {
2637 struct btf *btf;
2638 struct module *module;
2639 u16 offset;
2640 };
2641
2642 struct bpf_kfunc_desc_tab {
2643 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2644 * verification. JITs do lookups by bpf_insn, where func_id may not be
2645 * available, therefore at the end of verification do_misc_fixups()
2646 * sorts this by imm and offset.
2647 */
2648 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2649 u32 nr_descs;
2650 };
2651
2652 struct bpf_kfunc_btf_tab {
2653 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2654 u32 nr_descs;
2655 };
2656
kfunc_desc_cmp_by_id_off(const void * a,const void * b)2657 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2658 {
2659 const struct bpf_kfunc_desc *d0 = a;
2660 const struct bpf_kfunc_desc *d1 = b;
2661
2662 /* func_id is not greater than BTF_MAX_TYPE */
2663 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2664 }
2665
kfunc_btf_cmp_by_off(const void * a,const void * b)2666 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2667 {
2668 const struct bpf_kfunc_btf *d0 = a;
2669 const struct bpf_kfunc_btf *d1 = b;
2670
2671 return d0->offset - d1->offset;
2672 }
2673
2674 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)2675 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2676 {
2677 struct bpf_kfunc_desc desc = {
2678 .func_id = func_id,
2679 .offset = offset,
2680 };
2681 struct bpf_kfunc_desc_tab *tab;
2682
2683 tab = prog->aux->kfunc_tab;
2684 return bsearch(&desc, tab->descs, tab->nr_descs,
2685 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2686 }
2687
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2688 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2689 u16 btf_fd_idx, u8 **func_addr)
2690 {
2691 const struct bpf_kfunc_desc *desc;
2692
2693 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2694 if (!desc)
2695 return -EFAULT;
2696
2697 *func_addr = (u8 *)desc->addr;
2698 return 0;
2699 }
2700
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2701 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2702 s16 offset)
2703 {
2704 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2705 struct bpf_kfunc_btf_tab *tab;
2706 struct bpf_kfunc_btf *b;
2707 struct module *mod;
2708 struct btf *btf;
2709 int btf_fd;
2710
2711 tab = env->prog->aux->kfunc_btf_tab;
2712 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2713 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2714 if (!b) {
2715 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2716 verbose(env, "too many different module BTFs\n");
2717 return ERR_PTR(-E2BIG);
2718 }
2719
2720 if (bpfptr_is_null(env->fd_array)) {
2721 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2722 return ERR_PTR(-EPROTO);
2723 }
2724
2725 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2726 offset * sizeof(btf_fd),
2727 sizeof(btf_fd)))
2728 return ERR_PTR(-EFAULT);
2729
2730 btf = btf_get_by_fd(btf_fd);
2731 if (IS_ERR(btf)) {
2732 verbose(env, "invalid module BTF fd specified\n");
2733 return btf;
2734 }
2735
2736 if (!btf_is_module(btf)) {
2737 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2738 btf_put(btf);
2739 return ERR_PTR(-EINVAL);
2740 }
2741
2742 mod = btf_try_get_module(btf);
2743 if (!mod) {
2744 btf_put(btf);
2745 return ERR_PTR(-ENXIO);
2746 }
2747
2748 b = &tab->descs[tab->nr_descs++];
2749 b->btf = btf;
2750 b->module = mod;
2751 b->offset = offset;
2752
2753 /* sort() reorders entries by value, so b may no longer point
2754 * to the right entry after this
2755 */
2756 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2757 kfunc_btf_cmp_by_off, NULL);
2758 } else {
2759 btf = b->btf;
2760 }
2761
2762 return btf;
2763 }
2764
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)2765 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2766 {
2767 if (!tab)
2768 return;
2769
2770 while (tab->nr_descs--) {
2771 module_put(tab->descs[tab->nr_descs].module);
2772 btf_put(tab->descs[tab->nr_descs].btf);
2773 }
2774 kfree(tab);
2775 }
2776
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2777 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2778 {
2779 if (offset) {
2780 if (offset < 0) {
2781 /* In the future, this can be allowed to increase limit
2782 * of fd index into fd_array, interpreted as u16.
2783 */
2784 verbose(env, "negative offset disallowed for kernel module function call\n");
2785 return ERR_PTR(-EINVAL);
2786 }
2787
2788 return __find_kfunc_desc_btf(env, offset);
2789 }
2790 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2791 }
2792
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2793 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2794 {
2795 const struct btf_type *func, *func_proto;
2796 struct bpf_kfunc_btf_tab *btf_tab;
2797 struct bpf_kfunc_desc_tab *tab;
2798 struct bpf_prog_aux *prog_aux;
2799 struct bpf_kfunc_desc *desc;
2800 const char *func_name;
2801 struct btf *desc_btf;
2802 unsigned long call_imm;
2803 unsigned long addr;
2804 int err;
2805
2806 prog_aux = env->prog->aux;
2807 tab = prog_aux->kfunc_tab;
2808 btf_tab = prog_aux->kfunc_btf_tab;
2809 if (!tab) {
2810 if (!btf_vmlinux) {
2811 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2812 return -ENOTSUPP;
2813 }
2814
2815 if (!env->prog->jit_requested) {
2816 verbose(env, "JIT is required for calling kernel function\n");
2817 return -ENOTSUPP;
2818 }
2819
2820 if (!bpf_jit_supports_kfunc_call()) {
2821 verbose(env, "JIT does not support calling kernel function\n");
2822 return -ENOTSUPP;
2823 }
2824
2825 if (!env->prog->gpl_compatible) {
2826 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2827 return -EINVAL;
2828 }
2829
2830 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2831 if (!tab)
2832 return -ENOMEM;
2833 prog_aux->kfunc_tab = tab;
2834 }
2835
2836 /* func_id == 0 is always invalid, but instead of returning an error, be
2837 * conservative and wait until the code elimination pass before returning
2838 * error, so that invalid calls that get pruned out can be in BPF programs
2839 * loaded from userspace. It is also required that offset be untouched
2840 * for such calls.
2841 */
2842 if (!func_id && !offset)
2843 return 0;
2844
2845 if (!btf_tab && offset) {
2846 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2847 if (!btf_tab)
2848 return -ENOMEM;
2849 prog_aux->kfunc_btf_tab = btf_tab;
2850 }
2851
2852 desc_btf = find_kfunc_desc_btf(env, offset);
2853 if (IS_ERR(desc_btf)) {
2854 verbose(env, "failed to find BTF for kernel function\n");
2855 return PTR_ERR(desc_btf);
2856 }
2857
2858 if (find_kfunc_desc(env->prog, func_id, offset))
2859 return 0;
2860
2861 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2862 verbose(env, "too many different kernel function calls\n");
2863 return -E2BIG;
2864 }
2865
2866 func = btf_type_by_id(desc_btf, func_id);
2867 if (!func || !btf_type_is_func(func)) {
2868 verbose(env, "kernel btf_id %u is not a function\n",
2869 func_id);
2870 return -EINVAL;
2871 }
2872 func_proto = btf_type_by_id(desc_btf, func->type);
2873 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2874 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2875 func_id);
2876 return -EINVAL;
2877 }
2878
2879 func_name = btf_name_by_offset(desc_btf, func->name_off);
2880 addr = kallsyms_lookup_name(func_name);
2881 if (!addr) {
2882 verbose(env, "cannot find address for kernel function %s\n",
2883 func_name);
2884 return -EINVAL;
2885 }
2886 specialize_kfunc(env, func_id, offset, &addr);
2887
2888 if (bpf_jit_supports_far_kfunc_call()) {
2889 call_imm = func_id;
2890 } else {
2891 call_imm = BPF_CALL_IMM(addr);
2892 /* Check whether the relative offset overflows desc->imm */
2893 if ((unsigned long)(s32)call_imm != call_imm) {
2894 verbose(env, "address of kernel function %s is out of range\n",
2895 func_name);
2896 return -EINVAL;
2897 }
2898 }
2899
2900 if (bpf_dev_bound_kfunc_id(func_id)) {
2901 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2902 if (err)
2903 return err;
2904 }
2905
2906 desc = &tab->descs[tab->nr_descs++];
2907 desc->func_id = func_id;
2908 desc->imm = call_imm;
2909 desc->offset = offset;
2910 desc->addr = addr;
2911 err = btf_distill_func_proto(&env->log, desc_btf,
2912 func_proto, func_name,
2913 &desc->func_model);
2914 if (!err)
2915 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2916 kfunc_desc_cmp_by_id_off, NULL);
2917 return err;
2918 }
2919
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)2920 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2921 {
2922 const struct bpf_kfunc_desc *d0 = a;
2923 const struct bpf_kfunc_desc *d1 = b;
2924
2925 if (d0->imm != d1->imm)
2926 return d0->imm < d1->imm ? -1 : 1;
2927 if (d0->offset != d1->offset)
2928 return d0->offset < d1->offset ? -1 : 1;
2929 return 0;
2930 }
2931
sort_kfunc_descs_by_imm_off(struct bpf_prog * prog)2932 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2933 {
2934 struct bpf_kfunc_desc_tab *tab;
2935
2936 tab = prog->aux->kfunc_tab;
2937 if (!tab)
2938 return;
2939
2940 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2941 kfunc_desc_cmp_by_imm_off, NULL);
2942 }
2943
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2944 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2945 {
2946 return !!prog->aux->kfunc_tab;
2947 }
2948
2949 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2950 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2951 const struct bpf_insn *insn)
2952 {
2953 const struct bpf_kfunc_desc desc = {
2954 .imm = insn->imm,
2955 .offset = insn->off,
2956 };
2957 const struct bpf_kfunc_desc *res;
2958 struct bpf_kfunc_desc_tab *tab;
2959
2960 tab = prog->aux->kfunc_tab;
2961 res = bsearch(&desc, tab->descs, tab->nr_descs,
2962 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2963
2964 return res ? &res->func_model : NULL;
2965 }
2966
add_subprog_and_kfunc(struct bpf_verifier_env * env)2967 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2968 {
2969 struct bpf_subprog_info *subprog = env->subprog_info;
2970 int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2971 struct bpf_insn *insn = env->prog->insnsi;
2972
2973 /* Add entry function. */
2974 ret = add_subprog(env, 0);
2975 if (ret)
2976 return ret;
2977
2978 for (i = 0; i < insn_cnt; i++, insn++) {
2979 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2980 !bpf_pseudo_kfunc_call(insn))
2981 continue;
2982
2983 if (!env->bpf_capable) {
2984 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2985 return -EPERM;
2986 }
2987
2988 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2989 ret = add_subprog(env, i + insn->imm + 1);
2990 else
2991 ret = add_kfunc_call(env, insn->imm, insn->off);
2992
2993 if (ret < 0)
2994 return ret;
2995 }
2996
2997 ret = bpf_find_exception_callback_insn_off(env);
2998 if (ret < 0)
2999 return ret;
3000 ex_cb_insn = ret;
3001
3002 /* If ex_cb_insn > 0, this means that the main program has a subprog
3003 * marked using BTF decl tag to serve as the exception callback.
3004 */
3005 if (ex_cb_insn) {
3006 ret = add_subprog(env, ex_cb_insn);
3007 if (ret < 0)
3008 return ret;
3009 for (i = 1; i < env->subprog_cnt; i++) {
3010 if (env->subprog_info[i].start != ex_cb_insn)
3011 continue;
3012 env->exception_callback_subprog = i;
3013 mark_subprog_exc_cb(env, i);
3014 break;
3015 }
3016 }
3017
3018 /* Add a fake 'exit' subprog which could simplify subprog iteration
3019 * logic. 'subprog_cnt' should not be increased.
3020 */
3021 subprog[env->subprog_cnt].start = insn_cnt;
3022
3023 if (env->log.level & BPF_LOG_LEVEL2)
3024 for (i = 0; i < env->subprog_cnt; i++)
3025 verbose(env, "func#%d @%d\n", i, subprog[i].start);
3026
3027 return 0;
3028 }
3029
check_subprogs(struct bpf_verifier_env * env)3030 static int check_subprogs(struct bpf_verifier_env *env)
3031 {
3032 int i, subprog_start, subprog_end, off, cur_subprog = 0;
3033 struct bpf_subprog_info *subprog = env->subprog_info;
3034 struct bpf_insn *insn = env->prog->insnsi;
3035 int insn_cnt = env->prog->len;
3036
3037 /* now check that all jumps are within the same subprog */
3038 subprog_start = subprog[cur_subprog].start;
3039 subprog_end = subprog[cur_subprog + 1].start;
3040 for (i = 0; i < insn_cnt; i++) {
3041 u8 code = insn[i].code;
3042
3043 if (code == (BPF_JMP | BPF_CALL) &&
3044 insn[i].src_reg == 0 &&
3045 insn[i].imm == BPF_FUNC_tail_call) {
3046 subprog[cur_subprog].has_tail_call = true;
3047 subprog[cur_subprog].tail_call_reachable = true;
3048 }
3049 if (BPF_CLASS(code) == BPF_LD &&
3050 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3051 subprog[cur_subprog].has_ld_abs = true;
3052 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3053 goto next;
3054 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3055 goto next;
3056 if (code == (BPF_JMP32 | BPF_JA))
3057 off = i + insn[i].imm + 1;
3058 else
3059 off = i + insn[i].off + 1;
3060 if (off < subprog_start || off >= subprog_end) {
3061 verbose(env, "jump out of range from insn %d to %d\n", i, off);
3062 return -EINVAL;
3063 }
3064 next:
3065 if (i == subprog_end - 1) {
3066 /* to avoid fall-through from one subprog into another
3067 * the last insn of the subprog should be either exit
3068 * or unconditional jump back or bpf_throw call
3069 */
3070 if (code != (BPF_JMP | BPF_EXIT) &&
3071 code != (BPF_JMP32 | BPF_JA) &&
3072 code != (BPF_JMP | BPF_JA)) {
3073 verbose(env, "last insn is not an exit or jmp\n");
3074 return -EINVAL;
3075 }
3076 subprog_start = subprog_end;
3077 cur_subprog++;
3078 if (cur_subprog < env->subprog_cnt)
3079 subprog_end = subprog[cur_subprog + 1].start;
3080 }
3081 }
3082 return 0;
3083 }
3084
3085 /* Parentage chain of this register (or stack slot) should take care of all
3086 * issues like callee-saved registers, stack slot allocation time, etc.
3087 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)3088 static int mark_reg_read(struct bpf_verifier_env *env,
3089 const struct bpf_reg_state *state,
3090 struct bpf_reg_state *parent, u8 flag)
3091 {
3092 bool writes = parent == state->parent; /* Observe write marks */
3093 int cnt = 0;
3094
3095 while (parent) {
3096 /* if read wasn't screened by an earlier write ... */
3097 if (writes && state->live & REG_LIVE_WRITTEN)
3098 break;
3099 if (parent->live & REG_LIVE_DONE) {
3100 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3101 reg_type_str(env, parent->type),
3102 parent->var_off.value, parent->off);
3103 return -EFAULT;
3104 }
3105 /* The first condition is more likely to be true than the
3106 * second, checked it first.
3107 */
3108 if ((parent->live & REG_LIVE_READ) == flag ||
3109 parent->live & REG_LIVE_READ64)
3110 /* The parentage chain never changes and
3111 * this parent was already marked as LIVE_READ.
3112 * There is no need to keep walking the chain again and
3113 * keep re-marking all parents as LIVE_READ.
3114 * This case happens when the same register is read
3115 * multiple times without writes into it in-between.
3116 * Also, if parent has the stronger REG_LIVE_READ64 set,
3117 * then no need to set the weak REG_LIVE_READ32.
3118 */
3119 break;
3120 /* ... then we depend on parent's value */
3121 parent->live |= flag;
3122 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3123 if (flag == REG_LIVE_READ64)
3124 parent->live &= ~REG_LIVE_READ32;
3125 state = parent;
3126 parent = state->parent;
3127 writes = true;
3128 cnt++;
3129 }
3130
3131 if (env->longest_mark_read_walk < cnt)
3132 env->longest_mark_read_walk = cnt;
3133 return 0;
3134 }
3135
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3136 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3137 {
3138 struct bpf_func_state *state = func(env, reg);
3139 int spi, ret;
3140
3141 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
3142 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3143 * check_kfunc_call.
3144 */
3145 if (reg->type == CONST_PTR_TO_DYNPTR)
3146 return 0;
3147 spi = dynptr_get_spi(env, reg);
3148 if (spi < 0)
3149 return spi;
3150 /* Caller ensures dynptr is valid and initialized, which means spi is in
3151 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3152 * read.
3153 */
3154 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3155 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3156 if (ret)
3157 return ret;
3158 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3159 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3160 }
3161
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3162 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3163 int spi, int nr_slots)
3164 {
3165 struct bpf_func_state *state = func(env, reg);
3166 int err, i;
3167
3168 for (i = 0; i < nr_slots; i++) {
3169 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3170
3171 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3172 if (err)
3173 return err;
3174
3175 mark_stack_slot_scratched(env, spi - i);
3176 }
3177
3178 return 0;
3179 }
3180
3181 /* This function is supposed to be used by the following 32-bit optimization
3182 * code only. It returns TRUE if the source or destination register operates
3183 * on 64-bit, otherwise return FALSE.
3184 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3185 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3186 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3187 {
3188 u8 code, class, op;
3189
3190 code = insn->code;
3191 class = BPF_CLASS(code);
3192 op = BPF_OP(code);
3193 if (class == BPF_JMP) {
3194 /* BPF_EXIT for "main" will reach here. Return TRUE
3195 * conservatively.
3196 */
3197 if (op == BPF_EXIT)
3198 return true;
3199 if (op == BPF_CALL) {
3200 /* BPF to BPF call will reach here because of marking
3201 * caller saved clobber with DST_OP_NO_MARK for which we
3202 * don't care the register def because they are anyway
3203 * marked as NOT_INIT already.
3204 */
3205 if (insn->src_reg == BPF_PSEUDO_CALL)
3206 return false;
3207 /* Helper call will reach here because of arg type
3208 * check, conservatively return TRUE.
3209 */
3210 if (t == SRC_OP)
3211 return true;
3212
3213 return false;
3214 }
3215 }
3216
3217 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3218 return false;
3219
3220 if (class == BPF_ALU64 || class == BPF_JMP ||
3221 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3222 return true;
3223
3224 if (class == BPF_ALU || class == BPF_JMP32)
3225 return false;
3226
3227 if (class == BPF_LDX) {
3228 if (t != SRC_OP)
3229 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3230 /* LDX source must be ptr. */
3231 return true;
3232 }
3233
3234 if (class == BPF_STX) {
3235 /* BPF_STX (including atomic variants) has multiple source
3236 * operands, one of which is a ptr. Check whether the caller is
3237 * asking about it.
3238 */
3239 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3240 return true;
3241 return BPF_SIZE(code) == BPF_DW;
3242 }
3243
3244 if (class == BPF_LD) {
3245 u8 mode = BPF_MODE(code);
3246
3247 /* LD_IMM64 */
3248 if (mode == BPF_IMM)
3249 return true;
3250
3251 /* Both LD_IND and LD_ABS return 32-bit data. */
3252 if (t != SRC_OP)
3253 return false;
3254
3255 /* Implicit ctx ptr. */
3256 if (regno == BPF_REG_6)
3257 return true;
3258
3259 /* Explicit source could be any width. */
3260 return true;
3261 }
3262
3263 if (class == BPF_ST)
3264 /* The only source register for BPF_ST is a ptr. */
3265 return true;
3266
3267 /* Conservatively return true at default. */
3268 return true;
3269 }
3270
3271 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3272 static int insn_def_regno(const struct bpf_insn *insn)
3273 {
3274 switch (BPF_CLASS(insn->code)) {
3275 case BPF_JMP:
3276 case BPF_JMP32:
3277 case BPF_ST:
3278 return -1;
3279 case BPF_STX:
3280 if ((BPF_MODE(insn->code) == BPF_ATOMIC ||
3281 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) &&
3282 (insn->imm & BPF_FETCH)) {
3283 if (insn->imm == BPF_CMPXCHG)
3284 return BPF_REG_0;
3285 else
3286 return insn->src_reg;
3287 } else {
3288 return -1;
3289 }
3290 default:
3291 return insn->dst_reg;
3292 }
3293 }
3294
3295 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)3296 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3297 {
3298 int dst_reg = insn_def_regno(insn);
3299
3300 if (dst_reg == -1)
3301 return false;
3302
3303 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3304 }
3305
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3306 static void mark_insn_zext(struct bpf_verifier_env *env,
3307 struct bpf_reg_state *reg)
3308 {
3309 s32 def_idx = reg->subreg_def;
3310
3311 if (def_idx == DEF_NOT_SUBREG)
3312 return;
3313
3314 env->insn_aux_data[def_idx - 1].zext_dst = true;
3315 /* The dst will be zero extended, so won't be sub-register anymore. */
3316 reg->subreg_def = DEF_NOT_SUBREG;
3317 }
3318
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3319 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3320 enum reg_arg_type t)
3321 {
3322 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3323 struct bpf_reg_state *reg;
3324 bool rw64;
3325
3326 if (regno >= MAX_BPF_REG) {
3327 verbose(env, "R%d is invalid\n", regno);
3328 return -EINVAL;
3329 }
3330
3331 mark_reg_scratched(env, regno);
3332
3333 reg = ®s[regno];
3334 rw64 = is_reg64(env, insn, regno, reg, t);
3335 if (t == SRC_OP) {
3336 /* check whether register used as source operand can be read */
3337 if (reg->type == NOT_INIT) {
3338 verbose(env, "R%d !read_ok\n", regno);
3339 return -EACCES;
3340 }
3341 /* We don't need to worry about FP liveness because it's read-only */
3342 if (regno == BPF_REG_FP)
3343 return 0;
3344
3345 if (rw64)
3346 mark_insn_zext(env, reg);
3347
3348 return mark_reg_read(env, reg, reg->parent,
3349 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3350 } else {
3351 /* check whether register used as dest operand can be written to */
3352 if (regno == BPF_REG_FP) {
3353 verbose(env, "frame pointer is read only\n");
3354 return -EACCES;
3355 }
3356 reg->live |= REG_LIVE_WRITTEN;
3357 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3358 if (t == DST_OP)
3359 mark_reg_unknown(env, regs, regno);
3360 }
3361 return 0;
3362 }
3363
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3364 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3365 enum reg_arg_type t)
3366 {
3367 struct bpf_verifier_state *vstate = env->cur_state;
3368 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3369
3370 return __check_reg_arg(env, state->regs, regno, t);
3371 }
3372
insn_stack_access_flags(int frameno,int spi)3373 static int insn_stack_access_flags(int frameno, int spi)
3374 {
3375 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3376 }
3377
insn_stack_access_spi(int insn_flags)3378 static int insn_stack_access_spi(int insn_flags)
3379 {
3380 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3381 }
3382
insn_stack_access_frameno(int insn_flags)3383 static int insn_stack_access_frameno(int insn_flags)
3384 {
3385 return insn_flags & INSN_F_FRAMENO_MASK;
3386 }
3387
mark_jmp_point(struct bpf_verifier_env * env,int idx)3388 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3389 {
3390 env->insn_aux_data[idx].jmp_point = true;
3391 }
3392
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3393 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3394 {
3395 return env->insn_aux_data[insn_idx].jmp_point;
3396 }
3397
3398 #define LR_FRAMENO_BITS 3
3399 #define LR_SPI_BITS 6
3400 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3401 #define LR_SIZE_BITS 4
3402 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1)
3403 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1)
3404 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1)
3405 #define LR_SPI_OFF LR_FRAMENO_BITS
3406 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS)
3407 #define LINKED_REGS_MAX 6
3408
3409 struct linked_reg {
3410 u8 frameno;
3411 union {
3412 u8 spi;
3413 u8 regno;
3414 };
3415 bool is_reg;
3416 };
3417
3418 struct linked_regs {
3419 int cnt;
3420 struct linked_reg entries[LINKED_REGS_MAX];
3421 };
3422
linked_regs_push(struct linked_regs * s)3423 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3424 {
3425 if (s->cnt < LINKED_REGS_MAX)
3426 return &s->entries[s->cnt++];
3427
3428 return NULL;
3429 }
3430
3431 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3432 * number of elements currently in stack.
3433 * Pack one history entry for linked registers as 10 bits in the following format:
3434 * - 3-bits frameno
3435 * - 6-bits spi_or_reg
3436 * - 1-bit is_reg
3437 */
linked_regs_pack(struct linked_regs * s)3438 static u64 linked_regs_pack(struct linked_regs *s)
3439 {
3440 u64 val = 0;
3441 int i;
3442
3443 for (i = 0; i < s->cnt; ++i) {
3444 struct linked_reg *e = &s->entries[i];
3445 u64 tmp = 0;
3446
3447 tmp |= e->frameno;
3448 tmp |= e->spi << LR_SPI_OFF;
3449 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3450
3451 val <<= LR_ENTRY_BITS;
3452 val |= tmp;
3453 }
3454 val <<= LR_SIZE_BITS;
3455 val |= s->cnt;
3456 return val;
3457 }
3458
linked_regs_unpack(u64 val,struct linked_regs * s)3459 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3460 {
3461 int i;
3462
3463 s->cnt = val & LR_SIZE_MASK;
3464 val >>= LR_SIZE_BITS;
3465
3466 for (i = 0; i < s->cnt; ++i) {
3467 struct linked_reg *e = &s->entries[i];
3468
3469 e->frameno = val & LR_FRAMENO_MASK;
3470 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3471 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1;
3472 val >>= LR_ENTRY_BITS;
3473 }
3474 }
3475
3476 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_flags,u64 linked_regs)3477 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3478 int insn_flags, u64 linked_regs)
3479 {
3480 u32 cnt = cur->jmp_history_cnt;
3481 struct bpf_jmp_history_entry *p;
3482 size_t alloc_size;
3483
3484 /* combine instruction flags if we already recorded this instruction */
3485 if (env->cur_hist_ent) {
3486 /* atomic instructions push insn_flags twice, for READ and
3487 * WRITE sides, but they should agree on stack slot
3488 */
3489 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3490 (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3491 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3492 env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3493 env->cur_hist_ent->flags |= insn_flags;
3494 WARN_ONCE(env->cur_hist_ent->linked_regs != 0,
3495 "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n",
3496 env->insn_idx, env->cur_hist_ent->linked_regs);
3497 env->cur_hist_ent->linked_regs = linked_regs;
3498 return 0;
3499 }
3500
3501 cnt++;
3502 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3503 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3504 if (!p)
3505 return -ENOMEM;
3506 cur->jmp_history = p;
3507
3508 p = &cur->jmp_history[cnt - 1];
3509 p->idx = env->insn_idx;
3510 p->prev_idx = env->prev_insn_idx;
3511 p->flags = insn_flags;
3512 p->linked_regs = linked_regs;
3513 cur->jmp_history_cnt = cnt;
3514 env->cur_hist_ent = p;
3515
3516 return 0;
3517 }
3518
get_jmp_hist_entry(struct bpf_verifier_state * st,u32 hist_end,int insn_idx)3519 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3520 u32 hist_end, int insn_idx)
3521 {
3522 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3523 return &st->jmp_history[hist_end - 1];
3524 return NULL;
3525 }
3526
3527 /* Backtrack one insn at a time. If idx is not at the top of recorded
3528 * history then previous instruction came from straight line execution.
3529 * Return -ENOENT if we exhausted all instructions within given state.
3530 *
3531 * It's legal to have a bit of a looping with the same starting and ending
3532 * insn index within the same state, e.g.: 3->4->5->3, so just because current
3533 * instruction index is the same as state's first_idx doesn't mean we are
3534 * done. If there is still some jump history left, we should keep going. We
3535 * need to take into account that we might have a jump history between given
3536 * state's parent and itself, due to checkpointing. In this case, we'll have
3537 * history entry recording a jump from last instruction of parent state and
3538 * first instruction of given state.
3539 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)3540 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3541 u32 *history)
3542 {
3543 u32 cnt = *history;
3544
3545 if (i == st->first_insn_idx) {
3546 if (cnt == 0)
3547 return -ENOENT;
3548 if (cnt == 1 && st->jmp_history[0].idx == i)
3549 return -ENOENT;
3550 }
3551
3552 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3553 i = st->jmp_history[cnt - 1].prev_idx;
3554 (*history)--;
3555 } else {
3556 i--;
3557 }
3558 return i;
3559 }
3560
disasm_kfunc_name(void * data,const struct bpf_insn * insn)3561 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3562 {
3563 const struct btf_type *func;
3564 struct btf *desc_btf;
3565
3566 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3567 return NULL;
3568
3569 desc_btf = find_kfunc_desc_btf(data, insn->off);
3570 if (IS_ERR(desc_btf))
3571 return "<error>";
3572
3573 func = btf_type_by_id(desc_btf, insn->imm);
3574 return btf_name_by_offset(desc_btf, func->name_off);
3575 }
3576
bt_init(struct backtrack_state * bt,u32 frame)3577 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3578 {
3579 bt->frame = frame;
3580 }
3581
bt_reset(struct backtrack_state * bt)3582 static inline void bt_reset(struct backtrack_state *bt)
3583 {
3584 struct bpf_verifier_env *env = bt->env;
3585
3586 memset(bt, 0, sizeof(*bt));
3587 bt->env = env;
3588 }
3589
bt_empty(struct backtrack_state * bt)3590 static inline u32 bt_empty(struct backtrack_state *bt)
3591 {
3592 u64 mask = 0;
3593 int i;
3594
3595 for (i = 0; i <= bt->frame; i++)
3596 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3597
3598 return mask == 0;
3599 }
3600
bt_subprog_enter(struct backtrack_state * bt)3601 static inline int bt_subprog_enter(struct backtrack_state *bt)
3602 {
3603 if (bt->frame == MAX_CALL_FRAMES - 1) {
3604 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3605 WARN_ONCE(1, "verifier backtracking bug");
3606 return -EFAULT;
3607 }
3608 bt->frame++;
3609 return 0;
3610 }
3611
bt_subprog_exit(struct backtrack_state * bt)3612 static inline int bt_subprog_exit(struct backtrack_state *bt)
3613 {
3614 if (bt->frame == 0) {
3615 verbose(bt->env, "BUG subprog exit from frame 0\n");
3616 WARN_ONCE(1, "verifier backtracking bug");
3617 return -EFAULT;
3618 }
3619 bt->frame--;
3620 return 0;
3621 }
3622
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3623 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3624 {
3625 bt->reg_masks[frame] |= 1 << reg;
3626 }
3627
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3628 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3629 {
3630 bt->reg_masks[frame] &= ~(1 << reg);
3631 }
3632
bt_set_reg(struct backtrack_state * bt,u32 reg)3633 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3634 {
3635 bt_set_frame_reg(bt, bt->frame, reg);
3636 }
3637
bt_clear_reg(struct backtrack_state * bt,u32 reg)3638 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3639 {
3640 bt_clear_frame_reg(bt, bt->frame, reg);
3641 }
3642
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3643 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3644 {
3645 bt->stack_masks[frame] |= 1ull << slot;
3646 }
3647
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3648 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3649 {
3650 bt->stack_masks[frame] &= ~(1ull << slot);
3651 }
3652
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)3653 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3654 {
3655 return bt->reg_masks[frame];
3656 }
3657
bt_reg_mask(struct backtrack_state * bt)3658 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3659 {
3660 return bt->reg_masks[bt->frame];
3661 }
3662
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)3663 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3664 {
3665 return bt->stack_masks[frame];
3666 }
3667
bt_stack_mask(struct backtrack_state * bt)3668 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3669 {
3670 return bt->stack_masks[bt->frame];
3671 }
3672
bt_is_reg_set(struct backtrack_state * bt,u32 reg)3673 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3674 {
3675 return bt->reg_masks[bt->frame] & (1 << reg);
3676 }
3677
bt_is_frame_reg_set(struct backtrack_state * bt,u32 frame,u32 reg)3678 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
3679 {
3680 return bt->reg_masks[frame] & (1 << reg);
3681 }
3682
bt_is_frame_slot_set(struct backtrack_state * bt,u32 frame,u32 slot)3683 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3684 {
3685 return bt->stack_masks[frame] & (1ull << slot);
3686 }
3687
3688 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)3689 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3690 {
3691 DECLARE_BITMAP(mask, 64);
3692 bool first = true;
3693 int i, n;
3694
3695 buf[0] = '\0';
3696
3697 bitmap_from_u64(mask, reg_mask);
3698 for_each_set_bit(i, mask, 32) {
3699 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3700 first = false;
3701 buf += n;
3702 buf_sz -= n;
3703 if (buf_sz < 0)
3704 break;
3705 }
3706 }
3707 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)3708 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3709 {
3710 DECLARE_BITMAP(mask, 64);
3711 bool first = true;
3712 int i, n;
3713
3714 buf[0] = '\0';
3715
3716 bitmap_from_u64(mask, stack_mask);
3717 for_each_set_bit(i, mask, 64) {
3718 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3719 first = false;
3720 buf += n;
3721 buf_sz -= n;
3722 if (buf_sz < 0)
3723 break;
3724 }
3725 }
3726
3727 /* If any register R in hist->linked_regs is marked as precise in bt,
3728 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
3729 */
bt_sync_linked_regs(struct backtrack_state * bt,struct bpf_jmp_history_entry * hist)3730 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
3731 {
3732 struct linked_regs linked_regs;
3733 bool some_precise = false;
3734 int i;
3735
3736 if (!hist || hist->linked_regs == 0)
3737 return;
3738
3739 linked_regs_unpack(hist->linked_regs, &linked_regs);
3740 for (i = 0; i < linked_regs.cnt; ++i) {
3741 struct linked_reg *e = &linked_regs.entries[i];
3742
3743 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
3744 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
3745 some_precise = true;
3746 break;
3747 }
3748 }
3749
3750 if (!some_precise)
3751 return;
3752
3753 for (i = 0; i < linked_regs.cnt; ++i) {
3754 struct linked_reg *e = &linked_regs.entries[i];
3755
3756 if (e->is_reg)
3757 bt_set_frame_reg(bt, e->frameno, e->regno);
3758 else
3759 bt_set_frame_slot(bt, e->frameno, e->spi);
3760 }
3761 }
3762
3763 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3764
3765 /* For given verifier state backtrack_insn() is called from the last insn to
3766 * the first insn. Its purpose is to compute a bitmask of registers and
3767 * stack slots that needs precision in the parent verifier state.
3768 *
3769 * @idx is an index of the instruction we are currently processing;
3770 * @subseq_idx is an index of the subsequent instruction that:
3771 * - *would be* executed next, if jump history is viewed in forward order;
3772 * - *was* processed previously during backtracking.
3773 */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct bpf_jmp_history_entry * hist,struct backtrack_state * bt)3774 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3775 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3776 {
3777 const struct bpf_insn_cbs cbs = {
3778 .cb_call = disasm_kfunc_name,
3779 .cb_print = verbose,
3780 .private_data = env,
3781 };
3782 struct bpf_insn *insn = env->prog->insnsi + idx;
3783 u8 class = BPF_CLASS(insn->code);
3784 u8 opcode = BPF_OP(insn->code);
3785 u8 mode = BPF_MODE(insn->code);
3786 u32 dreg = insn->dst_reg;
3787 u32 sreg = insn->src_reg;
3788 u32 spi, i, fr;
3789
3790 if (insn->code == 0)
3791 return 0;
3792 if (env->log.level & BPF_LOG_LEVEL2) {
3793 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3794 verbose(env, "mark_precise: frame%d: regs=%s ",
3795 bt->frame, env->tmp_str_buf);
3796 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3797 verbose(env, "stack=%s before ", env->tmp_str_buf);
3798 verbose(env, "%d: ", idx);
3799 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3800 }
3801
3802 /* If there is a history record that some registers gained range at this insn,
3803 * propagate precision marks to those registers, so that bt_is_reg_set()
3804 * accounts for these registers.
3805 */
3806 bt_sync_linked_regs(bt, hist);
3807
3808 if (class == BPF_ALU || class == BPF_ALU64) {
3809 if (!bt_is_reg_set(bt, dreg))
3810 return 0;
3811 if (opcode == BPF_END || opcode == BPF_NEG) {
3812 /* sreg is reserved and unused
3813 * dreg still need precision before this insn
3814 */
3815 return 0;
3816 } else if (opcode == BPF_MOV) {
3817 if (BPF_SRC(insn->code) == BPF_X) {
3818 /* dreg = sreg or dreg = (s8, s16, s32)sreg
3819 * dreg needs precision after this insn
3820 * sreg needs precision before this insn
3821 */
3822 bt_clear_reg(bt, dreg);
3823 if (sreg != BPF_REG_FP)
3824 bt_set_reg(bt, sreg);
3825 } else {
3826 /* dreg = K
3827 * dreg needs precision after this insn.
3828 * Corresponding register is already marked
3829 * as precise=true in this verifier state.
3830 * No further markings in parent are necessary
3831 */
3832 bt_clear_reg(bt, dreg);
3833 }
3834 } else {
3835 if (BPF_SRC(insn->code) == BPF_X) {
3836 /* dreg += sreg
3837 * both dreg and sreg need precision
3838 * before this insn
3839 */
3840 if (sreg != BPF_REG_FP)
3841 bt_set_reg(bt, sreg);
3842 } /* else dreg += K
3843 * dreg still needs precision before this insn
3844 */
3845 }
3846 } else if (class == BPF_LDX) {
3847 if (!bt_is_reg_set(bt, dreg))
3848 return 0;
3849 bt_clear_reg(bt, dreg);
3850
3851 /* scalars can only be spilled into stack w/o losing precision.
3852 * Load from any other memory can be zero extended.
3853 * The desire to keep that precision is already indicated
3854 * by 'precise' mark in corresponding register of this state.
3855 * No further tracking necessary.
3856 */
3857 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3858 return 0;
3859 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3860 * that [fp - off] slot contains scalar that needs to be
3861 * tracked with precision
3862 */
3863 spi = insn_stack_access_spi(hist->flags);
3864 fr = insn_stack_access_frameno(hist->flags);
3865 bt_set_frame_slot(bt, fr, spi);
3866 } else if (class == BPF_STX || class == BPF_ST) {
3867 if (bt_is_reg_set(bt, dreg))
3868 /* stx & st shouldn't be using _scalar_ dst_reg
3869 * to access memory. It means backtracking
3870 * encountered a case of pointer subtraction.
3871 */
3872 return -ENOTSUPP;
3873 /* scalars can only be spilled into stack */
3874 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3875 return 0;
3876 spi = insn_stack_access_spi(hist->flags);
3877 fr = insn_stack_access_frameno(hist->flags);
3878 if (!bt_is_frame_slot_set(bt, fr, spi))
3879 return 0;
3880 bt_clear_frame_slot(bt, fr, spi);
3881 if (class == BPF_STX)
3882 bt_set_reg(bt, sreg);
3883 } else if (class == BPF_JMP || class == BPF_JMP32) {
3884 if (bpf_pseudo_call(insn)) {
3885 int subprog_insn_idx, subprog;
3886
3887 subprog_insn_idx = idx + insn->imm + 1;
3888 subprog = find_subprog(env, subprog_insn_idx);
3889 if (subprog < 0)
3890 return -EFAULT;
3891
3892 if (subprog_is_global(env, subprog)) {
3893 /* check that jump history doesn't have any
3894 * extra instructions from subprog; the next
3895 * instruction after call to global subprog
3896 * should be literally next instruction in
3897 * caller program
3898 */
3899 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3900 /* r1-r5 are invalidated after subprog call,
3901 * so for global func call it shouldn't be set
3902 * anymore
3903 */
3904 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3905 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3906 WARN_ONCE(1, "verifier backtracking bug");
3907 return -EFAULT;
3908 }
3909 /* global subprog always sets R0 */
3910 bt_clear_reg(bt, BPF_REG_0);
3911 return 0;
3912 } else {
3913 /* static subprog call instruction, which
3914 * means that we are exiting current subprog,
3915 * so only r1-r5 could be still requested as
3916 * precise, r0 and r6-r10 or any stack slot in
3917 * the current frame should be zero by now
3918 */
3919 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3920 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3921 WARN_ONCE(1, "verifier backtracking bug");
3922 return -EFAULT;
3923 }
3924 /* we are now tracking register spills correctly,
3925 * so any instance of leftover slots is a bug
3926 */
3927 if (bt_stack_mask(bt) != 0) {
3928 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3929 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3930 return -EFAULT;
3931 }
3932 /* propagate r1-r5 to the caller */
3933 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3934 if (bt_is_reg_set(bt, i)) {
3935 bt_clear_reg(bt, i);
3936 bt_set_frame_reg(bt, bt->frame - 1, i);
3937 }
3938 }
3939 if (bt_subprog_exit(bt))
3940 return -EFAULT;
3941 return 0;
3942 }
3943 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3944 /* exit from callback subprog to callback-calling helper or
3945 * kfunc call. Use idx/subseq_idx check to discern it from
3946 * straight line code backtracking.
3947 * Unlike the subprog call handling above, we shouldn't
3948 * propagate precision of r1-r5 (if any requested), as they are
3949 * not actually arguments passed directly to callback subprogs
3950 */
3951 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3952 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3953 WARN_ONCE(1, "verifier backtracking bug");
3954 return -EFAULT;
3955 }
3956 if (bt_stack_mask(bt) != 0) {
3957 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3958 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3959 return -EFAULT;
3960 }
3961 /* clear r1-r5 in callback subprog's mask */
3962 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3963 bt_clear_reg(bt, i);
3964 if (bt_subprog_exit(bt))
3965 return -EFAULT;
3966 return 0;
3967 } else if (opcode == BPF_CALL) {
3968 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3969 * catch this error later. Make backtracking conservative
3970 * with ENOTSUPP.
3971 */
3972 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3973 return -ENOTSUPP;
3974 /* regular helper call sets R0 */
3975 bt_clear_reg(bt, BPF_REG_0);
3976 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3977 /* if backtracing was looking for registers R1-R5
3978 * they should have been found already.
3979 */
3980 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3981 WARN_ONCE(1, "verifier backtracking bug");
3982 return -EFAULT;
3983 }
3984 } else if (opcode == BPF_EXIT) {
3985 bool r0_precise;
3986
3987 /* Backtracking to a nested function call, 'idx' is a part of
3988 * the inner frame 'subseq_idx' is a part of the outer frame.
3989 * In case of a regular function call, instructions giving
3990 * precision to registers R1-R5 should have been found already.
3991 * In case of a callback, it is ok to have R1-R5 marked for
3992 * backtracking, as these registers are set by the function
3993 * invoking callback.
3994 */
3995 if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3996 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3997 bt_clear_reg(bt, i);
3998 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3999 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
4000 WARN_ONCE(1, "verifier backtracking bug");
4001 return -EFAULT;
4002 }
4003
4004 /* BPF_EXIT in subprog or callback always returns
4005 * right after the call instruction, so by checking
4006 * whether the instruction at subseq_idx-1 is subprog
4007 * call or not we can distinguish actual exit from
4008 * *subprog* from exit from *callback*. In the former
4009 * case, we need to propagate r0 precision, if
4010 * necessary. In the former we never do that.
4011 */
4012 r0_precise = subseq_idx - 1 >= 0 &&
4013 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4014 bt_is_reg_set(bt, BPF_REG_0);
4015
4016 bt_clear_reg(bt, BPF_REG_0);
4017 if (bt_subprog_enter(bt))
4018 return -EFAULT;
4019
4020 if (r0_precise)
4021 bt_set_reg(bt, BPF_REG_0);
4022 /* r6-r9 and stack slots will stay set in caller frame
4023 * bitmasks until we return back from callee(s)
4024 */
4025 return 0;
4026 } else if (BPF_SRC(insn->code) == BPF_X) {
4027 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4028 return 0;
4029 /* dreg <cond> sreg
4030 * Both dreg and sreg need precision before
4031 * this insn. If only sreg was marked precise
4032 * before it would be equally necessary to
4033 * propagate it to dreg.
4034 */
4035 bt_set_reg(bt, dreg);
4036 bt_set_reg(bt, sreg);
4037 } else if (BPF_SRC(insn->code) == BPF_K) {
4038 /* dreg <cond> K
4039 * Only dreg still needs precision before
4040 * this insn, so for the K-based conditional
4041 * there is nothing new to be marked.
4042 */
4043 }
4044 } else if (class == BPF_LD) {
4045 if (!bt_is_reg_set(bt, dreg))
4046 return 0;
4047 bt_clear_reg(bt, dreg);
4048 /* It's ld_imm64 or ld_abs or ld_ind.
4049 * For ld_imm64 no further tracking of precision
4050 * into parent is necessary
4051 */
4052 if (mode == BPF_IND || mode == BPF_ABS)
4053 /* to be analyzed */
4054 return -ENOTSUPP;
4055 }
4056 /* Propagate precision marks to linked registers, to account for
4057 * registers marked as precise in this function.
4058 */
4059 bt_sync_linked_regs(bt, hist);
4060 return 0;
4061 }
4062
4063 /* the scalar precision tracking algorithm:
4064 * . at the start all registers have precise=false.
4065 * . scalar ranges are tracked as normal through alu and jmp insns.
4066 * . once precise value of the scalar register is used in:
4067 * . ptr + scalar alu
4068 * . if (scalar cond K|scalar)
4069 * . helper_call(.., scalar, ...) where ARG_CONST is expected
4070 * backtrack through the verifier states and mark all registers and
4071 * stack slots with spilled constants that these scalar regisers
4072 * should be precise.
4073 * . during state pruning two registers (or spilled stack slots)
4074 * are equivalent if both are not precise.
4075 *
4076 * Note the verifier cannot simply walk register parentage chain,
4077 * since many different registers and stack slots could have been
4078 * used to compute single precise scalar.
4079 *
4080 * The approach of starting with precise=true for all registers and then
4081 * backtrack to mark a register as not precise when the verifier detects
4082 * that program doesn't care about specific value (e.g., when helper
4083 * takes register as ARG_ANYTHING parameter) is not safe.
4084 *
4085 * It's ok to walk single parentage chain of the verifier states.
4086 * It's possible that this backtracking will go all the way till 1st insn.
4087 * All other branches will be explored for needing precision later.
4088 *
4089 * The backtracking needs to deal with cases like:
4090 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4091 * r9 -= r8
4092 * r5 = r9
4093 * if r5 > 0x79f goto pc+7
4094 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4095 * r5 += 1
4096 * ...
4097 * call bpf_perf_event_output#25
4098 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4099 *
4100 * and this case:
4101 * r6 = 1
4102 * call foo // uses callee's r6 inside to compute r0
4103 * r0 += r6
4104 * if r0 == 0 goto
4105 *
4106 * to track above reg_mask/stack_mask needs to be independent for each frame.
4107 *
4108 * Also if parent's curframe > frame where backtracking started,
4109 * the verifier need to mark registers in both frames, otherwise callees
4110 * may incorrectly prune callers. This is similar to
4111 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4112 *
4113 * For now backtracking falls back into conservative marking.
4114 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4115 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4116 struct bpf_verifier_state *st)
4117 {
4118 struct bpf_func_state *func;
4119 struct bpf_reg_state *reg;
4120 int i, j;
4121
4122 if (env->log.level & BPF_LOG_LEVEL2) {
4123 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4124 st->curframe);
4125 }
4126
4127 /* big hammer: mark all scalars precise in this path.
4128 * pop_stack may still get !precise scalars.
4129 * We also skip current state and go straight to first parent state,
4130 * because precision markings in current non-checkpointed state are
4131 * not needed. See why in the comment in __mark_chain_precision below.
4132 */
4133 for (st = st->parent; st; st = st->parent) {
4134 for (i = 0; i <= st->curframe; i++) {
4135 func = st->frame[i];
4136 for (j = 0; j < BPF_REG_FP; j++) {
4137 reg = &func->regs[j];
4138 if (reg->type != SCALAR_VALUE || reg->precise)
4139 continue;
4140 reg->precise = true;
4141 if (env->log.level & BPF_LOG_LEVEL2) {
4142 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4143 i, j);
4144 }
4145 }
4146 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4147 if (!is_spilled_reg(&func->stack[j]))
4148 continue;
4149 reg = &func->stack[j].spilled_ptr;
4150 if (reg->type != SCALAR_VALUE || reg->precise)
4151 continue;
4152 reg->precise = true;
4153 if (env->log.level & BPF_LOG_LEVEL2) {
4154 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4155 i, -(j + 1) * 8);
4156 }
4157 }
4158 }
4159 }
4160 }
4161
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4162 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4163 {
4164 struct bpf_func_state *func;
4165 struct bpf_reg_state *reg;
4166 int i, j;
4167
4168 for (i = 0; i <= st->curframe; i++) {
4169 func = st->frame[i];
4170 for (j = 0; j < BPF_REG_FP; j++) {
4171 reg = &func->regs[j];
4172 if (reg->type != SCALAR_VALUE)
4173 continue;
4174 reg->precise = false;
4175 }
4176 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4177 if (!is_spilled_reg(&func->stack[j]))
4178 continue;
4179 reg = &func->stack[j].spilled_ptr;
4180 if (reg->type != SCALAR_VALUE)
4181 continue;
4182 reg->precise = false;
4183 }
4184 }
4185 }
4186
4187 /*
4188 * __mark_chain_precision() backtracks BPF program instruction sequence and
4189 * chain of verifier states making sure that register *regno* (if regno >= 0)
4190 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4191 * SCALARS, as well as any other registers and slots that contribute to
4192 * a tracked state of given registers/stack slots, depending on specific BPF
4193 * assembly instructions (see backtrack_insns() for exact instruction handling
4194 * logic). This backtracking relies on recorded jmp_history and is able to
4195 * traverse entire chain of parent states. This process ends only when all the
4196 * necessary registers/slots and their transitive dependencies are marked as
4197 * precise.
4198 *
4199 * One important and subtle aspect is that precise marks *do not matter* in
4200 * the currently verified state (current state). It is important to understand
4201 * why this is the case.
4202 *
4203 * First, note that current state is the state that is not yet "checkpointed",
4204 * i.e., it is not yet put into env->explored_states, and it has no children
4205 * states as well. It's ephemeral, and can end up either a) being discarded if
4206 * compatible explored state is found at some point or BPF_EXIT instruction is
4207 * reached or b) checkpointed and put into env->explored_states, branching out
4208 * into one or more children states.
4209 *
4210 * In the former case, precise markings in current state are completely
4211 * ignored by state comparison code (see regsafe() for details). Only
4212 * checkpointed ("old") state precise markings are important, and if old
4213 * state's register/slot is precise, regsafe() assumes current state's
4214 * register/slot as precise and checks value ranges exactly and precisely. If
4215 * states turn out to be compatible, current state's necessary precise
4216 * markings and any required parent states' precise markings are enforced
4217 * after the fact with propagate_precision() logic, after the fact. But it's
4218 * important to realize that in this case, even after marking current state
4219 * registers/slots as precise, we immediately discard current state. So what
4220 * actually matters is any of the precise markings propagated into current
4221 * state's parent states, which are always checkpointed (due to b) case above).
4222 * As such, for scenario a) it doesn't matter if current state has precise
4223 * markings set or not.
4224 *
4225 * Now, for the scenario b), checkpointing and forking into child(ren)
4226 * state(s). Note that before current state gets to checkpointing step, any
4227 * processed instruction always assumes precise SCALAR register/slot
4228 * knowledge: if precise value or range is useful to prune jump branch, BPF
4229 * verifier takes this opportunity enthusiastically. Similarly, when
4230 * register's value is used to calculate offset or memory address, exact
4231 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4232 * what we mentioned above about state comparison ignoring precise markings
4233 * during state comparison, BPF verifier ignores and also assumes precise
4234 * markings *at will* during instruction verification process. But as verifier
4235 * assumes precision, it also propagates any precision dependencies across
4236 * parent states, which are not yet finalized, so can be further restricted
4237 * based on new knowledge gained from restrictions enforced by their children
4238 * states. This is so that once those parent states are finalized, i.e., when
4239 * they have no more active children state, state comparison logic in
4240 * is_state_visited() would enforce strict and precise SCALAR ranges, if
4241 * required for correctness.
4242 *
4243 * To build a bit more intuition, note also that once a state is checkpointed,
4244 * the path we took to get to that state is not important. This is crucial
4245 * property for state pruning. When state is checkpointed and finalized at
4246 * some instruction index, it can be correctly and safely used to "short
4247 * circuit" any *compatible* state that reaches exactly the same instruction
4248 * index. I.e., if we jumped to that instruction from a completely different
4249 * code path than original finalized state was derived from, it doesn't
4250 * matter, current state can be discarded because from that instruction
4251 * forward having a compatible state will ensure we will safely reach the
4252 * exit. States describe preconditions for further exploration, but completely
4253 * forget the history of how we got here.
4254 *
4255 * This also means that even if we needed precise SCALAR range to get to
4256 * finalized state, but from that point forward *that same* SCALAR register is
4257 * never used in a precise context (i.e., it's precise value is not needed for
4258 * correctness), it's correct and safe to mark such register as "imprecise"
4259 * (i.e., precise marking set to false). This is what we rely on when we do
4260 * not set precise marking in current state. If no child state requires
4261 * precision for any given SCALAR register, it's safe to dictate that it can
4262 * be imprecise. If any child state does require this register to be precise,
4263 * we'll mark it precise later retroactively during precise markings
4264 * propagation from child state to parent states.
4265 *
4266 * Skipping precise marking setting in current state is a mild version of
4267 * relying on the above observation. But we can utilize this property even
4268 * more aggressively by proactively forgetting any precise marking in the
4269 * current state (which we inherited from the parent state), right before we
4270 * checkpoint it and branch off into new child state. This is done by
4271 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4272 * finalized states which help in short circuiting more future states.
4273 */
__mark_chain_precision(struct bpf_verifier_env * env,int regno)4274 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4275 {
4276 struct backtrack_state *bt = &env->bt;
4277 struct bpf_verifier_state *st = env->cur_state;
4278 int first_idx = st->first_insn_idx;
4279 int last_idx = env->insn_idx;
4280 int subseq_idx = -1;
4281 struct bpf_func_state *func;
4282 struct bpf_reg_state *reg;
4283 bool skip_first = true;
4284 int i, fr, err;
4285
4286 if (!env->bpf_capable)
4287 return 0;
4288
4289 /* set frame number from which we are starting to backtrack */
4290 bt_init(bt, env->cur_state->curframe);
4291
4292 /* Do sanity checks against current state of register and/or stack
4293 * slot, but don't set precise flag in current state, as precision
4294 * tracking in the current state is unnecessary.
4295 */
4296 func = st->frame[bt->frame];
4297 if (regno >= 0) {
4298 reg = &func->regs[regno];
4299 if (reg->type != SCALAR_VALUE) {
4300 WARN_ONCE(1, "backtracing misuse");
4301 return -EFAULT;
4302 }
4303 bt_set_reg(bt, regno);
4304 }
4305
4306 if (bt_empty(bt))
4307 return 0;
4308
4309 for (;;) {
4310 DECLARE_BITMAP(mask, 64);
4311 u32 history = st->jmp_history_cnt;
4312 struct bpf_jmp_history_entry *hist;
4313
4314 if (env->log.level & BPF_LOG_LEVEL2) {
4315 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4316 bt->frame, last_idx, first_idx, subseq_idx);
4317 }
4318
4319 if (last_idx < 0) {
4320 /* we are at the entry into subprog, which
4321 * is expected for global funcs, but only if
4322 * requested precise registers are R1-R5
4323 * (which are global func's input arguments)
4324 */
4325 if (st->curframe == 0 &&
4326 st->frame[0]->subprogno > 0 &&
4327 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4328 bt_stack_mask(bt) == 0 &&
4329 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4330 bitmap_from_u64(mask, bt_reg_mask(bt));
4331 for_each_set_bit(i, mask, 32) {
4332 reg = &st->frame[0]->regs[i];
4333 bt_clear_reg(bt, i);
4334 if (reg->type == SCALAR_VALUE)
4335 reg->precise = true;
4336 }
4337 return 0;
4338 }
4339
4340 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4341 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4342 WARN_ONCE(1, "verifier backtracking bug");
4343 return -EFAULT;
4344 }
4345
4346 for (i = last_idx;;) {
4347 if (skip_first) {
4348 err = 0;
4349 skip_first = false;
4350 } else {
4351 hist = get_jmp_hist_entry(st, history, i);
4352 err = backtrack_insn(env, i, subseq_idx, hist, bt);
4353 }
4354 if (err == -ENOTSUPP) {
4355 mark_all_scalars_precise(env, env->cur_state);
4356 bt_reset(bt);
4357 return 0;
4358 } else if (err) {
4359 return err;
4360 }
4361 if (bt_empty(bt))
4362 /* Found assignment(s) into tracked register in this state.
4363 * Since this state is already marked, just return.
4364 * Nothing to be tracked further in the parent state.
4365 */
4366 return 0;
4367 subseq_idx = i;
4368 i = get_prev_insn_idx(st, i, &history);
4369 if (i == -ENOENT)
4370 break;
4371 if (i >= env->prog->len) {
4372 /* This can happen if backtracking reached insn 0
4373 * and there are still reg_mask or stack_mask
4374 * to backtrack.
4375 * It means the backtracking missed the spot where
4376 * particular register was initialized with a constant.
4377 */
4378 verbose(env, "BUG backtracking idx %d\n", i);
4379 WARN_ONCE(1, "verifier backtracking bug");
4380 return -EFAULT;
4381 }
4382 }
4383 st = st->parent;
4384 if (!st)
4385 break;
4386
4387 for (fr = bt->frame; fr >= 0; fr--) {
4388 func = st->frame[fr];
4389 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4390 for_each_set_bit(i, mask, 32) {
4391 reg = &func->regs[i];
4392 if (reg->type != SCALAR_VALUE) {
4393 bt_clear_frame_reg(bt, fr, i);
4394 continue;
4395 }
4396 if (reg->precise)
4397 bt_clear_frame_reg(bt, fr, i);
4398 else
4399 reg->precise = true;
4400 }
4401
4402 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4403 for_each_set_bit(i, mask, 64) {
4404 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4405 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4406 i, func->allocated_stack / BPF_REG_SIZE);
4407 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4408 return -EFAULT;
4409 }
4410
4411 if (!is_spilled_scalar_reg(&func->stack[i])) {
4412 bt_clear_frame_slot(bt, fr, i);
4413 continue;
4414 }
4415 reg = &func->stack[i].spilled_ptr;
4416 if (reg->precise)
4417 bt_clear_frame_slot(bt, fr, i);
4418 else
4419 reg->precise = true;
4420 }
4421 if (env->log.level & BPF_LOG_LEVEL2) {
4422 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4423 bt_frame_reg_mask(bt, fr));
4424 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4425 fr, env->tmp_str_buf);
4426 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4427 bt_frame_stack_mask(bt, fr));
4428 verbose(env, "stack=%s: ", env->tmp_str_buf);
4429 print_verifier_state(env, func, true);
4430 }
4431 }
4432
4433 if (bt_empty(bt))
4434 return 0;
4435
4436 subseq_idx = first_idx;
4437 last_idx = st->last_insn_idx;
4438 first_idx = st->first_insn_idx;
4439 }
4440
4441 /* if we still have requested precise regs or slots, we missed
4442 * something (e.g., stack access through non-r10 register), so
4443 * fallback to marking all precise
4444 */
4445 if (!bt_empty(bt)) {
4446 mark_all_scalars_precise(env, env->cur_state);
4447 bt_reset(bt);
4448 }
4449
4450 return 0;
4451 }
4452
mark_chain_precision(struct bpf_verifier_env * env,int regno)4453 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4454 {
4455 return __mark_chain_precision(env, regno);
4456 }
4457
4458 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4459 * desired reg and stack masks across all relevant frames
4460 */
mark_chain_precision_batch(struct bpf_verifier_env * env)4461 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4462 {
4463 return __mark_chain_precision(env, -1);
4464 }
4465
is_spillable_regtype(enum bpf_reg_type type)4466 static bool is_spillable_regtype(enum bpf_reg_type type)
4467 {
4468 switch (base_type(type)) {
4469 case PTR_TO_MAP_VALUE:
4470 case PTR_TO_STACK:
4471 case PTR_TO_CTX:
4472 case PTR_TO_PACKET:
4473 case PTR_TO_PACKET_META:
4474 case PTR_TO_PACKET_END:
4475 case PTR_TO_FLOW_KEYS:
4476 case CONST_PTR_TO_MAP:
4477 case PTR_TO_SOCKET:
4478 case PTR_TO_SOCK_COMMON:
4479 case PTR_TO_TCP_SOCK:
4480 case PTR_TO_XDP_SOCK:
4481 case PTR_TO_BTF_ID:
4482 case PTR_TO_BUF:
4483 case PTR_TO_MEM:
4484 case PTR_TO_FUNC:
4485 case PTR_TO_MAP_KEY:
4486 case PTR_TO_ARENA:
4487 return true;
4488 default:
4489 return false;
4490 }
4491 }
4492
4493 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4494 static bool register_is_null(struct bpf_reg_state *reg)
4495 {
4496 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4497 }
4498
4499 /* check if register is a constant scalar value */
is_reg_const(struct bpf_reg_state * reg,bool subreg32)4500 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4501 {
4502 return reg->type == SCALAR_VALUE &&
4503 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4504 }
4505
4506 /* assuming is_reg_const() is true, return constant value of a register */
reg_const_value(struct bpf_reg_state * reg,bool subreg32)4507 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4508 {
4509 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4510 }
4511
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4512 static bool __is_pointer_value(bool allow_ptr_leaks,
4513 const struct bpf_reg_state *reg)
4514 {
4515 if (allow_ptr_leaks)
4516 return false;
4517
4518 return reg->type != SCALAR_VALUE;
4519 }
4520
assign_scalar_id_before_mov(struct bpf_verifier_env * env,struct bpf_reg_state * src_reg)4521 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4522 struct bpf_reg_state *src_reg)
4523 {
4524 if (src_reg->type != SCALAR_VALUE)
4525 return;
4526
4527 if (src_reg->id & BPF_ADD_CONST) {
4528 /*
4529 * The verifier is processing rX = rY insn and
4530 * rY->id has special linked register already.
4531 * Cleared it, since multiple rX += const are not supported.
4532 */
4533 src_reg->id = 0;
4534 src_reg->off = 0;
4535 }
4536
4537 if (!src_reg->id && !tnum_is_const(src_reg->var_off))
4538 /* Ensure that src_reg has a valid ID that will be copied to
4539 * dst_reg and then will be used by sync_linked_regs() to
4540 * propagate min/max range.
4541 */
4542 src_reg->id = ++env->id_gen;
4543 }
4544
4545 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)4546 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4547 {
4548 struct bpf_reg_state *parent = dst->parent;
4549 enum bpf_reg_liveness live = dst->live;
4550
4551 *dst = *src;
4552 dst->parent = parent;
4553 dst->live = live;
4554 }
4555
save_register_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)4556 static void save_register_state(struct bpf_verifier_env *env,
4557 struct bpf_func_state *state,
4558 int spi, struct bpf_reg_state *reg,
4559 int size)
4560 {
4561 int i;
4562
4563 copy_register_state(&state->stack[spi].spilled_ptr, reg);
4564 if (size == BPF_REG_SIZE)
4565 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4566
4567 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4568 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4569
4570 /* size < 8 bytes spill */
4571 for (; i; i--)
4572 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4573 }
4574
is_bpf_st_mem(struct bpf_insn * insn)4575 static bool is_bpf_st_mem(struct bpf_insn *insn)
4576 {
4577 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4578 }
4579
get_reg_width(struct bpf_reg_state * reg)4580 static int get_reg_width(struct bpf_reg_state *reg)
4581 {
4582 return fls64(reg->umax_value);
4583 }
4584
4585 /* See comment for mark_fastcall_pattern_for_call() */
check_fastcall_stack_contract(struct bpf_verifier_env * env,struct bpf_func_state * state,int insn_idx,int off)4586 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
4587 struct bpf_func_state *state, int insn_idx, int off)
4588 {
4589 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
4590 struct bpf_insn_aux_data *aux = env->insn_aux_data;
4591 int i;
4592
4593 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
4594 return;
4595 /* access to the region [max_stack_depth .. fastcall_stack_off)
4596 * from something that is not a part of the fastcall pattern,
4597 * disable fastcall rewrites for current subprogram by setting
4598 * fastcall_stack_off to a value smaller than any possible offset.
4599 */
4600 subprog->fastcall_stack_off = S16_MIN;
4601 /* reset fastcall aux flags within subprogram,
4602 * happens at most once per subprogram
4603 */
4604 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
4605 aux[i].fastcall_spills_num = 0;
4606 aux[i].fastcall_pattern = 0;
4607 }
4608 }
4609
4610 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4611 * stack boundary and alignment are checked in check_mem_access()
4612 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)4613 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4614 /* stack frame we're writing to */
4615 struct bpf_func_state *state,
4616 int off, int size, int value_regno,
4617 int insn_idx)
4618 {
4619 struct bpf_func_state *cur; /* state of the current function */
4620 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4621 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4622 struct bpf_reg_state *reg = NULL;
4623 int insn_flags = insn_stack_access_flags(state->frameno, spi);
4624
4625 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4626 * so it's aligned access and [off, off + size) are within stack limits
4627 */
4628 if (!env->allow_ptr_leaks &&
4629 is_spilled_reg(&state->stack[spi]) &&
4630 size != BPF_REG_SIZE) {
4631 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4632 return -EACCES;
4633 }
4634
4635 cur = env->cur_state->frame[env->cur_state->curframe];
4636 if (value_regno >= 0)
4637 reg = &cur->regs[value_regno];
4638 if (!env->bypass_spec_v4) {
4639 bool sanitize = reg && is_spillable_regtype(reg->type);
4640
4641 for (i = 0; i < size; i++) {
4642 u8 type = state->stack[spi].slot_type[i];
4643
4644 if (type != STACK_MISC && type != STACK_ZERO) {
4645 sanitize = true;
4646 break;
4647 }
4648 }
4649
4650 if (sanitize)
4651 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4652 }
4653
4654 err = destroy_if_dynptr_stack_slot(env, state, spi);
4655 if (err)
4656 return err;
4657
4658 check_fastcall_stack_contract(env, state, insn_idx, off);
4659 mark_stack_slot_scratched(env, spi);
4660 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
4661 bool reg_value_fits;
4662
4663 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4664 /* Make sure that reg had an ID to build a relation on spill. */
4665 if (reg_value_fits)
4666 assign_scalar_id_before_mov(env, reg);
4667 save_register_state(env, state, spi, reg, size);
4668 /* Break the relation on a narrowing spill. */
4669 if (!reg_value_fits)
4670 state->stack[spi].spilled_ptr.id = 0;
4671 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4672 env->bpf_capable) {
4673 struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
4674
4675 memset(tmp_reg, 0, sizeof(*tmp_reg));
4676 __mark_reg_known(tmp_reg, insn->imm);
4677 tmp_reg->type = SCALAR_VALUE;
4678 save_register_state(env, state, spi, tmp_reg, size);
4679 } else if (reg && is_spillable_regtype(reg->type)) {
4680 /* register containing pointer is being spilled into stack */
4681 if (size != BPF_REG_SIZE) {
4682 verbose_linfo(env, insn_idx, "; ");
4683 verbose(env, "invalid size of register spill\n");
4684 return -EACCES;
4685 }
4686 if (state != cur && reg->type == PTR_TO_STACK) {
4687 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4688 return -EINVAL;
4689 }
4690 save_register_state(env, state, spi, reg, size);
4691 } else {
4692 u8 type = STACK_MISC;
4693
4694 /* regular write of data into stack destroys any spilled ptr */
4695 state->stack[spi].spilled_ptr.type = NOT_INIT;
4696 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4697 if (is_stack_slot_special(&state->stack[spi]))
4698 for (i = 0; i < BPF_REG_SIZE; i++)
4699 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4700
4701 /* only mark the slot as written if all 8 bytes were written
4702 * otherwise read propagation may incorrectly stop too soon
4703 * when stack slots are partially written.
4704 * This heuristic means that read propagation will be
4705 * conservative, since it will add reg_live_read marks
4706 * to stack slots all the way to first state when programs
4707 * writes+reads less than 8 bytes
4708 */
4709 if (size == BPF_REG_SIZE)
4710 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4711
4712 /* when we zero initialize stack slots mark them as such */
4713 if ((reg && register_is_null(reg)) ||
4714 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4715 /* STACK_ZERO case happened because register spill
4716 * wasn't properly aligned at the stack slot boundary,
4717 * so it's not a register spill anymore; force
4718 * originating register to be precise to make
4719 * STACK_ZERO correct for subsequent states
4720 */
4721 err = mark_chain_precision(env, value_regno);
4722 if (err)
4723 return err;
4724 type = STACK_ZERO;
4725 }
4726
4727 /* Mark slots affected by this stack write. */
4728 for (i = 0; i < size; i++)
4729 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4730 insn_flags = 0; /* not a register spill */
4731 }
4732
4733 if (insn_flags)
4734 return push_jmp_history(env, env->cur_state, insn_flags, 0);
4735 return 0;
4736 }
4737
4738 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4739 * known to contain a variable offset.
4740 * This function checks whether the write is permitted and conservatively
4741 * tracks the effects of the write, considering that each stack slot in the
4742 * dynamic range is potentially written to.
4743 *
4744 * 'off' includes 'regno->off'.
4745 * 'value_regno' can be -1, meaning that an unknown value is being written to
4746 * the stack.
4747 *
4748 * Spilled pointers in range are not marked as written because we don't know
4749 * what's going to be actually written. This means that read propagation for
4750 * future reads cannot be terminated by this write.
4751 *
4752 * For privileged programs, uninitialized stack slots are considered
4753 * initialized by this write (even though we don't know exactly what offsets
4754 * are going to be written to). The idea is that we don't want the verifier to
4755 * reject future reads that access slots written to through variable offsets.
4756 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)4757 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4758 /* func where register points to */
4759 struct bpf_func_state *state,
4760 int ptr_regno, int off, int size,
4761 int value_regno, int insn_idx)
4762 {
4763 struct bpf_func_state *cur; /* state of the current function */
4764 int min_off, max_off;
4765 int i, err;
4766 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4767 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4768 bool writing_zero = false;
4769 /* set if the fact that we're writing a zero is used to let any
4770 * stack slots remain STACK_ZERO
4771 */
4772 bool zero_used = false;
4773
4774 cur = env->cur_state->frame[env->cur_state->curframe];
4775 ptr_reg = &cur->regs[ptr_regno];
4776 min_off = ptr_reg->smin_value + off;
4777 max_off = ptr_reg->smax_value + off + size;
4778 if (value_regno >= 0)
4779 value_reg = &cur->regs[value_regno];
4780 if ((value_reg && register_is_null(value_reg)) ||
4781 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4782 writing_zero = true;
4783
4784 for (i = min_off; i < max_off; i++) {
4785 int spi;
4786
4787 spi = __get_spi(i);
4788 err = destroy_if_dynptr_stack_slot(env, state, spi);
4789 if (err)
4790 return err;
4791 }
4792
4793 check_fastcall_stack_contract(env, state, insn_idx, min_off);
4794 /* Variable offset writes destroy any spilled pointers in range. */
4795 for (i = min_off; i < max_off; i++) {
4796 u8 new_type, *stype;
4797 int slot, spi;
4798
4799 slot = -i - 1;
4800 spi = slot / BPF_REG_SIZE;
4801 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4802 mark_stack_slot_scratched(env, spi);
4803
4804 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4805 /* Reject the write if range we may write to has not
4806 * been initialized beforehand. If we didn't reject
4807 * here, the ptr status would be erased below (even
4808 * though not all slots are actually overwritten),
4809 * possibly opening the door to leaks.
4810 *
4811 * We do however catch STACK_INVALID case below, and
4812 * only allow reading possibly uninitialized memory
4813 * later for CAP_PERFMON, as the write may not happen to
4814 * that slot.
4815 */
4816 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4817 insn_idx, i);
4818 return -EINVAL;
4819 }
4820
4821 /* If writing_zero and the spi slot contains a spill of value 0,
4822 * maintain the spill type.
4823 */
4824 if (writing_zero && *stype == STACK_SPILL &&
4825 is_spilled_scalar_reg(&state->stack[spi])) {
4826 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4827
4828 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4829 zero_used = true;
4830 continue;
4831 }
4832 }
4833
4834 /* Erase all other spilled pointers. */
4835 state->stack[spi].spilled_ptr.type = NOT_INIT;
4836
4837 /* Update the slot type. */
4838 new_type = STACK_MISC;
4839 if (writing_zero && *stype == STACK_ZERO) {
4840 new_type = STACK_ZERO;
4841 zero_used = true;
4842 }
4843 /* If the slot is STACK_INVALID, we check whether it's OK to
4844 * pretend that it will be initialized by this write. The slot
4845 * might not actually be written to, and so if we mark it as
4846 * initialized future reads might leak uninitialized memory.
4847 * For privileged programs, we will accept such reads to slots
4848 * that may or may not be written because, if we're reject
4849 * them, the error would be too confusing.
4850 */
4851 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4852 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4853 insn_idx, i);
4854 return -EINVAL;
4855 }
4856 *stype = new_type;
4857 }
4858 if (zero_used) {
4859 /* backtracking doesn't work for STACK_ZERO yet. */
4860 err = mark_chain_precision(env, value_regno);
4861 if (err)
4862 return err;
4863 }
4864 return 0;
4865 }
4866
4867 /* When register 'dst_regno' is assigned some values from stack[min_off,
4868 * max_off), we set the register's type according to the types of the
4869 * respective stack slots. If all the stack values are known to be zeros, then
4870 * so is the destination reg. Otherwise, the register is considered to be
4871 * SCALAR. This function does not deal with register filling; the caller must
4872 * ensure that all spilled registers in the stack range have been marked as
4873 * read.
4874 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)4875 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4876 /* func where src register points to */
4877 struct bpf_func_state *ptr_state,
4878 int min_off, int max_off, int dst_regno)
4879 {
4880 struct bpf_verifier_state *vstate = env->cur_state;
4881 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4882 int i, slot, spi;
4883 u8 *stype;
4884 int zeros = 0;
4885
4886 for (i = min_off; i < max_off; i++) {
4887 slot = -i - 1;
4888 spi = slot / BPF_REG_SIZE;
4889 mark_stack_slot_scratched(env, spi);
4890 stype = ptr_state->stack[spi].slot_type;
4891 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4892 break;
4893 zeros++;
4894 }
4895 if (zeros == max_off - min_off) {
4896 /* Any access_size read into register is zero extended,
4897 * so the whole register == const_zero.
4898 */
4899 __mark_reg_const_zero(env, &state->regs[dst_regno]);
4900 } else {
4901 /* have read misc data from the stack */
4902 mark_reg_unknown(env, state->regs, dst_regno);
4903 }
4904 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4905 }
4906
4907 /* Read the stack at 'off' and put the results into the register indicated by
4908 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4909 * spilled reg.
4910 *
4911 * 'dst_regno' can be -1, meaning that the read value is not going to a
4912 * register.
4913 *
4914 * The access is assumed to be within the current stack bounds.
4915 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)4916 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4917 /* func where src register points to */
4918 struct bpf_func_state *reg_state,
4919 int off, int size, int dst_regno)
4920 {
4921 struct bpf_verifier_state *vstate = env->cur_state;
4922 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4923 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4924 struct bpf_reg_state *reg;
4925 u8 *stype, type;
4926 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4927
4928 stype = reg_state->stack[spi].slot_type;
4929 reg = ®_state->stack[spi].spilled_ptr;
4930
4931 mark_stack_slot_scratched(env, spi);
4932 check_fastcall_stack_contract(env, state, env->insn_idx, off);
4933
4934 if (is_spilled_reg(®_state->stack[spi])) {
4935 u8 spill_size = 1;
4936
4937 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4938 spill_size++;
4939
4940 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4941 if (reg->type != SCALAR_VALUE) {
4942 verbose_linfo(env, env->insn_idx, "; ");
4943 verbose(env, "invalid size of register fill\n");
4944 return -EACCES;
4945 }
4946
4947 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4948 if (dst_regno < 0)
4949 return 0;
4950
4951 if (size <= spill_size &&
4952 bpf_stack_narrow_access_ok(off, size, spill_size)) {
4953 /* The earlier check_reg_arg() has decided the
4954 * subreg_def for this insn. Save it first.
4955 */
4956 s32 subreg_def = state->regs[dst_regno].subreg_def;
4957
4958 copy_register_state(&state->regs[dst_regno], reg);
4959 state->regs[dst_regno].subreg_def = subreg_def;
4960
4961 /* Break the relation on a narrowing fill.
4962 * coerce_reg_to_size will adjust the boundaries.
4963 */
4964 if (get_reg_width(reg) > size * BITS_PER_BYTE)
4965 state->regs[dst_regno].id = 0;
4966 } else {
4967 int spill_cnt = 0, zero_cnt = 0;
4968
4969 for (i = 0; i < size; i++) {
4970 type = stype[(slot - i) % BPF_REG_SIZE];
4971 if (type == STACK_SPILL) {
4972 spill_cnt++;
4973 continue;
4974 }
4975 if (type == STACK_MISC)
4976 continue;
4977 if (type == STACK_ZERO) {
4978 zero_cnt++;
4979 continue;
4980 }
4981 if (type == STACK_INVALID && env->allow_uninit_stack)
4982 continue;
4983 verbose(env, "invalid read from stack off %d+%d size %d\n",
4984 off, i, size);
4985 return -EACCES;
4986 }
4987
4988 if (spill_cnt == size &&
4989 tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
4990 __mark_reg_const_zero(env, &state->regs[dst_regno]);
4991 /* this IS register fill, so keep insn_flags */
4992 } else if (zero_cnt == size) {
4993 /* similarly to mark_reg_stack_read(), preserve zeroes */
4994 __mark_reg_const_zero(env, &state->regs[dst_regno]);
4995 insn_flags = 0; /* not restoring original register state */
4996 } else {
4997 mark_reg_unknown(env, state->regs, dst_regno);
4998 insn_flags = 0; /* not restoring original register state */
4999 }
5000 }
5001 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5002 } else if (dst_regno >= 0) {
5003 /* restore register state from stack */
5004 copy_register_state(&state->regs[dst_regno], reg);
5005 /* mark reg as written since spilled pointer state likely
5006 * has its liveness marks cleared by is_state_visited()
5007 * which resets stack/reg liveness for state transitions
5008 */
5009 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5010 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5011 /* If dst_regno==-1, the caller is asking us whether
5012 * it is acceptable to use this value as a SCALAR_VALUE
5013 * (e.g. for XADD).
5014 * We must not allow unprivileged callers to do that
5015 * with spilled pointers.
5016 */
5017 verbose(env, "leaking pointer from stack off %d\n",
5018 off);
5019 return -EACCES;
5020 }
5021 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5022 } else {
5023 for (i = 0; i < size; i++) {
5024 type = stype[(slot - i) % BPF_REG_SIZE];
5025 if (type == STACK_MISC)
5026 continue;
5027 if (type == STACK_ZERO)
5028 continue;
5029 if (type == STACK_INVALID && env->allow_uninit_stack)
5030 continue;
5031 verbose(env, "invalid read from stack off %d+%d size %d\n",
5032 off, i, size);
5033 return -EACCES;
5034 }
5035 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5036 if (dst_regno >= 0)
5037 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5038 insn_flags = 0; /* we are not restoring spilled register */
5039 }
5040 if (insn_flags)
5041 return push_jmp_history(env, env->cur_state, insn_flags, 0);
5042 return 0;
5043 }
5044
5045 enum bpf_access_src {
5046 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
5047 ACCESS_HELPER = 2, /* the access is performed by a helper */
5048 };
5049
5050 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5051 int regno, int off, int access_size,
5052 bool zero_size_allowed,
5053 enum bpf_access_src type,
5054 struct bpf_call_arg_meta *meta);
5055
reg_state(struct bpf_verifier_env * env,int regno)5056 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5057 {
5058 return cur_regs(env) + regno;
5059 }
5060
5061 /* Read the stack at 'ptr_regno + off' and put the result into the register
5062 * 'dst_regno'.
5063 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5064 * but not its variable offset.
5065 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5066 *
5067 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5068 * filling registers (i.e. reads of spilled register cannot be detected when
5069 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5070 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5071 * offset; for a fixed offset check_stack_read_fixed_off should be used
5072 * instead.
5073 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5074 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5075 int ptr_regno, int off, int size, int dst_regno)
5076 {
5077 /* The state of the source register. */
5078 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5079 struct bpf_func_state *ptr_state = func(env, reg);
5080 int err;
5081 int min_off, max_off;
5082
5083 /* Note that we pass a NULL meta, so raw access will not be permitted.
5084 */
5085 err = check_stack_range_initialized(env, ptr_regno, off, size,
5086 false, ACCESS_DIRECT, NULL);
5087 if (err)
5088 return err;
5089
5090 min_off = reg->smin_value + off;
5091 max_off = reg->smax_value + off;
5092 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5093 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5094 return 0;
5095 }
5096
5097 /* check_stack_read dispatches to check_stack_read_fixed_off or
5098 * check_stack_read_var_off.
5099 *
5100 * The caller must ensure that the offset falls within the allocated stack
5101 * bounds.
5102 *
5103 * 'dst_regno' is a register which will receive the value from the stack. It
5104 * can be -1, meaning that the read value is not going to a register.
5105 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5106 static int check_stack_read(struct bpf_verifier_env *env,
5107 int ptr_regno, int off, int size,
5108 int dst_regno)
5109 {
5110 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5111 struct bpf_func_state *state = func(env, reg);
5112 int err;
5113 /* Some accesses are only permitted with a static offset. */
5114 bool var_off = !tnum_is_const(reg->var_off);
5115
5116 /* The offset is required to be static when reads don't go to a
5117 * register, in order to not leak pointers (see
5118 * check_stack_read_fixed_off).
5119 */
5120 if (dst_regno < 0 && var_off) {
5121 char tn_buf[48];
5122
5123 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5124 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5125 tn_buf, off, size);
5126 return -EACCES;
5127 }
5128 /* Variable offset is prohibited for unprivileged mode for simplicity
5129 * since it requires corresponding support in Spectre masking for stack
5130 * ALU. See also retrieve_ptr_limit(). The check in
5131 * check_stack_access_for_ptr_arithmetic() called by
5132 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5133 * with variable offsets, therefore no check is required here. Further,
5134 * just checking it here would be insufficient as speculative stack
5135 * writes could still lead to unsafe speculative behaviour.
5136 */
5137 if (!var_off) {
5138 off += reg->var_off.value;
5139 err = check_stack_read_fixed_off(env, state, off, size,
5140 dst_regno);
5141 } else {
5142 /* Variable offset stack reads need more conservative handling
5143 * than fixed offset ones. Note that dst_regno >= 0 on this
5144 * branch.
5145 */
5146 err = check_stack_read_var_off(env, ptr_regno, off, size,
5147 dst_regno);
5148 }
5149 return err;
5150 }
5151
5152
5153 /* check_stack_write dispatches to check_stack_write_fixed_off or
5154 * check_stack_write_var_off.
5155 *
5156 * 'ptr_regno' is the register used as a pointer into the stack.
5157 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5158 * 'value_regno' is the register whose value we're writing to the stack. It can
5159 * be -1, meaning that we're not writing from a register.
5160 *
5161 * The caller must ensure that the offset falls within the maximum stack size.
5162 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5163 static int check_stack_write(struct bpf_verifier_env *env,
5164 int ptr_regno, int off, int size,
5165 int value_regno, int insn_idx)
5166 {
5167 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5168 struct bpf_func_state *state = func(env, reg);
5169 int err;
5170
5171 if (tnum_is_const(reg->var_off)) {
5172 off += reg->var_off.value;
5173 err = check_stack_write_fixed_off(env, state, off, size,
5174 value_regno, insn_idx);
5175 } else {
5176 /* Variable offset stack reads need more conservative handling
5177 * than fixed offset ones.
5178 */
5179 err = check_stack_write_var_off(env, state,
5180 ptr_regno, off, size,
5181 value_regno, insn_idx);
5182 }
5183 return err;
5184 }
5185
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5186 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5187 int off, int size, enum bpf_access_type type)
5188 {
5189 struct bpf_reg_state *regs = cur_regs(env);
5190 struct bpf_map *map = regs[regno].map_ptr;
5191 u32 cap = bpf_map_flags_to_cap(map);
5192
5193 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5194 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5195 map->value_size, off, size);
5196 return -EACCES;
5197 }
5198
5199 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5200 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5201 map->value_size, off, size);
5202 return -EACCES;
5203 }
5204
5205 return 0;
5206 }
5207
5208 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5209 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5210 int off, int size, u32 mem_size,
5211 bool zero_size_allowed)
5212 {
5213 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5214 struct bpf_reg_state *reg;
5215
5216 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5217 return 0;
5218
5219 reg = &cur_regs(env)[regno];
5220 switch (reg->type) {
5221 case PTR_TO_MAP_KEY:
5222 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5223 mem_size, off, size);
5224 break;
5225 case PTR_TO_MAP_VALUE:
5226 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5227 mem_size, off, size);
5228 break;
5229 case PTR_TO_PACKET:
5230 case PTR_TO_PACKET_META:
5231 case PTR_TO_PACKET_END:
5232 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5233 off, size, regno, reg->id, off, mem_size);
5234 break;
5235 case PTR_TO_MEM:
5236 default:
5237 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5238 mem_size, off, size);
5239 }
5240
5241 return -EACCES;
5242 }
5243
5244 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5245 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5246 int off, int size, u32 mem_size,
5247 bool zero_size_allowed)
5248 {
5249 struct bpf_verifier_state *vstate = env->cur_state;
5250 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5251 struct bpf_reg_state *reg = &state->regs[regno];
5252 int err;
5253
5254 /* We may have adjusted the register pointing to memory region, so we
5255 * need to try adding each of min_value and max_value to off
5256 * to make sure our theoretical access will be safe.
5257 *
5258 * The minimum value is only important with signed
5259 * comparisons where we can't assume the floor of a
5260 * value is 0. If we are using signed variables for our
5261 * index'es we need to make sure that whatever we use
5262 * will have a set floor within our range.
5263 */
5264 if (reg->smin_value < 0 &&
5265 (reg->smin_value == S64_MIN ||
5266 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5267 reg->smin_value + off < 0)) {
5268 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5269 regno);
5270 return -EACCES;
5271 }
5272 err = __check_mem_access(env, regno, reg->smin_value + off, size,
5273 mem_size, zero_size_allowed);
5274 if (err) {
5275 verbose(env, "R%d min value is outside of the allowed memory range\n",
5276 regno);
5277 return err;
5278 }
5279
5280 /* If we haven't set a max value then we need to bail since we can't be
5281 * sure we won't do bad things.
5282 * If reg->umax_value + off could overflow, treat that as unbounded too.
5283 */
5284 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5285 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5286 regno);
5287 return -EACCES;
5288 }
5289 err = __check_mem_access(env, regno, reg->umax_value + off, size,
5290 mem_size, zero_size_allowed);
5291 if (err) {
5292 verbose(env, "R%d max value is outside of the allowed memory range\n",
5293 regno);
5294 return err;
5295 }
5296
5297 return 0;
5298 }
5299
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5300 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5301 const struct bpf_reg_state *reg, int regno,
5302 bool fixed_off_ok)
5303 {
5304 /* Access to this pointer-typed register or passing it to a helper
5305 * is only allowed in its original, unmodified form.
5306 */
5307
5308 if (reg->off < 0) {
5309 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5310 reg_type_str(env, reg->type), regno, reg->off);
5311 return -EACCES;
5312 }
5313
5314 if (!fixed_off_ok && reg->off) {
5315 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5316 reg_type_str(env, reg->type), regno, reg->off);
5317 return -EACCES;
5318 }
5319
5320 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5321 char tn_buf[48];
5322
5323 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5324 verbose(env, "variable %s access var_off=%s disallowed\n",
5325 reg_type_str(env, reg->type), tn_buf);
5326 return -EACCES;
5327 }
5328
5329 return 0;
5330 }
5331
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5332 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5333 const struct bpf_reg_state *reg, int regno)
5334 {
5335 return __check_ptr_off_reg(env, reg, regno, false);
5336 }
5337
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5338 static int map_kptr_match_type(struct bpf_verifier_env *env,
5339 struct btf_field *kptr_field,
5340 struct bpf_reg_state *reg, u32 regno)
5341 {
5342 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5343 int perm_flags;
5344 const char *reg_name = "";
5345
5346 if (btf_is_kernel(reg->btf)) {
5347 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5348
5349 /* Only unreferenced case accepts untrusted pointers */
5350 if (kptr_field->type == BPF_KPTR_UNREF)
5351 perm_flags |= PTR_UNTRUSTED;
5352 } else {
5353 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5354 if (kptr_field->type == BPF_KPTR_PERCPU)
5355 perm_flags |= MEM_PERCPU;
5356 }
5357
5358 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5359 goto bad_type;
5360
5361 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5362 reg_name = btf_type_name(reg->btf, reg->btf_id);
5363
5364 /* For ref_ptr case, release function check should ensure we get one
5365 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5366 * normal store of unreferenced kptr, we must ensure var_off is zero.
5367 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5368 * reg->off and reg->ref_obj_id are not needed here.
5369 */
5370 if (__check_ptr_off_reg(env, reg, regno, true))
5371 return -EACCES;
5372
5373 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5374 * we also need to take into account the reg->off.
5375 *
5376 * We want to support cases like:
5377 *
5378 * struct foo {
5379 * struct bar br;
5380 * struct baz bz;
5381 * };
5382 *
5383 * struct foo *v;
5384 * v = func(); // PTR_TO_BTF_ID
5385 * val->foo = v; // reg->off is zero, btf and btf_id match type
5386 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5387 * // first member type of struct after comparison fails
5388 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5389 * // to match type
5390 *
5391 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5392 * is zero. We must also ensure that btf_struct_ids_match does not walk
5393 * the struct to match type against first member of struct, i.e. reject
5394 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5395 * strict mode to true for type match.
5396 */
5397 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5398 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5399 kptr_field->type != BPF_KPTR_UNREF))
5400 goto bad_type;
5401 return 0;
5402 bad_type:
5403 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5404 reg_type_str(env, reg->type), reg_name);
5405 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5406 if (kptr_field->type == BPF_KPTR_UNREF)
5407 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5408 targ_name);
5409 else
5410 verbose(env, "\n");
5411 return -EINVAL;
5412 }
5413
in_sleepable(struct bpf_verifier_env * env)5414 static bool in_sleepable(struct bpf_verifier_env *env)
5415 {
5416 return env->prog->sleepable ||
5417 (env->cur_state && env->cur_state->in_sleepable);
5418 }
5419
5420 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5421 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5422 */
in_rcu_cs(struct bpf_verifier_env * env)5423 static bool in_rcu_cs(struct bpf_verifier_env *env)
5424 {
5425 return env->cur_state->active_rcu_lock ||
5426 env->cur_state->active_lock.ptr ||
5427 !in_sleepable(env);
5428 }
5429
5430 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5431 BTF_SET_START(rcu_protected_types)
BTF_ID(struct,prog_test_ref_kfunc)5432 BTF_ID(struct, prog_test_ref_kfunc)
5433 #ifdef CONFIG_CGROUPS
5434 BTF_ID(struct, cgroup)
5435 #endif
5436 #ifdef CONFIG_BPF_JIT
5437 BTF_ID(struct, bpf_cpumask)
5438 #endif
5439 BTF_ID(struct, task_struct)
5440 BTF_ID(struct, bpf_crypto_ctx)
5441 BTF_SET_END(rcu_protected_types)
5442
5443 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5444 {
5445 if (!btf_is_kernel(btf))
5446 return true;
5447 return btf_id_set_contains(&rcu_protected_types, btf_id);
5448 }
5449
kptr_pointee_btf_record(struct btf_field * kptr_field)5450 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5451 {
5452 struct btf_struct_meta *meta;
5453
5454 if (btf_is_kernel(kptr_field->kptr.btf))
5455 return NULL;
5456
5457 meta = btf_find_struct_meta(kptr_field->kptr.btf,
5458 kptr_field->kptr.btf_id);
5459
5460 return meta ? meta->record : NULL;
5461 }
5462
rcu_safe_kptr(const struct btf_field * field)5463 static bool rcu_safe_kptr(const struct btf_field *field)
5464 {
5465 const struct btf_field_kptr *kptr = &field->kptr;
5466
5467 return field->type == BPF_KPTR_PERCPU ||
5468 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5469 }
5470
btf_ld_kptr_type(struct bpf_verifier_env * env,struct btf_field * kptr_field)5471 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5472 {
5473 struct btf_record *rec;
5474 u32 ret;
5475
5476 ret = PTR_MAYBE_NULL;
5477 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5478 ret |= MEM_RCU;
5479 if (kptr_field->type == BPF_KPTR_PERCPU)
5480 ret |= MEM_PERCPU;
5481 else if (!btf_is_kernel(kptr_field->kptr.btf))
5482 ret |= MEM_ALLOC;
5483
5484 rec = kptr_pointee_btf_record(kptr_field);
5485 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5486 ret |= NON_OWN_REF;
5487 } else {
5488 ret |= PTR_UNTRUSTED;
5489 }
5490
5491 return ret;
5492 }
5493
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5494 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5495 int value_regno, int insn_idx,
5496 struct btf_field *kptr_field)
5497 {
5498 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5499 int class = BPF_CLASS(insn->code);
5500 struct bpf_reg_state *val_reg;
5501
5502 /* Things we already checked for in check_map_access and caller:
5503 * - Reject cases where variable offset may touch kptr
5504 * - size of access (must be BPF_DW)
5505 * - tnum_is_const(reg->var_off)
5506 * - kptr_field->offset == off + reg->var_off.value
5507 */
5508 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5509 if (BPF_MODE(insn->code) != BPF_MEM) {
5510 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5511 return -EACCES;
5512 }
5513
5514 /* We only allow loading referenced kptr, since it will be marked as
5515 * untrusted, similar to unreferenced kptr.
5516 */
5517 if (class != BPF_LDX &&
5518 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5519 verbose(env, "store to referenced kptr disallowed\n");
5520 return -EACCES;
5521 }
5522
5523 if (class == BPF_LDX) {
5524 val_reg = reg_state(env, value_regno);
5525 /* We can simply mark the value_regno receiving the pointer
5526 * value from map as PTR_TO_BTF_ID, with the correct type.
5527 */
5528 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5529 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5530 } else if (class == BPF_STX) {
5531 val_reg = reg_state(env, value_regno);
5532 if (!register_is_null(val_reg) &&
5533 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5534 return -EACCES;
5535 } else if (class == BPF_ST) {
5536 if (insn->imm) {
5537 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5538 kptr_field->offset);
5539 return -EACCES;
5540 }
5541 } else {
5542 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5543 return -EACCES;
5544 }
5545 return 0;
5546 }
5547
5548 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)5549 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5550 int off, int size, bool zero_size_allowed,
5551 enum bpf_access_src src)
5552 {
5553 struct bpf_verifier_state *vstate = env->cur_state;
5554 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5555 struct bpf_reg_state *reg = &state->regs[regno];
5556 struct bpf_map *map = reg->map_ptr;
5557 struct btf_record *rec;
5558 int err, i;
5559
5560 err = check_mem_region_access(env, regno, off, size, map->value_size,
5561 zero_size_allowed);
5562 if (err)
5563 return err;
5564
5565 if (IS_ERR_OR_NULL(map->record))
5566 return 0;
5567 rec = map->record;
5568 for (i = 0; i < rec->cnt; i++) {
5569 struct btf_field *field = &rec->fields[i];
5570 u32 p = field->offset;
5571
5572 /* If any part of a field can be touched by load/store, reject
5573 * this program. To check that [x1, x2) overlaps with [y1, y2),
5574 * it is sufficient to check x1 < y2 && y1 < x2.
5575 */
5576 if (reg->smin_value + off < p + field->size &&
5577 p < reg->umax_value + off + size) {
5578 switch (field->type) {
5579 case BPF_KPTR_UNREF:
5580 case BPF_KPTR_REF:
5581 case BPF_KPTR_PERCPU:
5582 if (src != ACCESS_DIRECT) {
5583 verbose(env, "kptr cannot be accessed indirectly by helper\n");
5584 return -EACCES;
5585 }
5586 if (!tnum_is_const(reg->var_off)) {
5587 verbose(env, "kptr access cannot have variable offset\n");
5588 return -EACCES;
5589 }
5590 if (p != off + reg->var_off.value) {
5591 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5592 p, off + reg->var_off.value);
5593 return -EACCES;
5594 }
5595 if (size != bpf_size_to_bytes(BPF_DW)) {
5596 verbose(env, "kptr access size must be BPF_DW\n");
5597 return -EACCES;
5598 }
5599 break;
5600 default:
5601 verbose(env, "%s cannot be accessed directly by load/store\n",
5602 btf_field_type_name(field->type));
5603 return -EACCES;
5604 }
5605 }
5606 }
5607 return 0;
5608 }
5609
5610 #define MAX_PACKET_OFF 0xffff
5611
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)5612 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5613 const struct bpf_call_arg_meta *meta,
5614 enum bpf_access_type t)
5615 {
5616 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5617
5618 switch (prog_type) {
5619 /* Program types only with direct read access go here! */
5620 case BPF_PROG_TYPE_LWT_IN:
5621 case BPF_PROG_TYPE_LWT_OUT:
5622 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5623 case BPF_PROG_TYPE_SK_REUSEPORT:
5624 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5625 case BPF_PROG_TYPE_CGROUP_SKB:
5626 if (t == BPF_WRITE)
5627 return false;
5628 fallthrough;
5629
5630 /* Program types with direct read + write access go here! */
5631 case BPF_PROG_TYPE_SCHED_CLS:
5632 case BPF_PROG_TYPE_SCHED_ACT:
5633 case BPF_PROG_TYPE_XDP:
5634 case BPF_PROG_TYPE_LWT_XMIT:
5635 case BPF_PROG_TYPE_SK_SKB:
5636 case BPF_PROG_TYPE_SK_MSG:
5637 if (meta)
5638 return meta->pkt_access;
5639
5640 env->seen_direct_write = true;
5641 return true;
5642
5643 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5644 if (t == BPF_WRITE)
5645 env->seen_direct_write = true;
5646
5647 return true;
5648
5649 default:
5650 return false;
5651 }
5652 }
5653
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)5654 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5655 int size, bool zero_size_allowed)
5656 {
5657 struct bpf_reg_state *regs = cur_regs(env);
5658 struct bpf_reg_state *reg = ®s[regno];
5659 int err;
5660
5661 /* We may have added a variable offset to the packet pointer; but any
5662 * reg->range we have comes after that. We are only checking the fixed
5663 * offset.
5664 */
5665
5666 /* We don't allow negative numbers, because we aren't tracking enough
5667 * detail to prove they're safe.
5668 */
5669 if (reg->smin_value < 0) {
5670 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5671 regno);
5672 return -EACCES;
5673 }
5674
5675 err = reg->range < 0 ? -EINVAL :
5676 __check_mem_access(env, regno, off, size, reg->range,
5677 zero_size_allowed);
5678 if (err) {
5679 verbose(env, "R%d offset is outside of the packet\n", regno);
5680 return err;
5681 }
5682
5683 /* __check_mem_access has made sure "off + size - 1" is within u16.
5684 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5685 * otherwise find_good_pkt_pointers would have refused to set range info
5686 * that __check_mem_access would have rejected this pkt access.
5687 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5688 */
5689 env->prog->aux->max_pkt_offset =
5690 max_t(u32, env->prog->aux->max_pkt_offset,
5691 off + reg->umax_value + size - 1);
5692
5693 return err;
5694 }
5695
5696 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id,bool * is_retval,bool is_ldsx)5697 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5698 enum bpf_access_type t, enum bpf_reg_type *reg_type,
5699 struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx)
5700 {
5701 struct bpf_insn_access_aux info = {
5702 .reg_type = *reg_type,
5703 .log = &env->log,
5704 .is_retval = false,
5705 .is_ldsx = is_ldsx,
5706 };
5707
5708 if (env->ops->is_valid_access &&
5709 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5710 /* A non zero info.ctx_field_size indicates that this field is a
5711 * candidate for later verifier transformation to load the whole
5712 * field and then apply a mask when accessed with a narrower
5713 * access than actual ctx access size. A zero info.ctx_field_size
5714 * will only allow for whole field access and rejects any other
5715 * type of narrower access.
5716 */
5717 *reg_type = info.reg_type;
5718 *is_retval = info.is_retval;
5719
5720 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5721 *btf = info.btf;
5722 *btf_id = info.btf_id;
5723 } else {
5724 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5725 }
5726 /* remember the offset of last byte accessed in ctx */
5727 if (env->prog->aux->max_ctx_offset < off + size)
5728 env->prog->aux->max_ctx_offset = off + size;
5729 return 0;
5730 }
5731
5732 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5733 return -EACCES;
5734 }
5735
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)5736 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5737 int size)
5738 {
5739 if (size < 0 || off < 0 ||
5740 (u64)off + size > sizeof(struct bpf_flow_keys)) {
5741 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5742 off, size);
5743 return -EACCES;
5744 }
5745 return 0;
5746 }
5747
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)5748 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5749 u32 regno, int off, int size,
5750 enum bpf_access_type t)
5751 {
5752 struct bpf_reg_state *regs = cur_regs(env);
5753 struct bpf_reg_state *reg = ®s[regno];
5754 struct bpf_insn_access_aux info = {};
5755 bool valid;
5756
5757 if (reg->smin_value < 0) {
5758 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5759 regno);
5760 return -EACCES;
5761 }
5762
5763 switch (reg->type) {
5764 case PTR_TO_SOCK_COMMON:
5765 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5766 break;
5767 case PTR_TO_SOCKET:
5768 valid = bpf_sock_is_valid_access(off, size, t, &info);
5769 break;
5770 case PTR_TO_TCP_SOCK:
5771 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5772 break;
5773 case PTR_TO_XDP_SOCK:
5774 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5775 break;
5776 default:
5777 valid = false;
5778 }
5779
5780
5781 if (valid) {
5782 env->insn_aux_data[insn_idx].ctx_field_size =
5783 info.ctx_field_size;
5784 return 0;
5785 }
5786
5787 verbose(env, "R%d invalid %s access off=%d size=%d\n",
5788 regno, reg_type_str(env, reg->type), off, size);
5789
5790 return -EACCES;
5791 }
5792
is_pointer_value(struct bpf_verifier_env * env,int regno)5793 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5794 {
5795 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5796 }
5797
is_ctx_reg(struct bpf_verifier_env * env,int regno)5798 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5799 {
5800 const struct bpf_reg_state *reg = reg_state(env, regno);
5801
5802 return reg->type == PTR_TO_CTX;
5803 }
5804
is_sk_reg(struct bpf_verifier_env * env,int regno)5805 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5806 {
5807 const struct bpf_reg_state *reg = reg_state(env, regno);
5808
5809 return type_is_sk_pointer(reg->type);
5810 }
5811
is_pkt_reg(struct bpf_verifier_env * env,int regno)5812 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5813 {
5814 const struct bpf_reg_state *reg = reg_state(env, regno);
5815
5816 return type_is_pkt_pointer(reg->type);
5817 }
5818
is_flow_key_reg(struct bpf_verifier_env * env,int regno)5819 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5820 {
5821 const struct bpf_reg_state *reg = reg_state(env, regno);
5822
5823 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5824 return reg->type == PTR_TO_FLOW_KEYS;
5825 }
5826
is_arena_reg(struct bpf_verifier_env * env,int regno)5827 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
5828 {
5829 const struct bpf_reg_state *reg = reg_state(env, regno);
5830
5831 return reg->type == PTR_TO_ARENA;
5832 }
5833
5834 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5835 #ifdef CONFIG_NET
5836 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5837 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5838 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5839 #endif
5840 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
5841 };
5842
is_trusted_reg(const struct bpf_reg_state * reg)5843 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5844 {
5845 /* A referenced register is always trusted. */
5846 if (reg->ref_obj_id)
5847 return true;
5848
5849 /* Types listed in the reg2btf_ids are always trusted */
5850 if (reg2btf_ids[base_type(reg->type)] &&
5851 !bpf_type_has_unsafe_modifiers(reg->type))
5852 return true;
5853
5854 /* If a register is not referenced, it is trusted if it has the
5855 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5856 * other type modifiers may be safe, but we elect to take an opt-in
5857 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5858 * not.
5859 *
5860 * Eventually, we should make PTR_TRUSTED the single source of truth
5861 * for whether a register is trusted.
5862 */
5863 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5864 !bpf_type_has_unsafe_modifiers(reg->type);
5865 }
5866
is_rcu_reg(const struct bpf_reg_state * reg)5867 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5868 {
5869 return reg->type & MEM_RCU;
5870 }
5871
clear_trusted_flags(enum bpf_type_flag * flag)5872 static void clear_trusted_flags(enum bpf_type_flag *flag)
5873 {
5874 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5875 }
5876
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)5877 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5878 const struct bpf_reg_state *reg,
5879 int off, int size, bool strict)
5880 {
5881 struct tnum reg_off;
5882 int ip_align;
5883
5884 /* Byte size accesses are always allowed. */
5885 if (!strict || size == 1)
5886 return 0;
5887
5888 /* For platforms that do not have a Kconfig enabling
5889 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5890 * NET_IP_ALIGN is universally set to '2'. And on platforms
5891 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5892 * to this code only in strict mode where we want to emulate
5893 * the NET_IP_ALIGN==2 checking. Therefore use an
5894 * unconditional IP align value of '2'.
5895 */
5896 ip_align = 2;
5897
5898 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5899 if (!tnum_is_aligned(reg_off, size)) {
5900 char tn_buf[48];
5901
5902 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5903 verbose(env,
5904 "misaligned packet access off %d+%s+%d+%d size %d\n",
5905 ip_align, tn_buf, reg->off, off, size);
5906 return -EACCES;
5907 }
5908
5909 return 0;
5910 }
5911
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)5912 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5913 const struct bpf_reg_state *reg,
5914 const char *pointer_desc,
5915 int off, int size, bool strict)
5916 {
5917 struct tnum reg_off;
5918
5919 /* Byte size accesses are always allowed. */
5920 if (!strict || size == 1)
5921 return 0;
5922
5923 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5924 if (!tnum_is_aligned(reg_off, size)) {
5925 char tn_buf[48];
5926
5927 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5928 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5929 pointer_desc, tn_buf, reg->off, off, size);
5930 return -EACCES;
5931 }
5932
5933 return 0;
5934 }
5935
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)5936 static int check_ptr_alignment(struct bpf_verifier_env *env,
5937 const struct bpf_reg_state *reg, int off,
5938 int size, bool strict_alignment_once)
5939 {
5940 bool strict = env->strict_alignment || strict_alignment_once;
5941 const char *pointer_desc = "";
5942
5943 switch (reg->type) {
5944 case PTR_TO_PACKET:
5945 case PTR_TO_PACKET_META:
5946 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5947 * right in front, treat it the very same way.
5948 */
5949 return check_pkt_ptr_alignment(env, reg, off, size, strict);
5950 case PTR_TO_FLOW_KEYS:
5951 pointer_desc = "flow keys ";
5952 break;
5953 case PTR_TO_MAP_KEY:
5954 pointer_desc = "key ";
5955 break;
5956 case PTR_TO_MAP_VALUE:
5957 pointer_desc = "value ";
5958 break;
5959 case PTR_TO_CTX:
5960 pointer_desc = "context ";
5961 break;
5962 case PTR_TO_STACK:
5963 pointer_desc = "stack ";
5964 /* The stack spill tracking logic in check_stack_write_fixed_off()
5965 * and check_stack_read_fixed_off() relies on stack accesses being
5966 * aligned.
5967 */
5968 strict = true;
5969 break;
5970 case PTR_TO_SOCKET:
5971 pointer_desc = "sock ";
5972 break;
5973 case PTR_TO_SOCK_COMMON:
5974 pointer_desc = "sock_common ";
5975 break;
5976 case PTR_TO_TCP_SOCK:
5977 pointer_desc = "tcp_sock ";
5978 break;
5979 case PTR_TO_XDP_SOCK:
5980 pointer_desc = "xdp_sock ";
5981 break;
5982 case PTR_TO_ARENA:
5983 return 0;
5984 default:
5985 break;
5986 }
5987 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5988 strict);
5989 }
5990
round_up_stack_depth(struct bpf_verifier_env * env,int stack_depth)5991 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
5992 {
5993 if (env->prog->jit_requested)
5994 return round_up(stack_depth, 16);
5995
5996 /* round up to 32-bytes, since this is granularity
5997 * of interpreter stack size
5998 */
5999 return round_up(max_t(u32, stack_depth, 1), 32);
6000 }
6001
6002 /* starting from main bpf function walk all instructions of the function
6003 * and recursively walk all callees that given function can call.
6004 * Ignore jump and exit insns.
6005 * Since recursion is prevented by check_cfg() this algorithm
6006 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6007 */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx)6008 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
6009 {
6010 struct bpf_subprog_info *subprog = env->subprog_info;
6011 struct bpf_insn *insn = env->prog->insnsi;
6012 int depth = 0, frame = 0, i, subprog_end;
6013 bool tail_call_reachable = false;
6014 int ret_insn[MAX_CALL_FRAMES];
6015 int ret_prog[MAX_CALL_FRAMES];
6016 int j;
6017
6018 i = subprog[idx].start;
6019 process_func:
6020 /* protect against potential stack overflow that might happen when
6021 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6022 * depth for such case down to 256 so that the worst case scenario
6023 * would result in 8k stack size (32 which is tailcall limit * 256 =
6024 * 8k).
6025 *
6026 * To get the idea what might happen, see an example:
6027 * func1 -> sub rsp, 128
6028 * subfunc1 -> sub rsp, 256
6029 * tailcall1 -> add rsp, 256
6030 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6031 * subfunc2 -> sub rsp, 64
6032 * subfunc22 -> sub rsp, 128
6033 * tailcall2 -> add rsp, 128
6034 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6035 *
6036 * tailcall will unwind the current stack frame but it will not get rid
6037 * of caller's stack as shown on the example above.
6038 */
6039 if (idx && subprog[idx].has_tail_call && depth >= 256) {
6040 verbose(env,
6041 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6042 depth);
6043 return -EACCES;
6044 }
6045 depth += round_up_stack_depth(env, subprog[idx].stack_depth);
6046 if (depth > MAX_BPF_STACK) {
6047 verbose(env, "combined stack size of %d calls is %d. Too large\n",
6048 frame + 1, depth);
6049 return -EACCES;
6050 }
6051 continue_func:
6052 subprog_end = subprog[idx + 1].start;
6053 for (; i < subprog_end; i++) {
6054 int next_insn, sidx;
6055
6056 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6057 bool err = false;
6058
6059 if (!is_bpf_throw_kfunc(insn + i))
6060 continue;
6061 if (subprog[idx].is_cb)
6062 err = true;
6063 for (int c = 0; c < frame && !err; c++) {
6064 if (subprog[ret_prog[c]].is_cb) {
6065 err = true;
6066 break;
6067 }
6068 }
6069 if (!err)
6070 continue;
6071 verbose(env,
6072 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6073 i, idx);
6074 return -EINVAL;
6075 }
6076
6077 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6078 continue;
6079 /* remember insn and function to return to */
6080 ret_insn[frame] = i + 1;
6081 ret_prog[frame] = idx;
6082
6083 /* find the callee */
6084 next_insn = i + insn[i].imm + 1;
6085 sidx = find_subprog(env, next_insn);
6086 if (sidx < 0) {
6087 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6088 next_insn);
6089 return -EFAULT;
6090 }
6091 if (subprog[sidx].is_async_cb) {
6092 if (subprog[sidx].has_tail_call) {
6093 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6094 return -EFAULT;
6095 }
6096 /* async callbacks don't increase bpf prog stack size unless called directly */
6097 if (!bpf_pseudo_call(insn + i))
6098 continue;
6099 if (subprog[sidx].is_exception_cb) {
6100 verbose(env, "insn %d cannot call exception cb directly\n", i);
6101 return -EINVAL;
6102 }
6103 }
6104 i = next_insn;
6105 idx = sidx;
6106
6107 if (subprog[idx].has_tail_call)
6108 tail_call_reachable = true;
6109
6110 frame++;
6111 if (frame >= MAX_CALL_FRAMES) {
6112 verbose(env, "the call stack of %d frames is too deep !\n",
6113 frame);
6114 return -E2BIG;
6115 }
6116 goto process_func;
6117 }
6118 /* if tail call got detected across bpf2bpf calls then mark each of the
6119 * currently present subprog frames as tail call reachable subprogs;
6120 * this info will be utilized by JIT so that we will be preserving the
6121 * tail call counter throughout bpf2bpf calls combined with tailcalls
6122 */
6123 if (tail_call_reachable)
6124 for (j = 0; j < frame; j++) {
6125 if (subprog[ret_prog[j]].is_exception_cb) {
6126 verbose(env, "cannot tail call within exception cb\n");
6127 return -EINVAL;
6128 }
6129 subprog[ret_prog[j]].tail_call_reachable = true;
6130 }
6131 if (subprog[0].tail_call_reachable)
6132 env->prog->aux->tail_call_reachable = true;
6133
6134 /* end of for() loop means the last insn of the 'subprog'
6135 * was reached. Doesn't matter whether it was JA or EXIT
6136 */
6137 if (frame == 0)
6138 return 0;
6139 depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6140 frame--;
6141 i = ret_insn[frame];
6142 idx = ret_prog[frame];
6143 goto continue_func;
6144 }
6145
check_max_stack_depth(struct bpf_verifier_env * env)6146 static int check_max_stack_depth(struct bpf_verifier_env *env)
6147 {
6148 struct bpf_subprog_info *si = env->subprog_info;
6149 int ret;
6150
6151 for (int i = 0; i < env->subprog_cnt; i++) {
6152 if (!i || si[i].is_async_cb) {
6153 ret = check_max_stack_depth_subprog(env, i);
6154 if (ret < 0)
6155 return ret;
6156 }
6157 continue;
6158 }
6159 return 0;
6160 }
6161
6162 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)6163 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6164 const struct bpf_insn *insn, int idx)
6165 {
6166 int start = idx + insn->imm + 1, subprog;
6167
6168 subprog = find_subprog(env, start);
6169 if (subprog < 0) {
6170 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6171 start);
6172 return -EFAULT;
6173 }
6174 return env->subprog_info[subprog].stack_depth;
6175 }
6176 #endif
6177
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)6178 static int __check_buffer_access(struct bpf_verifier_env *env,
6179 const char *buf_info,
6180 const struct bpf_reg_state *reg,
6181 int regno, int off, int size)
6182 {
6183 if (off < 0) {
6184 verbose(env,
6185 "R%d invalid %s buffer access: off=%d, size=%d\n",
6186 regno, buf_info, off, size);
6187 return -EACCES;
6188 }
6189 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6190 char tn_buf[48];
6191
6192 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6193 verbose(env,
6194 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6195 regno, off, tn_buf);
6196 return -EACCES;
6197 }
6198
6199 return 0;
6200 }
6201
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6202 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6203 const struct bpf_reg_state *reg,
6204 int regno, int off, int size)
6205 {
6206 int err;
6207
6208 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6209 if (err)
6210 return err;
6211
6212 if (off + size > env->prog->aux->max_tp_access)
6213 env->prog->aux->max_tp_access = off + size;
6214
6215 return 0;
6216 }
6217
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6218 static int check_buffer_access(struct bpf_verifier_env *env,
6219 const struct bpf_reg_state *reg,
6220 int regno, int off, int size,
6221 bool zero_size_allowed,
6222 u32 *max_access)
6223 {
6224 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6225 int err;
6226
6227 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6228 if (err)
6229 return err;
6230
6231 if (off + size > *max_access)
6232 *max_access = off + size;
6233
6234 return 0;
6235 }
6236
6237 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6238 static void zext_32_to_64(struct bpf_reg_state *reg)
6239 {
6240 reg->var_off = tnum_subreg(reg->var_off);
6241 __reg_assign_32_into_64(reg);
6242 }
6243
6244 /* truncate register to smaller size (in bytes)
6245 * must be called with size < BPF_REG_SIZE
6246 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6247 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6248 {
6249 u64 mask;
6250
6251 /* clear high bits in bit representation */
6252 reg->var_off = tnum_cast(reg->var_off, size);
6253
6254 /* fix arithmetic bounds */
6255 mask = ((u64)1 << (size * 8)) - 1;
6256 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6257 reg->umin_value &= mask;
6258 reg->umax_value &= mask;
6259 } else {
6260 reg->umin_value = 0;
6261 reg->umax_value = mask;
6262 }
6263 reg->smin_value = reg->umin_value;
6264 reg->smax_value = reg->umax_value;
6265
6266 /* If size is smaller than 32bit register the 32bit register
6267 * values are also truncated so we push 64-bit bounds into
6268 * 32-bit bounds. Above were truncated < 32-bits already.
6269 */
6270 if (size < 4)
6271 __mark_reg32_unbounded(reg);
6272
6273 reg_bounds_sync(reg);
6274 }
6275
set_sext64_default_val(struct bpf_reg_state * reg,int size)6276 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6277 {
6278 if (size == 1) {
6279 reg->smin_value = reg->s32_min_value = S8_MIN;
6280 reg->smax_value = reg->s32_max_value = S8_MAX;
6281 } else if (size == 2) {
6282 reg->smin_value = reg->s32_min_value = S16_MIN;
6283 reg->smax_value = reg->s32_max_value = S16_MAX;
6284 } else {
6285 /* size == 4 */
6286 reg->smin_value = reg->s32_min_value = S32_MIN;
6287 reg->smax_value = reg->s32_max_value = S32_MAX;
6288 }
6289 reg->umin_value = reg->u32_min_value = 0;
6290 reg->umax_value = U64_MAX;
6291 reg->u32_max_value = U32_MAX;
6292 reg->var_off = tnum_unknown;
6293 }
6294
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6295 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6296 {
6297 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6298 u64 top_smax_value, top_smin_value;
6299 u64 num_bits = size * 8;
6300
6301 if (tnum_is_const(reg->var_off)) {
6302 u64_cval = reg->var_off.value;
6303 if (size == 1)
6304 reg->var_off = tnum_const((s8)u64_cval);
6305 else if (size == 2)
6306 reg->var_off = tnum_const((s16)u64_cval);
6307 else
6308 /* size == 4 */
6309 reg->var_off = tnum_const((s32)u64_cval);
6310
6311 u64_cval = reg->var_off.value;
6312 reg->smax_value = reg->smin_value = u64_cval;
6313 reg->umax_value = reg->umin_value = u64_cval;
6314 reg->s32_max_value = reg->s32_min_value = u64_cval;
6315 reg->u32_max_value = reg->u32_min_value = u64_cval;
6316 return;
6317 }
6318
6319 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6320 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6321
6322 if (top_smax_value != top_smin_value)
6323 goto out;
6324
6325 /* find the s64_min and s64_min after sign extension */
6326 if (size == 1) {
6327 init_s64_max = (s8)reg->smax_value;
6328 init_s64_min = (s8)reg->smin_value;
6329 } else if (size == 2) {
6330 init_s64_max = (s16)reg->smax_value;
6331 init_s64_min = (s16)reg->smin_value;
6332 } else {
6333 init_s64_max = (s32)reg->smax_value;
6334 init_s64_min = (s32)reg->smin_value;
6335 }
6336
6337 s64_max = max(init_s64_max, init_s64_min);
6338 s64_min = min(init_s64_max, init_s64_min);
6339
6340 /* both of s64_max/s64_min positive or negative */
6341 if ((s64_max >= 0) == (s64_min >= 0)) {
6342 reg->s32_min_value = reg->smin_value = s64_min;
6343 reg->s32_max_value = reg->smax_value = s64_max;
6344 reg->u32_min_value = reg->umin_value = s64_min;
6345 reg->u32_max_value = reg->umax_value = s64_max;
6346 reg->var_off = tnum_range(s64_min, s64_max);
6347 return;
6348 }
6349
6350 out:
6351 set_sext64_default_val(reg, size);
6352 }
6353
set_sext32_default_val(struct bpf_reg_state * reg,int size)6354 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6355 {
6356 if (size == 1) {
6357 reg->s32_min_value = S8_MIN;
6358 reg->s32_max_value = S8_MAX;
6359 } else {
6360 /* size == 2 */
6361 reg->s32_min_value = S16_MIN;
6362 reg->s32_max_value = S16_MAX;
6363 }
6364 reg->u32_min_value = 0;
6365 reg->u32_max_value = U32_MAX;
6366 reg->var_off = tnum_subreg(tnum_unknown);
6367 }
6368
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6369 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6370 {
6371 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6372 u32 top_smax_value, top_smin_value;
6373 u32 num_bits = size * 8;
6374
6375 if (tnum_is_const(reg->var_off)) {
6376 u32_val = reg->var_off.value;
6377 if (size == 1)
6378 reg->var_off = tnum_const((s8)u32_val);
6379 else
6380 reg->var_off = tnum_const((s16)u32_val);
6381
6382 u32_val = reg->var_off.value;
6383 reg->s32_min_value = reg->s32_max_value = u32_val;
6384 reg->u32_min_value = reg->u32_max_value = u32_val;
6385 return;
6386 }
6387
6388 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6389 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6390
6391 if (top_smax_value != top_smin_value)
6392 goto out;
6393
6394 /* find the s32_min and s32_min after sign extension */
6395 if (size == 1) {
6396 init_s32_max = (s8)reg->s32_max_value;
6397 init_s32_min = (s8)reg->s32_min_value;
6398 } else {
6399 /* size == 2 */
6400 init_s32_max = (s16)reg->s32_max_value;
6401 init_s32_min = (s16)reg->s32_min_value;
6402 }
6403 s32_max = max(init_s32_max, init_s32_min);
6404 s32_min = min(init_s32_max, init_s32_min);
6405
6406 if ((s32_min >= 0) == (s32_max >= 0)) {
6407 reg->s32_min_value = s32_min;
6408 reg->s32_max_value = s32_max;
6409 reg->u32_min_value = (u32)s32_min;
6410 reg->u32_max_value = (u32)s32_max;
6411 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6412 return;
6413 }
6414
6415 out:
6416 set_sext32_default_val(reg, size);
6417 }
6418
bpf_map_is_rdonly(const struct bpf_map * map)6419 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6420 {
6421 /* A map is considered read-only if the following condition are true:
6422 *
6423 * 1) BPF program side cannot change any of the map content. The
6424 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6425 * and was set at map creation time.
6426 * 2) The map value(s) have been initialized from user space by a
6427 * loader and then "frozen", such that no new map update/delete
6428 * operations from syscall side are possible for the rest of
6429 * the map's lifetime from that point onwards.
6430 * 3) Any parallel/pending map update/delete operations from syscall
6431 * side have been completed. Only after that point, it's safe to
6432 * assume that map value(s) are immutable.
6433 */
6434 return (map->map_flags & BPF_F_RDONLY_PROG) &&
6435 READ_ONCE(map->frozen) &&
6436 !bpf_map_write_active(map);
6437 }
6438
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)6439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6440 bool is_ldsx)
6441 {
6442 void *ptr;
6443 u64 addr;
6444 int err;
6445
6446 err = map->ops->map_direct_value_addr(map, &addr, off);
6447 if (err)
6448 return err;
6449 ptr = (void *)(long)addr + off;
6450
6451 switch (size) {
6452 case sizeof(u8):
6453 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6454 break;
6455 case sizeof(u16):
6456 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6457 break;
6458 case sizeof(u32):
6459 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6460 break;
6461 case sizeof(u64):
6462 *val = *(u64 *)ptr;
6463 break;
6464 default:
6465 return -EINVAL;
6466 }
6467 return 0;
6468 }
6469
6470 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
6471 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6472 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
6473 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null)
6474
6475 /*
6476 * Allow list few fields as RCU trusted or full trusted.
6477 * This logic doesn't allow mix tagging and will be removed once GCC supports
6478 * btf_type_tag.
6479 */
6480
6481 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)6482 BTF_TYPE_SAFE_RCU(struct task_struct) {
6483 const cpumask_t *cpus_ptr;
6484 struct css_set __rcu *cgroups;
6485 struct task_struct __rcu *real_parent;
6486 struct task_struct *group_leader;
6487 };
6488
BTF_TYPE_SAFE_RCU(struct cgroup)6489 BTF_TYPE_SAFE_RCU(struct cgroup) {
6490 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6491 struct kernfs_node *kn;
6492 };
6493
BTF_TYPE_SAFE_RCU(struct css_set)6494 BTF_TYPE_SAFE_RCU(struct css_set) {
6495 struct cgroup *dfl_cgrp;
6496 };
6497
6498 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)6499 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6500 struct file __rcu *exe_file;
6501 };
6502
6503 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6504 * because bpf prog accessible sockets are SOCK_RCU_FREE.
6505 */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)6506 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6507 struct sock *sk;
6508 };
6509
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)6510 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6511 struct sock *sk;
6512 };
6513
6514 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)6515 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6516 struct seq_file *seq;
6517 };
6518
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)6519 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6520 struct bpf_iter_meta *meta;
6521 struct task_struct *task;
6522 };
6523
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)6524 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6525 struct file *file;
6526 };
6527
BTF_TYPE_SAFE_TRUSTED(struct file)6528 BTF_TYPE_SAFE_TRUSTED(struct file) {
6529 struct inode *f_inode;
6530 };
6531
BTF_TYPE_SAFE_TRUSTED(struct dentry)6532 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6533 /* no negative dentry-s in places where bpf can see it */
6534 struct inode *d_inode;
6535 };
6536
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)6537 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6538 struct sock *sk;
6539 };
6540
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6541 static bool type_is_rcu(struct bpf_verifier_env *env,
6542 struct bpf_reg_state *reg,
6543 const char *field_name, u32 btf_id)
6544 {
6545 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6546 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6547 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6548
6549 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6550 }
6551
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6552 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6553 struct bpf_reg_state *reg,
6554 const char *field_name, u32 btf_id)
6555 {
6556 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6557 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6558 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6559
6560 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6561 }
6562
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6563 static bool type_is_trusted(struct bpf_verifier_env *env,
6564 struct bpf_reg_state *reg,
6565 const char *field_name, u32 btf_id)
6566 {
6567 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6568 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6569 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6570 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6571 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6572
6573 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6574 }
6575
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6576 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6577 struct bpf_reg_state *reg,
6578 const char *field_name, u32 btf_id)
6579 {
6580 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6581
6582 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6583 "__safe_trusted_or_null");
6584 }
6585
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6586 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6587 struct bpf_reg_state *regs,
6588 int regno, int off, int size,
6589 enum bpf_access_type atype,
6590 int value_regno)
6591 {
6592 struct bpf_reg_state *reg = regs + regno;
6593 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6594 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6595 const char *field_name = NULL;
6596 enum bpf_type_flag flag = 0;
6597 u32 btf_id = 0;
6598 int ret;
6599
6600 if (!env->allow_ptr_leaks) {
6601 verbose(env,
6602 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6603 tname);
6604 return -EPERM;
6605 }
6606 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6607 verbose(env,
6608 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6609 tname);
6610 return -EINVAL;
6611 }
6612 if (off < 0) {
6613 verbose(env,
6614 "R%d is ptr_%s invalid negative access: off=%d\n",
6615 regno, tname, off);
6616 return -EACCES;
6617 }
6618 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6619 char tn_buf[48];
6620
6621 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6622 verbose(env,
6623 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6624 regno, tname, off, tn_buf);
6625 return -EACCES;
6626 }
6627
6628 if (reg->type & MEM_USER) {
6629 verbose(env,
6630 "R%d is ptr_%s access user memory: off=%d\n",
6631 regno, tname, off);
6632 return -EACCES;
6633 }
6634
6635 if (reg->type & MEM_PERCPU) {
6636 verbose(env,
6637 "R%d is ptr_%s access percpu memory: off=%d\n",
6638 regno, tname, off);
6639 return -EACCES;
6640 }
6641
6642 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6643 if (!btf_is_kernel(reg->btf)) {
6644 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6645 return -EFAULT;
6646 }
6647 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6648 } else {
6649 /* Writes are permitted with default btf_struct_access for
6650 * program allocated objects (which always have ref_obj_id > 0),
6651 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6652 */
6653 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6654 verbose(env, "only read is supported\n");
6655 return -EACCES;
6656 }
6657
6658 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6659 !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6660 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6661 return -EFAULT;
6662 }
6663
6664 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6665 }
6666
6667 if (ret < 0)
6668 return ret;
6669
6670 if (ret != PTR_TO_BTF_ID) {
6671 /* just mark; */
6672
6673 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6674 /* If this is an untrusted pointer, all pointers formed by walking it
6675 * also inherit the untrusted flag.
6676 */
6677 flag = PTR_UNTRUSTED;
6678
6679 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6680 /* By default any pointer obtained from walking a trusted pointer is no
6681 * longer trusted, unless the field being accessed has explicitly been
6682 * marked as inheriting its parent's state of trust (either full or RCU).
6683 * For example:
6684 * 'cgroups' pointer is untrusted if task->cgroups dereference
6685 * happened in a sleepable program outside of bpf_rcu_read_lock()
6686 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6687 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6688 *
6689 * A regular RCU-protected pointer with __rcu tag can also be deemed
6690 * trusted if we are in an RCU CS. Such pointer can be NULL.
6691 */
6692 if (type_is_trusted(env, reg, field_name, btf_id)) {
6693 flag |= PTR_TRUSTED;
6694 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6695 flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6696 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6697 if (type_is_rcu(env, reg, field_name, btf_id)) {
6698 /* ignore __rcu tag and mark it MEM_RCU */
6699 flag |= MEM_RCU;
6700 } else if (flag & MEM_RCU ||
6701 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6702 /* __rcu tagged pointers can be NULL */
6703 flag |= MEM_RCU | PTR_MAYBE_NULL;
6704
6705 /* We always trust them */
6706 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6707 flag & PTR_UNTRUSTED)
6708 flag &= ~PTR_UNTRUSTED;
6709 } else if (flag & (MEM_PERCPU | MEM_USER)) {
6710 /* keep as-is */
6711 } else {
6712 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6713 clear_trusted_flags(&flag);
6714 }
6715 } else {
6716 /*
6717 * If not in RCU CS or MEM_RCU pointer can be NULL then
6718 * aggressively mark as untrusted otherwise such
6719 * pointers will be plain PTR_TO_BTF_ID without flags
6720 * and will be allowed to be passed into helpers for
6721 * compat reasons.
6722 */
6723 flag = PTR_UNTRUSTED;
6724 }
6725 } else {
6726 /* Old compat. Deprecated */
6727 clear_trusted_flags(&flag);
6728 }
6729
6730 if (atype == BPF_READ && value_regno >= 0)
6731 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6732
6733 return 0;
6734 }
6735
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6736 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6737 struct bpf_reg_state *regs,
6738 int regno, int off, int size,
6739 enum bpf_access_type atype,
6740 int value_regno)
6741 {
6742 struct bpf_reg_state *reg = regs + regno;
6743 struct bpf_map *map = reg->map_ptr;
6744 struct bpf_reg_state map_reg;
6745 enum bpf_type_flag flag = 0;
6746 const struct btf_type *t;
6747 const char *tname;
6748 u32 btf_id;
6749 int ret;
6750
6751 if (!btf_vmlinux) {
6752 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6753 return -ENOTSUPP;
6754 }
6755
6756 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6757 verbose(env, "map_ptr access not supported for map type %d\n",
6758 map->map_type);
6759 return -ENOTSUPP;
6760 }
6761
6762 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6763 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6764
6765 if (!env->allow_ptr_leaks) {
6766 verbose(env,
6767 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6768 tname);
6769 return -EPERM;
6770 }
6771
6772 if (off < 0) {
6773 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6774 regno, tname, off);
6775 return -EACCES;
6776 }
6777
6778 if (atype != BPF_READ) {
6779 verbose(env, "only read from %s is supported\n", tname);
6780 return -EACCES;
6781 }
6782
6783 /* Simulate access to a PTR_TO_BTF_ID */
6784 memset(&map_reg, 0, sizeof(map_reg));
6785 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6786 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6787 if (ret < 0)
6788 return ret;
6789
6790 if (value_regno >= 0)
6791 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6792
6793 return 0;
6794 }
6795
6796 /* Check that the stack access at the given offset is within bounds. The
6797 * maximum valid offset is -1.
6798 *
6799 * The minimum valid offset is -MAX_BPF_STACK for writes, and
6800 * -state->allocated_stack for reads.
6801 */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)6802 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6803 s64 off,
6804 struct bpf_func_state *state,
6805 enum bpf_access_type t)
6806 {
6807 int min_valid_off;
6808
6809 if (t == BPF_WRITE || env->allow_uninit_stack)
6810 min_valid_off = -MAX_BPF_STACK;
6811 else
6812 min_valid_off = -state->allocated_stack;
6813
6814 if (off < min_valid_off || off > -1)
6815 return -EACCES;
6816 return 0;
6817 }
6818
6819 /* Check that the stack access at 'regno + off' falls within the maximum stack
6820 * bounds.
6821 *
6822 * 'off' includes `regno->offset`, but not its dynamic part (if any).
6823 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)6824 static int check_stack_access_within_bounds(
6825 struct bpf_verifier_env *env,
6826 int regno, int off, int access_size,
6827 enum bpf_access_src src, enum bpf_access_type type)
6828 {
6829 struct bpf_reg_state *regs = cur_regs(env);
6830 struct bpf_reg_state *reg = regs + regno;
6831 struct bpf_func_state *state = func(env, reg);
6832 s64 min_off, max_off;
6833 int err;
6834 char *err_extra;
6835
6836 if (src == ACCESS_HELPER)
6837 /* We don't know if helpers are reading or writing (or both). */
6838 err_extra = " indirect access to";
6839 else if (type == BPF_READ)
6840 err_extra = " read from";
6841 else
6842 err_extra = " write to";
6843
6844 if (tnum_is_const(reg->var_off)) {
6845 min_off = (s64)reg->var_off.value + off;
6846 max_off = min_off + access_size;
6847 } else {
6848 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6849 reg->smin_value <= -BPF_MAX_VAR_OFF) {
6850 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6851 err_extra, regno);
6852 return -EACCES;
6853 }
6854 min_off = reg->smin_value + off;
6855 max_off = reg->smax_value + off + access_size;
6856 }
6857
6858 err = check_stack_slot_within_bounds(env, min_off, state, type);
6859 if (!err && max_off > 0)
6860 err = -EINVAL; /* out of stack access into non-negative offsets */
6861 if (!err && access_size < 0)
6862 /* access_size should not be negative (or overflow an int); others checks
6863 * along the way should have prevented such an access.
6864 */
6865 err = -EFAULT; /* invalid negative access size; integer overflow? */
6866
6867 if (err) {
6868 if (tnum_is_const(reg->var_off)) {
6869 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6870 err_extra, regno, off, access_size);
6871 } else {
6872 char tn_buf[48];
6873
6874 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6875 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
6876 err_extra, regno, tn_buf, off, access_size);
6877 }
6878 return err;
6879 }
6880
6881 /* Note that there is no stack access with offset zero, so the needed stack
6882 * size is -min_off, not -min_off+1.
6883 */
6884 return grow_stack_state(env, state, -min_off /* size */);
6885 }
6886
get_func_retval_range(struct bpf_prog * prog,struct bpf_retval_range * range)6887 static bool get_func_retval_range(struct bpf_prog *prog,
6888 struct bpf_retval_range *range)
6889 {
6890 if (prog->type == BPF_PROG_TYPE_LSM &&
6891 prog->expected_attach_type == BPF_LSM_MAC &&
6892 !bpf_lsm_get_retval_range(prog, range)) {
6893 return true;
6894 }
6895 return false;
6896 }
6897
6898 /* check whether memory at (regno + off) is accessible for t = (read | write)
6899 * if t==write, value_regno is a register which value is stored into memory
6900 * if t==read, value_regno is a register which will receive the value from memory
6901 * if t==write && value_regno==-1, some unknown value is stored into memory
6902 * if t==read && value_regno==-1, don't care what we read from memory
6903 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)6904 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6905 int off, int bpf_size, enum bpf_access_type t,
6906 int value_regno, bool strict_alignment_once, bool is_ldsx)
6907 {
6908 struct bpf_reg_state *regs = cur_regs(env);
6909 struct bpf_reg_state *reg = regs + regno;
6910 int size, err = 0;
6911
6912 size = bpf_size_to_bytes(bpf_size);
6913 if (size < 0)
6914 return size;
6915
6916 /* alignment checks will add in reg->off themselves */
6917 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6918 if (err)
6919 return err;
6920
6921 /* for access checks, reg->off is just part of off */
6922 off += reg->off;
6923
6924 if (reg->type == PTR_TO_MAP_KEY) {
6925 if (t == BPF_WRITE) {
6926 verbose(env, "write to change key R%d not allowed\n", regno);
6927 return -EACCES;
6928 }
6929
6930 err = check_mem_region_access(env, regno, off, size,
6931 reg->map_ptr->key_size, false);
6932 if (err)
6933 return err;
6934 if (value_regno >= 0)
6935 mark_reg_unknown(env, regs, value_regno);
6936 } else if (reg->type == PTR_TO_MAP_VALUE) {
6937 struct btf_field *kptr_field = NULL;
6938
6939 if (t == BPF_WRITE && value_regno >= 0 &&
6940 is_pointer_value(env, value_regno)) {
6941 verbose(env, "R%d leaks addr into map\n", value_regno);
6942 return -EACCES;
6943 }
6944 err = check_map_access_type(env, regno, off, size, t);
6945 if (err)
6946 return err;
6947 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6948 if (err)
6949 return err;
6950 if (tnum_is_const(reg->var_off))
6951 kptr_field = btf_record_find(reg->map_ptr->record,
6952 off + reg->var_off.value, BPF_KPTR);
6953 if (kptr_field) {
6954 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6955 } else if (t == BPF_READ && value_regno >= 0) {
6956 struct bpf_map *map = reg->map_ptr;
6957
6958 /* if map is read-only, track its contents as scalars */
6959 if (tnum_is_const(reg->var_off) &&
6960 bpf_map_is_rdonly(map) &&
6961 map->ops->map_direct_value_addr) {
6962 int map_off = off + reg->var_off.value;
6963 u64 val = 0;
6964
6965 err = bpf_map_direct_read(map, map_off, size,
6966 &val, is_ldsx);
6967 if (err)
6968 return err;
6969
6970 regs[value_regno].type = SCALAR_VALUE;
6971 __mark_reg_known(®s[value_regno], val);
6972 } else {
6973 mark_reg_unknown(env, regs, value_regno);
6974 }
6975 }
6976 } else if (base_type(reg->type) == PTR_TO_MEM) {
6977 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6978
6979 if (type_may_be_null(reg->type)) {
6980 verbose(env, "R%d invalid mem access '%s'\n", regno,
6981 reg_type_str(env, reg->type));
6982 return -EACCES;
6983 }
6984
6985 if (t == BPF_WRITE && rdonly_mem) {
6986 verbose(env, "R%d cannot write into %s\n",
6987 regno, reg_type_str(env, reg->type));
6988 return -EACCES;
6989 }
6990
6991 if (t == BPF_WRITE && value_regno >= 0 &&
6992 is_pointer_value(env, value_regno)) {
6993 verbose(env, "R%d leaks addr into mem\n", value_regno);
6994 return -EACCES;
6995 }
6996
6997 err = check_mem_region_access(env, regno, off, size,
6998 reg->mem_size, false);
6999 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7000 mark_reg_unknown(env, regs, value_regno);
7001 } else if (reg->type == PTR_TO_CTX) {
7002 bool is_retval = false;
7003 struct bpf_retval_range range;
7004 enum bpf_reg_type reg_type = SCALAR_VALUE;
7005 struct btf *btf = NULL;
7006 u32 btf_id = 0;
7007
7008 if (t == BPF_WRITE && value_regno >= 0 &&
7009 is_pointer_value(env, value_regno)) {
7010 verbose(env, "R%d leaks addr into ctx\n", value_regno);
7011 return -EACCES;
7012 }
7013
7014 err = check_ptr_off_reg(env, reg, regno);
7015 if (err < 0)
7016 return err;
7017
7018 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
7019 &btf_id, &is_retval, is_ldsx);
7020 if (err)
7021 verbose_linfo(env, insn_idx, "; ");
7022 if (!err && t == BPF_READ && value_regno >= 0) {
7023 /* ctx access returns either a scalar, or a
7024 * PTR_TO_PACKET[_META,_END]. In the latter
7025 * case, we know the offset is zero.
7026 */
7027 if (reg_type == SCALAR_VALUE) {
7028 if (is_retval && get_func_retval_range(env->prog, &range)) {
7029 err = __mark_reg_s32_range(env, regs, value_regno,
7030 range.minval, range.maxval);
7031 if (err)
7032 return err;
7033 } else {
7034 mark_reg_unknown(env, regs, value_regno);
7035 }
7036 } else {
7037 mark_reg_known_zero(env, regs,
7038 value_regno);
7039 if (type_may_be_null(reg_type))
7040 regs[value_regno].id = ++env->id_gen;
7041 /* A load of ctx field could have different
7042 * actual load size with the one encoded in the
7043 * insn. When the dst is PTR, it is for sure not
7044 * a sub-register.
7045 */
7046 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7047 if (base_type(reg_type) == PTR_TO_BTF_ID) {
7048 regs[value_regno].btf = btf;
7049 regs[value_regno].btf_id = btf_id;
7050 }
7051 }
7052 regs[value_regno].type = reg_type;
7053 }
7054
7055 } else if (reg->type == PTR_TO_STACK) {
7056 /* Basic bounds checks. */
7057 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
7058 if (err)
7059 return err;
7060
7061 if (t == BPF_READ)
7062 err = check_stack_read(env, regno, off, size,
7063 value_regno);
7064 else
7065 err = check_stack_write(env, regno, off, size,
7066 value_regno, insn_idx);
7067 } else if (reg_is_pkt_pointer(reg)) {
7068 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7069 verbose(env, "cannot write into packet\n");
7070 return -EACCES;
7071 }
7072 if (t == BPF_WRITE && value_regno >= 0 &&
7073 is_pointer_value(env, value_regno)) {
7074 verbose(env, "R%d leaks addr into packet\n",
7075 value_regno);
7076 return -EACCES;
7077 }
7078 err = check_packet_access(env, regno, off, size, false);
7079 if (!err && t == BPF_READ && value_regno >= 0)
7080 mark_reg_unknown(env, regs, value_regno);
7081 } else if (reg->type == PTR_TO_FLOW_KEYS) {
7082 if (t == BPF_WRITE && value_regno >= 0 &&
7083 is_pointer_value(env, value_regno)) {
7084 verbose(env, "R%d leaks addr into flow keys\n",
7085 value_regno);
7086 return -EACCES;
7087 }
7088
7089 err = check_flow_keys_access(env, off, size);
7090 if (!err && t == BPF_READ && value_regno >= 0)
7091 mark_reg_unknown(env, regs, value_regno);
7092 } else if (type_is_sk_pointer(reg->type)) {
7093 if (t == BPF_WRITE) {
7094 verbose(env, "R%d cannot write into %s\n",
7095 regno, reg_type_str(env, reg->type));
7096 return -EACCES;
7097 }
7098 err = check_sock_access(env, insn_idx, regno, off, size, t);
7099 if (!err && value_regno >= 0)
7100 mark_reg_unknown(env, regs, value_regno);
7101 } else if (reg->type == PTR_TO_TP_BUFFER) {
7102 err = check_tp_buffer_access(env, reg, regno, off, size);
7103 if (!err && t == BPF_READ && value_regno >= 0)
7104 mark_reg_unknown(env, regs, value_regno);
7105 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7106 !type_may_be_null(reg->type)) {
7107 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7108 value_regno);
7109 } else if (reg->type == CONST_PTR_TO_MAP) {
7110 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7111 value_regno);
7112 } else if (base_type(reg->type) == PTR_TO_BUF) {
7113 bool rdonly_mem = type_is_rdonly_mem(reg->type);
7114 u32 *max_access;
7115
7116 if (rdonly_mem) {
7117 if (t == BPF_WRITE) {
7118 verbose(env, "R%d cannot write into %s\n",
7119 regno, reg_type_str(env, reg->type));
7120 return -EACCES;
7121 }
7122 max_access = &env->prog->aux->max_rdonly_access;
7123 } else {
7124 max_access = &env->prog->aux->max_rdwr_access;
7125 }
7126
7127 err = check_buffer_access(env, reg, regno, off, size, false,
7128 max_access);
7129
7130 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7131 mark_reg_unknown(env, regs, value_regno);
7132 } else if (reg->type == PTR_TO_ARENA) {
7133 if (t == BPF_READ && value_regno >= 0)
7134 mark_reg_unknown(env, regs, value_regno);
7135 } else {
7136 verbose(env, "R%d invalid mem access '%s'\n", regno,
7137 reg_type_str(env, reg->type));
7138 return -EACCES;
7139 }
7140
7141 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7142 regs[value_regno].type == SCALAR_VALUE) {
7143 if (!is_ldsx)
7144 /* b/h/w load zero-extends, mark upper bits as known 0 */
7145 coerce_reg_to_size(®s[value_regno], size);
7146 else
7147 coerce_reg_to_size_sx(®s[value_regno], size);
7148 }
7149 return err;
7150 }
7151
7152 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7153 bool allow_trust_mismatch);
7154
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)7155 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7156 {
7157 int load_reg;
7158 int err;
7159
7160 switch (insn->imm) {
7161 case BPF_ADD:
7162 case BPF_ADD | BPF_FETCH:
7163 case BPF_AND:
7164 case BPF_AND | BPF_FETCH:
7165 case BPF_OR:
7166 case BPF_OR | BPF_FETCH:
7167 case BPF_XOR:
7168 case BPF_XOR | BPF_FETCH:
7169 case BPF_XCHG:
7170 case BPF_CMPXCHG:
7171 break;
7172 default:
7173 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7174 return -EINVAL;
7175 }
7176
7177 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7178 verbose(env, "invalid atomic operand size\n");
7179 return -EINVAL;
7180 }
7181
7182 /* check src1 operand */
7183 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7184 if (err)
7185 return err;
7186
7187 /* check src2 operand */
7188 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7189 if (err)
7190 return err;
7191
7192 if (insn->imm == BPF_CMPXCHG) {
7193 /* Check comparison of R0 with memory location */
7194 const u32 aux_reg = BPF_REG_0;
7195
7196 err = check_reg_arg(env, aux_reg, SRC_OP);
7197 if (err)
7198 return err;
7199
7200 if (is_pointer_value(env, aux_reg)) {
7201 verbose(env, "R%d leaks addr into mem\n", aux_reg);
7202 return -EACCES;
7203 }
7204 }
7205
7206 if (is_pointer_value(env, insn->src_reg)) {
7207 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7208 return -EACCES;
7209 }
7210
7211 if (is_ctx_reg(env, insn->dst_reg) ||
7212 is_pkt_reg(env, insn->dst_reg) ||
7213 is_flow_key_reg(env, insn->dst_reg) ||
7214 is_sk_reg(env, insn->dst_reg) ||
7215 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
7216 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7217 insn->dst_reg,
7218 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7219 return -EACCES;
7220 }
7221
7222 if (insn->imm & BPF_FETCH) {
7223 if (insn->imm == BPF_CMPXCHG)
7224 load_reg = BPF_REG_0;
7225 else
7226 load_reg = insn->src_reg;
7227
7228 /* check and record load of old value */
7229 err = check_reg_arg(env, load_reg, DST_OP);
7230 if (err)
7231 return err;
7232 } else {
7233 /* This instruction accesses a memory location but doesn't
7234 * actually load it into a register.
7235 */
7236 load_reg = -1;
7237 }
7238
7239 /* Check whether we can read the memory, with second call for fetch
7240 * case to simulate the register fill.
7241 */
7242 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7243 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7244 if (!err && load_reg >= 0)
7245 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7246 BPF_SIZE(insn->code), BPF_READ, load_reg,
7247 true, false);
7248 if (err)
7249 return err;
7250
7251 if (is_arena_reg(env, insn->dst_reg)) {
7252 err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7253 if (err)
7254 return err;
7255 }
7256 /* Check whether we can write into the same memory. */
7257 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7258 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7259 if (err)
7260 return err;
7261 return 0;
7262 }
7263
7264 /* When register 'regno' is used to read the stack (either directly or through
7265 * a helper function) make sure that it's within stack boundary and, depending
7266 * on the access type and privileges, that all elements of the stack are
7267 * initialized.
7268 *
7269 * 'off' includes 'regno->off', but not its dynamic part (if any).
7270 *
7271 * All registers that have been spilled on the stack in the slots within the
7272 * read offsets are marked as read.
7273 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)7274 static int check_stack_range_initialized(
7275 struct bpf_verifier_env *env, int regno, int off,
7276 int access_size, bool zero_size_allowed,
7277 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7278 {
7279 struct bpf_reg_state *reg = reg_state(env, regno);
7280 struct bpf_func_state *state = func(env, reg);
7281 int err, min_off, max_off, i, j, slot, spi;
7282 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7283 enum bpf_access_type bounds_check_type;
7284 /* Some accesses can write anything into the stack, others are
7285 * read-only.
7286 */
7287 bool clobber = false;
7288
7289 if (access_size == 0 && !zero_size_allowed) {
7290 verbose(env, "invalid zero-sized read\n");
7291 return -EACCES;
7292 }
7293
7294 if (type == ACCESS_HELPER) {
7295 /* The bounds checks for writes are more permissive than for
7296 * reads. However, if raw_mode is not set, we'll do extra
7297 * checks below.
7298 */
7299 bounds_check_type = BPF_WRITE;
7300 clobber = true;
7301 } else {
7302 bounds_check_type = BPF_READ;
7303 }
7304 err = check_stack_access_within_bounds(env, regno, off, access_size,
7305 type, bounds_check_type);
7306 if (err)
7307 return err;
7308
7309
7310 if (tnum_is_const(reg->var_off)) {
7311 min_off = max_off = reg->var_off.value + off;
7312 } else {
7313 /* Variable offset is prohibited for unprivileged mode for
7314 * simplicity since it requires corresponding support in
7315 * Spectre masking for stack ALU.
7316 * See also retrieve_ptr_limit().
7317 */
7318 if (!env->bypass_spec_v1) {
7319 char tn_buf[48];
7320
7321 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7322 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7323 regno, err_extra, tn_buf);
7324 return -EACCES;
7325 }
7326 /* Only initialized buffer on stack is allowed to be accessed
7327 * with variable offset. With uninitialized buffer it's hard to
7328 * guarantee that whole memory is marked as initialized on
7329 * helper return since specific bounds are unknown what may
7330 * cause uninitialized stack leaking.
7331 */
7332 if (meta && meta->raw_mode)
7333 meta = NULL;
7334
7335 min_off = reg->smin_value + off;
7336 max_off = reg->smax_value + off;
7337 }
7338
7339 if (meta && meta->raw_mode) {
7340 /* Ensure we won't be overwriting dynptrs when simulating byte
7341 * by byte access in check_helper_call using meta.access_size.
7342 * This would be a problem if we have a helper in the future
7343 * which takes:
7344 *
7345 * helper(uninit_mem, len, dynptr)
7346 *
7347 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7348 * may end up writing to dynptr itself when touching memory from
7349 * arg 1. This can be relaxed on a case by case basis for known
7350 * safe cases, but reject due to the possibilitiy of aliasing by
7351 * default.
7352 */
7353 for (i = min_off; i < max_off + access_size; i++) {
7354 int stack_off = -i - 1;
7355
7356 spi = __get_spi(i);
7357 /* raw_mode may write past allocated_stack */
7358 if (state->allocated_stack <= stack_off)
7359 continue;
7360 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7361 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7362 return -EACCES;
7363 }
7364 }
7365 meta->access_size = access_size;
7366 meta->regno = regno;
7367 return 0;
7368 }
7369
7370 for (i = min_off; i < max_off + access_size; i++) {
7371 u8 *stype;
7372
7373 slot = -i - 1;
7374 spi = slot / BPF_REG_SIZE;
7375 if (state->allocated_stack <= slot) {
7376 verbose(env, "verifier bug: allocated_stack too small");
7377 return -EFAULT;
7378 }
7379
7380 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7381 if (*stype == STACK_MISC)
7382 goto mark;
7383 if ((*stype == STACK_ZERO) ||
7384 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7385 if (clobber) {
7386 /* helper can write anything into the stack */
7387 *stype = STACK_MISC;
7388 }
7389 goto mark;
7390 }
7391
7392 if (is_spilled_reg(&state->stack[spi]) &&
7393 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7394 env->allow_ptr_leaks)) {
7395 if (clobber) {
7396 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7397 for (j = 0; j < BPF_REG_SIZE; j++)
7398 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7399 }
7400 goto mark;
7401 }
7402
7403 if (tnum_is_const(reg->var_off)) {
7404 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7405 err_extra, regno, min_off, i - min_off, access_size);
7406 } else {
7407 char tn_buf[48];
7408
7409 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7410 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7411 err_extra, regno, tn_buf, i - min_off, access_size);
7412 }
7413 return -EACCES;
7414 mark:
7415 /* reading any byte out of 8-byte 'spill_slot' will cause
7416 * the whole slot to be marked as 'read'
7417 */
7418 mark_reg_read(env, &state->stack[spi].spilled_ptr,
7419 state->stack[spi].spilled_ptr.parent,
7420 REG_LIVE_READ64);
7421 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7422 * be sure that whether stack slot is written to or not. Hence,
7423 * we must still conservatively propagate reads upwards even if
7424 * helper may write to the entire memory range.
7425 */
7426 }
7427 return 0;
7428 }
7429
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7430 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7431 int access_size, enum bpf_access_type access_type,
7432 bool zero_size_allowed,
7433 struct bpf_call_arg_meta *meta)
7434 {
7435 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7436 u32 *max_access;
7437
7438 switch (base_type(reg->type)) {
7439 case PTR_TO_PACKET:
7440 case PTR_TO_PACKET_META:
7441 return check_packet_access(env, regno, reg->off, access_size,
7442 zero_size_allowed);
7443 case PTR_TO_MAP_KEY:
7444 if (access_type == BPF_WRITE) {
7445 verbose(env, "R%d cannot write into %s\n", regno,
7446 reg_type_str(env, reg->type));
7447 return -EACCES;
7448 }
7449 return check_mem_region_access(env, regno, reg->off, access_size,
7450 reg->map_ptr->key_size, false);
7451 case PTR_TO_MAP_VALUE:
7452 if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7453 return -EACCES;
7454 return check_map_access(env, regno, reg->off, access_size,
7455 zero_size_allowed, ACCESS_HELPER);
7456 case PTR_TO_MEM:
7457 if (type_is_rdonly_mem(reg->type)) {
7458 if (access_type == BPF_WRITE) {
7459 verbose(env, "R%d cannot write into %s\n", regno,
7460 reg_type_str(env, reg->type));
7461 return -EACCES;
7462 }
7463 }
7464 return check_mem_region_access(env, regno, reg->off,
7465 access_size, reg->mem_size,
7466 zero_size_allowed);
7467 case PTR_TO_BUF:
7468 if (type_is_rdonly_mem(reg->type)) {
7469 if (access_type == BPF_WRITE) {
7470 verbose(env, "R%d cannot write into %s\n", regno,
7471 reg_type_str(env, reg->type));
7472 return -EACCES;
7473 }
7474
7475 max_access = &env->prog->aux->max_rdonly_access;
7476 } else {
7477 max_access = &env->prog->aux->max_rdwr_access;
7478 }
7479 return check_buffer_access(env, reg, regno, reg->off,
7480 access_size, zero_size_allowed,
7481 max_access);
7482 case PTR_TO_STACK:
7483 return check_stack_range_initialized(
7484 env,
7485 regno, reg->off, access_size,
7486 zero_size_allowed, ACCESS_HELPER, meta);
7487 case PTR_TO_BTF_ID:
7488 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7489 access_size, BPF_READ, -1);
7490 case PTR_TO_CTX:
7491 /* in case the function doesn't know how to access the context,
7492 * (because we are in a program of type SYSCALL for example), we
7493 * can not statically check its size.
7494 * Dynamically check it now.
7495 */
7496 if (!env->ops->convert_ctx_access) {
7497 int offset = access_size - 1;
7498
7499 /* Allow zero-byte read from PTR_TO_CTX */
7500 if (access_size == 0)
7501 return zero_size_allowed ? 0 : -EACCES;
7502
7503 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7504 access_type, -1, false, false);
7505 }
7506
7507 fallthrough;
7508 default: /* scalar_value or invalid ptr */
7509 /* Allow zero-byte read from NULL, regardless of pointer type */
7510 if (zero_size_allowed && access_size == 0 &&
7511 register_is_null(reg))
7512 return 0;
7513
7514 verbose(env, "R%d type=%s ", regno,
7515 reg_type_str(env, reg->type));
7516 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7517 return -EACCES;
7518 }
7519 }
7520
7521 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7522 * size.
7523 *
7524 * @regno is the register containing the access size. regno-1 is the register
7525 * containing the pointer.
7526 */
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7527 static int check_mem_size_reg(struct bpf_verifier_env *env,
7528 struct bpf_reg_state *reg, u32 regno,
7529 enum bpf_access_type access_type,
7530 bool zero_size_allowed,
7531 struct bpf_call_arg_meta *meta)
7532 {
7533 int err;
7534
7535 /* This is used to refine r0 return value bounds for helpers
7536 * that enforce this value as an upper bound on return values.
7537 * See do_refine_retval_range() for helpers that can refine
7538 * the return value. C type of helper is u32 so we pull register
7539 * bound from umax_value however, if negative verifier errors
7540 * out. Only upper bounds can be learned because retval is an
7541 * int type and negative retvals are allowed.
7542 */
7543 meta->msize_max_value = reg->umax_value;
7544
7545 /* The register is SCALAR_VALUE; the access check happens using
7546 * its boundaries. For unprivileged variable accesses, disable
7547 * raw mode so that the program is required to initialize all
7548 * the memory that the helper could just partially fill up.
7549 */
7550 if (!tnum_is_const(reg->var_off))
7551 meta = NULL;
7552
7553 if (reg->smin_value < 0) {
7554 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7555 regno);
7556 return -EACCES;
7557 }
7558
7559 if (reg->umin_value == 0 && !zero_size_allowed) {
7560 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7561 regno, reg->umin_value, reg->umax_value);
7562 return -EACCES;
7563 }
7564
7565 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7566 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7567 regno);
7568 return -EACCES;
7569 }
7570 err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7571 access_type, zero_size_allowed, meta);
7572 if (!err)
7573 err = mark_chain_precision(env, regno);
7574 return err;
7575 }
7576
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)7577 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7578 u32 regno, u32 mem_size)
7579 {
7580 bool may_be_null = type_may_be_null(reg->type);
7581 struct bpf_reg_state saved_reg;
7582 int err;
7583
7584 if (register_is_null(reg))
7585 return 0;
7586
7587 /* Assuming that the register contains a value check if the memory
7588 * access is safe. Temporarily save and restore the register's state as
7589 * the conversion shouldn't be visible to a caller.
7590 */
7591 if (may_be_null) {
7592 saved_reg = *reg;
7593 mark_ptr_not_null_reg(reg);
7594 }
7595
7596 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7597 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7598
7599 if (may_be_null)
7600 *reg = saved_reg;
7601
7602 return err;
7603 }
7604
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)7605 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7606 u32 regno)
7607 {
7608 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7609 bool may_be_null = type_may_be_null(mem_reg->type);
7610 struct bpf_reg_state saved_reg;
7611 struct bpf_call_arg_meta meta;
7612 int err;
7613
7614 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7615
7616 memset(&meta, 0, sizeof(meta));
7617
7618 if (may_be_null) {
7619 saved_reg = *mem_reg;
7620 mark_ptr_not_null_reg(mem_reg);
7621 }
7622
7623 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7624 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7625
7626 if (may_be_null)
7627 *mem_reg = saved_reg;
7628
7629 return err;
7630 }
7631
7632 /* Implementation details:
7633 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7634 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7635 * Two bpf_map_lookups (even with the same key) will have different reg->id.
7636 * Two separate bpf_obj_new will also have different reg->id.
7637 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7638 * clears reg->id after value_or_null->value transition, since the verifier only
7639 * cares about the range of access to valid map value pointer and doesn't care
7640 * about actual address of the map element.
7641 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7642 * reg->id > 0 after value_or_null->value transition. By doing so
7643 * two bpf_map_lookups will be considered two different pointers that
7644 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7645 * returned from bpf_obj_new.
7646 * The verifier allows taking only one bpf_spin_lock at a time to avoid
7647 * dead-locks.
7648 * Since only one bpf_spin_lock is allowed the checks are simpler than
7649 * reg_is_refcounted() logic. The verifier needs to remember only
7650 * one spin_lock instead of array of acquired_refs.
7651 * cur_state->active_lock remembers which map value element or allocated
7652 * object got locked and clears it after bpf_spin_unlock.
7653 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)7654 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7655 bool is_lock)
7656 {
7657 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7658 struct bpf_verifier_state *cur = env->cur_state;
7659 bool is_const = tnum_is_const(reg->var_off);
7660 u64 val = reg->var_off.value;
7661 struct bpf_map *map = NULL;
7662 struct btf *btf = NULL;
7663 struct btf_record *rec;
7664
7665 if (!is_const) {
7666 verbose(env,
7667 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7668 regno);
7669 return -EINVAL;
7670 }
7671 if (reg->type == PTR_TO_MAP_VALUE) {
7672 map = reg->map_ptr;
7673 if (!map->btf) {
7674 verbose(env,
7675 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7676 map->name);
7677 return -EINVAL;
7678 }
7679 } else {
7680 btf = reg->btf;
7681 }
7682
7683 rec = reg_btf_record(reg);
7684 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7685 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7686 map ? map->name : "kptr");
7687 return -EINVAL;
7688 }
7689 if (rec->spin_lock_off != val + reg->off) {
7690 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7691 val + reg->off, rec->spin_lock_off);
7692 return -EINVAL;
7693 }
7694 if (is_lock) {
7695 if (cur->active_lock.ptr) {
7696 verbose(env,
7697 "Locking two bpf_spin_locks are not allowed\n");
7698 return -EINVAL;
7699 }
7700 if (map)
7701 cur->active_lock.ptr = map;
7702 else
7703 cur->active_lock.ptr = btf;
7704 cur->active_lock.id = reg->id;
7705 } else {
7706 void *ptr;
7707
7708 if (map)
7709 ptr = map;
7710 else
7711 ptr = btf;
7712
7713 if (!cur->active_lock.ptr) {
7714 verbose(env, "bpf_spin_unlock without taking a lock\n");
7715 return -EINVAL;
7716 }
7717 if (cur->active_lock.ptr != ptr ||
7718 cur->active_lock.id != reg->id) {
7719 verbose(env, "bpf_spin_unlock of different lock\n");
7720 return -EINVAL;
7721 }
7722
7723 invalidate_non_owning_refs(env);
7724
7725 cur->active_lock.ptr = NULL;
7726 cur->active_lock.id = 0;
7727 }
7728 return 0;
7729 }
7730
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7731 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7732 struct bpf_call_arg_meta *meta)
7733 {
7734 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7735 bool is_const = tnum_is_const(reg->var_off);
7736 struct bpf_map *map = reg->map_ptr;
7737 u64 val = reg->var_off.value;
7738
7739 if (!is_const) {
7740 verbose(env,
7741 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7742 regno);
7743 return -EINVAL;
7744 }
7745 if (!map->btf) {
7746 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7747 map->name);
7748 return -EINVAL;
7749 }
7750 if (!btf_record_has_field(map->record, BPF_TIMER)) {
7751 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7752 return -EINVAL;
7753 }
7754 if (map->record->timer_off != val + reg->off) {
7755 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7756 val + reg->off, map->record->timer_off);
7757 return -EINVAL;
7758 }
7759 if (meta->map_ptr) {
7760 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7761 return -EFAULT;
7762 }
7763 meta->map_uid = reg->map_uid;
7764 meta->map_ptr = map;
7765 return 0;
7766 }
7767
process_wq_func(struct bpf_verifier_env * env,int regno,struct bpf_kfunc_call_arg_meta * meta)7768 static int process_wq_func(struct bpf_verifier_env *env, int regno,
7769 struct bpf_kfunc_call_arg_meta *meta)
7770 {
7771 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7772 struct bpf_map *map = reg->map_ptr;
7773 u64 val = reg->var_off.value;
7774
7775 if (map->record->wq_off != val + reg->off) {
7776 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
7777 val + reg->off, map->record->wq_off);
7778 return -EINVAL;
7779 }
7780 meta->map.uid = reg->map_uid;
7781 meta->map.ptr = map;
7782 return 0;
7783 }
7784
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7785 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7786 struct bpf_call_arg_meta *meta)
7787 {
7788 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7789 struct btf_field *kptr_field;
7790 struct bpf_map *map_ptr;
7791 struct btf_record *rec;
7792 u32 kptr_off;
7793
7794 if (type_is_ptr_alloc_obj(reg->type)) {
7795 rec = reg_btf_record(reg);
7796 } else { /* PTR_TO_MAP_VALUE */
7797 map_ptr = reg->map_ptr;
7798 if (!map_ptr->btf) {
7799 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7800 map_ptr->name);
7801 return -EINVAL;
7802 }
7803 rec = map_ptr->record;
7804 meta->map_ptr = map_ptr;
7805 }
7806
7807 if (!tnum_is_const(reg->var_off)) {
7808 verbose(env,
7809 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7810 regno);
7811 return -EINVAL;
7812 }
7813
7814 if (!btf_record_has_field(rec, BPF_KPTR)) {
7815 verbose(env, "R%d has no valid kptr\n", regno);
7816 return -EINVAL;
7817 }
7818
7819 kptr_off = reg->off + reg->var_off.value;
7820 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
7821 if (!kptr_field) {
7822 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7823 return -EACCES;
7824 }
7825 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7826 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7827 return -EACCES;
7828 }
7829 meta->kptr_field = kptr_field;
7830 return 0;
7831 }
7832
7833 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7834 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7835 *
7836 * In both cases we deal with the first 8 bytes, but need to mark the next 8
7837 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7838 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7839 *
7840 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7841 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7842 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7843 * mutate the view of the dynptr and also possibly destroy it. In the latter
7844 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7845 * memory that dynptr points to.
7846 *
7847 * The verifier will keep track both levels of mutation (bpf_dynptr's in
7848 * reg->type and the memory's in reg->dynptr.type), but there is no support for
7849 * readonly dynptr view yet, hence only the first case is tracked and checked.
7850 *
7851 * This is consistent with how C applies the const modifier to a struct object,
7852 * where the pointer itself inside bpf_dynptr becomes const but not what it
7853 * points to.
7854 *
7855 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7856 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7857 */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)7858 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7859 enum bpf_arg_type arg_type, int clone_ref_obj_id)
7860 {
7861 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7862 int err;
7863
7864 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
7865 verbose(env,
7866 "arg#%d expected pointer to stack or const struct bpf_dynptr\n",
7867 regno);
7868 return -EINVAL;
7869 }
7870
7871 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7872 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7873 */
7874 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7875 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7876 return -EFAULT;
7877 }
7878
7879 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
7880 * constructing a mutable bpf_dynptr object.
7881 *
7882 * Currently, this is only possible with PTR_TO_STACK
7883 * pointing to a region of at least 16 bytes which doesn't
7884 * contain an existing bpf_dynptr.
7885 *
7886 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7887 * mutated or destroyed. However, the memory it points to
7888 * may be mutated.
7889 *
7890 * None - Points to a initialized dynptr that can be mutated and
7891 * destroyed, including mutation of the memory it points
7892 * to.
7893 */
7894 if (arg_type & MEM_UNINIT) {
7895 int i;
7896
7897 if (!is_dynptr_reg_valid_uninit(env, reg)) {
7898 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7899 return -EINVAL;
7900 }
7901
7902 /* we write BPF_DW bits (8 bytes) at a time */
7903 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7904 err = check_mem_access(env, insn_idx, regno,
7905 i, BPF_DW, BPF_WRITE, -1, false, false);
7906 if (err)
7907 return err;
7908 }
7909
7910 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7911 } else /* MEM_RDONLY and None case from above */ {
7912 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7913 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7914 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7915 return -EINVAL;
7916 }
7917
7918 if (!is_dynptr_reg_valid_init(env, reg)) {
7919 verbose(env,
7920 "Expected an initialized dynptr as arg #%d\n",
7921 regno);
7922 return -EINVAL;
7923 }
7924
7925 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7926 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7927 verbose(env,
7928 "Expected a dynptr of type %s as arg #%d\n",
7929 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7930 return -EINVAL;
7931 }
7932
7933 err = mark_dynptr_read(env, reg);
7934 }
7935 return err;
7936 }
7937
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)7938 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7939 {
7940 struct bpf_func_state *state = func(env, reg);
7941
7942 return state->stack[spi].spilled_ptr.ref_obj_id;
7943 }
7944
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)7945 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7946 {
7947 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7948 }
7949
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)7950 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7951 {
7952 return meta->kfunc_flags & KF_ITER_NEW;
7953 }
7954
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)7955 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7956 {
7957 return meta->kfunc_flags & KF_ITER_NEXT;
7958 }
7959
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)7960 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7961 {
7962 return meta->kfunc_flags & KF_ITER_DESTROY;
7963 }
7964
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg_idx,const struct btf_param * arg)7965 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
7966 const struct btf_param *arg)
7967 {
7968 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
7969 * kfunc is iter state pointer
7970 */
7971 if (is_iter_kfunc(meta))
7972 return arg_idx == 0;
7973
7974 /* iter passed as an argument to a generic kfunc */
7975 return btf_param_match_suffix(meta->btf, arg, "__iter");
7976 }
7977
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7978 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7979 struct bpf_kfunc_call_arg_meta *meta)
7980 {
7981 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7982 const struct btf_type *t;
7983 int spi, err, i, nr_slots, btf_id;
7984
7985 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
7986 * ensures struct convention, so we wouldn't need to do any BTF
7987 * validation here. But given iter state can be passed as a parameter
7988 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
7989 * conservative here.
7990 */
7991 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
7992 if (btf_id < 0) {
7993 verbose(env, "expected valid iter pointer as arg #%d\n", regno);
7994 return -EINVAL;
7995 }
7996 t = btf_type_by_id(meta->btf, btf_id);
7997 nr_slots = t->size / BPF_REG_SIZE;
7998
7999 if (is_iter_new_kfunc(meta)) {
8000 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
8001 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8002 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8003 iter_type_str(meta->btf, btf_id), regno);
8004 return -EINVAL;
8005 }
8006
8007 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8008 err = check_mem_access(env, insn_idx, regno,
8009 i, BPF_DW, BPF_WRITE, -1, false, false);
8010 if (err)
8011 return err;
8012 }
8013
8014 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8015 if (err)
8016 return err;
8017 } else {
8018 /* iter_next() or iter_destroy(), as well as any kfunc
8019 * accepting iter argument, expect initialized iter state
8020 */
8021 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8022 switch (err) {
8023 case 0:
8024 break;
8025 case -EINVAL:
8026 verbose(env, "expected an initialized iter_%s as arg #%d\n",
8027 iter_type_str(meta->btf, btf_id), regno);
8028 return err;
8029 case -EPROTO:
8030 verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8031 return err;
8032 default:
8033 return err;
8034 }
8035
8036 spi = iter_get_spi(env, reg, nr_slots);
8037 if (spi < 0)
8038 return spi;
8039
8040 err = mark_iter_read(env, reg, spi, nr_slots);
8041 if (err)
8042 return err;
8043
8044 /* remember meta->iter info for process_iter_next_call() */
8045 meta->iter.spi = spi;
8046 meta->iter.frameno = reg->frameno;
8047 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8048
8049 if (is_iter_destroy_kfunc(meta)) {
8050 err = unmark_stack_slots_iter(env, reg, nr_slots);
8051 if (err)
8052 return err;
8053 }
8054 }
8055
8056 return 0;
8057 }
8058
8059 /* Look for a previous loop entry at insn_idx: nearest parent state
8060 * stopped at insn_idx with callsites matching those in cur->frame.
8061 */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)8062 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8063 struct bpf_verifier_state *cur,
8064 int insn_idx)
8065 {
8066 struct bpf_verifier_state_list *sl;
8067 struct bpf_verifier_state *st;
8068
8069 /* Explored states are pushed in stack order, most recent states come first */
8070 sl = *explored_state(env, insn_idx);
8071 for (; sl; sl = sl->next) {
8072 /* If st->branches != 0 state is a part of current DFS verification path,
8073 * hence cur & st for a loop.
8074 */
8075 st = &sl->state;
8076 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8077 st->dfs_depth < cur->dfs_depth)
8078 return st;
8079 }
8080
8081 return NULL;
8082 }
8083
8084 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8085 static bool regs_exact(const struct bpf_reg_state *rold,
8086 const struct bpf_reg_state *rcur,
8087 struct bpf_idmap *idmap);
8088
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)8089 static void maybe_widen_reg(struct bpf_verifier_env *env,
8090 struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8091 struct bpf_idmap *idmap)
8092 {
8093 if (rold->type != SCALAR_VALUE)
8094 return;
8095 if (rold->type != rcur->type)
8096 return;
8097 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8098 return;
8099 __mark_reg_unknown(env, rcur);
8100 }
8101
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)8102 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8103 struct bpf_verifier_state *old,
8104 struct bpf_verifier_state *cur)
8105 {
8106 struct bpf_func_state *fold, *fcur;
8107 int i, fr;
8108
8109 reset_idmap_scratch(env);
8110 for (fr = old->curframe; fr >= 0; fr--) {
8111 fold = old->frame[fr];
8112 fcur = cur->frame[fr];
8113
8114 for (i = 0; i < MAX_BPF_REG; i++)
8115 maybe_widen_reg(env,
8116 &fold->regs[i],
8117 &fcur->regs[i],
8118 &env->idmap_scratch);
8119
8120 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8121 if (!is_spilled_reg(&fold->stack[i]) ||
8122 !is_spilled_reg(&fcur->stack[i]))
8123 continue;
8124
8125 maybe_widen_reg(env,
8126 &fold->stack[i].spilled_ptr,
8127 &fcur->stack[i].spilled_ptr,
8128 &env->idmap_scratch);
8129 }
8130 }
8131 return 0;
8132 }
8133
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)8134 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8135 struct bpf_kfunc_call_arg_meta *meta)
8136 {
8137 int iter_frameno = meta->iter.frameno;
8138 int iter_spi = meta->iter.spi;
8139
8140 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8141 }
8142
8143 /* process_iter_next_call() is called when verifier gets to iterator's next
8144 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8145 * to it as just "iter_next()" in comments below.
8146 *
8147 * BPF verifier relies on a crucial contract for any iter_next()
8148 * implementation: it should *eventually* return NULL, and once that happens
8149 * it should keep returning NULL. That is, once iterator exhausts elements to
8150 * iterate, it should never reset or spuriously return new elements.
8151 *
8152 * With the assumption of such contract, process_iter_next_call() simulates
8153 * a fork in the verifier state to validate loop logic correctness and safety
8154 * without having to simulate infinite amount of iterations.
8155 *
8156 * In current state, we first assume that iter_next() returned NULL and
8157 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8158 * conditions we should not form an infinite loop and should eventually reach
8159 * exit.
8160 *
8161 * Besides that, we also fork current state and enqueue it for later
8162 * verification. In a forked state we keep iterator state as ACTIVE
8163 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8164 * also bump iteration depth to prevent erroneous infinite loop detection
8165 * later on (see iter_active_depths_differ() comment for details). In this
8166 * state we assume that we'll eventually loop back to another iter_next()
8167 * calls (it could be in exactly same location or in some other instruction,
8168 * it doesn't matter, we don't make any unnecessary assumptions about this,
8169 * everything revolves around iterator state in a stack slot, not which
8170 * instruction is calling iter_next()). When that happens, we either will come
8171 * to iter_next() with equivalent state and can conclude that next iteration
8172 * will proceed in exactly the same way as we just verified, so it's safe to
8173 * assume that loop converges. If not, we'll go on another iteration
8174 * simulation with a different input state, until all possible starting states
8175 * are validated or we reach maximum number of instructions limit.
8176 *
8177 * This way, we will either exhaustively discover all possible input states
8178 * that iterator loop can start with and eventually will converge, or we'll
8179 * effectively regress into bounded loop simulation logic and either reach
8180 * maximum number of instructions if loop is not provably convergent, or there
8181 * is some statically known limit on number of iterations (e.g., if there is
8182 * an explicit `if n > 100 then break;` statement somewhere in the loop).
8183 *
8184 * Iteration convergence logic in is_state_visited() relies on exact
8185 * states comparison, which ignores read and precision marks.
8186 * This is necessary because read and precision marks are not finalized
8187 * while in the loop. Exact comparison might preclude convergence for
8188 * simple programs like below:
8189 *
8190 * i = 0;
8191 * while(iter_next(&it))
8192 * i++;
8193 *
8194 * At each iteration step i++ would produce a new distinct state and
8195 * eventually instruction processing limit would be reached.
8196 *
8197 * To avoid such behavior speculatively forget (widen) range for
8198 * imprecise scalar registers, if those registers were not precise at the
8199 * end of the previous iteration and do not match exactly.
8200 *
8201 * This is a conservative heuristic that allows to verify wide range of programs,
8202 * however it precludes verification of programs that conjure an
8203 * imprecise value on the first loop iteration and use it as precise on a second.
8204 * For example, the following safe program would fail to verify:
8205 *
8206 * struct bpf_num_iter it;
8207 * int arr[10];
8208 * int i = 0, a = 0;
8209 * bpf_iter_num_new(&it, 0, 10);
8210 * while (bpf_iter_num_next(&it)) {
8211 * if (a == 0) {
8212 * a = 1;
8213 * i = 7; // Because i changed verifier would forget
8214 * // it's range on second loop entry.
8215 * } else {
8216 * arr[i] = 42; // This would fail to verify.
8217 * }
8218 * }
8219 * bpf_iter_num_destroy(&it);
8220 */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)8221 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8222 struct bpf_kfunc_call_arg_meta *meta)
8223 {
8224 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8225 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8226 struct bpf_reg_state *cur_iter, *queued_iter;
8227
8228 BTF_TYPE_EMIT(struct bpf_iter);
8229
8230 cur_iter = get_iter_from_state(cur_st, meta);
8231
8232 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8233 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8234 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8235 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8236 return -EFAULT;
8237 }
8238
8239 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8240 /* Because iter_next() call is a checkpoint is_state_visitied()
8241 * should guarantee parent state with same call sites and insn_idx.
8242 */
8243 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8244 !same_callsites(cur_st->parent, cur_st)) {
8245 verbose(env, "bug: bad parent state for iter next call");
8246 return -EFAULT;
8247 }
8248 /* Note cur_st->parent in the call below, it is necessary to skip
8249 * checkpoint created for cur_st by is_state_visited()
8250 * right at this instruction.
8251 */
8252 prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8253 /* branch out active iter state */
8254 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8255 if (!queued_st)
8256 return -ENOMEM;
8257
8258 queued_iter = get_iter_from_state(queued_st, meta);
8259 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8260 queued_iter->iter.depth++;
8261 if (prev_st)
8262 widen_imprecise_scalars(env, prev_st, queued_st);
8263
8264 queued_fr = queued_st->frame[queued_st->curframe];
8265 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8266 }
8267
8268 /* switch to DRAINED state, but keep the depth unchanged */
8269 /* mark current iter state as drained and assume returned NULL */
8270 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8271 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8272
8273 return 0;
8274 }
8275
arg_type_is_mem_size(enum bpf_arg_type type)8276 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8277 {
8278 return type == ARG_CONST_SIZE ||
8279 type == ARG_CONST_SIZE_OR_ZERO;
8280 }
8281
arg_type_is_raw_mem(enum bpf_arg_type type)8282 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8283 {
8284 return base_type(type) == ARG_PTR_TO_MEM &&
8285 type & MEM_UNINIT;
8286 }
8287
arg_type_is_release(enum bpf_arg_type type)8288 static bool arg_type_is_release(enum bpf_arg_type type)
8289 {
8290 return type & OBJ_RELEASE;
8291 }
8292
arg_type_is_dynptr(enum bpf_arg_type type)8293 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8294 {
8295 return base_type(type) == ARG_PTR_TO_DYNPTR;
8296 }
8297
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)8298 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8299 const struct bpf_call_arg_meta *meta,
8300 enum bpf_arg_type *arg_type)
8301 {
8302 if (!meta->map_ptr) {
8303 /* kernel subsystem misconfigured verifier */
8304 verbose(env, "invalid map_ptr to access map->type\n");
8305 return -EACCES;
8306 }
8307
8308 switch (meta->map_ptr->map_type) {
8309 case BPF_MAP_TYPE_SOCKMAP:
8310 case BPF_MAP_TYPE_SOCKHASH:
8311 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8312 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8313 } else {
8314 verbose(env, "invalid arg_type for sockmap/sockhash\n");
8315 return -EINVAL;
8316 }
8317 break;
8318 case BPF_MAP_TYPE_BLOOM_FILTER:
8319 if (meta->func_id == BPF_FUNC_map_peek_elem)
8320 *arg_type = ARG_PTR_TO_MAP_VALUE;
8321 break;
8322 default:
8323 break;
8324 }
8325 return 0;
8326 }
8327
8328 struct bpf_reg_types {
8329 const enum bpf_reg_type types[10];
8330 u32 *btf_id;
8331 };
8332
8333 static const struct bpf_reg_types sock_types = {
8334 .types = {
8335 PTR_TO_SOCK_COMMON,
8336 PTR_TO_SOCKET,
8337 PTR_TO_TCP_SOCK,
8338 PTR_TO_XDP_SOCK,
8339 },
8340 };
8341
8342 #ifdef CONFIG_NET
8343 static const struct bpf_reg_types btf_id_sock_common_types = {
8344 .types = {
8345 PTR_TO_SOCK_COMMON,
8346 PTR_TO_SOCKET,
8347 PTR_TO_TCP_SOCK,
8348 PTR_TO_XDP_SOCK,
8349 PTR_TO_BTF_ID,
8350 PTR_TO_BTF_ID | PTR_TRUSTED,
8351 },
8352 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8353 };
8354 #endif
8355
8356 static const struct bpf_reg_types mem_types = {
8357 .types = {
8358 PTR_TO_STACK,
8359 PTR_TO_PACKET,
8360 PTR_TO_PACKET_META,
8361 PTR_TO_MAP_KEY,
8362 PTR_TO_MAP_VALUE,
8363 PTR_TO_MEM,
8364 PTR_TO_MEM | MEM_RINGBUF,
8365 PTR_TO_BUF,
8366 PTR_TO_BTF_ID | PTR_TRUSTED,
8367 },
8368 };
8369
8370 static const struct bpf_reg_types spin_lock_types = {
8371 .types = {
8372 PTR_TO_MAP_VALUE,
8373 PTR_TO_BTF_ID | MEM_ALLOC,
8374 }
8375 };
8376
8377 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8378 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8379 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8380 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8381 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8382 static const struct bpf_reg_types btf_ptr_types = {
8383 .types = {
8384 PTR_TO_BTF_ID,
8385 PTR_TO_BTF_ID | PTR_TRUSTED,
8386 PTR_TO_BTF_ID | MEM_RCU,
8387 },
8388 };
8389 static const struct bpf_reg_types percpu_btf_ptr_types = {
8390 .types = {
8391 PTR_TO_BTF_ID | MEM_PERCPU,
8392 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8393 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8394 }
8395 };
8396 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8397 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8398 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8399 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8400 static const struct bpf_reg_types kptr_xchg_dest_types = {
8401 .types = {
8402 PTR_TO_MAP_VALUE,
8403 PTR_TO_BTF_ID | MEM_ALLOC
8404 }
8405 };
8406 static const struct bpf_reg_types dynptr_types = {
8407 .types = {
8408 PTR_TO_STACK,
8409 CONST_PTR_TO_DYNPTR,
8410 }
8411 };
8412
8413 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8414 [ARG_PTR_TO_MAP_KEY] = &mem_types,
8415 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
8416 [ARG_CONST_SIZE] = &scalar_types,
8417 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
8418 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
8419 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
8420 [ARG_PTR_TO_CTX] = &context_types,
8421 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
8422 #ifdef CONFIG_NET
8423 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
8424 #endif
8425 [ARG_PTR_TO_SOCKET] = &fullsock_types,
8426 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
8427 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
8428 [ARG_PTR_TO_MEM] = &mem_types,
8429 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
8430 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
8431 [ARG_PTR_TO_FUNC] = &func_ptr_types,
8432 [ARG_PTR_TO_STACK] = &stack_ptr_types,
8433 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
8434 [ARG_PTR_TO_TIMER] = &timer_types,
8435 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types,
8436 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
8437 };
8438
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)8439 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8440 enum bpf_arg_type arg_type,
8441 const u32 *arg_btf_id,
8442 struct bpf_call_arg_meta *meta)
8443 {
8444 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8445 enum bpf_reg_type expected, type = reg->type;
8446 const struct bpf_reg_types *compatible;
8447 int i, j;
8448
8449 compatible = compatible_reg_types[base_type(arg_type)];
8450 if (!compatible) {
8451 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8452 return -EFAULT;
8453 }
8454
8455 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8456 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8457 *
8458 * Same for MAYBE_NULL:
8459 *
8460 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8461 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8462 *
8463 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8464 *
8465 * Therefore we fold these flags depending on the arg_type before comparison.
8466 */
8467 if (arg_type & MEM_RDONLY)
8468 type &= ~MEM_RDONLY;
8469 if (arg_type & PTR_MAYBE_NULL)
8470 type &= ~PTR_MAYBE_NULL;
8471 if (base_type(arg_type) == ARG_PTR_TO_MEM)
8472 type &= ~DYNPTR_TYPE_FLAG_MASK;
8473
8474 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
8475 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
8476 type &= ~MEM_ALLOC;
8477 type &= ~MEM_PERCPU;
8478 }
8479
8480 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8481 expected = compatible->types[i];
8482 if (expected == NOT_INIT)
8483 break;
8484
8485 if (type == expected)
8486 goto found;
8487 }
8488
8489 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8490 for (j = 0; j + 1 < i; j++)
8491 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8492 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8493 return -EACCES;
8494
8495 found:
8496 if (base_type(reg->type) != PTR_TO_BTF_ID)
8497 return 0;
8498
8499 if (compatible == &mem_types) {
8500 if (!(arg_type & MEM_RDONLY)) {
8501 verbose(env,
8502 "%s() may write into memory pointed by R%d type=%s\n",
8503 func_id_name(meta->func_id),
8504 regno, reg_type_str(env, reg->type));
8505 return -EACCES;
8506 }
8507 return 0;
8508 }
8509
8510 switch ((int)reg->type) {
8511 case PTR_TO_BTF_ID:
8512 case PTR_TO_BTF_ID | PTR_TRUSTED:
8513 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
8514 case PTR_TO_BTF_ID | MEM_RCU:
8515 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8516 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8517 {
8518 /* For bpf_sk_release, it needs to match against first member
8519 * 'struct sock_common', hence make an exception for it. This
8520 * allows bpf_sk_release to work for multiple socket types.
8521 */
8522 bool strict_type_match = arg_type_is_release(arg_type) &&
8523 meta->func_id != BPF_FUNC_sk_release;
8524
8525 if (type_may_be_null(reg->type) &&
8526 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8527 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8528 return -EACCES;
8529 }
8530
8531 if (!arg_btf_id) {
8532 if (!compatible->btf_id) {
8533 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8534 return -EFAULT;
8535 }
8536 arg_btf_id = compatible->btf_id;
8537 }
8538
8539 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8540 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8541 return -EACCES;
8542 } else {
8543 if (arg_btf_id == BPF_PTR_POISON) {
8544 verbose(env, "verifier internal error:");
8545 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8546 regno);
8547 return -EACCES;
8548 }
8549
8550 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8551 btf_vmlinux, *arg_btf_id,
8552 strict_type_match)) {
8553 verbose(env, "R%d is of type %s but %s is expected\n",
8554 regno, btf_type_name(reg->btf, reg->btf_id),
8555 btf_type_name(btf_vmlinux, *arg_btf_id));
8556 return -EACCES;
8557 }
8558 }
8559 break;
8560 }
8561 case PTR_TO_BTF_ID | MEM_ALLOC:
8562 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8563 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8564 meta->func_id != BPF_FUNC_kptr_xchg) {
8565 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8566 return -EFAULT;
8567 }
8568 /* Check if local kptr in src arg matches kptr in dst arg */
8569 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
8570 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8571 return -EACCES;
8572 }
8573 break;
8574 case PTR_TO_BTF_ID | MEM_PERCPU:
8575 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8576 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8577 /* Handled by helper specific checks */
8578 break;
8579 default:
8580 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8581 return -EFAULT;
8582 }
8583 return 0;
8584 }
8585
8586 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)8587 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8588 {
8589 struct btf_field *field;
8590 struct btf_record *rec;
8591
8592 rec = reg_btf_record(reg);
8593 if (!rec)
8594 return NULL;
8595
8596 field = btf_record_find(rec, off, fields);
8597 if (!field)
8598 return NULL;
8599
8600 return field;
8601 }
8602
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)8603 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8604 const struct bpf_reg_state *reg, int regno,
8605 enum bpf_arg_type arg_type)
8606 {
8607 u32 type = reg->type;
8608
8609 /* When referenced register is passed to release function, its fixed
8610 * offset must be 0.
8611 *
8612 * We will check arg_type_is_release reg has ref_obj_id when storing
8613 * meta->release_regno.
8614 */
8615 if (arg_type_is_release(arg_type)) {
8616 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8617 * may not directly point to the object being released, but to
8618 * dynptr pointing to such object, which might be at some offset
8619 * on the stack. In that case, we simply to fallback to the
8620 * default handling.
8621 */
8622 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8623 return 0;
8624
8625 /* Doing check_ptr_off_reg check for the offset will catch this
8626 * because fixed_off_ok is false, but checking here allows us
8627 * to give the user a better error message.
8628 */
8629 if (reg->off) {
8630 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8631 regno);
8632 return -EINVAL;
8633 }
8634 return __check_ptr_off_reg(env, reg, regno, false);
8635 }
8636
8637 switch (type) {
8638 /* Pointer types where both fixed and variable offset is explicitly allowed: */
8639 case PTR_TO_STACK:
8640 case PTR_TO_PACKET:
8641 case PTR_TO_PACKET_META:
8642 case PTR_TO_MAP_KEY:
8643 case PTR_TO_MAP_VALUE:
8644 case PTR_TO_MEM:
8645 case PTR_TO_MEM | MEM_RDONLY:
8646 case PTR_TO_MEM | MEM_RINGBUF:
8647 case PTR_TO_BUF:
8648 case PTR_TO_BUF | MEM_RDONLY:
8649 case PTR_TO_ARENA:
8650 case SCALAR_VALUE:
8651 return 0;
8652 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8653 * fixed offset.
8654 */
8655 case PTR_TO_BTF_ID:
8656 case PTR_TO_BTF_ID | MEM_ALLOC:
8657 case PTR_TO_BTF_ID | PTR_TRUSTED:
8658 case PTR_TO_BTF_ID | MEM_RCU:
8659 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8660 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8661 /* When referenced PTR_TO_BTF_ID is passed to release function,
8662 * its fixed offset must be 0. In the other cases, fixed offset
8663 * can be non-zero. This was already checked above. So pass
8664 * fixed_off_ok as true to allow fixed offset for all other
8665 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8666 * still need to do checks instead of returning.
8667 */
8668 return __check_ptr_off_reg(env, reg, regno, true);
8669 default:
8670 return __check_ptr_off_reg(env, reg, regno, false);
8671 }
8672 }
8673
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)8674 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8675 const struct bpf_func_proto *fn,
8676 struct bpf_reg_state *regs)
8677 {
8678 struct bpf_reg_state *state = NULL;
8679 int i;
8680
8681 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8682 if (arg_type_is_dynptr(fn->arg_type[i])) {
8683 if (state) {
8684 verbose(env, "verifier internal error: multiple dynptr args\n");
8685 return NULL;
8686 }
8687 state = ®s[BPF_REG_1 + i];
8688 }
8689
8690 if (!state)
8691 verbose(env, "verifier internal error: no dynptr arg found\n");
8692
8693 return state;
8694 }
8695
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8696 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8697 {
8698 struct bpf_func_state *state = func(env, reg);
8699 int spi;
8700
8701 if (reg->type == CONST_PTR_TO_DYNPTR)
8702 return reg->id;
8703 spi = dynptr_get_spi(env, reg);
8704 if (spi < 0)
8705 return spi;
8706 return state->stack[spi].spilled_ptr.id;
8707 }
8708
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8709 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8710 {
8711 struct bpf_func_state *state = func(env, reg);
8712 int spi;
8713
8714 if (reg->type == CONST_PTR_TO_DYNPTR)
8715 return reg->ref_obj_id;
8716 spi = dynptr_get_spi(env, reg);
8717 if (spi < 0)
8718 return spi;
8719 return state->stack[spi].spilled_ptr.ref_obj_id;
8720 }
8721
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8722 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8723 struct bpf_reg_state *reg)
8724 {
8725 struct bpf_func_state *state = func(env, reg);
8726 int spi;
8727
8728 if (reg->type == CONST_PTR_TO_DYNPTR)
8729 return reg->dynptr.type;
8730
8731 spi = __get_spi(reg->off);
8732 if (spi < 0) {
8733 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8734 return BPF_DYNPTR_TYPE_INVALID;
8735 }
8736
8737 return state->stack[spi].spilled_ptr.dynptr.type;
8738 }
8739
check_reg_const_str(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)8740 static int check_reg_const_str(struct bpf_verifier_env *env,
8741 struct bpf_reg_state *reg, u32 regno)
8742 {
8743 struct bpf_map *map = reg->map_ptr;
8744 int err;
8745 int map_off;
8746 u64 map_addr;
8747 char *str_ptr;
8748
8749 if (reg->type != PTR_TO_MAP_VALUE)
8750 return -EINVAL;
8751
8752 if (!bpf_map_is_rdonly(map)) {
8753 verbose(env, "R%d does not point to a readonly map'\n", regno);
8754 return -EACCES;
8755 }
8756
8757 if (!tnum_is_const(reg->var_off)) {
8758 verbose(env, "R%d is not a constant address'\n", regno);
8759 return -EACCES;
8760 }
8761
8762 if (!map->ops->map_direct_value_addr) {
8763 verbose(env, "no direct value access support for this map type\n");
8764 return -EACCES;
8765 }
8766
8767 err = check_map_access(env, regno, reg->off,
8768 map->value_size - reg->off, false,
8769 ACCESS_HELPER);
8770 if (err)
8771 return err;
8772
8773 map_off = reg->off + reg->var_off.value;
8774 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8775 if (err) {
8776 verbose(env, "direct value access on string failed\n");
8777 return err;
8778 }
8779
8780 str_ptr = (char *)(long)(map_addr);
8781 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8782 verbose(env, "string is not zero-terminated\n");
8783 return -EINVAL;
8784 }
8785 return 0;
8786 }
8787
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)8788 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8789 struct bpf_call_arg_meta *meta,
8790 const struct bpf_func_proto *fn,
8791 int insn_idx)
8792 {
8793 u32 regno = BPF_REG_1 + arg;
8794 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8795 enum bpf_arg_type arg_type = fn->arg_type[arg];
8796 enum bpf_reg_type type = reg->type;
8797 u32 *arg_btf_id = NULL;
8798 int err = 0;
8799
8800 if (arg_type == ARG_DONTCARE)
8801 return 0;
8802
8803 err = check_reg_arg(env, regno, SRC_OP);
8804 if (err)
8805 return err;
8806
8807 if (arg_type == ARG_ANYTHING) {
8808 if (is_pointer_value(env, regno)) {
8809 verbose(env, "R%d leaks addr into helper function\n",
8810 regno);
8811 return -EACCES;
8812 }
8813 return 0;
8814 }
8815
8816 if (type_is_pkt_pointer(type) &&
8817 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8818 verbose(env, "helper access to the packet is not allowed\n");
8819 return -EACCES;
8820 }
8821
8822 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8823 err = resolve_map_arg_type(env, meta, &arg_type);
8824 if (err)
8825 return err;
8826 }
8827
8828 if (register_is_null(reg) && type_may_be_null(arg_type))
8829 /* A NULL register has a SCALAR_VALUE type, so skip
8830 * type checking.
8831 */
8832 goto skip_type_check;
8833
8834 /* arg_btf_id and arg_size are in a union. */
8835 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8836 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8837 arg_btf_id = fn->arg_btf_id[arg];
8838
8839 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8840 if (err)
8841 return err;
8842
8843 err = check_func_arg_reg_off(env, reg, regno, arg_type);
8844 if (err)
8845 return err;
8846
8847 skip_type_check:
8848 if (arg_type_is_release(arg_type)) {
8849 if (arg_type_is_dynptr(arg_type)) {
8850 struct bpf_func_state *state = func(env, reg);
8851 int spi;
8852
8853 /* Only dynptr created on stack can be released, thus
8854 * the get_spi and stack state checks for spilled_ptr
8855 * should only be done before process_dynptr_func for
8856 * PTR_TO_STACK.
8857 */
8858 if (reg->type == PTR_TO_STACK) {
8859 spi = dynptr_get_spi(env, reg);
8860 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8861 verbose(env, "arg %d is an unacquired reference\n", regno);
8862 return -EINVAL;
8863 }
8864 } else {
8865 verbose(env, "cannot release unowned const bpf_dynptr\n");
8866 return -EINVAL;
8867 }
8868 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8869 verbose(env, "R%d must be referenced when passed to release function\n",
8870 regno);
8871 return -EINVAL;
8872 }
8873 if (meta->release_regno) {
8874 verbose(env, "verifier internal error: more than one release argument\n");
8875 return -EFAULT;
8876 }
8877 meta->release_regno = regno;
8878 }
8879
8880 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
8881 if (meta->ref_obj_id) {
8882 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8883 regno, reg->ref_obj_id,
8884 meta->ref_obj_id);
8885 return -EFAULT;
8886 }
8887 meta->ref_obj_id = reg->ref_obj_id;
8888 }
8889
8890 switch (base_type(arg_type)) {
8891 case ARG_CONST_MAP_PTR:
8892 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8893 if (meta->map_ptr) {
8894 /* Use map_uid (which is unique id of inner map) to reject:
8895 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8896 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8897 * if (inner_map1 && inner_map2) {
8898 * timer = bpf_map_lookup_elem(inner_map1);
8899 * if (timer)
8900 * // mismatch would have been allowed
8901 * bpf_timer_init(timer, inner_map2);
8902 * }
8903 *
8904 * Comparing map_ptr is enough to distinguish normal and outer maps.
8905 */
8906 if (meta->map_ptr != reg->map_ptr ||
8907 meta->map_uid != reg->map_uid) {
8908 verbose(env,
8909 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8910 meta->map_uid, reg->map_uid);
8911 return -EINVAL;
8912 }
8913 }
8914 meta->map_ptr = reg->map_ptr;
8915 meta->map_uid = reg->map_uid;
8916 break;
8917 case ARG_PTR_TO_MAP_KEY:
8918 /* bpf_map_xxx(..., map_ptr, ..., key) call:
8919 * check that [key, key + map->key_size) are within
8920 * stack limits and initialized
8921 */
8922 if (!meta->map_ptr) {
8923 /* in function declaration map_ptr must come before
8924 * map_key, so that it's verified and known before
8925 * we have to check map_key here. Otherwise it means
8926 * that kernel subsystem misconfigured verifier
8927 */
8928 verbose(env, "invalid map_ptr to access map->key\n");
8929 return -EACCES;
8930 }
8931 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
8932 BPF_READ, false, NULL);
8933 break;
8934 case ARG_PTR_TO_MAP_VALUE:
8935 if (type_may_be_null(arg_type) && register_is_null(reg))
8936 return 0;
8937
8938 /* bpf_map_xxx(..., map_ptr, ..., value) call:
8939 * check [value, value + map->value_size) validity
8940 */
8941 if (!meta->map_ptr) {
8942 /* kernel subsystem misconfigured verifier */
8943 verbose(env, "invalid map_ptr to access map->value\n");
8944 return -EACCES;
8945 }
8946 meta->raw_mode = arg_type & MEM_UNINIT;
8947 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
8948 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8949 false, meta);
8950 break;
8951 case ARG_PTR_TO_PERCPU_BTF_ID:
8952 if (!reg->btf_id) {
8953 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8954 return -EACCES;
8955 }
8956 meta->ret_btf = reg->btf;
8957 meta->ret_btf_id = reg->btf_id;
8958 break;
8959 case ARG_PTR_TO_SPIN_LOCK:
8960 if (in_rbtree_lock_required_cb(env)) {
8961 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8962 return -EACCES;
8963 }
8964 if (meta->func_id == BPF_FUNC_spin_lock) {
8965 err = process_spin_lock(env, regno, true);
8966 if (err)
8967 return err;
8968 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
8969 err = process_spin_lock(env, regno, false);
8970 if (err)
8971 return err;
8972 } else {
8973 verbose(env, "verifier internal error\n");
8974 return -EFAULT;
8975 }
8976 break;
8977 case ARG_PTR_TO_TIMER:
8978 err = process_timer_func(env, regno, meta);
8979 if (err)
8980 return err;
8981 break;
8982 case ARG_PTR_TO_FUNC:
8983 meta->subprogno = reg->subprogno;
8984 break;
8985 case ARG_PTR_TO_MEM:
8986 /* The access to this pointer is only checked when we hit the
8987 * next is_mem_size argument below.
8988 */
8989 meta->raw_mode = arg_type & MEM_UNINIT;
8990 if (arg_type & MEM_FIXED_SIZE) {
8991 err = check_helper_mem_access(env, regno, fn->arg_size[arg],
8992 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8993 false, meta);
8994 if (err)
8995 return err;
8996 if (arg_type & MEM_ALIGNED)
8997 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
8998 }
8999 break;
9000 case ARG_CONST_SIZE:
9001 err = check_mem_size_reg(env, reg, regno,
9002 fn->arg_type[arg - 1] & MEM_WRITE ?
9003 BPF_WRITE : BPF_READ,
9004 false, meta);
9005 break;
9006 case ARG_CONST_SIZE_OR_ZERO:
9007 err = check_mem_size_reg(env, reg, regno,
9008 fn->arg_type[arg - 1] & MEM_WRITE ?
9009 BPF_WRITE : BPF_READ,
9010 true, meta);
9011 break;
9012 case ARG_PTR_TO_DYNPTR:
9013 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9014 if (err)
9015 return err;
9016 break;
9017 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9018 if (!tnum_is_const(reg->var_off)) {
9019 verbose(env, "R%d is not a known constant'\n",
9020 regno);
9021 return -EACCES;
9022 }
9023 meta->mem_size = reg->var_off.value;
9024 err = mark_chain_precision(env, regno);
9025 if (err)
9026 return err;
9027 break;
9028 case ARG_PTR_TO_CONST_STR:
9029 {
9030 err = check_reg_const_str(env, reg, regno);
9031 if (err)
9032 return err;
9033 break;
9034 }
9035 case ARG_KPTR_XCHG_DEST:
9036 err = process_kptr_func(env, regno, meta);
9037 if (err)
9038 return err;
9039 break;
9040 }
9041
9042 return err;
9043 }
9044
may_update_sockmap(struct bpf_verifier_env * env,int func_id)9045 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9046 {
9047 enum bpf_attach_type eatype = env->prog->expected_attach_type;
9048 enum bpf_prog_type type = resolve_prog_type(env->prog);
9049
9050 if (func_id != BPF_FUNC_map_update_elem &&
9051 func_id != BPF_FUNC_map_delete_elem)
9052 return false;
9053
9054 /* It's not possible to get access to a locked struct sock in these
9055 * contexts, so updating is safe.
9056 */
9057 switch (type) {
9058 case BPF_PROG_TYPE_TRACING:
9059 if (eatype == BPF_TRACE_ITER)
9060 return true;
9061 break;
9062 case BPF_PROG_TYPE_SOCK_OPS:
9063 /* map_update allowed only via dedicated helpers with event type checks */
9064 if (func_id == BPF_FUNC_map_delete_elem)
9065 return true;
9066 break;
9067 case BPF_PROG_TYPE_SOCKET_FILTER:
9068 case BPF_PROG_TYPE_SCHED_CLS:
9069 case BPF_PROG_TYPE_SCHED_ACT:
9070 case BPF_PROG_TYPE_XDP:
9071 case BPF_PROG_TYPE_SK_REUSEPORT:
9072 case BPF_PROG_TYPE_FLOW_DISSECTOR:
9073 case BPF_PROG_TYPE_SK_LOOKUP:
9074 return true;
9075 default:
9076 break;
9077 }
9078
9079 verbose(env, "cannot update sockmap in this context\n");
9080 return false;
9081 }
9082
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)9083 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9084 {
9085 return env->prog->jit_requested &&
9086 bpf_jit_supports_subprog_tailcalls();
9087 }
9088
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)9089 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9090 struct bpf_map *map, int func_id)
9091 {
9092 if (!map)
9093 return 0;
9094
9095 /* We need a two way check, first is from map perspective ... */
9096 switch (map->map_type) {
9097 case BPF_MAP_TYPE_PROG_ARRAY:
9098 if (func_id != BPF_FUNC_tail_call)
9099 goto error;
9100 break;
9101 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9102 if (func_id != BPF_FUNC_perf_event_read &&
9103 func_id != BPF_FUNC_perf_event_output &&
9104 func_id != BPF_FUNC_skb_output &&
9105 func_id != BPF_FUNC_perf_event_read_value &&
9106 func_id != BPF_FUNC_xdp_output)
9107 goto error;
9108 break;
9109 case BPF_MAP_TYPE_RINGBUF:
9110 if (func_id != BPF_FUNC_ringbuf_output &&
9111 func_id != BPF_FUNC_ringbuf_reserve &&
9112 func_id != BPF_FUNC_ringbuf_query &&
9113 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9114 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9115 func_id != BPF_FUNC_ringbuf_discard_dynptr)
9116 goto error;
9117 break;
9118 case BPF_MAP_TYPE_USER_RINGBUF:
9119 if (func_id != BPF_FUNC_user_ringbuf_drain)
9120 goto error;
9121 break;
9122 case BPF_MAP_TYPE_STACK_TRACE:
9123 if (func_id != BPF_FUNC_get_stackid)
9124 goto error;
9125 break;
9126 case BPF_MAP_TYPE_CGROUP_ARRAY:
9127 if (func_id != BPF_FUNC_skb_under_cgroup &&
9128 func_id != BPF_FUNC_current_task_under_cgroup)
9129 goto error;
9130 break;
9131 case BPF_MAP_TYPE_CGROUP_STORAGE:
9132 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
9133 if (func_id != BPF_FUNC_get_local_storage)
9134 goto error;
9135 break;
9136 case BPF_MAP_TYPE_DEVMAP:
9137 case BPF_MAP_TYPE_DEVMAP_HASH:
9138 if (func_id != BPF_FUNC_redirect_map &&
9139 func_id != BPF_FUNC_map_lookup_elem)
9140 goto error;
9141 break;
9142 /* Restrict bpf side of cpumap and xskmap, open when use-cases
9143 * appear.
9144 */
9145 case BPF_MAP_TYPE_CPUMAP:
9146 if (func_id != BPF_FUNC_redirect_map)
9147 goto error;
9148 break;
9149 case BPF_MAP_TYPE_XSKMAP:
9150 if (func_id != BPF_FUNC_redirect_map &&
9151 func_id != BPF_FUNC_map_lookup_elem)
9152 goto error;
9153 break;
9154 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9155 case BPF_MAP_TYPE_HASH_OF_MAPS:
9156 if (func_id != BPF_FUNC_map_lookup_elem)
9157 goto error;
9158 break;
9159 case BPF_MAP_TYPE_SOCKMAP:
9160 if (func_id != BPF_FUNC_sk_redirect_map &&
9161 func_id != BPF_FUNC_sock_map_update &&
9162 func_id != BPF_FUNC_msg_redirect_map &&
9163 func_id != BPF_FUNC_sk_select_reuseport &&
9164 func_id != BPF_FUNC_map_lookup_elem &&
9165 !may_update_sockmap(env, func_id))
9166 goto error;
9167 break;
9168 case BPF_MAP_TYPE_SOCKHASH:
9169 if (func_id != BPF_FUNC_sk_redirect_hash &&
9170 func_id != BPF_FUNC_sock_hash_update &&
9171 func_id != BPF_FUNC_msg_redirect_hash &&
9172 func_id != BPF_FUNC_sk_select_reuseport &&
9173 func_id != BPF_FUNC_map_lookup_elem &&
9174 !may_update_sockmap(env, func_id))
9175 goto error;
9176 break;
9177 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9178 if (func_id != BPF_FUNC_sk_select_reuseport)
9179 goto error;
9180 break;
9181 case BPF_MAP_TYPE_QUEUE:
9182 case BPF_MAP_TYPE_STACK:
9183 if (func_id != BPF_FUNC_map_peek_elem &&
9184 func_id != BPF_FUNC_map_pop_elem &&
9185 func_id != BPF_FUNC_map_push_elem)
9186 goto error;
9187 break;
9188 case BPF_MAP_TYPE_SK_STORAGE:
9189 if (func_id != BPF_FUNC_sk_storage_get &&
9190 func_id != BPF_FUNC_sk_storage_delete &&
9191 func_id != BPF_FUNC_kptr_xchg)
9192 goto error;
9193 break;
9194 case BPF_MAP_TYPE_INODE_STORAGE:
9195 if (func_id != BPF_FUNC_inode_storage_get &&
9196 func_id != BPF_FUNC_inode_storage_delete &&
9197 func_id != BPF_FUNC_kptr_xchg)
9198 goto error;
9199 break;
9200 case BPF_MAP_TYPE_TASK_STORAGE:
9201 if (func_id != BPF_FUNC_task_storage_get &&
9202 func_id != BPF_FUNC_task_storage_delete &&
9203 func_id != BPF_FUNC_kptr_xchg)
9204 goto error;
9205 break;
9206 case BPF_MAP_TYPE_CGRP_STORAGE:
9207 if (func_id != BPF_FUNC_cgrp_storage_get &&
9208 func_id != BPF_FUNC_cgrp_storage_delete &&
9209 func_id != BPF_FUNC_kptr_xchg)
9210 goto error;
9211 break;
9212 case BPF_MAP_TYPE_BLOOM_FILTER:
9213 if (func_id != BPF_FUNC_map_peek_elem &&
9214 func_id != BPF_FUNC_map_push_elem)
9215 goto error;
9216 break;
9217 default:
9218 break;
9219 }
9220
9221 /* ... and second from the function itself. */
9222 switch (func_id) {
9223 case BPF_FUNC_tail_call:
9224 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9225 goto error;
9226 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9227 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9228 return -EINVAL;
9229 }
9230 break;
9231 case BPF_FUNC_perf_event_read:
9232 case BPF_FUNC_perf_event_output:
9233 case BPF_FUNC_perf_event_read_value:
9234 case BPF_FUNC_skb_output:
9235 case BPF_FUNC_xdp_output:
9236 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9237 goto error;
9238 break;
9239 case BPF_FUNC_ringbuf_output:
9240 case BPF_FUNC_ringbuf_reserve:
9241 case BPF_FUNC_ringbuf_query:
9242 case BPF_FUNC_ringbuf_reserve_dynptr:
9243 case BPF_FUNC_ringbuf_submit_dynptr:
9244 case BPF_FUNC_ringbuf_discard_dynptr:
9245 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9246 goto error;
9247 break;
9248 case BPF_FUNC_user_ringbuf_drain:
9249 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9250 goto error;
9251 break;
9252 case BPF_FUNC_get_stackid:
9253 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9254 goto error;
9255 break;
9256 case BPF_FUNC_current_task_under_cgroup:
9257 case BPF_FUNC_skb_under_cgroup:
9258 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9259 goto error;
9260 break;
9261 case BPF_FUNC_redirect_map:
9262 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9263 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9264 map->map_type != BPF_MAP_TYPE_CPUMAP &&
9265 map->map_type != BPF_MAP_TYPE_XSKMAP)
9266 goto error;
9267 break;
9268 case BPF_FUNC_sk_redirect_map:
9269 case BPF_FUNC_msg_redirect_map:
9270 case BPF_FUNC_sock_map_update:
9271 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9272 goto error;
9273 break;
9274 case BPF_FUNC_sk_redirect_hash:
9275 case BPF_FUNC_msg_redirect_hash:
9276 case BPF_FUNC_sock_hash_update:
9277 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9278 goto error;
9279 break;
9280 case BPF_FUNC_get_local_storage:
9281 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9282 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9283 goto error;
9284 break;
9285 case BPF_FUNC_sk_select_reuseport:
9286 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9287 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9288 map->map_type != BPF_MAP_TYPE_SOCKHASH)
9289 goto error;
9290 break;
9291 case BPF_FUNC_map_pop_elem:
9292 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9293 map->map_type != BPF_MAP_TYPE_STACK)
9294 goto error;
9295 break;
9296 case BPF_FUNC_map_peek_elem:
9297 case BPF_FUNC_map_push_elem:
9298 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9299 map->map_type != BPF_MAP_TYPE_STACK &&
9300 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9301 goto error;
9302 break;
9303 case BPF_FUNC_map_lookup_percpu_elem:
9304 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9305 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9306 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9307 goto error;
9308 break;
9309 case BPF_FUNC_sk_storage_get:
9310 case BPF_FUNC_sk_storage_delete:
9311 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9312 goto error;
9313 break;
9314 case BPF_FUNC_inode_storage_get:
9315 case BPF_FUNC_inode_storage_delete:
9316 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9317 goto error;
9318 break;
9319 case BPF_FUNC_task_storage_get:
9320 case BPF_FUNC_task_storage_delete:
9321 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9322 goto error;
9323 break;
9324 case BPF_FUNC_cgrp_storage_get:
9325 case BPF_FUNC_cgrp_storage_delete:
9326 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9327 goto error;
9328 break;
9329 default:
9330 break;
9331 }
9332
9333 return 0;
9334 error:
9335 verbose(env, "cannot pass map_type %d into func %s#%d\n",
9336 map->map_type, func_id_name(func_id), func_id);
9337 return -EINVAL;
9338 }
9339
check_raw_mode_ok(const struct bpf_func_proto * fn)9340 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9341 {
9342 int count = 0;
9343
9344 if (arg_type_is_raw_mem(fn->arg1_type))
9345 count++;
9346 if (arg_type_is_raw_mem(fn->arg2_type))
9347 count++;
9348 if (arg_type_is_raw_mem(fn->arg3_type))
9349 count++;
9350 if (arg_type_is_raw_mem(fn->arg4_type))
9351 count++;
9352 if (arg_type_is_raw_mem(fn->arg5_type))
9353 count++;
9354
9355 /* We only support one arg being in raw mode at the moment,
9356 * which is sufficient for the helper functions we have
9357 * right now.
9358 */
9359 return count <= 1;
9360 }
9361
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)9362 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9363 {
9364 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9365 bool has_size = fn->arg_size[arg] != 0;
9366 bool is_next_size = false;
9367
9368 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9369 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9370
9371 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9372 return is_next_size;
9373
9374 return has_size == is_next_size || is_next_size == is_fixed;
9375 }
9376
check_arg_pair_ok(const struct bpf_func_proto * fn)9377 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9378 {
9379 /* bpf_xxx(..., buf, len) call will access 'len'
9380 * bytes from memory 'buf'. Both arg types need
9381 * to be paired, so make sure there's no buggy
9382 * helper function specification.
9383 */
9384 if (arg_type_is_mem_size(fn->arg1_type) ||
9385 check_args_pair_invalid(fn, 0) ||
9386 check_args_pair_invalid(fn, 1) ||
9387 check_args_pair_invalid(fn, 2) ||
9388 check_args_pair_invalid(fn, 3) ||
9389 check_args_pair_invalid(fn, 4))
9390 return false;
9391
9392 return true;
9393 }
9394
check_btf_id_ok(const struct bpf_func_proto * fn)9395 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9396 {
9397 int i;
9398
9399 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9400 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9401 return !!fn->arg_btf_id[i];
9402 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9403 return fn->arg_btf_id[i] == BPF_PTR_POISON;
9404 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9405 /* arg_btf_id and arg_size are in a union. */
9406 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9407 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9408 return false;
9409 }
9410
9411 return true;
9412 }
9413
check_func_proto(const struct bpf_func_proto * fn,int func_id)9414 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9415 {
9416 return check_raw_mode_ok(fn) &&
9417 check_arg_pair_ok(fn) &&
9418 check_btf_id_ok(fn) ? 0 : -EINVAL;
9419 }
9420
9421 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9422 * are now invalid, so turn them into unknown SCALAR_VALUE.
9423 *
9424 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9425 * since these slices point to packet data.
9426 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)9427 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9428 {
9429 struct bpf_func_state *state;
9430 struct bpf_reg_state *reg;
9431
9432 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9433 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9434 mark_reg_invalid(env, reg);
9435 }));
9436 }
9437
9438 enum {
9439 AT_PKT_END = -1,
9440 BEYOND_PKT_END = -2,
9441 };
9442
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)9443 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9444 {
9445 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9446 struct bpf_reg_state *reg = &state->regs[regn];
9447
9448 if (reg->type != PTR_TO_PACKET)
9449 /* PTR_TO_PACKET_META is not supported yet */
9450 return;
9451
9452 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9453 * How far beyond pkt_end it goes is unknown.
9454 * if (!range_open) it's the case of pkt >= pkt_end
9455 * if (range_open) it's the case of pkt > pkt_end
9456 * hence this pointer is at least 1 byte bigger than pkt_end
9457 */
9458 if (range_open)
9459 reg->range = BEYOND_PKT_END;
9460 else
9461 reg->range = AT_PKT_END;
9462 }
9463
9464 /* The pointer with the specified id has released its reference to kernel
9465 * resources. Identify all copies of the same pointer and clear the reference.
9466 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)9467 static int release_reference(struct bpf_verifier_env *env,
9468 int ref_obj_id)
9469 {
9470 struct bpf_func_state *state;
9471 struct bpf_reg_state *reg;
9472 int err;
9473
9474 err = release_reference_state(cur_func(env), ref_obj_id);
9475 if (err)
9476 return err;
9477
9478 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9479 if (reg->ref_obj_id == ref_obj_id)
9480 mark_reg_invalid(env, reg);
9481 }));
9482
9483 return 0;
9484 }
9485
invalidate_non_owning_refs(struct bpf_verifier_env * env)9486 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9487 {
9488 struct bpf_func_state *unused;
9489 struct bpf_reg_state *reg;
9490
9491 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9492 if (type_is_non_owning_ref(reg->type))
9493 mark_reg_invalid(env, reg);
9494 }));
9495 }
9496
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9497 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9498 struct bpf_reg_state *regs)
9499 {
9500 int i;
9501
9502 /* after the call registers r0 - r5 were scratched */
9503 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9504 mark_reg_not_init(env, regs, caller_saved[i]);
9505 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9506 }
9507 }
9508
9509 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9510 struct bpf_func_state *caller,
9511 struct bpf_func_state *callee,
9512 int insn_idx);
9513
9514 static int set_callee_state(struct bpf_verifier_env *env,
9515 struct bpf_func_state *caller,
9516 struct bpf_func_state *callee, int insn_idx);
9517
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)9518 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9519 set_callee_state_fn set_callee_state_cb,
9520 struct bpf_verifier_state *state)
9521 {
9522 struct bpf_func_state *caller, *callee;
9523 int err;
9524
9525 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9526 verbose(env, "the call stack of %d frames is too deep\n",
9527 state->curframe + 2);
9528 return -E2BIG;
9529 }
9530
9531 if (state->frame[state->curframe + 1]) {
9532 verbose(env, "verifier bug. Frame %d already allocated\n",
9533 state->curframe + 1);
9534 return -EFAULT;
9535 }
9536
9537 caller = state->frame[state->curframe];
9538 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9539 if (!callee)
9540 return -ENOMEM;
9541 state->frame[state->curframe + 1] = callee;
9542
9543 /* callee cannot access r0, r6 - r9 for reading and has to write
9544 * into its own stack before reading from it.
9545 * callee can read/write into caller's stack
9546 */
9547 init_func_state(env, callee,
9548 /* remember the callsite, it will be used by bpf_exit */
9549 callsite,
9550 state->curframe + 1 /* frameno within this callchain */,
9551 subprog /* subprog number within this prog */);
9552 /* Transfer references to the callee */
9553 err = copy_reference_state(callee, caller);
9554 err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9555 if (err)
9556 goto err_out;
9557
9558 /* only increment it after check_reg_arg() finished */
9559 state->curframe++;
9560
9561 return 0;
9562
9563 err_out:
9564 free_func_state(callee);
9565 state->frame[state->curframe + 1] = NULL;
9566 return err;
9567 }
9568
btf_check_func_arg_match(struct bpf_verifier_env * env,int subprog,const struct btf * btf,struct bpf_reg_state * regs)9569 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9570 const struct btf *btf,
9571 struct bpf_reg_state *regs)
9572 {
9573 struct bpf_subprog_info *sub = subprog_info(env, subprog);
9574 struct bpf_verifier_log *log = &env->log;
9575 u32 i;
9576 int ret;
9577
9578 ret = btf_prepare_func_args(env, subprog);
9579 if (ret)
9580 return ret;
9581
9582 /* check that BTF function arguments match actual types that the
9583 * verifier sees.
9584 */
9585 for (i = 0; i < sub->arg_cnt; i++) {
9586 u32 regno = i + 1;
9587 struct bpf_reg_state *reg = ®s[regno];
9588 struct bpf_subprog_arg_info *arg = &sub->args[i];
9589
9590 if (arg->arg_type == ARG_ANYTHING) {
9591 if (reg->type != SCALAR_VALUE) {
9592 bpf_log(log, "R%d is not a scalar\n", regno);
9593 return -EINVAL;
9594 }
9595 } else if (arg->arg_type == ARG_PTR_TO_CTX) {
9596 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9597 if (ret < 0)
9598 return ret;
9599 /* If function expects ctx type in BTF check that caller
9600 * is passing PTR_TO_CTX.
9601 */
9602 if (reg->type != PTR_TO_CTX) {
9603 bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9604 return -EINVAL;
9605 }
9606 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9607 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9608 if (ret < 0)
9609 return ret;
9610 if (check_mem_reg(env, reg, regno, arg->mem_size))
9611 return -EINVAL;
9612 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9613 bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9614 return -EINVAL;
9615 }
9616 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
9617 /*
9618 * Can pass any value and the kernel won't crash, but
9619 * only PTR_TO_ARENA or SCALAR make sense. Everything
9620 * else is a bug in the bpf program. Point it out to
9621 * the user at the verification time instead of
9622 * run-time debug nightmare.
9623 */
9624 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
9625 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
9626 return -EINVAL;
9627 }
9628 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9629 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
9630 if (ret)
9631 return ret;
9632
9633 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9634 if (ret)
9635 return ret;
9636 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
9637 struct bpf_call_arg_meta meta;
9638 int err;
9639
9640 if (register_is_null(reg) && type_may_be_null(arg->arg_type))
9641 continue;
9642
9643 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
9644 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
9645 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
9646 if (err)
9647 return err;
9648 } else {
9649 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9650 i, arg->arg_type);
9651 return -EFAULT;
9652 }
9653 }
9654
9655 return 0;
9656 }
9657
9658 /* Compare BTF of a function call with given bpf_reg_state.
9659 * Returns:
9660 * EFAULT - there is a verifier bug. Abort verification.
9661 * EINVAL - there is a type mismatch or BTF is not available.
9662 * 0 - BTF matches with what bpf_reg_state expects.
9663 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9664 */
btf_check_subprog_call(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)9665 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9666 struct bpf_reg_state *regs)
9667 {
9668 struct bpf_prog *prog = env->prog;
9669 struct btf *btf = prog->aux->btf;
9670 u32 btf_id;
9671 int err;
9672
9673 if (!prog->aux->func_info)
9674 return -EINVAL;
9675
9676 btf_id = prog->aux->func_info[subprog].type_id;
9677 if (!btf_id)
9678 return -EFAULT;
9679
9680 if (prog->aux->func_info_aux[subprog].unreliable)
9681 return -EINVAL;
9682
9683 err = btf_check_func_arg_match(env, subprog, btf, regs);
9684 /* Compiler optimizations can remove arguments from static functions
9685 * or mismatched type can be passed into a global function.
9686 * In such cases mark the function as unreliable from BTF point of view.
9687 */
9688 if (err)
9689 prog->aux->func_info_aux[subprog].unreliable = true;
9690 return err;
9691 }
9692
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)9693 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9694 int insn_idx, int subprog,
9695 set_callee_state_fn set_callee_state_cb)
9696 {
9697 struct bpf_verifier_state *state = env->cur_state, *callback_state;
9698 struct bpf_func_state *caller, *callee;
9699 int err;
9700
9701 caller = state->frame[state->curframe];
9702 err = btf_check_subprog_call(env, subprog, caller->regs);
9703 if (err == -EFAULT)
9704 return err;
9705
9706 /* set_callee_state is used for direct subprog calls, but we are
9707 * interested in validating only BPF helpers that can call subprogs as
9708 * callbacks
9709 */
9710 env->subprog_info[subprog].is_cb = true;
9711 if (bpf_pseudo_kfunc_call(insn) &&
9712 !is_callback_calling_kfunc(insn->imm)) {
9713 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9714 func_id_name(insn->imm), insn->imm);
9715 return -EFAULT;
9716 } else if (!bpf_pseudo_kfunc_call(insn) &&
9717 !is_callback_calling_function(insn->imm)) { /* helper */
9718 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9719 func_id_name(insn->imm), insn->imm);
9720 return -EFAULT;
9721 }
9722
9723 if (is_async_callback_calling_insn(insn)) {
9724 struct bpf_verifier_state *async_cb;
9725
9726 /* there is no real recursion here. timer and workqueue callbacks are async */
9727 env->subprog_info[subprog].is_async_cb = true;
9728 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9729 insn_idx, subprog,
9730 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
9731 if (!async_cb)
9732 return -EFAULT;
9733 callee = async_cb->frame[0];
9734 callee->async_entry_cnt = caller->async_entry_cnt + 1;
9735
9736 /* Convert bpf_timer_set_callback() args into timer callback args */
9737 err = set_callee_state_cb(env, caller, callee, insn_idx);
9738 if (err)
9739 return err;
9740
9741 return 0;
9742 }
9743
9744 /* for callback functions enqueue entry to callback and
9745 * proceed with next instruction within current frame.
9746 */
9747 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9748 if (!callback_state)
9749 return -ENOMEM;
9750
9751 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9752 callback_state);
9753 if (err)
9754 return err;
9755
9756 callback_state->callback_unroll_depth++;
9757 callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9758 caller->callback_depth = 0;
9759 return 0;
9760 }
9761
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)9762 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9763 int *insn_idx)
9764 {
9765 struct bpf_verifier_state *state = env->cur_state;
9766 struct bpf_func_state *caller;
9767 int err, subprog, target_insn;
9768
9769 target_insn = *insn_idx + insn->imm + 1;
9770 subprog = find_subprog(env, target_insn);
9771 if (subprog < 0) {
9772 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9773 return -EFAULT;
9774 }
9775
9776 caller = state->frame[state->curframe];
9777 err = btf_check_subprog_call(env, subprog, caller->regs);
9778 if (err == -EFAULT)
9779 return err;
9780 if (subprog_is_global(env, subprog)) {
9781 const char *sub_name = subprog_name(env, subprog);
9782
9783 /* Only global subprogs cannot be called with a lock held. */
9784 if (env->cur_state->active_lock.ptr) {
9785 verbose(env, "global function calls are not allowed while holding a lock,\n"
9786 "use static function instead\n");
9787 return -EINVAL;
9788 }
9789
9790 /* Only global subprogs cannot be called with preemption disabled. */
9791 if (env->cur_state->active_preempt_lock) {
9792 verbose(env, "global function calls are not allowed with preemption disabled,\n"
9793 "use static function instead\n");
9794 return -EINVAL;
9795 }
9796
9797 if (err) {
9798 verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9799 subprog, sub_name);
9800 return err;
9801 }
9802
9803 verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
9804 subprog, sub_name);
9805 /* mark global subprog for verifying after main prog */
9806 subprog_aux(env, subprog)->called = true;
9807 clear_caller_saved_regs(env, caller->regs);
9808
9809 /* All global functions return a 64-bit SCALAR_VALUE */
9810 mark_reg_unknown(env, caller->regs, BPF_REG_0);
9811 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9812
9813 /* continue with next insn after call */
9814 return 0;
9815 }
9816
9817 /* for regular function entry setup new frame and continue
9818 * from that frame.
9819 */
9820 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9821 if (err)
9822 return err;
9823
9824 clear_caller_saved_regs(env, caller->regs);
9825
9826 /* and go analyze first insn of the callee */
9827 *insn_idx = env->subprog_info[subprog].start - 1;
9828
9829 if (env->log.level & BPF_LOG_LEVEL) {
9830 verbose(env, "caller:\n");
9831 print_verifier_state(env, caller, true);
9832 verbose(env, "callee:\n");
9833 print_verifier_state(env, state->frame[state->curframe], true);
9834 }
9835
9836 return 0;
9837 }
9838
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)9839 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9840 struct bpf_func_state *caller,
9841 struct bpf_func_state *callee)
9842 {
9843 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9844 * void *callback_ctx, u64 flags);
9845 * callback_fn(struct bpf_map *map, void *key, void *value,
9846 * void *callback_ctx);
9847 */
9848 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9849
9850 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9851 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9852 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9853
9854 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9855 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9856 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9857
9858 /* pointer to stack or null */
9859 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9860
9861 /* unused */
9862 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9863 return 0;
9864 }
9865
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9866 static int set_callee_state(struct bpf_verifier_env *env,
9867 struct bpf_func_state *caller,
9868 struct bpf_func_state *callee, int insn_idx)
9869 {
9870 int i;
9871
9872 /* copy r1 - r5 args that callee can access. The copy includes parent
9873 * pointers, which connects us up to the liveness chain
9874 */
9875 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9876 callee->regs[i] = caller->regs[i];
9877 return 0;
9878 }
9879
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9880 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9881 struct bpf_func_state *caller,
9882 struct bpf_func_state *callee,
9883 int insn_idx)
9884 {
9885 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9886 struct bpf_map *map;
9887 int err;
9888
9889 /* valid map_ptr and poison value does not matter */
9890 map = insn_aux->map_ptr_state.map_ptr;
9891 if (!map->ops->map_set_for_each_callback_args ||
9892 !map->ops->map_for_each_callback) {
9893 verbose(env, "callback function not allowed for map\n");
9894 return -ENOTSUPP;
9895 }
9896
9897 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9898 if (err)
9899 return err;
9900
9901 callee->in_callback_fn = true;
9902 callee->callback_ret_range = retval_range(0, 1);
9903 return 0;
9904 }
9905
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9906 static int set_loop_callback_state(struct bpf_verifier_env *env,
9907 struct bpf_func_state *caller,
9908 struct bpf_func_state *callee,
9909 int insn_idx)
9910 {
9911 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9912 * u64 flags);
9913 * callback_fn(u32 index, void *callback_ctx);
9914 */
9915 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9916 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9917
9918 /* unused */
9919 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9920 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9921 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9922
9923 callee->in_callback_fn = true;
9924 callee->callback_ret_range = retval_range(0, 1);
9925 return 0;
9926 }
9927
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9928 static int set_timer_callback_state(struct bpf_verifier_env *env,
9929 struct bpf_func_state *caller,
9930 struct bpf_func_state *callee,
9931 int insn_idx)
9932 {
9933 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9934
9935 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9936 * callback_fn(struct bpf_map *map, void *key, void *value);
9937 */
9938 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9939 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9940 callee->regs[BPF_REG_1].map_ptr = map_ptr;
9941
9942 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9943 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9944 callee->regs[BPF_REG_2].map_ptr = map_ptr;
9945
9946 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9947 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9948 callee->regs[BPF_REG_3].map_ptr = map_ptr;
9949
9950 /* unused */
9951 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9952 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9953 callee->in_async_callback_fn = true;
9954 callee->callback_ret_range = retval_range(0, 1);
9955 return 0;
9956 }
9957
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9958 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9959 struct bpf_func_state *caller,
9960 struct bpf_func_state *callee,
9961 int insn_idx)
9962 {
9963 /* bpf_find_vma(struct task_struct *task, u64 addr,
9964 * void *callback_fn, void *callback_ctx, u64 flags)
9965 * (callback_fn)(struct task_struct *task,
9966 * struct vm_area_struct *vma, void *callback_ctx);
9967 */
9968 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9969
9970 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9971 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9972 callee->regs[BPF_REG_2].btf = btf_vmlinux;
9973 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
9974
9975 /* pointer to stack or null */
9976 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9977
9978 /* unused */
9979 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9980 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9981 callee->in_callback_fn = true;
9982 callee->callback_ret_range = retval_range(0, 1);
9983 return 0;
9984 }
9985
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9986 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9987 struct bpf_func_state *caller,
9988 struct bpf_func_state *callee,
9989 int insn_idx)
9990 {
9991 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9992 * callback_ctx, u64 flags);
9993 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9994 */
9995 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9996 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9997 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9998
9999 /* unused */
10000 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10001 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10002 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10003
10004 callee->in_callback_fn = true;
10005 callee->callback_ret_range = retval_range(0, 1);
10006 return 0;
10007 }
10008
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)10009 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10010 struct bpf_func_state *caller,
10011 struct bpf_func_state *callee,
10012 int insn_idx)
10013 {
10014 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10015 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10016 *
10017 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10018 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10019 * by this point, so look at 'root'
10020 */
10021 struct btf_field *field;
10022
10023 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10024 BPF_RB_ROOT);
10025 if (!field || !field->graph_root.value_btf_id)
10026 return -EFAULT;
10027
10028 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10029 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10030 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10031 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10032
10033 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10034 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10035 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10036 callee->in_callback_fn = true;
10037 callee->callback_ret_range = retval_range(0, 1);
10038 return 0;
10039 }
10040
10041 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10042
10043 /* Are we currently verifying the callback for a rbtree helper that must
10044 * be called with lock held? If so, no need to complain about unreleased
10045 * lock
10046 */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)10047 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10048 {
10049 struct bpf_verifier_state *state = env->cur_state;
10050 struct bpf_insn *insn = env->prog->insnsi;
10051 struct bpf_func_state *callee;
10052 int kfunc_btf_id;
10053
10054 if (!state->curframe)
10055 return false;
10056
10057 callee = state->frame[state->curframe];
10058
10059 if (!callee->in_callback_fn)
10060 return false;
10061
10062 kfunc_btf_id = insn[callee->callsite].imm;
10063 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10064 }
10065
retval_range_within(struct bpf_retval_range range,const struct bpf_reg_state * reg,bool return_32bit)10066 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10067 bool return_32bit)
10068 {
10069 if (return_32bit)
10070 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10071 else
10072 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10073 }
10074
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)10075 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10076 {
10077 struct bpf_verifier_state *state = env->cur_state, *prev_st;
10078 struct bpf_func_state *caller, *callee;
10079 struct bpf_reg_state *r0;
10080 bool in_callback_fn;
10081 int err;
10082
10083 callee = state->frame[state->curframe];
10084 r0 = &callee->regs[BPF_REG_0];
10085 if (r0->type == PTR_TO_STACK) {
10086 /* technically it's ok to return caller's stack pointer
10087 * (or caller's caller's pointer) back to the caller,
10088 * since these pointers are valid. Only current stack
10089 * pointer will be invalid as soon as function exits,
10090 * but let's be conservative
10091 */
10092 verbose(env, "cannot return stack pointer to the caller\n");
10093 return -EINVAL;
10094 }
10095
10096 caller = state->frame[state->curframe - 1];
10097 if (callee->in_callback_fn) {
10098 if (r0->type != SCALAR_VALUE) {
10099 verbose(env, "R0 not a scalar value\n");
10100 return -EACCES;
10101 }
10102
10103 /* we are going to rely on register's precise value */
10104 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
10105 err = err ?: mark_chain_precision(env, BPF_REG_0);
10106 if (err)
10107 return err;
10108
10109 /* enforce R0 return value range, and bpf_callback_t returns 64bit */
10110 if (!retval_range_within(callee->callback_ret_range, r0, false)) {
10111 verbose_invalid_scalar(env, r0, callee->callback_ret_range,
10112 "At callback return", "R0");
10113 return -EINVAL;
10114 }
10115 if (!calls_callback(env, callee->callsite)) {
10116 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
10117 *insn_idx, callee->callsite);
10118 return -EFAULT;
10119 }
10120 } else {
10121 /* return to the caller whatever r0 had in the callee */
10122 caller->regs[BPF_REG_0] = *r0;
10123 }
10124
10125 /* callback_fn frame should have released its own additions to parent's
10126 * reference state at this point, or check_reference_leak would
10127 * complain, hence it must be the same as the caller. There is no need
10128 * to copy it back.
10129 */
10130 if (!callee->in_callback_fn) {
10131 /* Transfer references to the caller */
10132 err = copy_reference_state(caller, callee);
10133 if (err)
10134 return err;
10135 }
10136
10137 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
10138 * there function call logic would reschedule callback visit. If iteration
10139 * converges is_state_visited() would prune that visit eventually.
10140 */
10141 in_callback_fn = callee->in_callback_fn;
10142 if (in_callback_fn)
10143 *insn_idx = callee->callsite;
10144 else
10145 *insn_idx = callee->callsite + 1;
10146
10147 if (env->log.level & BPF_LOG_LEVEL) {
10148 verbose(env, "returning from callee:\n");
10149 print_verifier_state(env, callee, true);
10150 verbose(env, "to caller at %d:\n", *insn_idx);
10151 print_verifier_state(env, caller, true);
10152 }
10153 /* clear everything in the callee. In case of exceptional exits using
10154 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
10155 free_func_state(callee);
10156 state->frame[state->curframe--] = NULL;
10157
10158 /* for callbacks widen imprecise scalars to make programs like below verify:
10159 *
10160 * struct ctx { int i; }
10161 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
10162 * ...
10163 * struct ctx = { .i = 0; }
10164 * bpf_loop(100, cb, &ctx, 0);
10165 *
10166 * This is similar to what is done in process_iter_next_call() for open
10167 * coded iterators.
10168 */
10169 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
10170 if (prev_st) {
10171 err = widen_imprecise_scalars(env, prev_st, state);
10172 if (err)
10173 return err;
10174 }
10175 return 0;
10176 }
10177
do_refine_retval_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)10178 static int do_refine_retval_range(struct bpf_verifier_env *env,
10179 struct bpf_reg_state *regs, int ret_type,
10180 int func_id,
10181 struct bpf_call_arg_meta *meta)
10182 {
10183 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
10184
10185 if (ret_type != RET_INTEGER)
10186 return 0;
10187
10188 switch (func_id) {
10189 case BPF_FUNC_get_stack:
10190 case BPF_FUNC_get_task_stack:
10191 case BPF_FUNC_probe_read_str:
10192 case BPF_FUNC_probe_read_kernel_str:
10193 case BPF_FUNC_probe_read_user_str:
10194 ret_reg->smax_value = meta->msize_max_value;
10195 ret_reg->s32_max_value = meta->msize_max_value;
10196 ret_reg->smin_value = -MAX_ERRNO;
10197 ret_reg->s32_min_value = -MAX_ERRNO;
10198 reg_bounds_sync(ret_reg);
10199 break;
10200 case BPF_FUNC_get_smp_processor_id:
10201 ret_reg->umax_value = nr_cpu_ids - 1;
10202 ret_reg->u32_max_value = nr_cpu_ids - 1;
10203 ret_reg->smax_value = nr_cpu_ids - 1;
10204 ret_reg->s32_max_value = nr_cpu_ids - 1;
10205 ret_reg->umin_value = 0;
10206 ret_reg->u32_min_value = 0;
10207 ret_reg->smin_value = 0;
10208 ret_reg->s32_min_value = 0;
10209 reg_bounds_sync(ret_reg);
10210 break;
10211 }
10212
10213 return reg_bounds_sanity_check(env, ret_reg, "retval");
10214 }
10215
10216 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)10217 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10218 int func_id, int insn_idx)
10219 {
10220 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10221 struct bpf_map *map = meta->map_ptr;
10222
10223 if (func_id != BPF_FUNC_tail_call &&
10224 func_id != BPF_FUNC_map_lookup_elem &&
10225 func_id != BPF_FUNC_map_update_elem &&
10226 func_id != BPF_FUNC_map_delete_elem &&
10227 func_id != BPF_FUNC_map_push_elem &&
10228 func_id != BPF_FUNC_map_pop_elem &&
10229 func_id != BPF_FUNC_map_peek_elem &&
10230 func_id != BPF_FUNC_for_each_map_elem &&
10231 func_id != BPF_FUNC_redirect_map &&
10232 func_id != BPF_FUNC_map_lookup_percpu_elem)
10233 return 0;
10234
10235 if (map == NULL) {
10236 verbose(env, "kernel subsystem misconfigured verifier\n");
10237 return -EINVAL;
10238 }
10239
10240 /* In case of read-only, some additional restrictions
10241 * need to be applied in order to prevent altering the
10242 * state of the map from program side.
10243 */
10244 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10245 (func_id == BPF_FUNC_map_delete_elem ||
10246 func_id == BPF_FUNC_map_update_elem ||
10247 func_id == BPF_FUNC_map_push_elem ||
10248 func_id == BPF_FUNC_map_pop_elem)) {
10249 verbose(env, "write into map forbidden\n");
10250 return -EACCES;
10251 }
10252
10253 if (!aux->map_ptr_state.map_ptr)
10254 bpf_map_ptr_store(aux, meta->map_ptr,
10255 !meta->map_ptr->bypass_spec_v1, false);
10256 else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
10257 bpf_map_ptr_store(aux, meta->map_ptr,
10258 !meta->map_ptr->bypass_spec_v1, true);
10259 return 0;
10260 }
10261
10262 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)10263 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10264 int func_id, int insn_idx)
10265 {
10266 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10267 struct bpf_reg_state *regs = cur_regs(env), *reg;
10268 struct bpf_map *map = meta->map_ptr;
10269 u64 val, max;
10270 int err;
10271
10272 if (func_id != BPF_FUNC_tail_call)
10273 return 0;
10274 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
10275 verbose(env, "kernel subsystem misconfigured verifier\n");
10276 return -EINVAL;
10277 }
10278
10279 reg = ®s[BPF_REG_3];
10280 val = reg->var_off.value;
10281 max = map->max_entries;
10282
10283 if (!(is_reg_const(reg, false) && val < max)) {
10284 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10285 return 0;
10286 }
10287
10288 err = mark_chain_precision(env, BPF_REG_3);
10289 if (err)
10290 return err;
10291 if (bpf_map_key_unseen(aux))
10292 bpf_map_key_store(aux, val);
10293 else if (!bpf_map_key_poisoned(aux) &&
10294 bpf_map_key_immediate(aux) != val)
10295 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10296 return 0;
10297 }
10298
check_reference_leak(struct bpf_verifier_env * env,bool exception_exit)10299 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10300 {
10301 struct bpf_func_state *state = cur_func(env);
10302 bool refs_lingering = false;
10303 int i;
10304
10305 if (!exception_exit && state->frameno && !state->in_callback_fn)
10306 return 0;
10307
10308 for (i = 0; i < state->acquired_refs; i++) {
10309 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
10310 continue;
10311 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10312 state->refs[i].id, state->refs[i].insn_idx);
10313 refs_lingering = true;
10314 }
10315 return refs_lingering ? -EINVAL : 0;
10316 }
10317
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)10318 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10319 struct bpf_reg_state *regs)
10320 {
10321 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
10322 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
10323 struct bpf_map *fmt_map = fmt_reg->map_ptr;
10324 struct bpf_bprintf_data data = {};
10325 int err, fmt_map_off, num_args;
10326 u64 fmt_addr;
10327 char *fmt;
10328
10329 /* data must be an array of u64 */
10330 if (data_len_reg->var_off.value % 8)
10331 return -EINVAL;
10332 num_args = data_len_reg->var_off.value / 8;
10333
10334 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10335 * and map_direct_value_addr is set.
10336 */
10337 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10338 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10339 fmt_map_off);
10340 if (err) {
10341 verbose(env, "verifier bug\n");
10342 return -EFAULT;
10343 }
10344 fmt = (char *)(long)fmt_addr + fmt_map_off;
10345
10346 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10347 * can focus on validating the format specifiers.
10348 */
10349 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10350 if (err < 0)
10351 verbose(env, "Invalid format string\n");
10352
10353 return err;
10354 }
10355
check_get_func_ip(struct bpf_verifier_env * env)10356 static int check_get_func_ip(struct bpf_verifier_env *env)
10357 {
10358 enum bpf_prog_type type = resolve_prog_type(env->prog);
10359 int func_id = BPF_FUNC_get_func_ip;
10360
10361 if (type == BPF_PROG_TYPE_TRACING) {
10362 if (!bpf_prog_has_trampoline(env->prog)) {
10363 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10364 func_id_name(func_id), func_id);
10365 return -ENOTSUPP;
10366 }
10367 return 0;
10368 } else if (type == BPF_PROG_TYPE_KPROBE) {
10369 return 0;
10370 }
10371
10372 verbose(env, "func %s#%d not supported for program type %d\n",
10373 func_id_name(func_id), func_id, type);
10374 return -ENOTSUPP;
10375 }
10376
cur_aux(struct bpf_verifier_env * env)10377 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10378 {
10379 return &env->insn_aux_data[env->insn_idx];
10380 }
10381
loop_flag_is_zero(struct bpf_verifier_env * env)10382 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10383 {
10384 struct bpf_reg_state *regs = cur_regs(env);
10385 struct bpf_reg_state *reg = ®s[BPF_REG_4];
10386 bool reg_is_null = register_is_null(reg);
10387
10388 if (reg_is_null)
10389 mark_chain_precision(env, BPF_REG_4);
10390
10391 return reg_is_null;
10392 }
10393
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)10394 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10395 {
10396 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10397
10398 if (!state->initialized) {
10399 state->initialized = 1;
10400 state->fit_for_inline = loop_flag_is_zero(env);
10401 state->callback_subprogno = subprogno;
10402 return;
10403 }
10404
10405 if (!state->fit_for_inline)
10406 return;
10407
10408 state->fit_for_inline = (loop_flag_is_zero(env) &&
10409 state->callback_subprogno == subprogno);
10410 }
10411
get_helper_proto(struct bpf_verifier_env * env,int func_id,const struct bpf_func_proto ** ptr)10412 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
10413 const struct bpf_func_proto **ptr)
10414 {
10415 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
10416 return -ERANGE;
10417
10418 if (!env->ops->get_func_proto)
10419 return -EINVAL;
10420
10421 *ptr = env->ops->get_func_proto(func_id, env->prog);
10422 return *ptr ? 0 : -EINVAL;
10423 }
10424
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)10425 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10426 int *insn_idx_p)
10427 {
10428 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10429 bool returns_cpu_specific_alloc_ptr = false;
10430 const struct bpf_func_proto *fn = NULL;
10431 enum bpf_return_type ret_type;
10432 enum bpf_type_flag ret_flag;
10433 struct bpf_reg_state *regs;
10434 struct bpf_call_arg_meta meta;
10435 int insn_idx = *insn_idx_p;
10436 bool changes_data;
10437 int i, err, func_id;
10438
10439 /* find function prototype */
10440 func_id = insn->imm;
10441 err = get_helper_proto(env, insn->imm, &fn);
10442 if (err == -ERANGE) {
10443 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
10444 return -EINVAL;
10445 }
10446
10447 if (err) {
10448 verbose(env, "program of this type cannot use helper %s#%d\n",
10449 func_id_name(func_id), func_id);
10450 return err;
10451 }
10452
10453 /* eBPF programs must be GPL compatible to use GPL-ed functions */
10454 if (!env->prog->gpl_compatible && fn->gpl_only) {
10455 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10456 return -EINVAL;
10457 }
10458
10459 if (fn->allowed && !fn->allowed(env->prog)) {
10460 verbose(env, "helper call is not allowed in probe\n");
10461 return -EINVAL;
10462 }
10463
10464 if (!in_sleepable(env) && fn->might_sleep) {
10465 verbose(env, "helper call might sleep in a non-sleepable prog\n");
10466 return -EINVAL;
10467 }
10468
10469 /* With LD_ABS/IND some JITs save/restore skb from r1. */
10470 changes_data = bpf_helper_changes_pkt_data(fn->func);
10471 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10472 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10473 func_id_name(func_id), func_id);
10474 return -EINVAL;
10475 }
10476
10477 memset(&meta, 0, sizeof(meta));
10478 meta.pkt_access = fn->pkt_access;
10479
10480 err = check_func_proto(fn, func_id);
10481 if (err) {
10482 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10483 func_id_name(func_id), func_id);
10484 return err;
10485 }
10486
10487 if (env->cur_state->active_rcu_lock) {
10488 if (fn->might_sleep) {
10489 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10490 func_id_name(func_id), func_id);
10491 return -EINVAL;
10492 }
10493
10494 if (in_sleepable(env) && is_storage_get_function(func_id))
10495 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10496 }
10497
10498 if (env->cur_state->active_preempt_lock) {
10499 if (fn->might_sleep) {
10500 verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
10501 func_id_name(func_id), func_id);
10502 return -EINVAL;
10503 }
10504
10505 if (in_sleepable(env) && is_storage_get_function(func_id))
10506 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10507 }
10508
10509 meta.func_id = func_id;
10510 /* check args */
10511 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10512 err = check_func_arg(env, i, &meta, fn, insn_idx);
10513 if (err)
10514 return err;
10515 }
10516
10517 err = record_func_map(env, &meta, func_id, insn_idx);
10518 if (err)
10519 return err;
10520
10521 err = record_func_key(env, &meta, func_id, insn_idx);
10522 if (err)
10523 return err;
10524
10525 /* Mark slots with STACK_MISC in case of raw mode, stack offset
10526 * is inferred from register state.
10527 */
10528 for (i = 0; i < meta.access_size; i++) {
10529 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10530 BPF_WRITE, -1, false, false);
10531 if (err)
10532 return err;
10533 }
10534
10535 regs = cur_regs(env);
10536
10537 if (meta.release_regno) {
10538 err = -EINVAL;
10539 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10540 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10541 * is safe to do directly.
10542 */
10543 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10544 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10545 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10546 return -EFAULT;
10547 }
10548 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
10549 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10550 u32 ref_obj_id = meta.ref_obj_id;
10551 bool in_rcu = in_rcu_cs(env);
10552 struct bpf_func_state *state;
10553 struct bpf_reg_state *reg;
10554
10555 err = release_reference_state(cur_func(env), ref_obj_id);
10556 if (!err) {
10557 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10558 if (reg->ref_obj_id == ref_obj_id) {
10559 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10560 reg->ref_obj_id = 0;
10561 reg->type &= ~MEM_ALLOC;
10562 reg->type |= MEM_RCU;
10563 } else {
10564 mark_reg_invalid(env, reg);
10565 }
10566 }
10567 }));
10568 }
10569 } else if (meta.ref_obj_id) {
10570 err = release_reference(env, meta.ref_obj_id);
10571 } else if (register_is_null(®s[meta.release_regno])) {
10572 /* meta.ref_obj_id can only be 0 if register that is meant to be
10573 * released is NULL, which must be > R0.
10574 */
10575 err = 0;
10576 }
10577 if (err) {
10578 verbose(env, "func %s#%d reference has not been acquired before\n",
10579 func_id_name(func_id), func_id);
10580 return err;
10581 }
10582 }
10583
10584 switch (func_id) {
10585 case BPF_FUNC_tail_call:
10586 err = check_reference_leak(env, false);
10587 if (err) {
10588 verbose(env, "tail_call would lead to reference leak\n");
10589 return err;
10590 }
10591 break;
10592 case BPF_FUNC_get_local_storage:
10593 /* check that flags argument in get_local_storage(map, flags) is 0,
10594 * this is required because get_local_storage() can't return an error.
10595 */
10596 if (!register_is_null(®s[BPF_REG_2])) {
10597 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10598 return -EINVAL;
10599 }
10600 break;
10601 case BPF_FUNC_for_each_map_elem:
10602 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10603 set_map_elem_callback_state);
10604 break;
10605 case BPF_FUNC_timer_set_callback:
10606 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10607 set_timer_callback_state);
10608 break;
10609 case BPF_FUNC_find_vma:
10610 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10611 set_find_vma_callback_state);
10612 break;
10613 case BPF_FUNC_snprintf:
10614 err = check_bpf_snprintf_call(env, regs);
10615 break;
10616 case BPF_FUNC_loop:
10617 update_loop_inline_state(env, meta.subprogno);
10618 /* Verifier relies on R1 value to determine if bpf_loop() iteration
10619 * is finished, thus mark it precise.
10620 */
10621 err = mark_chain_precision(env, BPF_REG_1);
10622 if (err)
10623 return err;
10624 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10625 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10626 set_loop_callback_state);
10627 } else {
10628 cur_func(env)->callback_depth = 0;
10629 if (env->log.level & BPF_LOG_LEVEL2)
10630 verbose(env, "frame%d bpf_loop iteration limit reached\n",
10631 env->cur_state->curframe);
10632 }
10633 break;
10634 case BPF_FUNC_dynptr_from_mem:
10635 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10636 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10637 reg_type_str(env, regs[BPF_REG_1].type));
10638 return -EACCES;
10639 }
10640 break;
10641 case BPF_FUNC_set_retval:
10642 if (prog_type == BPF_PROG_TYPE_LSM &&
10643 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10644 if (!env->prog->aux->attach_func_proto->type) {
10645 /* Make sure programs that attach to void
10646 * hooks don't try to modify return value.
10647 */
10648 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10649 return -EINVAL;
10650 }
10651 }
10652 break;
10653 case BPF_FUNC_dynptr_data:
10654 {
10655 struct bpf_reg_state *reg;
10656 int id, ref_obj_id;
10657
10658 reg = get_dynptr_arg_reg(env, fn, regs);
10659 if (!reg)
10660 return -EFAULT;
10661
10662
10663 if (meta.dynptr_id) {
10664 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10665 return -EFAULT;
10666 }
10667 if (meta.ref_obj_id) {
10668 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10669 return -EFAULT;
10670 }
10671
10672 id = dynptr_id(env, reg);
10673 if (id < 0) {
10674 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10675 return id;
10676 }
10677
10678 ref_obj_id = dynptr_ref_obj_id(env, reg);
10679 if (ref_obj_id < 0) {
10680 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10681 return ref_obj_id;
10682 }
10683
10684 meta.dynptr_id = id;
10685 meta.ref_obj_id = ref_obj_id;
10686
10687 break;
10688 }
10689 case BPF_FUNC_dynptr_write:
10690 {
10691 enum bpf_dynptr_type dynptr_type;
10692 struct bpf_reg_state *reg;
10693
10694 reg = get_dynptr_arg_reg(env, fn, regs);
10695 if (!reg)
10696 return -EFAULT;
10697
10698 dynptr_type = dynptr_get_type(env, reg);
10699 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10700 return -EFAULT;
10701
10702 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10703 /* this will trigger clear_all_pkt_pointers(), which will
10704 * invalidate all dynptr slices associated with the skb
10705 */
10706 changes_data = true;
10707
10708 break;
10709 }
10710 case BPF_FUNC_per_cpu_ptr:
10711 case BPF_FUNC_this_cpu_ptr:
10712 {
10713 struct bpf_reg_state *reg = ®s[BPF_REG_1];
10714 const struct btf_type *type;
10715
10716 if (reg->type & MEM_RCU) {
10717 type = btf_type_by_id(reg->btf, reg->btf_id);
10718 if (!type || !btf_type_is_struct(type)) {
10719 verbose(env, "Helper has invalid btf/btf_id in R1\n");
10720 return -EFAULT;
10721 }
10722 returns_cpu_specific_alloc_ptr = true;
10723 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10724 }
10725 break;
10726 }
10727 case BPF_FUNC_user_ringbuf_drain:
10728 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10729 set_user_ringbuf_callback_state);
10730 break;
10731 }
10732
10733 if (err)
10734 return err;
10735
10736 /* reset caller saved regs */
10737 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10738 mark_reg_not_init(env, regs, caller_saved[i]);
10739 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10740 }
10741
10742 /* helper call returns 64-bit value. */
10743 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10744
10745 /* update return register (already marked as written above) */
10746 ret_type = fn->ret_type;
10747 ret_flag = type_flag(ret_type);
10748
10749 switch (base_type(ret_type)) {
10750 case RET_INTEGER:
10751 /* sets type to SCALAR_VALUE */
10752 mark_reg_unknown(env, regs, BPF_REG_0);
10753 break;
10754 case RET_VOID:
10755 regs[BPF_REG_0].type = NOT_INIT;
10756 break;
10757 case RET_PTR_TO_MAP_VALUE:
10758 /* There is no offset yet applied, variable or fixed */
10759 mark_reg_known_zero(env, regs, BPF_REG_0);
10760 /* remember map_ptr, so that check_map_access()
10761 * can check 'value_size' boundary of memory access
10762 * to map element returned from bpf_map_lookup_elem()
10763 */
10764 if (meta.map_ptr == NULL) {
10765 verbose(env,
10766 "kernel subsystem misconfigured verifier\n");
10767 return -EINVAL;
10768 }
10769 regs[BPF_REG_0].map_ptr = meta.map_ptr;
10770 regs[BPF_REG_0].map_uid = meta.map_uid;
10771 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10772 if (!type_may_be_null(ret_type) &&
10773 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10774 regs[BPF_REG_0].id = ++env->id_gen;
10775 }
10776 break;
10777 case RET_PTR_TO_SOCKET:
10778 mark_reg_known_zero(env, regs, BPF_REG_0);
10779 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10780 break;
10781 case RET_PTR_TO_SOCK_COMMON:
10782 mark_reg_known_zero(env, regs, BPF_REG_0);
10783 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10784 break;
10785 case RET_PTR_TO_TCP_SOCK:
10786 mark_reg_known_zero(env, regs, BPF_REG_0);
10787 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10788 break;
10789 case RET_PTR_TO_MEM:
10790 mark_reg_known_zero(env, regs, BPF_REG_0);
10791 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10792 regs[BPF_REG_0].mem_size = meta.mem_size;
10793 break;
10794 case RET_PTR_TO_MEM_OR_BTF_ID:
10795 {
10796 const struct btf_type *t;
10797
10798 mark_reg_known_zero(env, regs, BPF_REG_0);
10799 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10800 if (!btf_type_is_struct(t)) {
10801 u32 tsize;
10802 const struct btf_type *ret;
10803 const char *tname;
10804
10805 /* resolve the type size of ksym. */
10806 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10807 if (IS_ERR(ret)) {
10808 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10809 verbose(env, "unable to resolve the size of type '%s': %ld\n",
10810 tname, PTR_ERR(ret));
10811 return -EINVAL;
10812 }
10813 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10814 regs[BPF_REG_0].mem_size = tsize;
10815 } else {
10816 if (returns_cpu_specific_alloc_ptr) {
10817 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10818 } else {
10819 /* MEM_RDONLY may be carried from ret_flag, but it
10820 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10821 * it will confuse the check of PTR_TO_BTF_ID in
10822 * check_mem_access().
10823 */
10824 ret_flag &= ~MEM_RDONLY;
10825 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10826 }
10827
10828 regs[BPF_REG_0].btf = meta.ret_btf;
10829 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10830 }
10831 break;
10832 }
10833 case RET_PTR_TO_BTF_ID:
10834 {
10835 struct btf *ret_btf;
10836 int ret_btf_id;
10837
10838 mark_reg_known_zero(env, regs, BPF_REG_0);
10839 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10840 if (func_id == BPF_FUNC_kptr_xchg) {
10841 ret_btf = meta.kptr_field->kptr.btf;
10842 ret_btf_id = meta.kptr_field->kptr.btf_id;
10843 if (!btf_is_kernel(ret_btf)) {
10844 regs[BPF_REG_0].type |= MEM_ALLOC;
10845 if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10846 regs[BPF_REG_0].type |= MEM_PERCPU;
10847 }
10848 } else {
10849 if (fn->ret_btf_id == BPF_PTR_POISON) {
10850 verbose(env, "verifier internal error:");
10851 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10852 func_id_name(func_id));
10853 return -EINVAL;
10854 }
10855 ret_btf = btf_vmlinux;
10856 ret_btf_id = *fn->ret_btf_id;
10857 }
10858 if (ret_btf_id == 0) {
10859 verbose(env, "invalid return type %u of func %s#%d\n",
10860 base_type(ret_type), func_id_name(func_id),
10861 func_id);
10862 return -EINVAL;
10863 }
10864 regs[BPF_REG_0].btf = ret_btf;
10865 regs[BPF_REG_0].btf_id = ret_btf_id;
10866 break;
10867 }
10868 default:
10869 verbose(env, "unknown return type %u of func %s#%d\n",
10870 base_type(ret_type), func_id_name(func_id), func_id);
10871 return -EINVAL;
10872 }
10873
10874 if (type_may_be_null(regs[BPF_REG_0].type))
10875 regs[BPF_REG_0].id = ++env->id_gen;
10876
10877 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10878 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10879 func_id_name(func_id), func_id);
10880 return -EFAULT;
10881 }
10882
10883 if (is_dynptr_ref_function(func_id))
10884 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10885
10886 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10887 /* For release_reference() */
10888 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10889 } else if (is_acquire_function(func_id, meta.map_ptr)) {
10890 int id = acquire_reference_state(env, insn_idx);
10891
10892 if (id < 0)
10893 return id;
10894 /* For mark_ptr_or_null_reg() */
10895 regs[BPF_REG_0].id = id;
10896 /* For release_reference() */
10897 regs[BPF_REG_0].ref_obj_id = id;
10898 }
10899
10900 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10901 if (err)
10902 return err;
10903
10904 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10905 if (err)
10906 return err;
10907
10908 if ((func_id == BPF_FUNC_get_stack ||
10909 func_id == BPF_FUNC_get_task_stack) &&
10910 !env->prog->has_callchain_buf) {
10911 const char *err_str;
10912
10913 #ifdef CONFIG_PERF_EVENTS
10914 err = get_callchain_buffers(sysctl_perf_event_max_stack);
10915 err_str = "cannot get callchain buffer for func %s#%d\n";
10916 #else
10917 err = -ENOTSUPP;
10918 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10919 #endif
10920 if (err) {
10921 verbose(env, err_str, func_id_name(func_id), func_id);
10922 return err;
10923 }
10924
10925 env->prog->has_callchain_buf = true;
10926 }
10927
10928 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10929 env->prog->call_get_stack = true;
10930
10931 if (func_id == BPF_FUNC_get_func_ip) {
10932 if (check_get_func_ip(env))
10933 return -ENOTSUPP;
10934 env->prog->call_get_func_ip = true;
10935 }
10936
10937 if (changes_data)
10938 clear_all_pkt_pointers(env);
10939 return 0;
10940 }
10941
10942 /* mark_btf_func_reg_size() is used when the reg size is determined by
10943 * the BTF func_proto's return value size and argument.
10944 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)10945 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10946 size_t reg_size)
10947 {
10948 struct bpf_reg_state *reg = &cur_regs(env)[regno];
10949
10950 if (regno == BPF_REG_0) {
10951 /* Function return value */
10952 reg->live |= REG_LIVE_WRITTEN;
10953 reg->subreg_def = reg_size == sizeof(u64) ?
10954 DEF_NOT_SUBREG : env->insn_idx + 1;
10955 } else {
10956 /* Function argument */
10957 if (reg_size == sizeof(u64)) {
10958 mark_insn_zext(env, reg);
10959 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10960 } else {
10961 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10962 }
10963 }
10964 }
10965
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)10966 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10967 {
10968 return meta->kfunc_flags & KF_ACQUIRE;
10969 }
10970
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)10971 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10972 {
10973 return meta->kfunc_flags & KF_RELEASE;
10974 }
10975
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)10976 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10977 {
10978 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10979 }
10980
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)10981 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10982 {
10983 return meta->kfunc_flags & KF_SLEEPABLE;
10984 }
10985
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)10986 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10987 {
10988 return meta->kfunc_flags & KF_DESTRUCTIVE;
10989 }
10990
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)10991 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10992 {
10993 return meta->kfunc_flags & KF_RCU;
10994 }
10995
is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta * meta)10996 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10997 {
10998 return meta->kfunc_flags & KF_RCU_PROTECTED;
10999 }
11000
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)11001 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11002 const struct btf_param *arg,
11003 const struct bpf_reg_state *reg)
11004 {
11005 const struct btf_type *t;
11006
11007 t = btf_type_skip_modifiers(btf, arg->type, NULL);
11008 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11009 return false;
11010
11011 return btf_param_match_suffix(btf, arg, "__sz");
11012 }
11013
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)11014 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11015 const struct btf_param *arg,
11016 const struct bpf_reg_state *reg)
11017 {
11018 const struct btf_type *t;
11019
11020 t = btf_type_skip_modifiers(btf, arg->type, NULL);
11021 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11022 return false;
11023
11024 return btf_param_match_suffix(btf, arg, "__szk");
11025 }
11026
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)11027 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11028 {
11029 return btf_param_match_suffix(btf, arg, "__opt");
11030 }
11031
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)11032 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11033 {
11034 return btf_param_match_suffix(btf, arg, "__k");
11035 }
11036
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)11037 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
11038 {
11039 return btf_param_match_suffix(btf, arg, "__ign");
11040 }
11041
is_kfunc_arg_map(const struct btf * btf,const struct btf_param * arg)11042 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
11043 {
11044 return btf_param_match_suffix(btf, arg, "__map");
11045 }
11046
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)11047 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
11048 {
11049 return btf_param_match_suffix(btf, arg, "__alloc");
11050 }
11051
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)11052 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
11053 {
11054 return btf_param_match_suffix(btf, arg, "__uninit");
11055 }
11056
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)11057 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
11058 {
11059 return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
11060 }
11061
is_kfunc_arg_nullable(const struct btf * btf,const struct btf_param * arg)11062 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
11063 {
11064 return btf_param_match_suffix(btf, arg, "__nullable");
11065 }
11066
is_kfunc_arg_const_str(const struct btf * btf,const struct btf_param * arg)11067 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
11068 {
11069 return btf_param_match_suffix(btf, arg, "__str");
11070 }
11071
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)11072 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
11073 const struct btf_param *arg,
11074 const char *name)
11075 {
11076 int len, target_len = strlen(name);
11077 const char *param_name;
11078
11079 param_name = btf_name_by_offset(btf, arg->name_off);
11080 if (str_is_empty(param_name))
11081 return false;
11082 len = strlen(param_name);
11083 if (len != target_len)
11084 return false;
11085 if (strcmp(param_name, name))
11086 return false;
11087
11088 return true;
11089 }
11090
11091 enum {
11092 KF_ARG_DYNPTR_ID,
11093 KF_ARG_LIST_HEAD_ID,
11094 KF_ARG_LIST_NODE_ID,
11095 KF_ARG_RB_ROOT_ID,
11096 KF_ARG_RB_NODE_ID,
11097 KF_ARG_WORKQUEUE_ID,
11098 };
11099
11100 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr)11101 BTF_ID(struct, bpf_dynptr)
11102 BTF_ID(struct, bpf_list_head)
11103 BTF_ID(struct, bpf_list_node)
11104 BTF_ID(struct, bpf_rb_root)
11105 BTF_ID(struct, bpf_rb_node)
11106 BTF_ID(struct, bpf_wq)
11107
11108 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
11109 const struct btf_param *arg, int type)
11110 {
11111 const struct btf_type *t;
11112 u32 res_id;
11113
11114 t = btf_type_skip_modifiers(btf, arg->type, NULL);
11115 if (!t)
11116 return false;
11117 if (!btf_type_is_ptr(t))
11118 return false;
11119 t = btf_type_skip_modifiers(btf, t->type, &res_id);
11120 if (!t)
11121 return false;
11122 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
11123 }
11124
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)11125 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
11126 {
11127 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
11128 }
11129
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)11130 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
11131 {
11132 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
11133 }
11134
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)11135 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
11136 {
11137 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
11138 }
11139
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)11140 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
11141 {
11142 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
11143 }
11144
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)11145 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
11146 {
11147 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
11148 }
11149
is_kfunc_arg_wq(const struct btf * btf,const struct btf_param * arg)11150 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
11151 {
11152 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
11153 }
11154
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)11155 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
11156 const struct btf_param *arg)
11157 {
11158 const struct btf_type *t;
11159
11160 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
11161 if (!t)
11162 return false;
11163
11164 return true;
11165 }
11166
11167 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)11168 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
11169 const struct btf *btf,
11170 const struct btf_type *t, int rec)
11171 {
11172 const struct btf_type *member_type;
11173 const struct btf_member *member;
11174 u32 i;
11175
11176 if (!btf_type_is_struct(t))
11177 return false;
11178
11179 for_each_member(i, t, member) {
11180 const struct btf_array *array;
11181
11182 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
11183 if (btf_type_is_struct(member_type)) {
11184 if (rec >= 3) {
11185 verbose(env, "max struct nesting depth exceeded\n");
11186 return false;
11187 }
11188 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
11189 return false;
11190 continue;
11191 }
11192 if (btf_type_is_array(member_type)) {
11193 array = btf_array(member_type);
11194 if (!array->nelems)
11195 return false;
11196 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
11197 if (!btf_type_is_scalar(member_type))
11198 return false;
11199 continue;
11200 }
11201 if (!btf_type_is_scalar(member_type))
11202 return false;
11203 }
11204 return true;
11205 }
11206
11207 enum kfunc_ptr_arg_type {
11208 KF_ARG_PTR_TO_CTX,
11209 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
11210 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
11211 KF_ARG_PTR_TO_DYNPTR,
11212 KF_ARG_PTR_TO_ITER,
11213 KF_ARG_PTR_TO_LIST_HEAD,
11214 KF_ARG_PTR_TO_LIST_NODE,
11215 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
11216 KF_ARG_PTR_TO_MEM,
11217 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
11218 KF_ARG_PTR_TO_CALLBACK,
11219 KF_ARG_PTR_TO_RB_ROOT,
11220 KF_ARG_PTR_TO_RB_NODE,
11221 KF_ARG_PTR_TO_NULL,
11222 KF_ARG_PTR_TO_CONST_STR,
11223 KF_ARG_PTR_TO_MAP,
11224 KF_ARG_PTR_TO_WORKQUEUE,
11225 };
11226
11227 enum special_kfunc_type {
11228 KF_bpf_obj_new_impl,
11229 KF_bpf_obj_drop_impl,
11230 KF_bpf_refcount_acquire_impl,
11231 KF_bpf_list_push_front_impl,
11232 KF_bpf_list_push_back_impl,
11233 KF_bpf_list_pop_front,
11234 KF_bpf_list_pop_back,
11235 KF_bpf_cast_to_kern_ctx,
11236 KF_bpf_rdonly_cast,
11237 KF_bpf_rcu_read_lock,
11238 KF_bpf_rcu_read_unlock,
11239 KF_bpf_rbtree_remove,
11240 KF_bpf_rbtree_add_impl,
11241 KF_bpf_rbtree_first,
11242 KF_bpf_dynptr_from_skb,
11243 KF_bpf_dynptr_from_xdp,
11244 KF_bpf_dynptr_slice,
11245 KF_bpf_dynptr_slice_rdwr,
11246 KF_bpf_dynptr_clone,
11247 KF_bpf_percpu_obj_new_impl,
11248 KF_bpf_percpu_obj_drop_impl,
11249 KF_bpf_throw,
11250 KF_bpf_wq_set_callback_impl,
11251 KF_bpf_preempt_disable,
11252 KF_bpf_preempt_enable,
11253 KF_bpf_iter_css_task_new,
11254 KF_bpf_session_cookie,
11255 };
11256
11257 BTF_SET_START(special_kfunc_set)
BTF_ID(func,bpf_obj_new_impl)11258 BTF_ID(func, bpf_obj_new_impl)
11259 BTF_ID(func, bpf_obj_drop_impl)
11260 BTF_ID(func, bpf_refcount_acquire_impl)
11261 BTF_ID(func, bpf_list_push_front_impl)
11262 BTF_ID(func, bpf_list_push_back_impl)
11263 BTF_ID(func, bpf_list_pop_front)
11264 BTF_ID(func, bpf_list_pop_back)
11265 BTF_ID(func, bpf_cast_to_kern_ctx)
11266 BTF_ID(func, bpf_rdonly_cast)
11267 BTF_ID(func, bpf_rbtree_remove)
11268 BTF_ID(func, bpf_rbtree_add_impl)
11269 BTF_ID(func, bpf_rbtree_first)
11270 BTF_ID(func, bpf_dynptr_from_skb)
11271 BTF_ID(func, bpf_dynptr_from_xdp)
11272 BTF_ID(func, bpf_dynptr_slice)
11273 BTF_ID(func, bpf_dynptr_slice_rdwr)
11274 BTF_ID(func, bpf_dynptr_clone)
11275 BTF_ID(func, bpf_percpu_obj_new_impl)
11276 BTF_ID(func, bpf_percpu_obj_drop_impl)
11277 BTF_ID(func, bpf_throw)
11278 BTF_ID(func, bpf_wq_set_callback_impl)
11279 #ifdef CONFIG_CGROUPS
11280 BTF_ID(func, bpf_iter_css_task_new)
11281 #endif
11282 BTF_SET_END(special_kfunc_set)
11283
11284 BTF_ID_LIST(special_kfunc_list)
11285 BTF_ID(func, bpf_obj_new_impl)
11286 BTF_ID(func, bpf_obj_drop_impl)
11287 BTF_ID(func, bpf_refcount_acquire_impl)
11288 BTF_ID(func, bpf_list_push_front_impl)
11289 BTF_ID(func, bpf_list_push_back_impl)
11290 BTF_ID(func, bpf_list_pop_front)
11291 BTF_ID(func, bpf_list_pop_back)
11292 BTF_ID(func, bpf_cast_to_kern_ctx)
11293 BTF_ID(func, bpf_rdonly_cast)
11294 BTF_ID(func, bpf_rcu_read_lock)
11295 BTF_ID(func, bpf_rcu_read_unlock)
11296 BTF_ID(func, bpf_rbtree_remove)
11297 BTF_ID(func, bpf_rbtree_add_impl)
11298 BTF_ID(func, bpf_rbtree_first)
11299 BTF_ID(func, bpf_dynptr_from_skb)
11300 BTF_ID(func, bpf_dynptr_from_xdp)
11301 BTF_ID(func, bpf_dynptr_slice)
11302 BTF_ID(func, bpf_dynptr_slice_rdwr)
11303 BTF_ID(func, bpf_dynptr_clone)
11304 BTF_ID(func, bpf_percpu_obj_new_impl)
11305 BTF_ID(func, bpf_percpu_obj_drop_impl)
11306 BTF_ID(func, bpf_throw)
11307 BTF_ID(func, bpf_wq_set_callback_impl)
11308 BTF_ID(func, bpf_preempt_disable)
11309 BTF_ID(func, bpf_preempt_enable)
11310 #ifdef CONFIG_CGROUPS
11311 BTF_ID(func, bpf_iter_css_task_new)
11312 #else
11313 BTF_ID_UNUSED
11314 #endif
11315 #ifdef CONFIG_BPF_EVENTS
11316 BTF_ID(func, bpf_session_cookie)
11317 #else
11318 BTF_ID_UNUSED
11319 #endif
11320
11321 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11322 {
11323 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11324 meta->arg_owning_ref) {
11325 return false;
11326 }
11327
11328 return meta->kfunc_flags & KF_RET_NULL;
11329 }
11330
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)11331 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11332 {
11333 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11334 }
11335
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)11336 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11337 {
11338 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11339 }
11340
is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta * meta)11341 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
11342 {
11343 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
11344 }
11345
is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta * meta)11346 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
11347 {
11348 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
11349 }
11350
11351 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)11352 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11353 struct bpf_kfunc_call_arg_meta *meta,
11354 const struct btf_type *t, const struct btf_type *ref_t,
11355 const char *ref_tname, const struct btf_param *args,
11356 int argno, int nargs)
11357 {
11358 u32 regno = argno + 1;
11359 struct bpf_reg_state *regs = cur_regs(env);
11360 struct bpf_reg_state *reg = ®s[regno];
11361 bool arg_mem_size = false;
11362
11363 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11364 return KF_ARG_PTR_TO_CTX;
11365
11366 /* In this function, we verify the kfunc's BTF as per the argument type,
11367 * leaving the rest of the verification with respect to the register
11368 * type to our caller. When a set of conditions hold in the BTF type of
11369 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11370 */
11371 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11372 return KF_ARG_PTR_TO_CTX;
11373
11374 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11375 return KF_ARG_PTR_TO_NULL;
11376
11377 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11378 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11379
11380 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11381 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11382
11383 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11384 return KF_ARG_PTR_TO_DYNPTR;
11385
11386 if (is_kfunc_arg_iter(meta, argno, &args[argno]))
11387 return KF_ARG_PTR_TO_ITER;
11388
11389 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11390 return KF_ARG_PTR_TO_LIST_HEAD;
11391
11392 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11393 return KF_ARG_PTR_TO_LIST_NODE;
11394
11395 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11396 return KF_ARG_PTR_TO_RB_ROOT;
11397
11398 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11399 return KF_ARG_PTR_TO_RB_NODE;
11400
11401 if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11402 return KF_ARG_PTR_TO_CONST_STR;
11403
11404 if (is_kfunc_arg_map(meta->btf, &args[argno]))
11405 return KF_ARG_PTR_TO_MAP;
11406
11407 if (is_kfunc_arg_wq(meta->btf, &args[argno]))
11408 return KF_ARG_PTR_TO_WORKQUEUE;
11409
11410 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11411 if (!btf_type_is_struct(ref_t)) {
11412 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11413 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11414 return -EINVAL;
11415 }
11416 return KF_ARG_PTR_TO_BTF_ID;
11417 }
11418
11419 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11420 return KF_ARG_PTR_TO_CALLBACK;
11421
11422 if (argno + 1 < nargs &&
11423 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
11424 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
11425 arg_mem_size = true;
11426
11427 /* This is the catch all argument type of register types supported by
11428 * check_helper_mem_access. However, we only allow when argument type is
11429 * pointer to scalar, or struct composed (recursively) of scalars. When
11430 * arg_mem_size is true, the pointer can be void *.
11431 */
11432 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11433 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11434 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11435 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11436 return -EINVAL;
11437 }
11438 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11439 }
11440
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)11441 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11442 struct bpf_reg_state *reg,
11443 const struct btf_type *ref_t,
11444 const char *ref_tname, u32 ref_id,
11445 struct bpf_kfunc_call_arg_meta *meta,
11446 int argno)
11447 {
11448 const struct btf_type *reg_ref_t;
11449 bool strict_type_match = false;
11450 const struct btf *reg_btf;
11451 const char *reg_ref_tname;
11452 bool taking_projection;
11453 bool struct_same;
11454 u32 reg_ref_id;
11455
11456 if (base_type(reg->type) == PTR_TO_BTF_ID) {
11457 reg_btf = reg->btf;
11458 reg_ref_id = reg->btf_id;
11459 } else {
11460 reg_btf = btf_vmlinux;
11461 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11462 }
11463
11464 /* Enforce strict type matching for calls to kfuncs that are acquiring
11465 * or releasing a reference, or are no-cast aliases. We do _not_
11466 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11467 * as we want to enable BPF programs to pass types that are bitwise
11468 * equivalent without forcing them to explicitly cast with something
11469 * like bpf_cast_to_kern_ctx().
11470 *
11471 * For example, say we had a type like the following:
11472 *
11473 * struct bpf_cpumask {
11474 * cpumask_t cpumask;
11475 * refcount_t usage;
11476 * };
11477 *
11478 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11479 * to a struct cpumask, so it would be safe to pass a struct
11480 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11481 *
11482 * The philosophy here is similar to how we allow scalars of different
11483 * types to be passed to kfuncs as long as the size is the same. The
11484 * only difference here is that we're simply allowing
11485 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11486 * resolve types.
11487 */
11488 if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
11489 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11490 strict_type_match = true;
11491
11492 WARN_ON_ONCE(is_kfunc_release(meta) &&
11493 (reg->off || !tnum_is_const(reg->var_off) ||
11494 reg->var_off.value));
11495
11496 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
11497 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11498 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
11499 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
11500 * actually use it -- it must cast to the underlying type. So we allow
11501 * caller to pass in the underlying type.
11502 */
11503 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
11504 if (!taking_projection && !struct_same) {
11505 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11506 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11507 btf_type_str(reg_ref_t), reg_ref_tname);
11508 return -EINVAL;
11509 }
11510 return 0;
11511 }
11512
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)11513 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11514 {
11515 struct bpf_verifier_state *state = env->cur_state;
11516 struct btf_record *rec = reg_btf_record(reg);
11517
11518 if (!state->active_lock.ptr) {
11519 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11520 return -EFAULT;
11521 }
11522
11523 if (type_flag(reg->type) & NON_OWN_REF) {
11524 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11525 return -EFAULT;
11526 }
11527
11528 reg->type |= NON_OWN_REF;
11529 if (rec->refcount_off >= 0)
11530 reg->type |= MEM_RCU;
11531
11532 return 0;
11533 }
11534
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)11535 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11536 {
11537 struct bpf_func_state *state, *unused;
11538 struct bpf_reg_state *reg;
11539 int i;
11540
11541 state = cur_func(env);
11542
11543 if (!ref_obj_id) {
11544 verbose(env, "verifier internal error: ref_obj_id is zero for "
11545 "owning -> non-owning conversion\n");
11546 return -EFAULT;
11547 }
11548
11549 for (i = 0; i < state->acquired_refs; i++) {
11550 if (state->refs[i].id != ref_obj_id)
11551 continue;
11552
11553 /* Clear ref_obj_id here so release_reference doesn't clobber
11554 * the whole reg
11555 */
11556 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11557 if (reg->ref_obj_id == ref_obj_id) {
11558 reg->ref_obj_id = 0;
11559 ref_set_non_owning(env, reg);
11560 }
11561 }));
11562 return 0;
11563 }
11564
11565 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11566 return -EFAULT;
11567 }
11568
11569 /* Implementation details:
11570 *
11571 * Each register points to some region of memory, which we define as an
11572 * allocation. Each allocation may embed a bpf_spin_lock which protects any
11573 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11574 * allocation. The lock and the data it protects are colocated in the same
11575 * memory region.
11576 *
11577 * Hence, everytime a register holds a pointer value pointing to such
11578 * allocation, the verifier preserves a unique reg->id for it.
11579 *
11580 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11581 * bpf_spin_lock is called.
11582 *
11583 * To enable this, lock state in the verifier captures two values:
11584 * active_lock.ptr = Register's type specific pointer
11585 * active_lock.id = A unique ID for each register pointer value
11586 *
11587 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11588 * supported register types.
11589 *
11590 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11591 * allocated objects is the reg->btf pointer.
11592 *
11593 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11594 * can establish the provenance of the map value statically for each distinct
11595 * lookup into such maps. They always contain a single map value hence unique
11596 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11597 *
11598 * So, in case of global variables, they use array maps with max_entries = 1,
11599 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11600 * into the same map value as max_entries is 1, as described above).
11601 *
11602 * In case of inner map lookups, the inner map pointer has same map_ptr as the
11603 * outer map pointer (in verifier context), but each lookup into an inner map
11604 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11605 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11606 * will get different reg->id assigned to each lookup, hence different
11607 * active_lock.id.
11608 *
11609 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11610 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11611 * returned from bpf_obj_new. Each allocation receives a new reg->id.
11612 */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)11613 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11614 {
11615 void *ptr;
11616 u32 id;
11617
11618 switch ((int)reg->type) {
11619 case PTR_TO_MAP_VALUE:
11620 ptr = reg->map_ptr;
11621 break;
11622 case PTR_TO_BTF_ID | MEM_ALLOC:
11623 ptr = reg->btf;
11624 break;
11625 default:
11626 verbose(env, "verifier internal error: unknown reg type for lock check\n");
11627 return -EFAULT;
11628 }
11629 id = reg->id;
11630
11631 if (!env->cur_state->active_lock.ptr)
11632 return -EINVAL;
11633 if (env->cur_state->active_lock.ptr != ptr ||
11634 env->cur_state->active_lock.id != id) {
11635 verbose(env, "held lock and object are not in the same allocation\n");
11636 return -EINVAL;
11637 }
11638 return 0;
11639 }
11640
is_bpf_list_api_kfunc(u32 btf_id)11641 static bool is_bpf_list_api_kfunc(u32 btf_id)
11642 {
11643 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11644 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11645 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11646 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11647 }
11648
is_bpf_rbtree_api_kfunc(u32 btf_id)11649 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11650 {
11651 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11652 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11653 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11654 }
11655
is_bpf_graph_api_kfunc(u32 btf_id)11656 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11657 {
11658 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11659 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11660 }
11661
is_sync_callback_calling_kfunc(u32 btf_id)11662 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11663 {
11664 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11665 }
11666
is_async_callback_calling_kfunc(u32 btf_id)11667 static bool is_async_callback_calling_kfunc(u32 btf_id)
11668 {
11669 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11670 }
11671
is_bpf_throw_kfunc(struct bpf_insn * insn)11672 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11673 {
11674 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11675 insn->imm == special_kfunc_list[KF_bpf_throw];
11676 }
11677
is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)11678 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
11679 {
11680 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11681 }
11682
is_callback_calling_kfunc(u32 btf_id)11683 static bool is_callback_calling_kfunc(u32 btf_id)
11684 {
11685 return is_sync_callback_calling_kfunc(btf_id) ||
11686 is_async_callback_calling_kfunc(btf_id);
11687 }
11688
is_rbtree_lock_required_kfunc(u32 btf_id)11689 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11690 {
11691 return is_bpf_rbtree_api_kfunc(btf_id);
11692 }
11693
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)11694 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11695 enum btf_field_type head_field_type,
11696 u32 kfunc_btf_id)
11697 {
11698 bool ret;
11699
11700 switch (head_field_type) {
11701 case BPF_LIST_HEAD:
11702 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11703 break;
11704 case BPF_RB_ROOT:
11705 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11706 break;
11707 default:
11708 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11709 btf_field_type_name(head_field_type));
11710 return false;
11711 }
11712
11713 if (!ret)
11714 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11715 btf_field_type_name(head_field_type));
11716 return ret;
11717 }
11718
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)11719 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11720 enum btf_field_type node_field_type,
11721 u32 kfunc_btf_id)
11722 {
11723 bool ret;
11724
11725 switch (node_field_type) {
11726 case BPF_LIST_NODE:
11727 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11728 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11729 break;
11730 case BPF_RB_NODE:
11731 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11732 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11733 break;
11734 default:
11735 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11736 btf_field_type_name(node_field_type));
11737 return false;
11738 }
11739
11740 if (!ret)
11741 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11742 btf_field_type_name(node_field_type));
11743 return ret;
11744 }
11745
11746 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)11747 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11748 struct bpf_reg_state *reg, u32 regno,
11749 struct bpf_kfunc_call_arg_meta *meta,
11750 enum btf_field_type head_field_type,
11751 struct btf_field **head_field)
11752 {
11753 const char *head_type_name;
11754 struct btf_field *field;
11755 struct btf_record *rec;
11756 u32 head_off;
11757
11758 if (meta->btf != btf_vmlinux) {
11759 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11760 return -EFAULT;
11761 }
11762
11763 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11764 return -EFAULT;
11765
11766 head_type_name = btf_field_type_name(head_field_type);
11767 if (!tnum_is_const(reg->var_off)) {
11768 verbose(env,
11769 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11770 regno, head_type_name);
11771 return -EINVAL;
11772 }
11773
11774 rec = reg_btf_record(reg);
11775 head_off = reg->off + reg->var_off.value;
11776 field = btf_record_find(rec, head_off, head_field_type);
11777 if (!field) {
11778 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11779 return -EINVAL;
11780 }
11781
11782 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11783 if (check_reg_allocation_locked(env, reg)) {
11784 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11785 rec->spin_lock_off, head_type_name);
11786 return -EINVAL;
11787 }
11788
11789 if (*head_field) {
11790 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11791 return -EFAULT;
11792 }
11793 *head_field = field;
11794 return 0;
11795 }
11796
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11797 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11798 struct bpf_reg_state *reg, u32 regno,
11799 struct bpf_kfunc_call_arg_meta *meta)
11800 {
11801 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11802 &meta->arg_list_head.field);
11803 }
11804
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11805 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11806 struct bpf_reg_state *reg, u32 regno,
11807 struct bpf_kfunc_call_arg_meta *meta)
11808 {
11809 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11810 &meta->arg_rbtree_root.field);
11811 }
11812
11813 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)11814 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11815 struct bpf_reg_state *reg, u32 regno,
11816 struct bpf_kfunc_call_arg_meta *meta,
11817 enum btf_field_type head_field_type,
11818 enum btf_field_type node_field_type,
11819 struct btf_field **node_field)
11820 {
11821 const char *node_type_name;
11822 const struct btf_type *et, *t;
11823 struct btf_field *field;
11824 u32 node_off;
11825
11826 if (meta->btf != btf_vmlinux) {
11827 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11828 return -EFAULT;
11829 }
11830
11831 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11832 return -EFAULT;
11833
11834 node_type_name = btf_field_type_name(node_field_type);
11835 if (!tnum_is_const(reg->var_off)) {
11836 verbose(env,
11837 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11838 regno, node_type_name);
11839 return -EINVAL;
11840 }
11841
11842 node_off = reg->off + reg->var_off.value;
11843 field = reg_find_field_offset(reg, node_off, node_field_type);
11844 if (!field) {
11845 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11846 return -EINVAL;
11847 }
11848
11849 field = *node_field;
11850
11851 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11852 t = btf_type_by_id(reg->btf, reg->btf_id);
11853 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11854 field->graph_root.value_btf_id, true)) {
11855 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11856 "in struct %s, but arg is at offset=%d in struct %s\n",
11857 btf_field_type_name(head_field_type),
11858 btf_field_type_name(node_field_type),
11859 field->graph_root.node_offset,
11860 btf_name_by_offset(field->graph_root.btf, et->name_off),
11861 node_off, btf_name_by_offset(reg->btf, t->name_off));
11862 return -EINVAL;
11863 }
11864 meta->arg_btf = reg->btf;
11865 meta->arg_btf_id = reg->btf_id;
11866
11867 if (node_off != field->graph_root.node_offset) {
11868 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11869 node_off, btf_field_type_name(node_field_type),
11870 field->graph_root.node_offset,
11871 btf_name_by_offset(field->graph_root.btf, et->name_off));
11872 return -EINVAL;
11873 }
11874
11875 return 0;
11876 }
11877
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11878 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11879 struct bpf_reg_state *reg, u32 regno,
11880 struct bpf_kfunc_call_arg_meta *meta)
11881 {
11882 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11883 BPF_LIST_HEAD, BPF_LIST_NODE,
11884 &meta->arg_list_head.field);
11885 }
11886
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11887 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11888 struct bpf_reg_state *reg, u32 regno,
11889 struct bpf_kfunc_call_arg_meta *meta)
11890 {
11891 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11892 BPF_RB_ROOT, BPF_RB_NODE,
11893 &meta->arg_rbtree_root.field);
11894 }
11895
11896 /*
11897 * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11898 * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11899 * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11900 * them can only be attached to some specific hook points.
11901 */
check_css_task_iter_allowlist(struct bpf_verifier_env * env)11902 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11903 {
11904 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11905
11906 switch (prog_type) {
11907 case BPF_PROG_TYPE_LSM:
11908 return true;
11909 case BPF_PROG_TYPE_TRACING:
11910 if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11911 return true;
11912 fallthrough;
11913 default:
11914 return in_sleepable(env);
11915 }
11916 }
11917
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)11918 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11919 int insn_idx)
11920 {
11921 const char *func_name = meta->func_name, *ref_tname;
11922 const struct btf *btf = meta->btf;
11923 const struct btf_param *args;
11924 struct btf_record *rec;
11925 u32 i, nargs;
11926 int ret;
11927
11928 args = (const struct btf_param *)(meta->func_proto + 1);
11929 nargs = btf_type_vlen(meta->func_proto);
11930 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11931 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11932 MAX_BPF_FUNC_REG_ARGS);
11933 return -EINVAL;
11934 }
11935
11936 /* Check that BTF function arguments match actual types that the
11937 * verifier sees.
11938 */
11939 for (i = 0; i < nargs; i++) {
11940 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
11941 const struct btf_type *t, *ref_t, *resolve_ret;
11942 enum bpf_arg_type arg_type = ARG_DONTCARE;
11943 u32 regno = i + 1, ref_id, type_size;
11944 bool is_ret_buf_sz = false;
11945 int kf_arg_type;
11946
11947 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11948
11949 if (is_kfunc_arg_ignore(btf, &args[i]))
11950 continue;
11951
11952 if (btf_type_is_scalar(t)) {
11953 if (reg->type != SCALAR_VALUE) {
11954 verbose(env, "R%d is not a scalar\n", regno);
11955 return -EINVAL;
11956 }
11957
11958 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11959 if (meta->arg_constant.found) {
11960 verbose(env, "verifier internal error: only one constant argument permitted\n");
11961 return -EFAULT;
11962 }
11963 if (!tnum_is_const(reg->var_off)) {
11964 verbose(env, "R%d must be a known constant\n", regno);
11965 return -EINVAL;
11966 }
11967 ret = mark_chain_precision(env, regno);
11968 if (ret < 0)
11969 return ret;
11970 meta->arg_constant.found = true;
11971 meta->arg_constant.value = reg->var_off.value;
11972 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11973 meta->r0_rdonly = true;
11974 is_ret_buf_sz = true;
11975 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11976 is_ret_buf_sz = true;
11977 }
11978
11979 if (is_ret_buf_sz) {
11980 if (meta->r0_size) {
11981 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11982 return -EINVAL;
11983 }
11984
11985 if (!tnum_is_const(reg->var_off)) {
11986 verbose(env, "R%d is not a const\n", regno);
11987 return -EINVAL;
11988 }
11989
11990 meta->r0_size = reg->var_off.value;
11991 ret = mark_chain_precision(env, regno);
11992 if (ret)
11993 return ret;
11994 }
11995 continue;
11996 }
11997
11998 if (!btf_type_is_ptr(t)) {
11999 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
12000 return -EINVAL;
12001 }
12002
12003 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
12004 (register_is_null(reg) || type_may_be_null(reg->type)) &&
12005 !is_kfunc_arg_nullable(meta->btf, &args[i])) {
12006 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
12007 return -EACCES;
12008 }
12009
12010 if (reg->ref_obj_id) {
12011 if (is_kfunc_release(meta) && meta->ref_obj_id) {
12012 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
12013 regno, reg->ref_obj_id,
12014 meta->ref_obj_id);
12015 return -EFAULT;
12016 }
12017 meta->ref_obj_id = reg->ref_obj_id;
12018 if (is_kfunc_release(meta))
12019 meta->release_regno = regno;
12020 }
12021
12022 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
12023 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12024
12025 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
12026 if (kf_arg_type < 0)
12027 return kf_arg_type;
12028
12029 switch (kf_arg_type) {
12030 case KF_ARG_PTR_TO_NULL:
12031 continue;
12032 case KF_ARG_PTR_TO_MAP:
12033 if (!reg->map_ptr) {
12034 verbose(env, "pointer in R%d isn't map pointer\n", regno);
12035 return -EINVAL;
12036 }
12037 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
12038 /* Use map_uid (which is unique id of inner map) to reject:
12039 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
12040 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
12041 * if (inner_map1 && inner_map2) {
12042 * wq = bpf_map_lookup_elem(inner_map1);
12043 * if (wq)
12044 * // mismatch would have been allowed
12045 * bpf_wq_init(wq, inner_map2);
12046 * }
12047 *
12048 * Comparing map_ptr is enough to distinguish normal and outer maps.
12049 */
12050 if (meta->map.ptr != reg->map_ptr ||
12051 meta->map.uid != reg->map_uid) {
12052 verbose(env,
12053 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
12054 meta->map.uid, reg->map_uid);
12055 return -EINVAL;
12056 }
12057 }
12058 meta->map.ptr = reg->map_ptr;
12059 meta->map.uid = reg->map_uid;
12060 fallthrough;
12061 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12062 case KF_ARG_PTR_TO_BTF_ID:
12063 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
12064 break;
12065
12066 if (!is_trusted_reg(reg)) {
12067 if (!is_kfunc_rcu(meta)) {
12068 verbose(env, "R%d must be referenced or trusted\n", regno);
12069 return -EINVAL;
12070 }
12071 if (!is_rcu_reg(reg)) {
12072 verbose(env, "R%d must be a rcu pointer\n", regno);
12073 return -EINVAL;
12074 }
12075 }
12076 fallthrough;
12077 case KF_ARG_PTR_TO_CTX:
12078 case KF_ARG_PTR_TO_DYNPTR:
12079 case KF_ARG_PTR_TO_ITER:
12080 case KF_ARG_PTR_TO_LIST_HEAD:
12081 case KF_ARG_PTR_TO_LIST_NODE:
12082 case KF_ARG_PTR_TO_RB_ROOT:
12083 case KF_ARG_PTR_TO_RB_NODE:
12084 case KF_ARG_PTR_TO_MEM:
12085 case KF_ARG_PTR_TO_MEM_SIZE:
12086 case KF_ARG_PTR_TO_CALLBACK:
12087 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12088 case KF_ARG_PTR_TO_CONST_STR:
12089 case KF_ARG_PTR_TO_WORKQUEUE:
12090 break;
12091 default:
12092 WARN_ON_ONCE(1);
12093 return -EFAULT;
12094 }
12095
12096 if (is_kfunc_release(meta) && reg->ref_obj_id)
12097 arg_type |= OBJ_RELEASE;
12098 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
12099 if (ret < 0)
12100 return ret;
12101
12102 switch (kf_arg_type) {
12103 case KF_ARG_PTR_TO_CTX:
12104 if (reg->type != PTR_TO_CTX) {
12105 verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
12106 i, reg_type_str(env, reg->type));
12107 return -EINVAL;
12108 }
12109
12110 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12111 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
12112 if (ret < 0)
12113 return -EINVAL;
12114 meta->ret_btf_id = ret;
12115 }
12116 break;
12117 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12118 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
12119 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
12120 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
12121 return -EINVAL;
12122 }
12123 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
12124 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12125 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
12126 return -EINVAL;
12127 }
12128 } else {
12129 verbose(env, "arg#%d expected pointer to allocated object\n", i);
12130 return -EINVAL;
12131 }
12132 if (!reg->ref_obj_id) {
12133 verbose(env, "allocated object must be referenced\n");
12134 return -EINVAL;
12135 }
12136 if (meta->btf == btf_vmlinux) {
12137 meta->arg_btf = reg->btf;
12138 meta->arg_btf_id = reg->btf_id;
12139 }
12140 break;
12141 case KF_ARG_PTR_TO_DYNPTR:
12142 {
12143 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
12144 int clone_ref_obj_id = 0;
12145
12146 if (reg->type == CONST_PTR_TO_DYNPTR)
12147 dynptr_arg_type |= MEM_RDONLY;
12148
12149 if (is_kfunc_arg_uninit(btf, &args[i]))
12150 dynptr_arg_type |= MEM_UNINIT;
12151
12152 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
12153 dynptr_arg_type |= DYNPTR_TYPE_SKB;
12154 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
12155 dynptr_arg_type |= DYNPTR_TYPE_XDP;
12156 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
12157 (dynptr_arg_type & MEM_UNINIT)) {
12158 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
12159
12160 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
12161 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
12162 return -EFAULT;
12163 }
12164
12165 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
12166 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
12167 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
12168 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
12169 return -EFAULT;
12170 }
12171 }
12172
12173 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
12174 if (ret < 0)
12175 return ret;
12176
12177 if (!(dynptr_arg_type & MEM_UNINIT)) {
12178 int id = dynptr_id(env, reg);
12179
12180 if (id < 0) {
12181 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
12182 return id;
12183 }
12184 meta->initialized_dynptr.id = id;
12185 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
12186 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
12187 }
12188
12189 break;
12190 }
12191 case KF_ARG_PTR_TO_ITER:
12192 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
12193 if (!check_css_task_iter_allowlist(env)) {
12194 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
12195 return -EINVAL;
12196 }
12197 }
12198 ret = process_iter_arg(env, regno, insn_idx, meta);
12199 if (ret < 0)
12200 return ret;
12201 break;
12202 case KF_ARG_PTR_TO_LIST_HEAD:
12203 if (reg->type != PTR_TO_MAP_VALUE &&
12204 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12205 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12206 return -EINVAL;
12207 }
12208 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12209 verbose(env, "allocated object must be referenced\n");
12210 return -EINVAL;
12211 }
12212 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
12213 if (ret < 0)
12214 return ret;
12215 break;
12216 case KF_ARG_PTR_TO_RB_ROOT:
12217 if (reg->type != PTR_TO_MAP_VALUE &&
12218 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12219 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12220 return -EINVAL;
12221 }
12222 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12223 verbose(env, "allocated object must be referenced\n");
12224 return -EINVAL;
12225 }
12226 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
12227 if (ret < 0)
12228 return ret;
12229 break;
12230 case KF_ARG_PTR_TO_LIST_NODE:
12231 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12232 verbose(env, "arg#%d expected pointer to allocated object\n", i);
12233 return -EINVAL;
12234 }
12235 if (!reg->ref_obj_id) {
12236 verbose(env, "allocated object must be referenced\n");
12237 return -EINVAL;
12238 }
12239 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
12240 if (ret < 0)
12241 return ret;
12242 break;
12243 case KF_ARG_PTR_TO_RB_NODE:
12244 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
12245 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
12246 verbose(env, "rbtree_remove node input must be non-owning ref\n");
12247 return -EINVAL;
12248 }
12249 if (in_rbtree_lock_required_cb(env)) {
12250 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
12251 return -EINVAL;
12252 }
12253 } else {
12254 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12255 verbose(env, "arg#%d expected pointer to allocated object\n", i);
12256 return -EINVAL;
12257 }
12258 if (!reg->ref_obj_id) {
12259 verbose(env, "allocated object must be referenced\n");
12260 return -EINVAL;
12261 }
12262 }
12263
12264 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
12265 if (ret < 0)
12266 return ret;
12267 break;
12268 case KF_ARG_PTR_TO_MAP:
12269 /* If argument has '__map' suffix expect 'struct bpf_map *' */
12270 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
12271 ref_t = btf_type_by_id(btf_vmlinux, ref_id);
12272 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12273 fallthrough;
12274 case KF_ARG_PTR_TO_BTF_ID:
12275 /* Only base_type is checked, further checks are done here */
12276 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
12277 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
12278 !reg2btf_ids[base_type(reg->type)]) {
12279 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
12280 verbose(env, "expected %s or socket\n",
12281 reg_type_str(env, base_type(reg->type) |
12282 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
12283 return -EINVAL;
12284 }
12285 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
12286 if (ret < 0)
12287 return ret;
12288 break;
12289 case KF_ARG_PTR_TO_MEM:
12290 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
12291 if (IS_ERR(resolve_ret)) {
12292 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
12293 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
12294 return -EINVAL;
12295 }
12296 ret = check_mem_reg(env, reg, regno, type_size);
12297 if (ret < 0)
12298 return ret;
12299 break;
12300 case KF_ARG_PTR_TO_MEM_SIZE:
12301 {
12302 struct bpf_reg_state *buff_reg = ®s[regno];
12303 const struct btf_param *buff_arg = &args[i];
12304 struct bpf_reg_state *size_reg = ®s[regno + 1];
12305 const struct btf_param *size_arg = &args[i + 1];
12306
12307 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
12308 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
12309 if (ret < 0) {
12310 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
12311 return ret;
12312 }
12313 }
12314
12315 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
12316 if (meta->arg_constant.found) {
12317 verbose(env, "verifier internal error: only one constant argument permitted\n");
12318 return -EFAULT;
12319 }
12320 if (!tnum_is_const(size_reg->var_off)) {
12321 verbose(env, "R%d must be a known constant\n", regno + 1);
12322 return -EINVAL;
12323 }
12324 meta->arg_constant.found = true;
12325 meta->arg_constant.value = size_reg->var_off.value;
12326 }
12327
12328 /* Skip next '__sz' or '__szk' argument */
12329 i++;
12330 break;
12331 }
12332 case KF_ARG_PTR_TO_CALLBACK:
12333 if (reg->type != PTR_TO_FUNC) {
12334 verbose(env, "arg%d expected pointer to func\n", i);
12335 return -EINVAL;
12336 }
12337 meta->subprogno = reg->subprogno;
12338 break;
12339 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12340 if (!type_is_ptr_alloc_obj(reg->type)) {
12341 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
12342 return -EINVAL;
12343 }
12344 if (!type_is_non_owning_ref(reg->type))
12345 meta->arg_owning_ref = true;
12346
12347 rec = reg_btf_record(reg);
12348 if (!rec) {
12349 verbose(env, "verifier internal error: Couldn't find btf_record\n");
12350 return -EFAULT;
12351 }
12352
12353 if (rec->refcount_off < 0) {
12354 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
12355 return -EINVAL;
12356 }
12357
12358 meta->arg_btf = reg->btf;
12359 meta->arg_btf_id = reg->btf_id;
12360 break;
12361 case KF_ARG_PTR_TO_CONST_STR:
12362 if (reg->type != PTR_TO_MAP_VALUE) {
12363 verbose(env, "arg#%d doesn't point to a const string\n", i);
12364 return -EINVAL;
12365 }
12366 ret = check_reg_const_str(env, reg, regno);
12367 if (ret)
12368 return ret;
12369 break;
12370 case KF_ARG_PTR_TO_WORKQUEUE:
12371 if (reg->type != PTR_TO_MAP_VALUE) {
12372 verbose(env, "arg#%d doesn't point to a map value\n", i);
12373 return -EINVAL;
12374 }
12375 ret = process_wq_func(env, regno, meta);
12376 if (ret < 0)
12377 return ret;
12378 break;
12379 }
12380 }
12381
12382 if (is_kfunc_release(meta) && !meta->release_regno) {
12383 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
12384 func_name);
12385 return -EINVAL;
12386 }
12387
12388 return 0;
12389 }
12390
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)12391 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
12392 struct bpf_insn *insn,
12393 struct bpf_kfunc_call_arg_meta *meta,
12394 const char **kfunc_name)
12395 {
12396 const struct btf_type *func, *func_proto;
12397 u32 func_id, *kfunc_flags;
12398 const char *func_name;
12399 struct btf *desc_btf;
12400
12401 if (kfunc_name)
12402 *kfunc_name = NULL;
12403
12404 if (!insn->imm)
12405 return -EINVAL;
12406
12407 desc_btf = find_kfunc_desc_btf(env, insn->off);
12408 if (IS_ERR(desc_btf))
12409 return PTR_ERR(desc_btf);
12410
12411 func_id = insn->imm;
12412 func = btf_type_by_id(desc_btf, func_id);
12413 func_name = btf_name_by_offset(desc_btf, func->name_off);
12414 if (kfunc_name)
12415 *kfunc_name = func_name;
12416 func_proto = btf_type_by_id(desc_btf, func->type);
12417
12418 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12419 if (!kfunc_flags) {
12420 return -EACCES;
12421 }
12422
12423 memset(meta, 0, sizeof(*meta));
12424 meta->btf = desc_btf;
12425 meta->func_id = func_id;
12426 meta->kfunc_flags = *kfunc_flags;
12427 meta->func_proto = func_proto;
12428 meta->func_name = func_name;
12429
12430 return 0;
12431 }
12432
12433 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12434
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)12435 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12436 int *insn_idx_p)
12437 {
12438 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
12439 u32 i, nargs, ptr_type_id, release_ref_obj_id;
12440 struct bpf_reg_state *regs = cur_regs(env);
12441 const char *func_name, *ptr_type_name;
12442 const struct btf_type *t, *ptr_type;
12443 struct bpf_kfunc_call_arg_meta meta;
12444 struct bpf_insn_aux_data *insn_aux;
12445 int err, insn_idx = *insn_idx_p;
12446 const struct btf_param *args;
12447 const struct btf_type *ret_t;
12448 struct btf *desc_btf;
12449
12450 /* skip for now, but return error when we find this in fixup_kfunc_call */
12451 if (!insn->imm)
12452 return 0;
12453
12454 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12455 if (err == -EACCES && func_name)
12456 verbose(env, "calling kernel function %s is not allowed\n", func_name);
12457 if (err)
12458 return err;
12459 desc_btf = meta.btf;
12460 insn_aux = &env->insn_aux_data[insn_idx];
12461
12462 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12463
12464 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12465 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12466 return -EACCES;
12467 }
12468
12469 sleepable = is_kfunc_sleepable(&meta);
12470 if (sleepable && !in_sleepable(env)) {
12471 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12472 return -EACCES;
12473 }
12474
12475 /* Check the arguments */
12476 err = check_kfunc_args(env, &meta, insn_idx);
12477 if (err < 0)
12478 return err;
12479
12480 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12481 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12482 set_rbtree_add_callback_state);
12483 if (err) {
12484 verbose(env, "kfunc %s#%d failed callback verification\n",
12485 func_name, meta.func_id);
12486 return err;
12487 }
12488 }
12489
12490 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
12491 meta.r0_size = sizeof(u64);
12492 meta.r0_rdonly = false;
12493 }
12494
12495 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
12496 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12497 set_timer_callback_state);
12498 if (err) {
12499 verbose(env, "kfunc %s#%d failed callback verification\n",
12500 func_name, meta.func_id);
12501 return err;
12502 }
12503 }
12504
12505 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12506 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12507
12508 preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
12509 preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
12510
12511 if (env->cur_state->active_rcu_lock) {
12512 struct bpf_func_state *state;
12513 struct bpf_reg_state *reg;
12514 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12515
12516 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12517 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12518 return -EACCES;
12519 }
12520
12521 if (rcu_lock) {
12522 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12523 return -EINVAL;
12524 } else if (rcu_unlock) {
12525 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12526 if (reg->type & MEM_RCU) {
12527 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12528 reg->type |= PTR_UNTRUSTED;
12529 }
12530 }));
12531 env->cur_state->active_rcu_lock = false;
12532 } else if (sleepable) {
12533 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12534 return -EACCES;
12535 }
12536 } else if (rcu_lock) {
12537 env->cur_state->active_rcu_lock = true;
12538 } else if (rcu_unlock) {
12539 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12540 return -EINVAL;
12541 }
12542
12543 if (env->cur_state->active_preempt_lock) {
12544 if (preempt_disable) {
12545 env->cur_state->active_preempt_lock++;
12546 } else if (preempt_enable) {
12547 env->cur_state->active_preempt_lock--;
12548 } else if (sleepable) {
12549 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
12550 return -EACCES;
12551 }
12552 } else if (preempt_disable) {
12553 env->cur_state->active_preempt_lock++;
12554 } else if (preempt_enable) {
12555 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
12556 return -EINVAL;
12557 }
12558
12559 /* In case of release function, we get register number of refcounted
12560 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12561 */
12562 if (meta.release_regno) {
12563 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12564 if (err) {
12565 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12566 func_name, meta.func_id);
12567 return err;
12568 }
12569 }
12570
12571 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12572 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12573 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12574 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12575 insn_aux->insert_off = regs[BPF_REG_2].off;
12576 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12577 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12578 if (err) {
12579 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12580 func_name, meta.func_id);
12581 return err;
12582 }
12583
12584 err = release_reference(env, release_ref_obj_id);
12585 if (err) {
12586 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12587 func_name, meta.func_id);
12588 return err;
12589 }
12590 }
12591
12592 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12593 if (!bpf_jit_supports_exceptions()) {
12594 verbose(env, "JIT does not support calling kfunc %s#%d\n",
12595 func_name, meta.func_id);
12596 return -ENOTSUPP;
12597 }
12598 env->seen_exception = true;
12599
12600 /* In the case of the default callback, the cookie value passed
12601 * to bpf_throw becomes the return value of the program.
12602 */
12603 if (!env->exception_callback_subprog) {
12604 err = check_return_code(env, BPF_REG_1, "R1");
12605 if (err < 0)
12606 return err;
12607 }
12608 }
12609
12610 for (i = 0; i < CALLER_SAVED_REGS; i++)
12611 mark_reg_not_init(env, regs, caller_saved[i]);
12612
12613 /* Check return type */
12614 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12615
12616 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12617 /* Only exception is bpf_obj_new_impl */
12618 if (meta.btf != btf_vmlinux ||
12619 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12620 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12621 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12622 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12623 return -EINVAL;
12624 }
12625 }
12626
12627 if (btf_type_is_scalar(t)) {
12628 mark_reg_unknown(env, regs, BPF_REG_0);
12629 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12630 } else if (btf_type_is_ptr(t)) {
12631 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12632
12633 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12634 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12635 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12636 struct btf_struct_meta *struct_meta;
12637 struct btf *ret_btf;
12638 u32 ret_btf_id;
12639
12640 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12641 return -ENOMEM;
12642
12643 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12644 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12645 return -EINVAL;
12646 }
12647
12648 ret_btf = env->prog->aux->btf;
12649 ret_btf_id = meta.arg_constant.value;
12650
12651 /* This may be NULL due to user not supplying a BTF */
12652 if (!ret_btf) {
12653 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12654 return -EINVAL;
12655 }
12656
12657 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12658 if (!ret_t || !__btf_type_is_struct(ret_t)) {
12659 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12660 return -EINVAL;
12661 }
12662
12663 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12664 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12665 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12666 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12667 return -EINVAL;
12668 }
12669
12670 if (!bpf_global_percpu_ma_set) {
12671 mutex_lock(&bpf_percpu_ma_lock);
12672 if (!bpf_global_percpu_ma_set) {
12673 /* Charge memory allocated with bpf_global_percpu_ma to
12674 * root memcg. The obj_cgroup for root memcg is NULL.
12675 */
12676 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12677 if (!err)
12678 bpf_global_percpu_ma_set = true;
12679 }
12680 mutex_unlock(&bpf_percpu_ma_lock);
12681 if (err)
12682 return err;
12683 }
12684
12685 mutex_lock(&bpf_percpu_ma_lock);
12686 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12687 mutex_unlock(&bpf_percpu_ma_lock);
12688 if (err)
12689 return err;
12690 }
12691
12692 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12693 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12694 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12695 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12696 return -EINVAL;
12697 }
12698
12699 if (struct_meta) {
12700 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12701 return -EINVAL;
12702 }
12703 }
12704
12705 mark_reg_known_zero(env, regs, BPF_REG_0);
12706 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12707 regs[BPF_REG_0].btf = ret_btf;
12708 regs[BPF_REG_0].btf_id = ret_btf_id;
12709 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12710 regs[BPF_REG_0].type |= MEM_PERCPU;
12711
12712 insn_aux->obj_new_size = ret_t->size;
12713 insn_aux->kptr_struct_meta = struct_meta;
12714 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12715 mark_reg_known_zero(env, regs, BPF_REG_0);
12716 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12717 regs[BPF_REG_0].btf = meta.arg_btf;
12718 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12719
12720 insn_aux->kptr_struct_meta =
12721 btf_find_struct_meta(meta.arg_btf,
12722 meta.arg_btf_id);
12723 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12724 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12725 struct btf_field *field = meta.arg_list_head.field;
12726
12727 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12728 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12729 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12730 struct btf_field *field = meta.arg_rbtree_root.field;
12731
12732 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12733 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12734 mark_reg_known_zero(env, regs, BPF_REG_0);
12735 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12736 regs[BPF_REG_0].btf = desc_btf;
12737 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12738 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12739 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12740 if (!ret_t || !btf_type_is_struct(ret_t)) {
12741 verbose(env,
12742 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12743 return -EINVAL;
12744 }
12745
12746 mark_reg_known_zero(env, regs, BPF_REG_0);
12747 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12748 regs[BPF_REG_0].btf = desc_btf;
12749 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12750 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12751 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12752 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12753
12754 mark_reg_known_zero(env, regs, BPF_REG_0);
12755
12756 if (!meta.arg_constant.found) {
12757 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12758 return -EFAULT;
12759 }
12760
12761 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12762
12763 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12764 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12765
12766 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12767 regs[BPF_REG_0].type |= MEM_RDONLY;
12768 } else {
12769 /* this will set env->seen_direct_write to true */
12770 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12771 verbose(env, "the prog does not allow writes to packet data\n");
12772 return -EINVAL;
12773 }
12774 }
12775
12776 if (!meta.initialized_dynptr.id) {
12777 verbose(env, "verifier internal error: no dynptr id\n");
12778 return -EFAULT;
12779 }
12780 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12781
12782 /* we don't need to set BPF_REG_0's ref obj id
12783 * because packet slices are not refcounted (see
12784 * dynptr_type_refcounted)
12785 */
12786 } else {
12787 verbose(env, "kernel function %s unhandled dynamic return type\n",
12788 meta.func_name);
12789 return -EFAULT;
12790 }
12791 } else if (btf_type_is_void(ptr_type)) {
12792 /* kfunc returning 'void *' is equivalent to returning scalar */
12793 mark_reg_unknown(env, regs, BPF_REG_0);
12794 } else if (!__btf_type_is_struct(ptr_type)) {
12795 if (!meta.r0_size) {
12796 __u32 sz;
12797
12798 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12799 meta.r0_size = sz;
12800 meta.r0_rdonly = true;
12801 }
12802 }
12803 if (!meta.r0_size) {
12804 ptr_type_name = btf_name_by_offset(desc_btf,
12805 ptr_type->name_off);
12806 verbose(env,
12807 "kernel function %s returns pointer type %s %s is not supported\n",
12808 func_name,
12809 btf_type_str(ptr_type),
12810 ptr_type_name);
12811 return -EINVAL;
12812 }
12813
12814 mark_reg_known_zero(env, regs, BPF_REG_0);
12815 regs[BPF_REG_0].type = PTR_TO_MEM;
12816 regs[BPF_REG_0].mem_size = meta.r0_size;
12817
12818 if (meta.r0_rdonly)
12819 regs[BPF_REG_0].type |= MEM_RDONLY;
12820
12821 /* Ensures we don't access the memory after a release_reference() */
12822 if (meta.ref_obj_id)
12823 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12824 } else {
12825 mark_reg_known_zero(env, regs, BPF_REG_0);
12826 regs[BPF_REG_0].btf = desc_btf;
12827 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12828 regs[BPF_REG_0].btf_id = ptr_type_id;
12829
12830 if (is_iter_next_kfunc(&meta)) {
12831 struct bpf_reg_state *cur_iter;
12832
12833 cur_iter = get_iter_from_state(env->cur_state, &meta);
12834
12835 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
12836 regs[BPF_REG_0].type |= MEM_RCU;
12837 else
12838 regs[BPF_REG_0].type |= PTR_TRUSTED;
12839 }
12840 }
12841
12842 if (is_kfunc_ret_null(&meta)) {
12843 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12844 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12845 regs[BPF_REG_0].id = ++env->id_gen;
12846 }
12847 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12848 if (is_kfunc_acquire(&meta)) {
12849 int id = acquire_reference_state(env, insn_idx);
12850
12851 if (id < 0)
12852 return id;
12853 if (is_kfunc_ret_null(&meta))
12854 regs[BPF_REG_0].id = id;
12855 regs[BPF_REG_0].ref_obj_id = id;
12856 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12857 ref_set_non_owning(env, ®s[BPF_REG_0]);
12858 }
12859
12860 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
12861 regs[BPF_REG_0].id = ++env->id_gen;
12862 } else if (btf_type_is_void(t)) {
12863 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12864 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12865 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12866 insn_aux->kptr_struct_meta =
12867 btf_find_struct_meta(meta.arg_btf,
12868 meta.arg_btf_id);
12869 }
12870 }
12871 }
12872
12873 nargs = btf_type_vlen(meta.func_proto);
12874 args = (const struct btf_param *)(meta.func_proto + 1);
12875 for (i = 0; i < nargs; i++) {
12876 u32 regno = i + 1;
12877
12878 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12879 if (btf_type_is_ptr(t))
12880 mark_btf_func_reg_size(env, regno, sizeof(void *));
12881 else
12882 /* scalar. ensured by btf_check_kfunc_arg_match() */
12883 mark_btf_func_reg_size(env, regno, t->size);
12884 }
12885
12886 if (is_iter_next_kfunc(&meta)) {
12887 err = process_iter_next_call(env, insn_idx, &meta);
12888 if (err)
12889 return err;
12890 }
12891
12892 return 0;
12893 }
12894
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)12895 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12896 const struct bpf_reg_state *reg,
12897 enum bpf_reg_type type)
12898 {
12899 bool known = tnum_is_const(reg->var_off);
12900 s64 val = reg->var_off.value;
12901 s64 smin = reg->smin_value;
12902
12903 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12904 verbose(env, "math between %s pointer and %lld is not allowed\n",
12905 reg_type_str(env, type), val);
12906 return false;
12907 }
12908
12909 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12910 verbose(env, "%s pointer offset %d is not allowed\n",
12911 reg_type_str(env, type), reg->off);
12912 return false;
12913 }
12914
12915 if (smin == S64_MIN) {
12916 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12917 reg_type_str(env, type));
12918 return false;
12919 }
12920
12921 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12922 verbose(env, "value %lld makes %s pointer be out of bounds\n",
12923 smin, reg_type_str(env, type));
12924 return false;
12925 }
12926
12927 return true;
12928 }
12929
12930 enum {
12931 REASON_BOUNDS = -1,
12932 REASON_TYPE = -2,
12933 REASON_PATHS = -3,
12934 REASON_LIMIT = -4,
12935 REASON_STACK = -5,
12936 };
12937
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)12938 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12939 u32 *alu_limit, bool mask_to_left)
12940 {
12941 u32 max = 0, ptr_limit = 0;
12942
12943 switch (ptr_reg->type) {
12944 case PTR_TO_STACK:
12945 /* Offset 0 is out-of-bounds, but acceptable start for the
12946 * left direction, see BPF_REG_FP. Also, unknown scalar
12947 * offset where we would need to deal with min/max bounds is
12948 * currently prohibited for unprivileged.
12949 */
12950 max = MAX_BPF_STACK + mask_to_left;
12951 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12952 break;
12953 case PTR_TO_MAP_VALUE:
12954 max = ptr_reg->map_ptr->value_size;
12955 ptr_limit = (mask_to_left ?
12956 ptr_reg->smin_value :
12957 ptr_reg->umax_value) + ptr_reg->off;
12958 break;
12959 default:
12960 return REASON_TYPE;
12961 }
12962
12963 if (ptr_limit >= max)
12964 return REASON_LIMIT;
12965 *alu_limit = ptr_limit;
12966 return 0;
12967 }
12968
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)12969 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12970 const struct bpf_insn *insn)
12971 {
12972 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12973 }
12974
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)12975 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12976 u32 alu_state, u32 alu_limit)
12977 {
12978 /* If we arrived here from different branches with different
12979 * state or limits to sanitize, then this won't work.
12980 */
12981 if (aux->alu_state &&
12982 (aux->alu_state != alu_state ||
12983 aux->alu_limit != alu_limit))
12984 return REASON_PATHS;
12985
12986 /* Corresponding fixup done in do_misc_fixups(). */
12987 aux->alu_state = alu_state;
12988 aux->alu_limit = alu_limit;
12989 return 0;
12990 }
12991
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)12992 static int sanitize_val_alu(struct bpf_verifier_env *env,
12993 struct bpf_insn *insn)
12994 {
12995 struct bpf_insn_aux_data *aux = cur_aux(env);
12996
12997 if (can_skip_alu_sanitation(env, insn))
12998 return 0;
12999
13000 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
13001 }
13002
sanitize_needed(u8 opcode)13003 static bool sanitize_needed(u8 opcode)
13004 {
13005 return opcode == BPF_ADD || opcode == BPF_SUB;
13006 }
13007
13008 struct bpf_sanitize_info {
13009 struct bpf_insn_aux_data aux;
13010 bool mask_to_left;
13011 };
13012
13013 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)13014 sanitize_speculative_path(struct bpf_verifier_env *env,
13015 const struct bpf_insn *insn,
13016 u32 next_idx, u32 curr_idx)
13017 {
13018 struct bpf_verifier_state *branch;
13019 struct bpf_reg_state *regs;
13020
13021 branch = push_stack(env, next_idx, curr_idx, true);
13022 if (branch && insn) {
13023 regs = branch->frame[branch->curframe]->regs;
13024 if (BPF_SRC(insn->code) == BPF_K) {
13025 mark_reg_unknown(env, regs, insn->dst_reg);
13026 } else if (BPF_SRC(insn->code) == BPF_X) {
13027 mark_reg_unknown(env, regs, insn->dst_reg);
13028 mark_reg_unknown(env, regs, insn->src_reg);
13029 }
13030 }
13031 return branch;
13032 }
13033
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)13034 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
13035 struct bpf_insn *insn,
13036 const struct bpf_reg_state *ptr_reg,
13037 const struct bpf_reg_state *off_reg,
13038 struct bpf_reg_state *dst_reg,
13039 struct bpf_sanitize_info *info,
13040 const bool commit_window)
13041 {
13042 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
13043 struct bpf_verifier_state *vstate = env->cur_state;
13044 bool off_is_imm = tnum_is_const(off_reg->var_off);
13045 bool off_is_neg = off_reg->smin_value < 0;
13046 bool ptr_is_dst_reg = ptr_reg == dst_reg;
13047 u8 opcode = BPF_OP(insn->code);
13048 u32 alu_state, alu_limit;
13049 struct bpf_reg_state tmp;
13050 bool ret;
13051 int err;
13052
13053 if (can_skip_alu_sanitation(env, insn))
13054 return 0;
13055
13056 /* We already marked aux for masking from non-speculative
13057 * paths, thus we got here in the first place. We only care
13058 * to explore bad access from here.
13059 */
13060 if (vstate->speculative)
13061 goto do_sim;
13062
13063 if (!commit_window) {
13064 if (!tnum_is_const(off_reg->var_off) &&
13065 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
13066 return REASON_BOUNDS;
13067
13068 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
13069 (opcode == BPF_SUB && !off_is_neg);
13070 }
13071
13072 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
13073 if (err < 0)
13074 return err;
13075
13076 if (commit_window) {
13077 /* In commit phase we narrow the masking window based on
13078 * the observed pointer move after the simulated operation.
13079 */
13080 alu_state = info->aux.alu_state;
13081 alu_limit = abs(info->aux.alu_limit - alu_limit);
13082 } else {
13083 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
13084 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
13085 alu_state |= ptr_is_dst_reg ?
13086 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
13087
13088 /* Limit pruning on unknown scalars to enable deep search for
13089 * potential masking differences from other program paths.
13090 */
13091 if (!off_is_imm)
13092 env->explore_alu_limits = true;
13093 }
13094
13095 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
13096 if (err < 0)
13097 return err;
13098 do_sim:
13099 /* If we're in commit phase, we're done here given we already
13100 * pushed the truncated dst_reg into the speculative verification
13101 * stack.
13102 *
13103 * Also, when register is a known constant, we rewrite register-based
13104 * operation to immediate-based, and thus do not need masking (and as
13105 * a consequence, do not need to simulate the zero-truncation either).
13106 */
13107 if (commit_window || off_is_imm)
13108 return 0;
13109
13110 /* Simulate and find potential out-of-bounds access under
13111 * speculative execution from truncation as a result of
13112 * masking when off was not within expected range. If off
13113 * sits in dst, then we temporarily need to move ptr there
13114 * to simulate dst (== 0) +/-= ptr. Needed, for example,
13115 * for cases where we use K-based arithmetic in one direction
13116 * and truncated reg-based in the other in order to explore
13117 * bad access.
13118 */
13119 if (!ptr_is_dst_reg) {
13120 tmp = *dst_reg;
13121 copy_register_state(dst_reg, ptr_reg);
13122 }
13123 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
13124 env->insn_idx);
13125 if (!ptr_is_dst_reg && ret)
13126 *dst_reg = tmp;
13127 return !ret ? REASON_STACK : 0;
13128 }
13129
sanitize_mark_insn_seen(struct bpf_verifier_env * env)13130 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
13131 {
13132 struct bpf_verifier_state *vstate = env->cur_state;
13133
13134 /* If we simulate paths under speculation, we don't update the
13135 * insn as 'seen' such that when we verify unreachable paths in
13136 * the non-speculative domain, sanitize_dead_code() can still
13137 * rewrite/sanitize them.
13138 */
13139 if (!vstate->speculative)
13140 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
13141 }
13142
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)13143 static int sanitize_err(struct bpf_verifier_env *env,
13144 const struct bpf_insn *insn, int reason,
13145 const struct bpf_reg_state *off_reg,
13146 const struct bpf_reg_state *dst_reg)
13147 {
13148 static const char *err = "pointer arithmetic with it prohibited for !root";
13149 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
13150 u32 dst = insn->dst_reg, src = insn->src_reg;
13151
13152 switch (reason) {
13153 case REASON_BOUNDS:
13154 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
13155 off_reg == dst_reg ? dst : src, err);
13156 break;
13157 case REASON_TYPE:
13158 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
13159 off_reg == dst_reg ? src : dst, err);
13160 break;
13161 case REASON_PATHS:
13162 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
13163 dst, op, err);
13164 break;
13165 case REASON_LIMIT:
13166 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
13167 dst, op, err);
13168 break;
13169 case REASON_STACK:
13170 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
13171 dst, err);
13172 break;
13173 default:
13174 verbose(env, "verifier internal error: unknown reason (%d)\n",
13175 reason);
13176 break;
13177 }
13178
13179 return -EACCES;
13180 }
13181
13182 /* check that stack access falls within stack limits and that 'reg' doesn't
13183 * have a variable offset.
13184 *
13185 * Variable offset is prohibited for unprivileged mode for simplicity since it
13186 * requires corresponding support in Spectre masking for stack ALU. See also
13187 * retrieve_ptr_limit().
13188 *
13189 *
13190 * 'off' includes 'reg->off'.
13191 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)13192 static int check_stack_access_for_ptr_arithmetic(
13193 struct bpf_verifier_env *env,
13194 int regno,
13195 const struct bpf_reg_state *reg,
13196 int off)
13197 {
13198 if (!tnum_is_const(reg->var_off)) {
13199 char tn_buf[48];
13200
13201 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
13202 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
13203 regno, tn_buf, off);
13204 return -EACCES;
13205 }
13206
13207 if (off >= 0 || off < -MAX_BPF_STACK) {
13208 verbose(env, "R%d stack pointer arithmetic goes out of range, "
13209 "prohibited for !root; off=%d\n", regno, off);
13210 return -EACCES;
13211 }
13212
13213 return 0;
13214 }
13215
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)13216 static int sanitize_check_bounds(struct bpf_verifier_env *env,
13217 const struct bpf_insn *insn,
13218 const struct bpf_reg_state *dst_reg)
13219 {
13220 u32 dst = insn->dst_reg;
13221
13222 /* For unprivileged we require that resulting offset must be in bounds
13223 * in order to be able to sanitize access later on.
13224 */
13225 if (env->bypass_spec_v1)
13226 return 0;
13227
13228 switch (dst_reg->type) {
13229 case PTR_TO_STACK:
13230 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
13231 dst_reg->off + dst_reg->var_off.value))
13232 return -EACCES;
13233 break;
13234 case PTR_TO_MAP_VALUE:
13235 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
13236 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
13237 "prohibited for !root\n", dst);
13238 return -EACCES;
13239 }
13240 break;
13241 default:
13242 break;
13243 }
13244
13245 return 0;
13246 }
13247
13248 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
13249 * Caller should also handle BPF_MOV case separately.
13250 * If we return -EACCES, caller may want to try again treating pointer as a
13251 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
13252 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)13253 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
13254 struct bpf_insn *insn,
13255 const struct bpf_reg_state *ptr_reg,
13256 const struct bpf_reg_state *off_reg)
13257 {
13258 struct bpf_verifier_state *vstate = env->cur_state;
13259 struct bpf_func_state *state = vstate->frame[vstate->curframe];
13260 struct bpf_reg_state *regs = state->regs, *dst_reg;
13261 bool known = tnum_is_const(off_reg->var_off);
13262 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
13263 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
13264 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
13265 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
13266 struct bpf_sanitize_info info = {};
13267 u8 opcode = BPF_OP(insn->code);
13268 u32 dst = insn->dst_reg;
13269 int ret;
13270
13271 dst_reg = ®s[dst];
13272
13273 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
13274 smin_val > smax_val || umin_val > umax_val) {
13275 /* Taint dst register if offset had invalid bounds derived from
13276 * e.g. dead branches.
13277 */
13278 __mark_reg_unknown(env, dst_reg);
13279 return 0;
13280 }
13281
13282 if (BPF_CLASS(insn->code) != BPF_ALU64) {
13283 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
13284 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13285 __mark_reg_unknown(env, dst_reg);
13286 return 0;
13287 }
13288
13289 verbose(env,
13290 "R%d 32-bit pointer arithmetic prohibited\n",
13291 dst);
13292 return -EACCES;
13293 }
13294
13295 if (ptr_reg->type & PTR_MAYBE_NULL) {
13296 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
13297 dst, reg_type_str(env, ptr_reg->type));
13298 return -EACCES;
13299 }
13300
13301 switch (base_type(ptr_reg->type)) {
13302 case PTR_TO_CTX:
13303 case PTR_TO_MAP_VALUE:
13304 case PTR_TO_MAP_KEY:
13305 case PTR_TO_STACK:
13306 case PTR_TO_PACKET_META:
13307 case PTR_TO_PACKET:
13308 case PTR_TO_TP_BUFFER:
13309 case PTR_TO_BTF_ID:
13310 case PTR_TO_MEM:
13311 case PTR_TO_BUF:
13312 case PTR_TO_FUNC:
13313 case CONST_PTR_TO_DYNPTR:
13314 break;
13315 case PTR_TO_FLOW_KEYS:
13316 if (known)
13317 break;
13318 fallthrough;
13319 case CONST_PTR_TO_MAP:
13320 /* smin_val represents the known value */
13321 if (known && smin_val == 0 && opcode == BPF_ADD)
13322 break;
13323 fallthrough;
13324 default:
13325 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
13326 dst, reg_type_str(env, ptr_reg->type));
13327 return -EACCES;
13328 }
13329
13330 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
13331 * The id may be overwritten later if we create a new variable offset.
13332 */
13333 dst_reg->type = ptr_reg->type;
13334 dst_reg->id = ptr_reg->id;
13335
13336 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
13337 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
13338 return -EINVAL;
13339
13340 /* pointer types do not carry 32-bit bounds at the moment. */
13341 __mark_reg32_unbounded(dst_reg);
13342
13343 if (sanitize_needed(opcode)) {
13344 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
13345 &info, false);
13346 if (ret < 0)
13347 return sanitize_err(env, insn, ret, off_reg, dst_reg);
13348 }
13349
13350 switch (opcode) {
13351 case BPF_ADD:
13352 /* We can take a fixed offset as long as it doesn't overflow
13353 * the s32 'off' field
13354 */
13355 if (known && (ptr_reg->off + smin_val ==
13356 (s64)(s32)(ptr_reg->off + smin_val))) {
13357 /* pointer += K. Accumulate it into fixed offset */
13358 dst_reg->smin_value = smin_ptr;
13359 dst_reg->smax_value = smax_ptr;
13360 dst_reg->umin_value = umin_ptr;
13361 dst_reg->umax_value = umax_ptr;
13362 dst_reg->var_off = ptr_reg->var_off;
13363 dst_reg->off = ptr_reg->off + smin_val;
13364 dst_reg->raw = ptr_reg->raw;
13365 break;
13366 }
13367 /* A new variable offset is created. Note that off_reg->off
13368 * == 0, since it's a scalar.
13369 * dst_reg gets the pointer type and since some positive
13370 * integer value was added to the pointer, give it a new 'id'
13371 * if it's a PTR_TO_PACKET.
13372 * this creates a new 'base' pointer, off_reg (variable) gets
13373 * added into the variable offset, and we copy the fixed offset
13374 * from ptr_reg.
13375 */
13376 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
13377 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
13378 dst_reg->smin_value = S64_MIN;
13379 dst_reg->smax_value = S64_MAX;
13380 }
13381 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
13382 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
13383 dst_reg->umin_value = 0;
13384 dst_reg->umax_value = U64_MAX;
13385 }
13386 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
13387 dst_reg->off = ptr_reg->off;
13388 dst_reg->raw = ptr_reg->raw;
13389 if (reg_is_pkt_pointer(ptr_reg)) {
13390 dst_reg->id = ++env->id_gen;
13391 /* something was added to pkt_ptr, set range to zero */
13392 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13393 }
13394 break;
13395 case BPF_SUB:
13396 if (dst_reg == off_reg) {
13397 /* scalar -= pointer. Creates an unknown scalar */
13398 verbose(env, "R%d tried to subtract pointer from scalar\n",
13399 dst);
13400 return -EACCES;
13401 }
13402 /* We don't allow subtraction from FP, because (according to
13403 * test_verifier.c test "invalid fp arithmetic", JITs might not
13404 * be able to deal with it.
13405 */
13406 if (ptr_reg->type == PTR_TO_STACK) {
13407 verbose(env, "R%d subtraction from stack pointer prohibited\n",
13408 dst);
13409 return -EACCES;
13410 }
13411 if (known && (ptr_reg->off - smin_val ==
13412 (s64)(s32)(ptr_reg->off - smin_val))) {
13413 /* pointer -= K. Subtract it from fixed offset */
13414 dst_reg->smin_value = smin_ptr;
13415 dst_reg->smax_value = smax_ptr;
13416 dst_reg->umin_value = umin_ptr;
13417 dst_reg->umax_value = umax_ptr;
13418 dst_reg->var_off = ptr_reg->var_off;
13419 dst_reg->id = ptr_reg->id;
13420 dst_reg->off = ptr_reg->off - smin_val;
13421 dst_reg->raw = ptr_reg->raw;
13422 break;
13423 }
13424 /* A new variable offset is created. If the subtrahend is known
13425 * nonnegative, then any reg->range we had before is still good.
13426 */
13427 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
13428 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
13429 /* Overflow possible, we know nothing */
13430 dst_reg->smin_value = S64_MIN;
13431 dst_reg->smax_value = S64_MAX;
13432 }
13433 if (umin_ptr < umax_val) {
13434 /* Overflow possible, we know nothing */
13435 dst_reg->umin_value = 0;
13436 dst_reg->umax_value = U64_MAX;
13437 } else {
13438 /* Cannot overflow (as long as bounds are consistent) */
13439 dst_reg->umin_value = umin_ptr - umax_val;
13440 dst_reg->umax_value = umax_ptr - umin_val;
13441 }
13442 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13443 dst_reg->off = ptr_reg->off;
13444 dst_reg->raw = ptr_reg->raw;
13445 if (reg_is_pkt_pointer(ptr_reg)) {
13446 dst_reg->id = ++env->id_gen;
13447 /* something was added to pkt_ptr, set range to zero */
13448 if (smin_val < 0)
13449 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13450 }
13451 break;
13452 case BPF_AND:
13453 case BPF_OR:
13454 case BPF_XOR:
13455 /* bitwise ops on pointers are troublesome, prohibit. */
13456 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13457 dst, bpf_alu_string[opcode >> 4]);
13458 return -EACCES;
13459 default:
13460 /* other operators (e.g. MUL,LSH) produce non-pointer results */
13461 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13462 dst, bpf_alu_string[opcode >> 4]);
13463 return -EACCES;
13464 }
13465
13466 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13467 return -EINVAL;
13468 reg_bounds_sync(dst_reg);
13469 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13470 return -EACCES;
13471 if (sanitize_needed(opcode)) {
13472 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13473 &info, true);
13474 if (ret < 0)
13475 return sanitize_err(env, insn, ret, off_reg, dst_reg);
13476 }
13477
13478 return 0;
13479 }
13480
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13481 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13482 struct bpf_reg_state *src_reg)
13483 {
13484 s32 *dst_smin = &dst_reg->s32_min_value;
13485 s32 *dst_smax = &dst_reg->s32_max_value;
13486 u32 *dst_umin = &dst_reg->u32_min_value;
13487 u32 *dst_umax = &dst_reg->u32_max_value;
13488
13489 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
13490 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
13491 *dst_smin = S32_MIN;
13492 *dst_smax = S32_MAX;
13493 }
13494 if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) ||
13495 check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) {
13496 *dst_umin = 0;
13497 *dst_umax = U32_MAX;
13498 }
13499 }
13500
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13501 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13502 struct bpf_reg_state *src_reg)
13503 {
13504 s64 *dst_smin = &dst_reg->smin_value;
13505 s64 *dst_smax = &dst_reg->smax_value;
13506 u64 *dst_umin = &dst_reg->umin_value;
13507 u64 *dst_umax = &dst_reg->umax_value;
13508
13509 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
13510 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
13511 *dst_smin = S64_MIN;
13512 *dst_smax = S64_MAX;
13513 }
13514 if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) ||
13515 check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) {
13516 *dst_umin = 0;
13517 *dst_umax = U64_MAX;
13518 }
13519 }
13520
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13521 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13522 struct bpf_reg_state *src_reg)
13523 {
13524 s32 *dst_smin = &dst_reg->s32_min_value;
13525 s32 *dst_smax = &dst_reg->s32_max_value;
13526 u32 umin_val = src_reg->u32_min_value;
13527 u32 umax_val = src_reg->u32_max_value;
13528
13529 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
13530 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
13531 /* Overflow possible, we know nothing */
13532 *dst_smin = S32_MIN;
13533 *dst_smax = S32_MAX;
13534 }
13535 if (dst_reg->u32_min_value < umax_val) {
13536 /* Overflow possible, we know nothing */
13537 dst_reg->u32_min_value = 0;
13538 dst_reg->u32_max_value = U32_MAX;
13539 } else {
13540 /* Cannot overflow (as long as bounds are consistent) */
13541 dst_reg->u32_min_value -= umax_val;
13542 dst_reg->u32_max_value -= umin_val;
13543 }
13544 }
13545
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13546 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13547 struct bpf_reg_state *src_reg)
13548 {
13549 s64 *dst_smin = &dst_reg->smin_value;
13550 s64 *dst_smax = &dst_reg->smax_value;
13551 u64 umin_val = src_reg->umin_value;
13552 u64 umax_val = src_reg->umax_value;
13553
13554 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
13555 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
13556 /* Overflow possible, we know nothing */
13557 *dst_smin = S64_MIN;
13558 *dst_smax = S64_MAX;
13559 }
13560 if (dst_reg->umin_value < umax_val) {
13561 /* Overflow possible, we know nothing */
13562 dst_reg->umin_value = 0;
13563 dst_reg->umax_value = U64_MAX;
13564 } else {
13565 /* Cannot overflow (as long as bounds are consistent) */
13566 dst_reg->umin_value -= umax_val;
13567 dst_reg->umax_value -= umin_val;
13568 }
13569 }
13570
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13571 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13572 struct bpf_reg_state *src_reg)
13573 {
13574 s32 smin_val = src_reg->s32_min_value;
13575 u32 umin_val = src_reg->u32_min_value;
13576 u32 umax_val = src_reg->u32_max_value;
13577
13578 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13579 /* Ain't nobody got time to multiply that sign */
13580 __mark_reg32_unbounded(dst_reg);
13581 return;
13582 }
13583 /* Both values are positive, so we can work with unsigned and
13584 * copy the result to signed (unless it exceeds S32_MAX).
13585 */
13586 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13587 /* Potential overflow, we know nothing */
13588 __mark_reg32_unbounded(dst_reg);
13589 return;
13590 }
13591 dst_reg->u32_min_value *= umin_val;
13592 dst_reg->u32_max_value *= umax_val;
13593 if (dst_reg->u32_max_value > S32_MAX) {
13594 /* Overflow possible, we know nothing */
13595 dst_reg->s32_min_value = S32_MIN;
13596 dst_reg->s32_max_value = S32_MAX;
13597 } else {
13598 dst_reg->s32_min_value = dst_reg->u32_min_value;
13599 dst_reg->s32_max_value = dst_reg->u32_max_value;
13600 }
13601 }
13602
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13603 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13604 struct bpf_reg_state *src_reg)
13605 {
13606 s64 smin_val = src_reg->smin_value;
13607 u64 umin_val = src_reg->umin_value;
13608 u64 umax_val = src_reg->umax_value;
13609
13610 if (smin_val < 0 || dst_reg->smin_value < 0) {
13611 /* Ain't nobody got time to multiply that sign */
13612 __mark_reg64_unbounded(dst_reg);
13613 return;
13614 }
13615 /* Both values are positive, so we can work with unsigned and
13616 * copy the result to signed (unless it exceeds S64_MAX).
13617 */
13618 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13619 /* Potential overflow, we know nothing */
13620 __mark_reg64_unbounded(dst_reg);
13621 return;
13622 }
13623 dst_reg->umin_value *= umin_val;
13624 dst_reg->umax_value *= umax_val;
13625 if (dst_reg->umax_value > S64_MAX) {
13626 /* Overflow possible, we know nothing */
13627 dst_reg->smin_value = S64_MIN;
13628 dst_reg->smax_value = S64_MAX;
13629 } else {
13630 dst_reg->smin_value = dst_reg->umin_value;
13631 dst_reg->smax_value = dst_reg->umax_value;
13632 }
13633 }
13634
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13635 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13636 struct bpf_reg_state *src_reg)
13637 {
13638 bool src_known = tnum_subreg_is_const(src_reg->var_off);
13639 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13640 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13641 u32 umax_val = src_reg->u32_max_value;
13642
13643 if (src_known && dst_known) {
13644 __mark_reg32_known(dst_reg, var32_off.value);
13645 return;
13646 }
13647
13648 /* We get our minimum from the var_off, since that's inherently
13649 * bitwise. Our maximum is the minimum of the operands' maxima.
13650 */
13651 dst_reg->u32_min_value = var32_off.value;
13652 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13653
13654 /* Safe to set s32 bounds by casting u32 result into s32 when u32
13655 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13656 */
13657 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13658 dst_reg->s32_min_value = dst_reg->u32_min_value;
13659 dst_reg->s32_max_value = dst_reg->u32_max_value;
13660 } else {
13661 dst_reg->s32_min_value = S32_MIN;
13662 dst_reg->s32_max_value = S32_MAX;
13663 }
13664 }
13665
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13666 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13667 struct bpf_reg_state *src_reg)
13668 {
13669 bool src_known = tnum_is_const(src_reg->var_off);
13670 bool dst_known = tnum_is_const(dst_reg->var_off);
13671 u64 umax_val = src_reg->umax_value;
13672
13673 if (src_known && dst_known) {
13674 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13675 return;
13676 }
13677
13678 /* We get our minimum from the var_off, since that's inherently
13679 * bitwise. Our maximum is the minimum of the operands' maxima.
13680 */
13681 dst_reg->umin_value = dst_reg->var_off.value;
13682 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13683
13684 /* Safe to set s64 bounds by casting u64 result into s64 when u64
13685 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13686 */
13687 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13688 dst_reg->smin_value = dst_reg->umin_value;
13689 dst_reg->smax_value = dst_reg->umax_value;
13690 } else {
13691 dst_reg->smin_value = S64_MIN;
13692 dst_reg->smax_value = S64_MAX;
13693 }
13694 /* We may learn something more from the var_off */
13695 __update_reg_bounds(dst_reg);
13696 }
13697
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13698 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13699 struct bpf_reg_state *src_reg)
13700 {
13701 bool src_known = tnum_subreg_is_const(src_reg->var_off);
13702 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13703 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13704 u32 umin_val = src_reg->u32_min_value;
13705
13706 if (src_known && dst_known) {
13707 __mark_reg32_known(dst_reg, var32_off.value);
13708 return;
13709 }
13710
13711 /* We get our maximum from the var_off, and our minimum is the
13712 * maximum of the operands' minima
13713 */
13714 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13715 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13716
13717 /* Safe to set s32 bounds by casting u32 result into s32 when u32
13718 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13719 */
13720 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13721 dst_reg->s32_min_value = dst_reg->u32_min_value;
13722 dst_reg->s32_max_value = dst_reg->u32_max_value;
13723 } else {
13724 dst_reg->s32_min_value = S32_MIN;
13725 dst_reg->s32_max_value = S32_MAX;
13726 }
13727 }
13728
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13729 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13730 struct bpf_reg_state *src_reg)
13731 {
13732 bool src_known = tnum_is_const(src_reg->var_off);
13733 bool dst_known = tnum_is_const(dst_reg->var_off);
13734 u64 umin_val = src_reg->umin_value;
13735
13736 if (src_known && dst_known) {
13737 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13738 return;
13739 }
13740
13741 /* We get our maximum from the var_off, and our minimum is the
13742 * maximum of the operands' minima
13743 */
13744 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13745 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13746
13747 /* Safe to set s64 bounds by casting u64 result into s64 when u64
13748 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13749 */
13750 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13751 dst_reg->smin_value = dst_reg->umin_value;
13752 dst_reg->smax_value = dst_reg->umax_value;
13753 } else {
13754 dst_reg->smin_value = S64_MIN;
13755 dst_reg->smax_value = S64_MAX;
13756 }
13757 /* We may learn something more from the var_off */
13758 __update_reg_bounds(dst_reg);
13759 }
13760
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13761 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13762 struct bpf_reg_state *src_reg)
13763 {
13764 bool src_known = tnum_subreg_is_const(src_reg->var_off);
13765 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13766 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13767
13768 if (src_known && dst_known) {
13769 __mark_reg32_known(dst_reg, var32_off.value);
13770 return;
13771 }
13772
13773 /* We get both minimum and maximum from the var32_off. */
13774 dst_reg->u32_min_value = var32_off.value;
13775 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13776
13777 /* Safe to set s32 bounds by casting u32 result into s32 when u32
13778 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13779 */
13780 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13781 dst_reg->s32_min_value = dst_reg->u32_min_value;
13782 dst_reg->s32_max_value = dst_reg->u32_max_value;
13783 } else {
13784 dst_reg->s32_min_value = S32_MIN;
13785 dst_reg->s32_max_value = S32_MAX;
13786 }
13787 }
13788
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13789 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13790 struct bpf_reg_state *src_reg)
13791 {
13792 bool src_known = tnum_is_const(src_reg->var_off);
13793 bool dst_known = tnum_is_const(dst_reg->var_off);
13794
13795 if (src_known && dst_known) {
13796 /* dst_reg->var_off.value has been updated earlier */
13797 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13798 return;
13799 }
13800
13801 /* We get both minimum and maximum from the var_off. */
13802 dst_reg->umin_value = dst_reg->var_off.value;
13803 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13804
13805 /* Safe to set s64 bounds by casting u64 result into s64 when u64
13806 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13807 */
13808 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13809 dst_reg->smin_value = dst_reg->umin_value;
13810 dst_reg->smax_value = dst_reg->umax_value;
13811 } else {
13812 dst_reg->smin_value = S64_MIN;
13813 dst_reg->smax_value = S64_MAX;
13814 }
13815
13816 __update_reg_bounds(dst_reg);
13817 }
13818
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13819 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13820 u64 umin_val, u64 umax_val)
13821 {
13822 /* We lose all sign bit information (except what we can pick
13823 * up from var_off)
13824 */
13825 dst_reg->s32_min_value = S32_MIN;
13826 dst_reg->s32_max_value = S32_MAX;
13827 /* If we might shift our top bit out, then we know nothing */
13828 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13829 dst_reg->u32_min_value = 0;
13830 dst_reg->u32_max_value = U32_MAX;
13831 } else {
13832 dst_reg->u32_min_value <<= umin_val;
13833 dst_reg->u32_max_value <<= umax_val;
13834 }
13835 }
13836
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13837 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13838 struct bpf_reg_state *src_reg)
13839 {
13840 u32 umax_val = src_reg->u32_max_value;
13841 u32 umin_val = src_reg->u32_min_value;
13842 /* u32 alu operation will zext upper bits */
13843 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13844
13845 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13846 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13847 /* Not required but being careful mark reg64 bounds as unknown so
13848 * that we are forced to pick them up from tnum and zext later and
13849 * if some path skips this step we are still safe.
13850 */
13851 __mark_reg64_unbounded(dst_reg);
13852 __update_reg32_bounds(dst_reg);
13853 }
13854
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13855 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13856 u64 umin_val, u64 umax_val)
13857 {
13858 /* Special case <<32 because it is a common compiler pattern to sign
13859 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13860 * positive we know this shift will also be positive so we can track
13861 * bounds correctly. Otherwise we lose all sign bit information except
13862 * what we can pick up from var_off. Perhaps we can generalize this
13863 * later to shifts of any length.
13864 */
13865 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13866 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13867 else
13868 dst_reg->smax_value = S64_MAX;
13869
13870 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13871 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13872 else
13873 dst_reg->smin_value = S64_MIN;
13874
13875 /* If we might shift our top bit out, then we know nothing */
13876 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13877 dst_reg->umin_value = 0;
13878 dst_reg->umax_value = U64_MAX;
13879 } else {
13880 dst_reg->umin_value <<= umin_val;
13881 dst_reg->umax_value <<= umax_val;
13882 }
13883 }
13884
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13885 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13886 struct bpf_reg_state *src_reg)
13887 {
13888 u64 umax_val = src_reg->umax_value;
13889 u64 umin_val = src_reg->umin_value;
13890
13891 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
13892 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13893 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13894
13895 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13896 /* We may learn something more from the var_off */
13897 __update_reg_bounds(dst_reg);
13898 }
13899
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13900 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13901 struct bpf_reg_state *src_reg)
13902 {
13903 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13904 u32 umax_val = src_reg->u32_max_value;
13905 u32 umin_val = src_reg->u32_min_value;
13906
13907 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13908 * be negative, then either:
13909 * 1) src_reg might be zero, so the sign bit of the result is
13910 * unknown, so we lose our signed bounds
13911 * 2) it's known negative, thus the unsigned bounds capture the
13912 * signed bounds
13913 * 3) the signed bounds cross zero, so they tell us nothing
13914 * about the result
13915 * If the value in dst_reg is known nonnegative, then again the
13916 * unsigned bounds capture the signed bounds.
13917 * Thus, in all cases it suffices to blow away our signed bounds
13918 * and rely on inferring new ones from the unsigned bounds and
13919 * var_off of the result.
13920 */
13921 dst_reg->s32_min_value = S32_MIN;
13922 dst_reg->s32_max_value = S32_MAX;
13923
13924 dst_reg->var_off = tnum_rshift(subreg, umin_val);
13925 dst_reg->u32_min_value >>= umax_val;
13926 dst_reg->u32_max_value >>= umin_val;
13927
13928 __mark_reg64_unbounded(dst_reg);
13929 __update_reg32_bounds(dst_reg);
13930 }
13931
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13932 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13933 struct bpf_reg_state *src_reg)
13934 {
13935 u64 umax_val = src_reg->umax_value;
13936 u64 umin_val = src_reg->umin_value;
13937
13938 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13939 * be negative, then either:
13940 * 1) src_reg might be zero, so the sign bit of the result is
13941 * unknown, so we lose our signed bounds
13942 * 2) it's known negative, thus the unsigned bounds capture the
13943 * signed bounds
13944 * 3) the signed bounds cross zero, so they tell us nothing
13945 * about the result
13946 * If the value in dst_reg is known nonnegative, then again the
13947 * unsigned bounds capture the signed bounds.
13948 * Thus, in all cases it suffices to blow away our signed bounds
13949 * and rely on inferring new ones from the unsigned bounds and
13950 * var_off of the result.
13951 */
13952 dst_reg->smin_value = S64_MIN;
13953 dst_reg->smax_value = S64_MAX;
13954 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13955 dst_reg->umin_value >>= umax_val;
13956 dst_reg->umax_value >>= umin_val;
13957
13958 /* Its not easy to operate on alu32 bounds here because it depends
13959 * on bits being shifted in. Take easy way out and mark unbounded
13960 * so we can recalculate later from tnum.
13961 */
13962 __mark_reg32_unbounded(dst_reg);
13963 __update_reg_bounds(dst_reg);
13964 }
13965
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13966 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13967 struct bpf_reg_state *src_reg)
13968 {
13969 u64 umin_val = src_reg->u32_min_value;
13970
13971 /* Upon reaching here, src_known is true and
13972 * umax_val is equal to umin_val.
13973 */
13974 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13975 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13976
13977 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13978
13979 /* blow away the dst_reg umin_value/umax_value and rely on
13980 * dst_reg var_off to refine the result.
13981 */
13982 dst_reg->u32_min_value = 0;
13983 dst_reg->u32_max_value = U32_MAX;
13984
13985 __mark_reg64_unbounded(dst_reg);
13986 __update_reg32_bounds(dst_reg);
13987 }
13988
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13989 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13990 struct bpf_reg_state *src_reg)
13991 {
13992 u64 umin_val = src_reg->umin_value;
13993
13994 /* Upon reaching here, src_known is true and umax_val is equal
13995 * to umin_val.
13996 */
13997 dst_reg->smin_value >>= umin_val;
13998 dst_reg->smax_value >>= umin_val;
13999
14000 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
14001
14002 /* blow away the dst_reg umin_value/umax_value and rely on
14003 * dst_reg var_off to refine the result.
14004 */
14005 dst_reg->umin_value = 0;
14006 dst_reg->umax_value = U64_MAX;
14007
14008 /* Its not easy to operate on alu32 bounds here because it depends
14009 * on bits being shifted in from upper 32-bits. Take easy way out
14010 * and mark unbounded so we can recalculate later from tnum.
14011 */
14012 __mark_reg32_unbounded(dst_reg);
14013 __update_reg_bounds(dst_reg);
14014 }
14015
is_safe_to_compute_dst_reg_range(struct bpf_insn * insn,const struct bpf_reg_state * src_reg)14016 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
14017 const struct bpf_reg_state *src_reg)
14018 {
14019 bool src_is_const = false;
14020 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
14021
14022 if (insn_bitness == 32) {
14023 if (tnum_subreg_is_const(src_reg->var_off)
14024 && src_reg->s32_min_value == src_reg->s32_max_value
14025 && src_reg->u32_min_value == src_reg->u32_max_value)
14026 src_is_const = true;
14027 } else {
14028 if (tnum_is_const(src_reg->var_off)
14029 && src_reg->smin_value == src_reg->smax_value
14030 && src_reg->umin_value == src_reg->umax_value)
14031 src_is_const = true;
14032 }
14033
14034 switch (BPF_OP(insn->code)) {
14035 case BPF_ADD:
14036 case BPF_SUB:
14037 case BPF_AND:
14038 case BPF_XOR:
14039 case BPF_OR:
14040 case BPF_MUL:
14041 return true;
14042
14043 /* Shift operators range is only computable if shift dimension operand
14044 * is a constant. Shifts greater than 31 or 63 are undefined. This
14045 * includes shifts by a negative number.
14046 */
14047 case BPF_LSH:
14048 case BPF_RSH:
14049 case BPF_ARSH:
14050 return (src_is_const && src_reg->umax_value < insn_bitness);
14051 default:
14052 return false;
14053 }
14054 }
14055
14056 /* WARNING: This function does calculations on 64-bit values, but the actual
14057 * execution may occur on 32-bit values. Therefore, things like bitshifts
14058 * need extra checks in the 32-bit case.
14059 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)14060 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
14061 struct bpf_insn *insn,
14062 struct bpf_reg_state *dst_reg,
14063 struct bpf_reg_state src_reg)
14064 {
14065 u8 opcode = BPF_OP(insn->code);
14066 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14067 int ret;
14068
14069 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
14070 __mark_reg_unknown(env, dst_reg);
14071 return 0;
14072 }
14073
14074 if (sanitize_needed(opcode)) {
14075 ret = sanitize_val_alu(env, insn);
14076 if (ret < 0)
14077 return sanitize_err(env, insn, ret, NULL, NULL);
14078 }
14079
14080 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
14081 * There are two classes of instructions: The first class we track both
14082 * alu32 and alu64 sign/unsigned bounds independently this provides the
14083 * greatest amount of precision when alu operations are mixed with jmp32
14084 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
14085 * and BPF_OR. This is possible because these ops have fairly easy to
14086 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
14087 * See alu32 verifier tests for examples. The second class of
14088 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
14089 * with regards to tracking sign/unsigned bounds because the bits may
14090 * cross subreg boundaries in the alu64 case. When this happens we mark
14091 * the reg unbounded in the subreg bound space and use the resulting
14092 * tnum to calculate an approximation of the sign/unsigned bounds.
14093 */
14094 switch (opcode) {
14095 case BPF_ADD:
14096 scalar32_min_max_add(dst_reg, &src_reg);
14097 scalar_min_max_add(dst_reg, &src_reg);
14098 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
14099 break;
14100 case BPF_SUB:
14101 scalar32_min_max_sub(dst_reg, &src_reg);
14102 scalar_min_max_sub(dst_reg, &src_reg);
14103 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
14104 break;
14105 case BPF_MUL:
14106 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
14107 scalar32_min_max_mul(dst_reg, &src_reg);
14108 scalar_min_max_mul(dst_reg, &src_reg);
14109 break;
14110 case BPF_AND:
14111 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
14112 scalar32_min_max_and(dst_reg, &src_reg);
14113 scalar_min_max_and(dst_reg, &src_reg);
14114 break;
14115 case BPF_OR:
14116 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
14117 scalar32_min_max_or(dst_reg, &src_reg);
14118 scalar_min_max_or(dst_reg, &src_reg);
14119 break;
14120 case BPF_XOR:
14121 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
14122 scalar32_min_max_xor(dst_reg, &src_reg);
14123 scalar_min_max_xor(dst_reg, &src_reg);
14124 break;
14125 case BPF_LSH:
14126 if (alu32)
14127 scalar32_min_max_lsh(dst_reg, &src_reg);
14128 else
14129 scalar_min_max_lsh(dst_reg, &src_reg);
14130 break;
14131 case BPF_RSH:
14132 if (alu32)
14133 scalar32_min_max_rsh(dst_reg, &src_reg);
14134 else
14135 scalar_min_max_rsh(dst_reg, &src_reg);
14136 break;
14137 case BPF_ARSH:
14138 if (alu32)
14139 scalar32_min_max_arsh(dst_reg, &src_reg);
14140 else
14141 scalar_min_max_arsh(dst_reg, &src_reg);
14142 break;
14143 default:
14144 break;
14145 }
14146
14147 /* ALU32 ops are zero extended into 64bit register */
14148 if (alu32)
14149 zext_32_to_64(dst_reg);
14150 reg_bounds_sync(dst_reg);
14151 return 0;
14152 }
14153
14154 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
14155 * and var_off.
14156 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)14157 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
14158 struct bpf_insn *insn)
14159 {
14160 struct bpf_verifier_state *vstate = env->cur_state;
14161 struct bpf_func_state *state = vstate->frame[vstate->curframe];
14162 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
14163 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
14164 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14165 u8 opcode = BPF_OP(insn->code);
14166 int err;
14167
14168 dst_reg = ®s[insn->dst_reg];
14169 src_reg = NULL;
14170
14171 if (dst_reg->type == PTR_TO_ARENA) {
14172 struct bpf_insn_aux_data *aux = cur_aux(env);
14173
14174 if (BPF_CLASS(insn->code) == BPF_ALU64)
14175 /*
14176 * 32-bit operations zero upper bits automatically.
14177 * 64-bit operations need to be converted to 32.
14178 */
14179 aux->needs_zext = true;
14180
14181 /* Any arithmetic operations are allowed on arena pointers */
14182 return 0;
14183 }
14184
14185 if (dst_reg->type != SCALAR_VALUE)
14186 ptr_reg = dst_reg;
14187
14188 if (BPF_SRC(insn->code) == BPF_X) {
14189 src_reg = ®s[insn->src_reg];
14190 if (src_reg->type != SCALAR_VALUE) {
14191 if (dst_reg->type != SCALAR_VALUE) {
14192 /* Combining two pointers by any ALU op yields
14193 * an arbitrary scalar. Disallow all math except
14194 * pointer subtraction
14195 */
14196 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14197 mark_reg_unknown(env, regs, insn->dst_reg);
14198 return 0;
14199 }
14200 verbose(env, "R%d pointer %s pointer prohibited\n",
14201 insn->dst_reg,
14202 bpf_alu_string[opcode >> 4]);
14203 return -EACCES;
14204 } else {
14205 /* scalar += pointer
14206 * This is legal, but we have to reverse our
14207 * src/dest handling in computing the range
14208 */
14209 err = mark_chain_precision(env, insn->dst_reg);
14210 if (err)
14211 return err;
14212 return adjust_ptr_min_max_vals(env, insn,
14213 src_reg, dst_reg);
14214 }
14215 } else if (ptr_reg) {
14216 /* pointer += scalar */
14217 err = mark_chain_precision(env, insn->src_reg);
14218 if (err)
14219 return err;
14220 return adjust_ptr_min_max_vals(env, insn,
14221 dst_reg, src_reg);
14222 } else if (dst_reg->precise) {
14223 /* if dst_reg is precise, src_reg should be precise as well */
14224 err = mark_chain_precision(env, insn->src_reg);
14225 if (err)
14226 return err;
14227 }
14228 } else {
14229 /* Pretend the src is a reg with a known value, since we only
14230 * need to be able to read from this state.
14231 */
14232 off_reg.type = SCALAR_VALUE;
14233 __mark_reg_known(&off_reg, insn->imm);
14234 src_reg = &off_reg;
14235 if (ptr_reg) /* pointer += K */
14236 return adjust_ptr_min_max_vals(env, insn,
14237 ptr_reg, src_reg);
14238 }
14239
14240 /* Got here implies adding two SCALAR_VALUEs */
14241 if (WARN_ON_ONCE(ptr_reg)) {
14242 print_verifier_state(env, state, true);
14243 verbose(env, "verifier internal error: unexpected ptr_reg\n");
14244 return -EINVAL;
14245 }
14246 if (WARN_ON(!src_reg)) {
14247 print_verifier_state(env, state, true);
14248 verbose(env, "verifier internal error: no src_reg\n");
14249 return -EINVAL;
14250 }
14251 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
14252 if (err)
14253 return err;
14254 /*
14255 * Compilers can generate the code
14256 * r1 = r2
14257 * r1 += 0x1
14258 * if r2 < 1000 goto ...
14259 * use r1 in memory access
14260 * So for 64-bit alu remember constant delta between r2 and r1 and
14261 * update r1 after 'if' condition.
14262 */
14263 if (env->bpf_capable &&
14264 BPF_OP(insn->code) == BPF_ADD && !alu32 &&
14265 dst_reg->id && is_reg_const(src_reg, false)) {
14266 u64 val = reg_const_value(src_reg, false);
14267
14268 if ((dst_reg->id & BPF_ADD_CONST) ||
14269 /* prevent overflow in sync_linked_regs() later */
14270 val > (u32)S32_MAX) {
14271 /*
14272 * If the register already went through rX += val
14273 * we cannot accumulate another val into rx->off.
14274 */
14275 dst_reg->off = 0;
14276 dst_reg->id = 0;
14277 } else {
14278 dst_reg->id |= BPF_ADD_CONST;
14279 dst_reg->off = val;
14280 }
14281 } else {
14282 /*
14283 * Make sure ID is cleared otherwise dst_reg min/max could be
14284 * incorrectly propagated into other registers by sync_linked_regs()
14285 */
14286 dst_reg->id = 0;
14287 }
14288 return 0;
14289 }
14290
14291 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)14292 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
14293 {
14294 struct bpf_reg_state *regs = cur_regs(env);
14295 u8 opcode = BPF_OP(insn->code);
14296 int err;
14297
14298 if (opcode == BPF_END || opcode == BPF_NEG) {
14299 if (opcode == BPF_NEG) {
14300 if (BPF_SRC(insn->code) != BPF_K ||
14301 insn->src_reg != BPF_REG_0 ||
14302 insn->off != 0 || insn->imm != 0) {
14303 verbose(env, "BPF_NEG uses reserved fields\n");
14304 return -EINVAL;
14305 }
14306 } else {
14307 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
14308 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
14309 (BPF_CLASS(insn->code) == BPF_ALU64 &&
14310 BPF_SRC(insn->code) != BPF_TO_LE)) {
14311 verbose(env, "BPF_END uses reserved fields\n");
14312 return -EINVAL;
14313 }
14314 }
14315
14316 /* check src operand */
14317 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14318 if (err)
14319 return err;
14320
14321 if (is_pointer_value(env, insn->dst_reg)) {
14322 verbose(env, "R%d pointer arithmetic prohibited\n",
14323 insn->dst_reg);
14324 return -EACCES;
14325 }
14326
14327 /* check dest operand */
14328 err = check_reg_arg(env, insn->dst_reg, DST_OP);
14329 if (err)
14330 return err;
14331
14332 } else if (opcode == BPF_MOV) {
14333
14334 if (BPF_SRC(insn->code) == BPF_X) {
14335 if (BPF_CLASS(insn->code) == BPF_ALU) {
14336 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
14337 insn->imm) {
14338 verbose(env, "BPF_MOV uses reserved fields\n");
14339 return -EINVAL;
14340 }
14341 } else if (insn->off == BPF_ADDR_SPACE_CAST) {
14342 if (insn->imm != 1 && insn->imm != 1u << 16) {
14343 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
14344 return -EINVAL;
14345 }
14346 if (!env->prog->aux->arena) {
14347 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
14348 return -EINVAL;
14349 }
14350 } else {
14351 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
14352 insn->off != 32) || insn->imm) {
14353 verbose(env, "BPF_MOV uses reserved fields\n");
14354 return -EINVAL;
14355 }
14356 }
14357
14358 /* check src operand */
14359 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14360 if (err)
14361 return err;
14362 } else {
14363 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
14364 verbose(env, "BPF_MOV uses reserved fields\n");
14365 return -EINVAL;
14366 }
14367 }
14368
14369 /* check dest operand, mark as required later */
14370 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14371 if (err)
14372 return err;
14373
14374 if (BPF_SRC(insn->code) == BPF_X) {
14375 struct bpf_reg_state *src_reg = regs + insn->src_reg;
14376 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
14377
14378 if (BPF_CLASS(insn->code) == BPF_ALU64) {
14379 if (insn->imm) {
14380 /* off == BPF_ADDR_SPACE_CAST */
14381 mark_reg_unknown(env, regs, insn->dst_reg);
14382 if (insn->imm == 1) { /* cast from as(1) to as(0) */
14383 dst_reg->type = PTR_TO_ARENA;
14384 /* PTR_TO_ARENA is 32-bit */
14385 dst_reg->subreg_def = env->insn_idx + 1;
14386 }
14387 } else if (insn->off == 0) {
14388 /* case: R1 = R2
14389 * copy register state to dest reg
14390 */
14391 assign_scalar_id_before_mov(env, src_reg);
14392 copy_register_state(dst_reg, src_reg);
14393 dst_reg->live |= REG_LIVE_WRITTEN;
14394 dst_reg->subreg_def = DEF_NOT_SUBREG;
14395 } else {
14396 /* case: R1 = (s8, s16 s32)R2 */
14397 if (is_pointer_value(env, insn->src_reg)) {
14398 verbose(env,
14399 "R%d sign-extension part of pointer\n",
14400 insn->src_reg);
14401 return -EACCES;
14402 } else if (src_reg->type == SCALAR_VALUE) {
14403 bool no_sext;
14404
14405 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14406 if (no_sext)
14407 assign_scalar_id_before_mov(env, src_reg);
14408 copy_register_state(dst_reg, src_reg);
14409 if (!no_sext)
14410 dst_reg->id = 0;
14411 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
14412 dst_reg->live |= REG_LIVE_WRITTEN;
14413 dst_reg->subreg_def = DEF_NOT_SUBREG;
14414 } else {
14415 mark_reg_unknown(env, regs, insn->dst_reg);
14416 }
14417 }
14418 } else {
14419 /* R1 = (u32) R2 */
14420 if (is_pointer_value(env, insn->src_reg)) {
14421 verbose(env,
14422 "R%d partial copy of pointer\n",
14423 insn->src_reg);
14424 return -EACCES;
14425 } else if (src_reg->type == SCALAR_VALUE) {
14426 if (insn->off == 0) {
14427 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
14428
14429 if (is_src_reg_u32)
14430 assign_scalar_id_before_mov(env, src_reg);
14431 copy_register_state(dst_reg, src_reg);
14432 /* Make sure ID is cleared if src_reg is not in u32
14433 * range otherwise dst_reg min/max could be incorrectly
14434 * propagated into src_reg by sync_linked_regs()
14435 */
14436 if (!is_src_reg_u32)
14437 dst_reg->id = 0;
14438 dst_reg->live |= REG_LIVE_WRITTEN;
14439 dst_reg->subreg_def = env->insn_idx + 1;
14440 } else {
14441 /* case: W1 = (s8, s16)W2 */
14442 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14443
14444 if (no_sext)
14445 assign_scalar_id_before_mov(env, src_reg);
14446 copy_register_state(dst_reg, src_reg);
14447 if (!no_sext)
14448 dst_reg->id = 0;
14449 dst_reg->live |= REG_LIVE_WRITTEN;
14450 dst_reg->subreg_def = env->insn_idx + 1;
14451 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14452 }
14453 } else {
14454 mark_reg_unknown(env, regs,
14455 insn->dst_reg);
14456 }
14457 zext_32_to_64(dst_reg);
14458 reg_bounds_sync(dst_reg);
14459 }
14460 } else {
14461 /* case: R = imm
14462 * remember the value we stored into this reg
14463 */
14464 /* clear any state __mark_reg_known doesn't set */
14465 mark_reg_unknown(env, regs, insn->dst_reg);
14466 regs[insn->dst_reg].type = SCALAR_VALUE;
14467 if (BPF_CLASS(insn->code) == BPF_ALU64) {
14468 __mark_reg_known(regs + insn->dst_reg,
14469 insn->imm);
14470 } else {
14471 __mark_reg_known(regs + insn->dst_reg,
14472 (u32)insn->imm);
14473 }
14474 }
14475
14476 } else if (opcode > BPF_END) {
14477 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14478 return -EINVAL;
14479
14480 } else { /* all other ALU ops: and, sub, xor, add, ... */
14481
14482 if (BPF_SRC(insn->code) == BPF_X) {
14483 if (insn->imm != 0 || insn->off > 1 ||
14484 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14485 verbose(env, "BPF_ALU uses reserved fields\n");
14486 return -EINVAL;
14487 }
14488 /* check src1 operand */
14489 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14490 if (err)
14491 return err;
14492 } else {
14493 if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14494 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14495 verbose(env, "BPF_ALU uses reserved fields\n");
14496 return -EINVAL;
14497 }
14498 }
14499
14500 /* check src2 operand */
14501 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14502 if (err)
14503 return err;
14504
14505 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14506 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14507 verbose(env, "div by zero\n");
14508 return -EINVAL;
14509 }
14510
14511 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14512 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14513 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14514
14515 if (insn->imm < 0 || insn->imm >= size) {
14516 verbose(env, "invalid shift %d\n", insn->imm);
14517 return -EINVAL;
14518 }
14519 }
14520
14521 /* check dest operand */
14522 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14523 err = err ?: adjust_reg_min_max_vals(env, insn);
14524 if (err)
14525 return err;
14526 }
14527
14528 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu");
14529 }
14530
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)14531 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14532 struct bpf_reg_state *dst_reg,
14533 enum bpf_reg_type type,
14534 bool range_right_open)
14535 {
14536 struct bpf_func_state *state;
14537 struct bpf_reg_state *reg;
14538 int new_range;
14539
14540 if (dst_reg->off < 0 ||
14541 (dst_reg->off == 0 && range_right_open))
14542 /* This doesn't give us any range */
14543 return;
14544
14545 if (dst_reg->umax_value > MAX_PACKET_OFF ||
14546 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14547 /* Risk of overflow. For instance, ptr + (1<<63) may be less
14548 * than pkt_end, but that's because it's also less than pkt.
14549 */
14550 return;
14551
14552 new_range = dst_reg->off;
14553 if (range_right_open)
14554 new_range++;
14555
14556 /* Examples for register markings:
14557 *
14558 * pkt_data in dst register:
14559 *
14560 * r2 = r3;
14561 * r2 += 8;
14562 * if (r2 > pkt_end) goto <handle exception>
14563 * <access okay>
14564 *
14565 * r2 = r3;
14566 * r2 += 8;
14567 * if (r2 < pkt_end) goto <access okay>
14568 * <handle exception>
14569 *
14570 * Where:
14571 * r2 == dst_reg, pkt_end == src_reg
14572 * r2=pkt(id=n,off=8,r=0)
14573 * r3=pkt(id=n,off=0,r=0)
14574 *
14575 * pkt_data in src register:
14576 *
14577 * r2 = r3;
14578 * r2 += 8;
14579 * if (pkt_end >= r2) goto <access okay>
14580 * <handle exception>
14581 *
14582 * r2 = r3;
14583 * r2 += 8;
14584 * if (pkt_end <= r2) goto <handle exception>
14585 * <access okay>
14586 *
14587 * Where:
14588 * pkt_end == dst_reg, r2 == src_reg
14589 * r2=pkt(id=n,off=8,r=0)
14590 * r3=pkt(id=n,off=0,r=0)
14591 *
14592 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14593 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14594 * and [r3, r3 + 8-1) respectively is safe to access depending on
14595 * the check.
14596 */
14597
14598 /* If our ids match, then we must have the same max_value. And we
14599 * don't care about the other reg's fixed offset, since if it's too big
14600 * the range won't allow anything.
14601 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14602 */
14603 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14604 if (reg->type == type && reg->id == dst_reg->id)
14605 /* keep the maximum range already checked */
14606 reg->range = max(reg->range, new_range);
14607 }));
14608 }
14609
14610 /*
14611 * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14612 */
is_scalar_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)14613 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14614 u8 opcode, bool is_jmp32)
14615 {
14616 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14617 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14618 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14619 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14620 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14621 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14622 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14623 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14624 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14625 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14626
14627 switch (opcode) {
14628 case BPF_JEQ:
14629 /* constants, umin/umax and smin/smax checks would be
14630 * redundant in this case because they all should match
14631 */
14632 if (tnum_is_const(t1) && tnum_is_const(t2))
14633 return t1.value == t2.value;
14634 /* non-overlapping ranges */
14635 if (umin1 > umax2 || umax1 < umin2)
14636 return 0;
14637 if (smin1 > smax2 || smax1 < smin2)
14638 return 0;
14639 if (!is_jmp32) {
14640 /* if 64-bit ranges are inconclusive, see if we can
14641 * utilize 32-bit subrange knowledge to eliminate
14642 * branches that can't be taken a priori
14643 */
14644 if (reg1->u32_min_value > reg2->u32_max_value ||
14645 reg1->u32_max_value < reg2->u32_min_value)
14646 return 0;
14647 if (reg1->s32_min_value > reg2->s32_max_value ||
14648 reg1->s32_max_value < reg2->s32_min_value)
14649 return 0;
14650 }
14651 break;
14652 case BPF_JNE:
14653 /* constants, umin/umax and smin/smax checks would be
14654 * redundant in this case because they all should match
14655 */
14656 if (tnum_is_const(t1) && tnum_is_const(t2))
14657 return t1.value != t2.value;
14658 /* non-overlapping ranges */
14659 if (umin1 > umax2 || umax1 < umin2)
14660 return 1;
14661 if (smin1 > smax2 || smax1 < smin2)
14662 return 1;
14663 if (!is_jmp32) {
14664 /* if 64-bit ranges are inconclusive, see if we can
14665 * utilize 32-bit subrange knowledge to eliminate
14666 * branches that can't be taken a priori
14667 */
14668 if (reg1->u32_min_value > reg2->u32_max_value ||
14669 reg1->u32_max_value < reg2->u32_min_value)
14670 return 1;
14671 if (reg1->s32_min_value > reg2->s32_max_value ||
14672 reg1->s32_max_value < reg2->s32_min_value)
14673 return 1;
14674 }
14675 break;
14676 case BPF_JSET:
14677 if (!is_reg_const(reg2, is_jmp32)) {
14678 swap(reg1, reg2);
14679 swap(t1, t2);
14680 }
14681 if (!is_reg_const(reg2, is_jmp32))
14682 return -1;
14683 if ((~t1.mask & t1.value) & t2.value)
14684 return 1;
14685 if (!((t1.mask | t1.value) & t2.value))
14686 return 0;
14687 break;
14688 case BPF_JGT:
14689 if (umin1 > umax2)
14690 return 1;
14691 else if (umax1 <= umin2)
14692 return 0;
14693 break;
14694 case BPF_JSGT:
14695 if (smin1 > smax2)
14696 return 1;
14697 else if (smax1 <= smin2)
14698 return 0;
14699 break;
14700 case BPF_JLT:
14701 if (umax1 < umin2)
14702 return 1;
14703 else if (umin1 >= umax2)
14704 return 0;
14705 break;
14706 case BPF_JSLT:
14707 if (smax1 < smin2)
14708 return 1;
14709 else if (smin1 >= smax2)
14710 return 0;
14711 break;
14712 case BPF_JGE:
14713 if (umin1 >= umax2)
14714 return 1;
14715 else if (umax1 < umin2)
14716 return 0;
14717 break;
14718 case BPF_JSGE:
14719 if (smin1 >= smax2)
14720 return 1;
14721 else if (smax1 < smin2)
14722 return 0;
14723 break;
14724 case BPF_JLE:
14725 if (umax1 <= umin2)
14726 return 1;
14727 else if (umin1 > umax2)
14728 return 0;
14729 break;
14730 case BPF_JSLE:
14731 if (smax1 <= smin2)
14732 return 1;
14733 else if (smin1 > smax2)
14734 return 0;
14735 break;
14736 }
14737
14738 return -1;
14739 }
14740
flip_opcode(u32 opcode)14741 static int flip_opcode(u32 opcode)
14742 {
14743 /* How can we transform "a <op> b" into "b <op> a"? */
14744 static const u8 opcode_flip[16] = {
14745 /* these stay the same */
14746 [BPF_JEQ >> 4] = BPF_JEQ,
14747 [BPF_JNE >> 4] = BPF_JNE,
14748 [BPF_JSET >> 4] = BPF_JSET,
14749 /* these swap "lesser" and "greater" (L and G in the opcodes) */
14750 [BPF_JGE >> 4] = BPF_JLE,
14751 [BPF_JGT >> 4] = BPF_JLT,
14752 [BPF_JLE >> 4] = BPF_JGE,
14753 [BPF_JLT >> 4] = BPF_JGT,
14754 [BPF_JSGE >> 4] = BPF_JSLE,
14755 [BPF_JSGT >> 4] = BPF_JSLT,
14756 [BPF_JSLE >> 4] = BPF_JSGE,
14757 [BPF_JSLT >> 4] = BPF_JSGT
14758 };
14759 return opcode_flip[opcode >> 4];
14760 }
14761
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)14762 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14763 struct bpf_reg_state *src_reg,
14764 u8 opcode)
14765 {
14766 struct bpf_reg_state *pkt;
14767
14768 if (src_reg->type == PTR_TO_PACKET_END) {
14769 pkt = dst_reg;
14770 } else if (dst_reg->type == PTR_TO_PACKET_END) {
14771 pkt = src_reg;
14772 opcode = flip_opcode(opcode);
14773 } else {
14774 return -1;
14775 }
14776
14777 if (pkt->range >= 0)
14778 return -1;
14779
14780 switch (opcode) {
14781 case BPF_JLE:
14782 /* pkt <= pkt_end */
14783 fallthrough;
14784 case BPF_JGT:
14785 /* pkt > pkt_end */
14786 if (pkt->range == BEYOND_PKT_END)
14787 /* pkt has at last one extra byte beyond pkt_end */
14788 return opcode == BPF_JGT;
14789 break;
14790 case BPF_JLT:
14791 /* pkt < pkt_end */
14792 fallthrough;
14793 case BPF_JGE:
14794 /* pkt >= pkt_end */
14795 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14796 return opcode == BPF_JGE;
14797 break;
14798 }
14799 return -1;
14800 }
14801
14802 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14803 * and return:
14804 * 1 - branch will be taken and "goto target" will be executed
14805 * 0 - branch will not be taken and fall-through to next insn
14806 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14807 * range [0,10]
14808 */
is_branch_taken(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)14809 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14810 u8 opcode, bool is_jmp32)
14811 {
14812 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14813 return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14814
14815 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14816 u64 val;
14817
14818 /* arrange that reg2 is a scalar, and reg1 is a pointer */
14819 if (!is_reg_const(reg2, is_jmp32)) {
14820 opcode = flip_opcode(opcode);
14821 swap(reg1, reg2);
14822 }
14823 /* and ensure that reg2 is a constant */
14824 if (!is_reg_const(reg2, is_jmp32))
14825 return -1;
14826
14827 if (!reg_not_null(reg1))
14828 return -1;
14829
14830 /* If pointer is valid tests against zero will fail so we can
14831 * use this to direct branch taken.
14832 */
14833 val = reg_const_value(reg2, is_jmp32);
14834 if (val != 0)
14835 return -1;
14836
14837 switch (opcode) {
14838 case BPF_JEQ:
14839 return 0;
14840 case BPF_JNE:
14841 return 1;
14842 default:
14843 return -1;
14844 }
14845 }
14846
14847 /* now deal with two scalars, but not necessarily constants */
14848 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14849 }
14850
14851 /* Opcode that corresponds to a *false* branch condition.
14852 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14853 */
rev_opcode(u8 opcode)14854 static u8 rev_opcode(u8 opcode)
14855 {
14856 switch (opcode) {
14857 case BPF_JEQ: return BPF_JNE;
14858 case BPF_JNE: return BPF_JEQ;
14859 /* JSET doesn't have it's reverse opcode in BPF, so add
14860 * BPF_X flag to denote the reverse of that operation
14861 */
14862 case BPF_JSET: return BPF_JSET | BPF_X;
14863 case BPF_JSET | BPF_X: return BPF_JSET;
14864 case BPF_JGE: return BPF_JLT;
14865 case BPF_JGT: return BPF_JLE;
14866 case BPF_JLE: return BPF_JGT;
14867 case BPF_JLT: return BPF_JGE;
14868 case BPF_JSGE: return BPF_JSLT;
14869 case BPF_JSGT: return BPF_JSLE;
14870 case BPF_JSLE: return BPF_JSGT;
14871 case BPF_JSLT: return BPF_JSGE;
14872 default: return 0;
14873 }
14874 }
14875
14876 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
regs_refine_cond_op(struct bpf_reg_state * reg1,struct bpf_reg_state * reg2,u8 opcode,bool is_jmp32)14877 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14878 u8 opcode, bool is_jmp32)
14879 {
14880 struct tnum t;
14881 u64 val;
14882
14883 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
14884 switch (opcode) {
14885 case BPF_JGE:
14886 case BPF_JGT:
14887 case BPF_JSGE:
14888 case BPF_JSGT:
14889 opcode = flip_opcode(opcode);
14890 swap(reg1, reg2);
14891 break;
14892 default:
14893 break;
14894 }
14895
14896 switch (opcode) {
14897 case BPF_JEQ:
14898 if (is_jmp32) {
14899 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14900 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14901 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14902 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14903 reg2->u32_min_value = reg1->u32_min_value;
14904 reg2->u32_max_value = reg1->u32_max_value;
14905 reg2->s32_min_value = reg1->s32_min_value;
14906 reg2->s32_max_value = reg1->s32_max_value;
14907
14908 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14909 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14910 reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14911 } else {
14912 reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14913 reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14914 reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14915 reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14916 reg2->umin_value = reg1->umin_value;
14917 reg2->umax_value = reg1->umax_value;
14918 reg2->smin_value = reg1->smin_value;
14919 reg2->smax_value = reg1->smax_value;
14920
14921 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14922 reg2->var_off = reg1->var_off;
14923 }
14924 break;
14925 case BPF_JNE:
14926 if (!is_reg_const(reg2, is_jmp32))
14927 swap(reg1, reg2);
14928 if (!is_reg_const(reg2, is_jmp32))
14929 break;
14930
14931 /* try to recompute the bound of reg1 if reg2 is a const and
14932 * is exactly the edge of reg1.
14933 */
14934 val = reg_const_value(reg2, is_jmp32);
14935 if (is_jmp32) {
14936 /* u32_min_value is not equal to 0xffffffff at this point,
14937 * because otherwise u32_max_value is 0xffffffff as well,
14938 * in such a case both reg1 and reg2 would be constants,
14939 * jump would be predicted and reg_set_min_max() won't
14940 * be called.
14941 *
14942 * Same reasoning works for all {u,s}{min,max}{32,64} cases
14943 * below.
14944 */
14945 if (reg1->u32_min_value == (u32)val)
14946 reg1->u32_min_value++;
14947 if (reg1->u32_max_value == (u32)val)
14948 reg1->u32_max_value--;
14949 if (reg1->s32_min_value == (s32)val)
14950 reg1->s32_min_value++;
14951 if (reg1->s32_max_value == (s32)val)
14952 reg1->s32_max_value--;
14953 } else {
14954 if (reg1->umin_value == (u64)val)
14955 reg1->umin_value++;
14956 if (reg1->umax_value == (u64)val)
14957 reg1->umax_value--;
14958 if (reg1->smin_value == (s64)val)
14959 reg1->smin_value++;
14960 if (reg1->smax_value == (s64)val)
14961 reg1->smax_value--;
14962 }
14963 break;
14964 case BPF_JSET:
14965 if (!is_reg_const(reg2, is_jmp32))
14966 swap(reg1, reg2);
14967 if (!is_reg_const(reg2, is_jmp32))
14968 break;
14969 val = reg_const_value(reg2, is_jmp32);
14970 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14971 * requires single bit to learn something useful. E.g., if we
14972 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14973 * are actually set? We can learn something definite only if
14974 * it's a single-bit value to begin with.
14975 *
14976 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14977 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14978 * bit 1 is set, which we can readily use in adjustments.
14979 */
14980 if (!is_power_of_2(val))
14981 break;
14982 if (is_jmp32) {
14983 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14984 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14985 } else {
14986 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14987 }
14988 break;
14989 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
14990 if (!is_reg_const(reg2, is_jmp32))
14991 swap(reg1, reg2);
14992 if (!is_reg_const(reg2, is_jmp32))
14993 break;
14994 val = reg_const_value(reg2, is_jmp32);
14995 if (is_jmp32) {
14996 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
14997 reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14998 } else {
14999 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
15000 }
15001 break;
15002 case BPF_JLE:
15003 if (is_jmp32) {
15004 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15005 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15006 } else {
15007 reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15008 reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
15009 }
15010 break;
15011 case BPF_JLT:
15012 if (is_jmp32) {
15013 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
15014 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
15015 } else {
15016 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
15017 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
15018 }
15019 break;
15020 case BPF_JSLE:
15021 if (is_jmp32) {
15022 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15023 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15024 } else {
15025 reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15026 reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
15027 }
15028 break;
15029 case BPF_JSLT:
15030 if (is_jmp32) {
15031 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
15032 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
15033 } else {
15034 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
15035 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
15036 }
15037 break;
15038 default:
15039 return;
15040 }
15041 }
15042
15043 /* Adjusts the register min/max values in the case that the dst_reg and
15044 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
15045 * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
15046 * Technically we can do similar adjustments for pointers to the same object,
15047 * but we don't support that right now.
15048 */
reg_set_min_max(struct bpf_verifier_env * env,struct bpf_reg_state * true_reg1,struct bpf_reg_state * true_reg2,struct bpf_reg_state * false_reg1,struct bpf_reg_state * false_reg2,u8 opcode,bool is_jmp32)15049 static int reg_set_min_max(struct bpf_verifier_env *env,
15050 struct bpf_reg_state *true_reg1,
15051 struct bpf_reg_state *true_reg2,
15052 struct bpf_reg_state *false_reg1,
15053 struct bpf_reg_state *false_reg2,
15054 u8 opcode, bool is_jmp32)
15055 {
15056 int err;
15057
15058 /* If either register is a pointer, we can't learn anything about its
15059 * variable offset from the compare (unless they were a pointer into
15060 * the same object, but we don't bother with that).
15061 */
15062 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
15063 return 0;
15064
15065 /* fallthrough (FALSE) branch */
15066 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
15067 reg_bounds_sync(false_reg1);
15068 reg_bounds_sync(false_reg2);
15069
15070 /* jump (TRUE) branch */
15071 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
15072 reg_bounds_sync(true_reg1);
15073 reg_bounds_sync(true_reg2);
15074
15075 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
15076 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
15077 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
15078 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
15079 return err;
15080 }
15081
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)15082 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
15083 struct bpf_reg_state *reg, u32 id,
15084 bool is_null)
15085 {
15086 if (type_may_be_null(reg->type) && reg->id == id &&
15087 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
15088 /* Old offset (both fixed and variable parts) should have been
15089 * known-zero, because we don't allow pointer arithmetic on
15090 * pointers that might be NULL. If we see this happening, don't
15091 * convert the register.
15092 *
15093 * But in some cases, some helpers that return local kptrs
15094 * advance offset for the returned pointer. In those cases, it
15095 * is fine to expect to see reg->off.
15096 */
15097 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
15098 return;
15099 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
15100 WARN_ON_ONCE(reg->off))
15101 return;
15102
15103 if (is_null) {
15104 reg->type = SCALAR_VALUE;
15105 /* We don't need id and ref_obj_id from this point
15106 * onwards anymore, thus we should better reset it,
15107 * so that state pruning has chances to take effect.
15108 */
15109 reg->id = 0;
15110 reg->ref_obj_id = 0;
15111
15112 return;
15113 }
15114
15115 mark_ptr_not_null_reg(reg);
15116
15117 if (!reg_may_point_to_spin_lock(reg)) {
15118 /* For not-NULL ptr, reg->ref_obj_id will be reset
15119 * in release_reference().
15120 *
15121 * reg->id is still used by spin_lock ptr. Other
15122 * than spin_lock ptr type, reg->id can be reset.
15123 */
15124 reg->id = 0;
15125 }
15126 }
15127 }
15128
15129 /* The logic is similar to find_good_pkt_pointers(), both could eventually
15130 * be folded together at some point.
15131 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)15132 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
15133 bool is_null)
15134 {
15135 struct bpf_func_state *state = vstate->frame[vstate->curframe];
15136 struct bpf_reg_state *regs = state->regs, *reg;
15137 u32 ref_obj_id = regs[regno].ref_obj_id;
15138 u32 id = regs[regno].id;
15139
15140 if (ref_obj_id && ref_obj_id == id && is_null)
15141 /* regs[regno] is in the " == NULL" branch.
15142 * No one could have freed the reference state before
15143 * doing the NULL check.
15144 */
15145 WARN_ON_ONCE(release_reference_state(state, id));
15146
15147 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15148 mark_ptr_or_null_reg(state, reg, id, is_null);
15149 }));
15150 }
15151
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)15152 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
15153 struct bpf_reg_state *dst_reg,
15154 struct bpf_reg_state *src_reg,
15155 struct bpf_verifier_state *this_branch,
15156 struct bpf_verifier_state *other_branch)
15157 {
15158 if (BPF_SRC(insn->code) != BPF_X)
15159 return false;
15160
15161 /* Pointers are always 64-bit. */
15162 if (BPF_CLASS(insn->code) == BPF_JMP32)
15163 return false;
15164
15165 switch (BPF_OP(insn->code)) {
15166 case BPF_JGT:
15167 if ((dst_reg->type == PTR_TO_PACKET &&
15168 src_reg->type == PTR_TO_PACKET_END) ||
15169 (dst_reg->type == PTR_TO_PACKET_META &&
15170 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15171 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
15172 find_good_pkt_pointers(this_branch, dst_reg,
15173 dst_reg->type, false);
15174 mark_pkt_end(other_branch, insn->dst_reg, true);
15175 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
15176 src_reg->type == PTR_TO_PACKET) ||
15177 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15178 src_reg->type == PTR_TO_PACKET_META)) {
15179 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
15180 find_good_pkt_pointers(other_branch, src_reg,
15181 src_reg->type, true);
15182 mark_pkt_end(this_branch, insn->src_reg, false);
15183 } else {
15184 return false;
15185 }
15186 break;
15187 case BPF_JLT:
15188 if ((dst_reg->type == PTR_TO_PACKET &&
15189 src_reg->type == PTR_TO_PACKET_END) ||
15190 (dst_reg->type == PTR_TO_PACKET_META &&
15191 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15192 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
15193 find_good_pkt_pointers(other_branch, dst_reg,
15194 dst_reg->type, true);
15195 mark_pkt_end(this_branch, insn->dst_reg, false);
15196 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
15197 src_reg->type == PTR_TO_PACKET) ||
15198 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15199 src_reg->type == PTR_TO_PACKET_META)) {
15200 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
15201 find_good_pkt_pointers(this_branch, src_reg,
15202 src_reg->type, false);
15203 mark_pkt_end(other_branch, insn->src_reg, true);
15204 } else {
15205 return false;
15206 }
15207 break;
15208 case BPF_JGE:
15209 if ((dst_reg->type == PTR_TO_PACKET &&
15210 src_reg->type == PTR_TO_PACKET_END) ||
15211 (dst_reg->type == PTR_TO_PACKET_META &&
15212 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15213 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
15214 find_good_pkt_pointers(this_branch, dst_reg,
15215 dst_reg->type, true);
15216 mark_pkt_end(other_branch, insn->dst_reg, false);
15217 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
15218 src_reg->type == PTR_TO_PACKET) ||
15219 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15220 src_reg->type == PTR_TO_PACKET_META)) {
15221 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
15222 find_good_pkt_pointers(other_branch, src_reg,
15223 src_reg->type, false);
15224 mark_pkt_end(this_branch, insn->src_reg, true);
15225 } else {
15226 return false;
15227 }
15228 break;
15229 case BPF_JLE:
15230 if ((dst_reg->type == PTR_TO_PACKET &&
15231 src_reg->type == PTR_TO_PACKET_END) ||
15232 (dst_reg->type == PTR_TO_PACKET_META &&
15233 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15234 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
15235 find_good_pkt_pointers(other_branch, dst_reg,
15236 dst_reg->type, false);
15237 mark_pkt_end(this_branch, insn->dst_reg, true);
15238 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
15239 src_reg->type == PTR_TO_PACKET) ||
15240 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15241 src_reg->type == PTR_TO_PACKET_META)) {
15242 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
15243 find_good_pkt_pointers(this_branch, src_reg,
15244 src_reg->type, true);
15245 mark_pkt_end(other_branch, insn->src_reg, false);
15246 } else {
15247 return false;
15248 }
15249 break;
15250 default:
15251 return false;
15252 }
15253
15254 return true;
15255 }
15256
__collect_linked_regs(struct linked_regs * reg_set,struct bpf_reg_state * reg,u32 id,u32 frameno,u32 spi_or_reg,bool is_reg)15257 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
15258 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
15259 {
15260 struct linked_reg *e;
15261
15262 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
15263 return;
15264
15265 e = linked_regs_push(reg_set);
15266 if (e) {
15267 e->frameno = frameno;
15268 e->is_reg = is_reg;
15269 e->regno = spi_or_reg;
15270 } else {
15271 reg->id = 0;
15272 }
15273 }
15274
15275 /* For all R being scalar registers or spilled scalar registers
15276 * in verifier state, save R in linked_regs if R->id == id.
15277 * If there are too many Rs sharing same id, reset id for leftover Rs.
15278 */
collect_linked_regs(struct bpf_verifier_state * vstate,u32 id,struct linked_regs * linked_regs)15279 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
15280 struct linked_regs *linked_regs)
15281 {
15282 struct bpf_func_state *func;
15283 struct bpf_reg_state *reg;
15284 int i, j;
15285
15286 id = id & ~BPF_ADD_CONST;
15287 for (i = vstate->curframe; i >= 0; i--) {
15288 func = vstate->frame[i];
15289 for (j = 0; j < BPF_REG_FP; j++) {
15290 reg = &func->regs[j];
15291 __collect_linked_regs(linked_regs, reg, id, i, j, true);
15292 }
15293 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
15294 if (!is_spilled_reg(&func->stack[j]))
15295 continue;
15296 reg = &func->stack[j].spilled_ptr;
15297 __collect_linked_regs(linked_regs, reg, id, i, j, false);
15298 }
15299 }
15300 }
15301
15302 /* For all R in linked_regs, copy known_reg range into R
15303 * if R->id == known_reg->id.
15304 */
sync_linked_regs(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg,struct linked_regs * linked_regs)15305 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
15306 struct linked_regs *linked_regs)
15307 {
15308 struct bpf_reg_state fake_reg;
15309 struct bpf_reg_state *reg;
15310 struct linked_reg *e;
15311 int i;
15312
15313 for (i = 0; i < linked_regs->cnt; ++i) {
15314 e = &linked_regs->entries[i];
15315 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
15316 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
15317 if (reg->type != SCALAR_VALUE || reg == known_reg)
15318 continue;
15319 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
15320 continue;
15321 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
15322 reg->off == known_reg->off) {
15323 s32 saved_subreg_def = reg->subreg_def;
15324
15325 copy_register_state(reg, known_reg);
15326 reg->subreg_def = saved_subreg_def;
15327 } else {
15328 s32 saved_subreg_def = reg->subreg_def;
15329 s32 saved_off = reg->off;
15330
15331 fake_reg.type = SCALAR_VALUE;
15332 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
15333
15334 /* reg = known_reg; reg += delta */
15335 copy_register_state(reg, known_reg);
15336 /*
15337 * Must preserve off, id and add_const flag,
15338 * otherwise another sync_linked_regs() will be incorrect.
15339 */
15340 reg->off = saved_off;
15341 reg->subreg_def = saved_subreg_def;
15342
15343 scalar32_min_max_add(reg, &fake_reg);
15344 scalar_min_max_add(reg, &fake_reg);
15345 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
15346 }
15347 }
15348 }
15349
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)15350 static int check_cond_jmp_op(struct bpf_verifier_env *env,
15351 struct bpf_insn *insn, int *insn_idx)
15352 {
15353 struct bpf_verifier_state *this_branch = env->cur_state;
15354 struct bpf_verifier_state *other_branch;
15355 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
15356 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
15357 struct bpf_reg_state *eq_branch_regs;
15358 struct linked_regs linked_regs = {};
15359 u8 opcode = BPF_OP(insn->code);
15360 bool is_jmp32;
15361 int pred = -1;
15362 int err;
15363
15364 /* Only conditional jumps are expected to reach here. */
15365 if (opcode == BPF_JA || opcode > BPF_JCOND) {
15366 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
15367 return -EINVAL;
15368 }
15369
15370 if (opcode == BPF_JCOND) {
15371 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
15372 int idx = *insn_idx;
15373
15374 if (insn->code != (BPF_JMP | BPF_JCOND) ||
15375 insn->src_reg != BPF_MAY_GOTO ||
15376 insn->dst_reg || insn->imm || insn->off == 0) {
15377 verbose(env, "invalid may_goto off %d imm %d\n",
15378 insn->off, insn->imm);
15379 return -EINVAL;
15380 }
15381 prev_st = find_prev_entry(env, cur_st->parent, idx);
15382
15383 /* branch out 'fallthrough' insn as a new state to explore */
15384 queued_st = push_stack(env, idx + 1, idx, false);
15385 if (!queued_st)
15386 return -ENOMEM;
15387
15388 queued_st->may_goto_depth++;
15389 if (prev_st)
15390 widen_imprecise_scalars(env, prev_st, queued_st);
15391 *insn_idx += insn->off;
15392 return 0;
15393 }
15394
15395 /* check src2 operand */
15396 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15397 if (err)
15398 return err;
15399
15400 dst_reg = ®s[insn->dst_reg];
15401 if (BPF_SRC(insn->code) == BPF_X) {
15402 if (insn->imm != 0) {
15403 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15404 return -EINVAL;
15405 }
15406
15407 /* check src1 operand */
15408 err = check_reg_arg(env, insn->src_reg, SRC_OP);
15409 if (err)
15410 return err;
15411
15412 src_reg = ®s[insn->src_reg];
15413 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
15414 is_pointer_value(env, insn->src_reg)) {
15415 verbose(env, "R%d pointer comparison prohibited\n",
15416 insn->src_reg);
15417 return -EACCES;
15418 }
15419 } else {
15420 if (insn->src_reg != BPF_REG_0) {
15421 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15422 return -EINVAL;
15423 }
15424 src_reg = &env->fake_reg[0];
15425 memset(src_reg, 0, sizeof(*src_reg));
15426 src_reg->type = SCALAR_VALUE;
15427 __mark_reg_known(src_reg, insn->imm);
15428 }
15429
15430 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
15431 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
15432 if (pred >= 0) {
15433 /* If we get here with a dst_reg pointer type it is because
15434 * above is_branch_taken() special cased the 0 comparison.
15435 */
15436 if (!__is_pointer_value(false, dst_reg))
15437 err = mark_chain_precision(env, insn->dst_reg);
15438 if (BPF_SRC(insn->code) == BPF_X && !err &&
15439 !__is_pointer_value(false, src_reg))
15440 err = mark_chain_precision(env, insn->src_reg);
15441 if (err)
15442 return err;
15443 }
15444
15445 if (pred == 1) {
15446 /* Only follow the goto, ignore fall-through. If needed, push
15447 * the fall-through branch for simulation under speculative
15448 * execution.
15449 */
15450 if (!env->bypass_spec_v1 &&
15451 !sanitize_speculative_path(env, insn, *insn_idx + 1,
15452 *insn_idx))
15453 return -EFAULT;
15454 if (env->log.level & BPF_LOG_LEVEL)
15455 print_insn_state(env, this_branch->frame[this_branch->curframe]);
15456 *insn_idx += insn->off;
15457 return 0;
15458 } else if (pred == 0) {
15459 /* Only follow the fall-through branch, since that's where the
15460 * program will go. If needed, push the goto branch for
15461 * simulation under speculative execution.
15462 */
15463 if (!env->bypass_spec_v1 &&
15464 !sanitize_speculative_path(env, insn,
15465 *insn_idx + insn->off + 1,
15466 *insn_idx))
15467 return -EFAULT;
15468 if (env->log.level & BPF_LOG_LEVEL)
15469 print_insn_state(env, this_branch->frame[this_branch->curframe]);
15470 return 0;
15471 }
15472
15473 /* Push scalar registers sharing same ID to jump history,
15474 * do this before creating 'other_branch', so that both
15475 * 'this_branch' and 'other_branch' share this history
15476 * if parent state is created.
15477 */
15478 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
15479 collect_linked_regs(this_branch, src_reg->id, &linked_regs);
15480 if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
15481 collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
15482 if (linked_regs.cnt > 1) {
15483 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
15484 if (err)
15485 return err;
15486 }
15487
15488 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
15489 false);
15490 if (!other_branch)
15491 return -EFAULT;
15492 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
15493
15494 if (BPF_SRC(insn->code) == BPF_X) {
15495 err = reg_set_min_max(env,
15496 &other_branch_regs[insn->dst_reg],
15497 &other_branch_regs[insn->src_reg],
15498 dst_reg, src_reg, opcode, is_jmp32);
15499 } else /* BPF_SRC(insn->code) == BPF_K */ {
15500 /* reg_set_min_max() can mangle the fake_reg. Make a copy
15501 * so that these are two different memory locations. The
15502 * src_reg is not used beyond here in context of K.
15503 */
15504 memcpy(&env->fake_reg[1], &env->fake_reg[0],
15505 sizeof(env->fake_reg[0]));
15506 err = reg_set_min_max(env,
15507 &other_branch_regs[insn->dst_reg],
15508 &env->fake_reg[0],
15509 dst_reg, &env->fake_reg[1],
15510 opcode, is_jmp32);
15511 }
15512 if (err)
15513 return err;
15514
15515 if (BPF_SRC(insn->code) == BPF_X &&
15516 src_reg->type == SCALAR_VALUE && src_reg->id &&
15517 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15518 sync_linked_regs(this_branch, src_reg, &linked_regs);
15519 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
15520 }
15521 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15522 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15523 sync_linked_regs(this_branch, dst_reg, &linked_regs);
15524 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
15525 }
15526
15527 /* if one pointer register is compared to another pointer
15528 * register check if PTR_MAYBE_NULL could be lifted.
15529 * E.g. register A - maybe null
15530 * register B - not null
15531 * for JNE A, B, ... - A is not null in the false branch;
15532 * for JEQ A, B, ... - A is not null in the true branch.
15533 *
15534 * Since PTR_TO_BTF_ID points to a kernel struct that does
15535 * not need to be null checked by the BPF program, i.e.,
15536 * could be null even without PTR_MAYBE_NULL marking, so
15537 * only propagate nullness when neither reg is that type.
15538 */
15539 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15540 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15541 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15542 base_type(src_reg->type) != PTR_TO_BTF_ID &&
15543 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15544 eq_branch_regs = NULL;
15545 switch (opcode) {
15546 case BPF_JEQ:
15547 eq_branch_regs = other_branch_regs;
15548 break;
15549 case BPF_JNE:
15550 eq_branch_regs = regs;
15551 break;
15552 default:
15553 /* do nothing */
15554 break;
15555 }
15556 if (eq_branch_regs) {
15557 if (type_may_be_null(src_reg->type))
15558 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15559 else
15560 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15561 }
15562 }
15563
15564 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15565 * NOTE: these optimizations below are related with pointer comparison
15566 * which will never be JMP32.
15567 */
15568 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15569 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15570 type_may_be_null(dst_reg->type)) {
15571 /* Mark all identical registers in each branch as either
15572 * safe or unknown depending R == 0 or R != 0 conditional.
15573 */
15574 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15575 opcode == BPF_JNE);
15576 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15577 opcode == BPF_JEQ);
15578 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
15579 this_branch, other_branch) &&
15580 is_pointer_value(env, insn->dst_reg)) {
15581 verbose(env, "R%d pointer comparison prohibited\n",
15582 insn->dst_reg);
15583 return -EACCES;
15584 }
15585 if (env->log.level & BPF_LOG_LEVEL)
15586 print_insn_state(env, this_branch->frame[this_branch->curframe]);
15587 return 0;
15588 }
15589
15590 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)15591 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15592 {
15593 struct bpf_insn_aux_data *aux = cur_aux(env);
15594 struct bpf_reg_state *regs = cur_regs(env);
15595 struct bpf_reg_state *dst_reg;
15596 struct bpf_map *map;
15597 int err;
15598
15599 if (BPF_SIZE(insn->code) != BPF_DW) {
15600 verbose(env, "invalid BPF_LD_IMM insn\n");
15601 return -EINVAL;
15602 }
15603 if (insn->off != 0) {
15604 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15605 return -EINVAL;
15606 }
15607
15608 err = check_reg_arg(env, insn->dst_reg, DST_OP);
15609 if (err)
15610 return err;
15611
15612 dst_reg = ®s[insn->dst_reg];
15613 if (insn->src_reg == 0) {
15614 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15615
15616 dst_reg->type = SCALAR_VALUE;
15617 __mark_reg_known(®s[insn->dst_reg], imm);
15618 return 0;
15619 }
15620
15621 /* All special src_reg cases are listed below. From this point onwards
15622 * we either succeed and assign a corresponding dst_reg->type after
15623 * zeroing the offset, or fail and reject the program.
15624 */
15625 mark_reg_known_zero(env, regs, insn->dst_reg);
15626
15627 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15628 dst_reg->type = aux->btf_var.reg_type;
15629 switch (base_type(dst_reg->type)) {
15630 case PTR_TO_MEM:
15631 dst_reg->mem_size = aux->btf_var.mem_size;
15632 break;
15633 case PTR_TO_BTF_ID:
15634 dst_reg->btf = aux->btf_var.btf;
15635 dst_reg->btf_id = aux->btf_var.btf_id;
15636 break;
15637 default:
15638 verbose(env, "bpf verifier is misconfigured\n");
15639 return -EFAULT;
15640 }
15641 return 0;
15642 }
15643
15644 if (insn->src_reg == BPF_PSEUDO_FUNC) {
15645 struct bpf_prog_aux *aux = env->prog->aux;
15646 u32 subprogno = find_subprog(env,
15647 env->insn_idx + insn->imm + 1);
15648
15649 if (!aux->func_info) {
15650 verbose(env, "missing btf func_info\n");
15651 return -EINVAL;
15652 }
15653 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15654 verbose(env, "callback function not static\n");
15655 return -EINVAL;
15656 }
15657
15658 dst_reg->type = PTR_TO_FUNC;
15659 dst_reg->subprogno = subprogno;
15660 return 0;
15661 }
15662
15663 map = env->used_maps[aux->map_index];
15664 dst_reg->map_ptr = map;
15665
15666 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15667 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15668 if (map->map_type == BPF_MAP_TYPE_ARENA) {
15669 __mark_reg_unknown(env, dst_reg);
15670 return 0;
15671 }
15672 dst_reg->type = PTR_TO_MAP_VALUE;
15673 dst_reg->off = aux->map_off;
15674 WARN_ON_ONCE(map->max_entries != 1);
15675 /* We want reg->id to be same (0) as map_value is not distinct */
15676 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15677 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15678 dst_reg->type = CONST_PTR_TO_MAP;
15679 } else {
15680 verbose(env, "bpf verifier is misconfigured\n");
15681 return -EINVAL;
15682 }
15683
15684 return 0;
15685 }
15686
may_access_skb(enum bpf_prog_type type)15687 static bool may_access_skb(enum bpf_prog_type type)
15688 {
15689 switch (type) {
15690 case BPF_PROG_TYPE_SOCKET_FILTER:
15691 case BPF_PROG_TYPE_SCHED_CLS:
15692 case BPF_PROG_TYPE_SCHED_ACT:
15693 return true;
15694 default:
15695 return false;
15696 }
15697 }
15698
15699 /* verify safety of LD_ABS|LD_IND instructions:
15700 * - they can only appear in the programs where ctx == skb
15701 * - since they are wrappers of function calls, they scratch R1-R5 registers,
15702 * preserve R6-R9, and store return value into R0
15703 *
15704 * Implicit input:
15705 * ctx == skb == R6 == CTX
15706 *
15707 * Explicit input:
15708 * SRC == any register
15709 * IMM == 32-bit immediate
15710 *
15711 * Output:
15712 * R0 - 8/16/32-bit skb data converted to cpu endianness
15713 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)15714 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15715 {
15716 struct bpf_reg_state *regs = cur_regs(env);
15717 static const int ctx_reg = BPF_REG_6;
15718 u8 mode = BPF_MODE(insn->code);
15719 int i, err;
15720
15721 if (!may_access_skb(resolve_prog_type(env->prog))) {
15722 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15723 return -EINVAL;
15724 }
15725
15726 if (!env->ops->gen_ld_abs) {
15727 verbose(env, "bpf verifier is misconfigured\n");
15728 return -EINVAL;
15729 }
15730
15731 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15732 BPF_SIZE(insn->code) == BPF_DW ||
15733 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15734 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15735 return -EINVAL;
15736 }
15737
15738 /* check whether implicit source operand (register R6) is readable */
15739 err = check_reg_arg(env, ctx_reg, SRC_OP);
15740 if (err)
15741 return err;
15742
15743 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15744 * gen_ld_abs() may terminate the program at runtime, leading to
15745 * reference leak.
15746 */
15747 err = check_reference_leak(env, false);
15748 if (err) {
15749 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15750 return err;
15751 }
15752
15753 if (env->cur_state->active_lock.ptr) {
15754 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15755 return -EINVAL;
15756 }
15757
15758 if (env->cur_state->active_rcu_lock) {
15759 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15760 return -EINVAL;
15761 }
15762
15763 if (env->cur_state->active_preempt_lock) {
15764 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n");
15765 return -EINVAL;
15766 }
15767
15768 if (regs[ctx_reg].type != PTR_TO_CTX) {
15769 verbose(env,
15770 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15771 return -EINVAL;
15772 }
15773
15774 if (mode == BPF_IND) {
15775 /* check explicit source operand */
15776 err = check_reg_arg(env, insn->src_reg, SRC_OP);
15777 if (err)
15778 return err;
15779 }
15780
15781 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
15782 if (err < 0)
15783 return err;
15784
15785 /* reset caller saved regs to unreadable */
15786 for (i = 0; i < CALLER_SAVED_REGS; i++) {
15787 mark_reg_not_init(env, regs, caller_saved[i]);
15788 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15789 }
15790
15791 /* mark destination R0 register as readable, since it contains
15792 * the value fetched from the packet.
15793 * Already marked as written above.
15794 */
15795 mark_reg_unknown(env, regs, BPF_REG_0);
15796 /* ld_abs load up to 32-bit skb data. */
15797 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15798 return 0;
15799 }
15800
check_return_code(struct bpf_verifier_env * env,int regno,const char * reg_name)15801 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
15802 {
15803 const char *exit_ctx = "At program exit";
15804 struct tnum enforce_attach_type_range = tnum_unknown;
15805 const struct bpf_prog *prog = env->prog;
15806 struct bpf_reg_state *reg;
15807 struct bpf_retval_range range = retval_range(0, 1);
15808 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15809 int err;
15810 struct bpf_func_state *frame = env->cur_state->frame[0];
15811 const bool is_subprog = frame->subprogno;
15812 bool return_32bit = false;
15813
15814 /* LSM and struct_ops func-ptr's return type could be "void" */
15815 if (!is_subprog || frame->in_exception_callback_fn) {
15816 switch (prog_type) {
15817 case BPF_PROG_TYPE_LSM:
15818 if (prog->expected_attach_type == BPF_LSM_CGROUP)
15819 /* See below, can be 0 or 0-1 depending on hook. */
15820 break;
15821 fallthrough;
15822 case BPF_PROG_TYPE_STRUCT_OPS:
15823 if (!prog->aux->attach_func_proto->type)
15824 return 0;
15825 break;
15826 default:
15827 break;
15828 }
15829 }
15830
15831 /* eBPF calling convention is such that R0 is used
15832 * to return the value from eBPF program.
15833 * Make sure that it's readable at this time
15834 * of bpf_exit, which means that program wrote
15835 * something into it earlier
15836 */
15837 err = check_reg_arg(env, regno, SRC_OP);
15838 if (err)
15839 return err;
15840
15841 if (is_pointer_value(env, regno)) {
15842 verbose(env, "R%d leaks addr as return value\n", regno);
15843 return -EACCES;
15844 }
15845
15846 reg = cur_regs(env) + regno;
15847
15848 if (frame->in_async_callback_fn) {
15849 /* enforce return zero from async callbacks like timer */
15850 exit_ctx = "At async callback return";
15851 range = retval_range(0, 0);
15852 goto enforce_retval;
15853 }
15854
15855 if (is_subprog && !frame->in_exception_callback_fn) {
15856 if (reg->type != SCALAR_VALUE) {
15857 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15858 regno, reg_type_str(env, reg->type));
15859 return -EINVAL;
15860 }
15861 return 0;
15862 }
15863
15864 switch (prog_type) {
15865 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15866 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15867 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15868 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15869 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15870 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15871 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15872 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15873 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15874 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15875 range = retval_range(1, 1);
15876 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15877 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15878 range = retval_range(0, 3);
15879 break;
15880 case BPF_PROG_TYPE_CGROUP_SKB:
15881 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15882 range = retval_range(0, 3);
15883 enforce_attach_type_range = tnum_range(2, 3);
15884 }
15885 break;
15886 case BPF_PROG_TYPE_CGROUP_SOCK:
15887 case BPF_PROG_TYPE_SOCK_OPS:
15888 case BPF_PROG_TYPE_CGROUP_DEVICE:
15889 case BPF_PROG_TYPE_CGROUP_SYSCTL:
15890 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15891 break;
15892 case BPF_PROG_TYPE_RAW_TRACEPOINT:
15893 if (!env->prog->aux->attach_btf_id)
15894 return 0;
15895 range = retval_range(0, 0);
15896 break;
15897 case BPF_PROG_TYPE_TRACING:
15898 switch (env->prog->expected_attach_type) {
15899 case BPF_TRACE_FENTRY:
15900 case BPF_TRACE_FEXIT:
15901 range = retval_range(0, 0);
15902 break;
15903 case BPF_TRACE_RAW_TP:
15904 case BPF_MODIFY_RETURN:
15905 return 0;
15906 case BPF_TRACE_ITER:
15907 break;
15908 default:
15909 return -ENOTSUPP;
15910 }
15911 break;
15912 case BPF_PROG_TYPE_SK_LOOKUP:
15913 range = retval_range(SK_DROP, SK_PASS);
15914 break;
15915
15916 case BPF_PROG_TYPE_LSM:
15917 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15918 /* no range found, any return value is allowed */
15919 if (!get_func_retval_range(env->prog, &range))
15920 return 0;
15921 /* no restricted range, any return value is allowed */
15922 if (range.minval == S32_MIN && range.maxval == S32_MAX)
15923 return 0;
15924 return_32bit = true;
15925 } else if (!env->prog->aux->attach_func_proto->type) {
15926 /* Make sure programs that attach to void
15927 * hooks don't try to modify return value.
15928 */
15929 range = retval_range(1, 1);
15930 }
15931 break;
15932
15933 case BPF_PROG_TYPE_NETFILTER:
15934 range = retval_range(NF_DROP, NF_ACCEPT);
15935 break;
15936 case BPF_PROG_TYPE_EXT:
15937 /* freplace program can return anything as its return value
15938 * depends on the to-be-replaced kernel func or bpf program.
15939 */
15940 default:
15941 return 0;
15942 }
15943
15944 enforce_retval:
15945 if (reg->type != SCALAR_VALUE) {
15946 verbose(env, "%s the register R%d is not a known value (%s)\n",
15947 exit_ctx, regno, reg_type_str(env, reg->type));
15948 return -EINVAL;
15949 }
15950
15951 err = mark_chain_precision(env, regno);
15952 if (err)
15953 return err;
15954
15955 if (!retval_range_within(range, reg, return_32bit)) {
15956 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
15957 if (!is_subprog &&
15958 prog->expected_attach_type == BPF_LSM_CGROUP &&
15959 prog_type == BPF_PROG_TYPE_LSM &&
15960 !prog->aux->attach_func_proto->type)
15961 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15962 return -EINVAL;
15963 }
15964
15965 if (!tnum_is_unknown(enforce_attach_type_range) &&
15966 tnum_in(enforce_attach_type_range, reg->var_off))
15967 env->prog->enforce_expected_attach_type = 1;
15968 return 0;
15969 }
15970
15971 /* non-recursive DFS pseudo code
15972 * 1 procedure DFS-iterative(G,v):
15973 * 2 label v as discovered
15974 * 3 let S be a stack
15975 * 4 S.push(v)
15976 * 5 while S is not empty
15977 * 6 t <- S.peek()
15978 * 7 if t is what we're looking for:
15979 * 8 return t
15980 * 9 for all edges e in G.adjacentEdges(t) do
15981 * 10 if edge e is already labelled
15982 * 11 continue with the next edge
15983 * 12 w <- G.adjacentVertex(t,e)
15984 * 13 if vertex w is not discovered and not explored
15985 * 14 label e as tree-edge
15986 * 15 label w as discovered
15987 * 16 S.push(w)
15988 * 17 continue at 5
15989 * 18 else if vertex w is discovered
15990 * 19 label e as back-edge
15991 * 20 else
15992 * 21 // vertex w is explored
15993 * 22 label e as forward- or cross-edge
15994 * 23 label t as explored
15995 * 24 S.pop()
15996 *
15997 * convention:
15998 * 0x10 - discovered
15999 * 0x11 - discovered and fall-through edge labelled
16000 * 0x12 - discovered and fall-through and branch edges labelled
16001 * 0x20 - explored
16002 */
16003
16004 enum {
16005 DISCOVERED = 0x10,
16006 EXPLORED = 0x20,
16007 FALLTHROUGH = 1,
16008 BRANCH = 2,
16009 };
16010
mark_prune_point(struct bpf_verifier_env * env,int idx)16011 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
16012 {
16013 env->insn_aux_data[idx].prune_point = true;
16014 }
16015
is_prune_point(struct bpf_verifier_env * env,int insn_idx)16016 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
16017 {
16018 return env->insn_aux_data[insn_idx].prune_point;
16019 }
16020
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)16021 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
16022 {
16023 env->insn_aux_data[idx].force_checkpoint = true;
16024 }
16025
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)16026 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
16027 {
16028 return env->insn_aux_data[insn_idx].force_checkpoint;
16029 }
16030
mark_calls_callback(struct bpf_verifier_env * env,int idx)16031 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
16032 {
16033 env->insn_aux_data[idx].calls_callback = true;
16034 }
16035
calls_callback(struct bpf_verifier_env * env,int insn_idx)16036 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
16037 {
16038 return env->insn_aux_data[insn_idx].calls_callback;
16039 }
16040
16041 enum {
16042 DONE_EXPLORING = 0,
16043 KEEP_EXPLORING = 1,
16044 };
16045
16046 /* t, w, e - match pseudo-code above:
16047 * t - index of current instruction
16048 * w - next instruction
16049 * e - edge
16050 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)16051 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
16052 {
16053 int *insn_stack = env->cfg.insn_stack;
16054 int *insn_state = env->cfg.insn_state;
16055
16056 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
16057 return DONE_EXPLORING;
16058
16059 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
16060 return DONE_EXPLORING;
16061
16062 if (w < 0 || w >= env->prog->len) {
16063 verbose_linfo(env, t, "%d: ", t);
16064 verbose(env, "jump out of range from insn %d to %d\n", t, w);
16065 return -EINVAL;
16066 }
16067
16068 if (e == BRANCH) {
16069 /* mark branch target for state pruning */
16070 mark_prune_point(env, w);
16071 mark_jmp_point(env, w);
16072 }
16073
16074 if (insn_state[w] == 0) {
16075 /* tree-edge */
16076 insn_state[t] = DISCOVERED | e;
16077 insn_state[w] = DISCOVERED;
16078 if (env->cfg.cur_stack >= env->prog->len)
16079 return -E2BIG;
16080 insn_stack[env->cfg.cur_stack++] = w;
16081 return KEEP_EXPLORING;
16082 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
16083 if (env->bpf_capable)
16084 return DONE_EXPLORING;
16085 verbose_linfo(env, t, "%d: ", t);
16086 verbose_linfo(env, w, "%d: ", w);
16087 verbose(env, "back-edge from insn %d to %d\n", t, w);
16088 return -EINVAL;
16089 } else if (insn_state[w] == EXPLORED) {
16090 /* forward- or cross-edge */
16091 insn_state[t] = DISCOVERED | e;
16092 } else {
16093 verbose(env, "insn state internal bug\n");
16094 return -EFAULT;
16095 }
16096 return DONE_EXPLORING;
16097 }
16098
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)16099 static int visit_func_call_insn(int t, struct bpf_insn *insns,
16100 struct bpf_verifier_env *env,
16101 bool visit_callee)
16102 {
16103 int ret, insn_sz;
16104
16105 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
16106 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
16107 if (ret)
16108 return ret;
16109
16110 mark_prune_point(env, t + insn_sz);
16111 /* when we exit from subprog, we need to record non-linear history */
16112 mark_jmp_point(env, t + insn_sz);
16113
16114 if (visit_callee) {
16115 mark_prune_point(env, t);
16116 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
16117 }
16118 return ret;
16119 }
16120
16121 /* Bitmask with 1s for all caller saved registers */
16122 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
16123
16124 /* Return a bitmask specifying which caller saved registers are
16125 * clobbered by a call to a helper *as if* this helper follows
16126 * bpf_fastcall contract:
16127 * - includes R0 if function is non-void;
16128 * - includes R1-R5 if corresponding parameter has is described
16129 * in the function prototype.
16130 */
helper_fastcall_clobber_mask(const struct bpf_func_proto * fn)16131 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn)
16132 {
16133 u32 mask;
16134 int i;
16135
16136 mask = 0;
16137 if (fn->ret_type != RET_VOID)
16138 mask |= BIT(BPF_REG_0);
16139 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i)
16140 if (fn->arg_type[i] != ARG_DONTCARE)
16141 mask |= BIT(BPF_REG_1 + i);
16142 return mask;
16143 }
16144
16145 /* True if do_misc_fixups() replaces calls to helper number 'imm',
16146 * replacement patch is presumed to follow bpf_fastcall contract
16147 * (see mark_fastcall_pattern_for_call() below).
16148 */
verifier_inlines_helper_call(struct bpf_verifier_env * env,s32 imm)16149 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
16150 {
16151 switch (imm) {
16152 #ifdef CONFIG_X86_64
16153 case BPF_FUNC_get_smp_processor_id:
16154 return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
16155 #endif
16156 default:
16157 return false;
16158 }
16159 }
16160
16161 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */
kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta * meta)16162 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta)
16163 {
16164 u32 vlen, i, mask;
16165
16166 vlen = btf_type_vlen(meta->func_proto);
16167 mask = 0;
16168 if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type)))
16169 mask |= BIT(BPF_REG_0);
16170 for (i = 0; i < vlen; ++i)
16171 mask |= BIT(BPF_REG_1 + i);
16172 return mask;
16173 }
16174
16175 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */
is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta * meta)16176 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta)
16177 {
16178 if (meta->btf == btf_vmlinux)
16179 return meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
16180 meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast];
16181 return false;
16182 }
16183
16184 /* LLVM define a bpf_fastcall function attribute.
16185 * This attribute means that function scratches only some of
16186 * the caller saved registers defined by ABI.
16187 * For BPF the set of such registers could be defined as follows:
16188 * - R0 is scratched only if function is non-void;
16189 * - R1-R5 are scratched only if corresponding parameter type is defined
16190 * in the function prototype.
16191 *
16192 * The contract between kernel and clang allows to simultaneously use
16193 * such functions and maintain backwards compatibility with old
16194 * kernels that don't understand bpf_fastcall calls:
16195 *
16196 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
16197 * registers are not scratched by the call;
16198 *
16199 * - as a post-processing step, clang visits each bpf_fastcall call and adds
16200 * spill/fill for every live r0-r5;
16201 *
16202 * - stack offsets used for the spill/fill are allocated as lowest
16203 * stack offsets in whole function and are not used for any other
16204 * purposes;
16205 *
16206 * - when kernel loads a program, it looks for such patterns
16207 * (bpf_fastcall function surrounded by spills/fills) and checks if
16208 * spill/fill stack offsets are used exclusively in fastcall patterns;
16209 *
16210 * - if so, and if verifier or current JIT inlines the call to the
16211 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
16212 * spill/fill pairs;
16213 *
16214 * - when old kernel loads a program, presence of spill/fill pairs
16215 * keeps BPF program valid, albeit slightly less efficient.
16216 *
16217 * For example:
16218 *
16219 * r1 = 1;
16220 * r2 = 2;
16221 * *(u64 *)(r10 - 8) = r1; r1 = 1;
16222 * *(u64 *)(r10 - 16) = r2; r2 = 2;
16223 * call %[to_be_inlined] --> call %[to_be_inlined]
16224 * r2 = *(u64 *)(r10 - 16); r0 = r1;
16225 * r1 = *(u64 *)(r10 - 8); r0 += r2;
16226 * r0 = r1; exit;
16227 * r0 += r2;
16228 * exit;
16229 *
16230 * The purpose of mark_fastcall_pattern_for_call is to:
16231 * - look for such patterns;
16232 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
16233 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
16234 * - update env->subprog_info[*]->fastcall_stack_off to find an offset
16235 * at which bpf_fastcall spill/fill stack slots start;
16236 * - update env->subprog_info[*]->keep_fastcall_stack.
16237 *
16238 * The .fastcall_pattern and .fastcall_stack_off are used by
16239 * check_fastcall_stack_contract() to check if every stack access to
16240 * fastcall spill/fill stack slot originates from spill/fill
16241 * instructions, members of fastcall patterns.
16242 *
16243 * If such condition holds true for a subprogram, fastcall patterns could
16244 * be rewritten by remove_fastcall_spills_fills().
16245 * Otherwise bpf_fastcall patterns are not changed in the subprogram
16246 * (code, presumably, generated by an older clang version).
16247 *
16248 * For example, it is *not* safe to remove spill/fill below:
16249 *
16250 * r1 = 1;
16251 * *(u64 *)(r10 - 8) = r1; r1 = 1;
16252 * call %[to_be_inlined] --> call %[to_be_inlined]
16253 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!!
16254 * r0 = *(u64 *)(r10 - 8); r0 += r1;
16255 * r0 += r1; exit;
16256 * exit;
16257 */
mark_fastcall_pattern_for_call(struct bpf_verifier_env * env,struct bpf_subprog_info * subprog,int insn_idx,s16 lowest_off)16258 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
16259 struct bpf_subprog_info *subprog,
16260 int insn_idx, s16 lowest_off)
16261 {
16262 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
16263 struct bpf_insn *call = &env->prog->insnsi[insn_idx];
16264 const struct bpf_func_proto *fn;
16265 u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS;
16266 u32 expected_regs_mask;
16267 bool can_be_inlined = false;
16268 s16 off;
16269 int i;
16270
16271 if (bpf_helper_call(call)) {
16272 if (get_helper_proto(env, call->imm, &fn) < 0)
16273 /* error would be reported later */
16274 return;
16275 clobbered_regs_mask = helper_fastcall_clobber_mask(fn);
16276 can_be_inlined = fn->allow_fastcall &&
16277 (verifier_inlines_helper_call(env, call->imm) ||
16278 bpf_jit_inlines_helper_call(call->imm));
16279 }
16280
16281 if (bpf_pseudo_kfunc_call(call)) {
16282 struct bpf_kfunc_call_arg_meta meta;
16283 int err;
16284
16285 err = fetch_kfunc_meta(env, call, &meta, NULL);
16286 if (err < 0)
16287 /* error would be reported later */
16288 return;
16289
16290 clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta);
16291 can_be_inlined = is_fastcall_kfunc_call(&meta);
16292 }
16293
16294 if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS)
16295 return;
16296
16297 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
16298 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
16299
16300 /* match pairs of form:
16301 *
16302 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0)
16303 * ...
16304 * call %[to_be_inlined]
16305 * ...
16306 * rX = *(u64 *)(r10 - Y)
16307 */
16308 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
16309 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
16310 break;
16311 stx = &insns[insn_idx - i];
16312 ldx = &insns[insn_idx + i];
16313 /* must be a stack spill/fill pair */
16314 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16315 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
16316 stx->dst_reg != BPF_REG_10 ||
16317 ldx->src_reg != BPF_REG_10)
16318 break;
16319 /* must be a spill/fill for the same reg */
16320 if (stx->src_reg != ldx->dst_reg)
16321 break;
16322 /* must be one of the previously unseen registers */
16323 if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
16324 break;
16325 /* must be a spill/fill for the same expected offset,
16326 * no need to check offset alignment, BPF_DW stack access
16327 * is always 8-byte aligned.
16328 */
16329 if (stx->off != off || ldx->off != off)
16330 break;
16331 expected_regs_mask &= ~BIT(stx->src_reg);
16332 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
16333 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
16334 }
16335 if (i == 1)
16336 return;
16337
16338 /* Conditionally set 'fastcall_spills_num' to allow forward
16339 * compatibility when more helper functions are marked as
16340 * bpf_fastcall at compile time than current kernel supports, e.g:
16341 *
16342 * 1: *(u64 *)(r10 - 8) = r1
16343 * 2: call A ;; assume A is bpf_fastcall for current kernel
16344 * 3: r1 = *(u64 *)(r10 - 8)
16345 * 4: *(u64 *)(r10 - 8) = r1
16346 * 5: call B ;; assume B is not bpf_fastcall for current kernel
16347 * 6: r1 = *(u64 *)(r10 - 8)
16348 *
16349 * There is no need to block bpf_fastcall rewrite for such program.
16350 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
16351 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
16352 * does not remove spill/fill pair {4,6}.
16353 */
16354 if (can_be_inlined)
16355 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
16356 else
16357 subprog->keep_fastcall_stack = 1;
16358 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
16359 }
16360
mark_fastcall_patterns(struct bpf_verifier_env * env)16361 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
16362 {
16363 struct bpf_subprog_info *subprog = env->subprog_info;
16364 struct bpf_insn *insn;
16365 s16 lowest_off;
16366 int s, i;
16367
16368 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
16369 /* find lowest stack spill offset used in this subprog */
16370 lowest_off = 0;
16371 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16372 insn = env->prog->insnsi + i;
16373 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16374 insn->dst_reg != BPF_REG_10)
16375 continue;
16376 lowest_off = min(lowest_off, insn->off);
16377 }
16378 /* use this offset to find fastcall patterns */
16379 for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16380 insn = env->prog->insnsi + i;
16381 if (insn->code != (BPF_JMP | BPF_CALL))
16382 continue;
16383 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
16384 }
16385 }
16386 return 0;
16387 }
16388
16389 /* Visits the instruction at index t and returns one of the following:
16390 * < 0 - an error occurred
16391 * DONE_EXPLORING - the instruction was fully explored
16392 * KEEP_EXPLORING - there is still work to be done before it is fully explored
16393 */
visit_insn(int t,struct bpf_verifier_env * env)16394 static int visit_insn(int t, struct bpf_verifier_env *env)
16395 {
16396 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
16397 int ret, off, insn_sz;
16398
16399 if (bpf_pseudo_func(insn))
16400 return visit_func_call_insn(t, insns, env, true);
16401
16402 /* All non-branch instructions have a single fall-through edge. */
16403 if (BPF_CLASS(insn->code) != BPF_JMP &&
16404 BPF_CLASS(insn->code) != BPF_JMP32) {
16405 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
16406 return push_insn(t, t + insn_sz, FALLTHROUGH, env);
16407 }
16408
16409 switch (BPF_OP(insn->code)) {
16410 case BPF_EXIT:
16411 return DONE_EXPLORING;
16412
16413 case BPF_CALL:
16414 if (is_async_callback_calling_insn(insn))
16415 /* Mark this call insn as a prune point to trigger
16416 * is_state_visited() check before call itself is
16417 * processed by __check_func_call(). Otherwise new
16418 * async state will be pushed for further exploration.
16419 */
16420 mark_prune_point(env, t);
16421 /* For functions that invoke callbacks it is not known how many times
16422 * callback would be called. Verifier models callback calling functions
16423 * by repeatedly visiting callback bodies and returning to origin call
16424 * instruction.
16425 * In order to stop such iteration verifier needs to identify when a
16426 * state identical some state from a previous iteration is reached.
16427 * Check below forces creation of checkpoint before callback calling
16428 * instruction to allow search for such identical states.
16429 */
16430 if (is_sync_callback_calling_insn(insn)) {
16431 mark_calls_callback(env, t);
16432 mark_force_checkpoint(env, t);
16433 mark_prune_point(env, t);
16434 mark_jmp_point(env, t);
16435 }
16436 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
16437 struct bpf_kfunc_call_arg_meta meta;
16438
16439 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
16440 if (ret == 0 && is_iter_next_kfunc(&meta)) {
16441 mark_prune_point(env, t);
16442 /* Checking and saving state checkpoints at iter_next() call
16443 * is crucial for fast convergence of open-coded iterator loop
16444 * logic, so we need to force it. If we don't do that,
16445 * is_state_visited() might skip saving a checkpoint, causing
16446 * unnecessarily long sequence of not checkpointed
16447 * instructions and jumps, leading to exhaustion of jump
16448 * history buffer, and potentially other undesired outcomes.
16449 * It is expected that with correct open-coded iterators
16450 * convergence will happen quickly, so we don't run a risk of
16451 * exhausting memory.
16452 */
16453 mark_force_checkpoint(env, t);
16454 }
16455 }
16456 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
16457
16458 case BPF_JA:
16459 if (BPF_SRC(insn->code) != BPF_K)
16460 return -EINVAL;
16461
16462 if (BPF_CLASS(insn->code) == BPF_JMP)
16463 off = insn->off;
16464 else
16465 off = insn->imm;
16466
16467 /* unconditional jump with single edge */
16468 ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
16469 if (ret)
16470 return ret;
16471
16472 mark_prune_point(env, t + off + 1);
16473 mark_jmp_point(env, t + off + 1);
16474
16475 return ret;
16476
16477 default:
16478 /* conditional jump with two edges */
16479 mark_prune_point(env, t);
16480 if (is_may_goto_insn(insn))
16481 mark_force_checkpoint(env, t);
16482
16483 ret = push_insn(t, t + 1, FALLTHROUGH, env);
16484 if (ret)
16485 return ret;
16486
16487 return push_insn(t, t + insn->off + 1, BRANCH, env);
16488 }
16489 }
16490
16491 /* non-recursive depth-first-search to detect loops in BPF program
16492 * loop == back-edge in directed graph
16493 */
check_cfg(struct bpf_verifier_env * env)16494 static int check_cfg(struct bpf_verifier_env *env)
16495 {
16496 int insn_cnt = env->prog->len;
16497 int *insn_stack, *insn_state;
16498 int ex_insn_beg, i, ret = 0;
16499 bool ex_done = false;
16500
16501 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16502 if (!insn_state)
16503 return -ENOMEM;
16504
16505 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16506 if (!insn_stack) {
16507 kvfree(insn_state);
16508 return -ENOMEM;
16509 }
16510
16511 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
16512 insn_stack[0] = 0; /* 0 is the first instruction */
16513 env->cfg.cur_stack = 1;
16514
16515 walk_cfg:
16516 while (env->cfg.cur_stack > 0) {
16517 int t = insn_stack[env->cfg.cur_stack - 1];
16518
16519 ret = visit_insn(t, env);
16520 switch (ret) {
16521 case DONE_EXPLORING:
16522 insn_state[t] = EXPLORED;
16523 env->cfg.cur_stack--;
16524 break;
16525 case KEEP_EXPLORING:
16526 break;
16527 default:
16528 if (ret > 0) {
16529 verbose(env, "visit_insn internal bug\n");
16530 ret = -EFAULT;
16531 }
16532 goto err_free;
16533 }
16534 }
16535
16536 if (env->cfg.cur_stack < 0) {
16537 verbose(env, "pop stack internal bug\n");
16538 ret = -EFAULT;
16539 goto err_free;
16540 }
16541
16542 if (env->exception_callback_subprog && !ex_done) {
16543 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
16544
16545 insn_state[ex_insn_beg] = DISCOVERED;
16546 insn_stack[0] = ex_insn_beg;
16547 env->cfg.cur_stack = 1;
16548 ex_done = true;
16549 goto walk_cfg;
16550 }
16551
16552 for (i = 0; i < insn_cnt; i++) {
16553 struct bpf_insn *insn = &env->prog->insnsi[i];
16554
16555 if (insn_state[i] != EXPLORED) {
16556 verbose(env, "unreachable insn %d\n", i);
16557 ret = -EINVAL;
16558 goto err_free;
16559 }
16560 if (bpf_is_ldimm64(insn)) {
16561 if (insn_state[i + 1] != 0) {
16562 verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
16563 ret = -EINVAL;
16564 goto err_free;
16565 }
16566 i++; /* skip second half of ldimm64 */
16567 }
16568 }
16569 ret = 0; /* cfg looks good */
16570
16571 err_free:
16572 kvfree(insn_state);
16573 kvfree(insn_stack);
16574 env->cfg.insn_state = env->cfg.insn_stack = NULL;
16575 return ret;
16576 }
16577
check_abnormal_return(struct bpf_verifier_env * env)16578 static int check_abnormal_return(struct bpf_verifier_env *env)
16579 {
16580 int i;
16581
16582 for (i = 1; i < env->subprog_cnt; i++) {
16583 if (env->subprog_info[i].has_ld_abs) {
16584 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
16585 return -EINVAL;
16586 }
16587 if (env->subprog_info[i].has_tail_call) {
16588 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
16589 return -EINVAL;
16590 }
16591 }
16592 return 0;
16593 }
16594
16595 /* The minimum supported BTF func info size */
16596 #define MIN_BPF_FUNCINFO_SIZE 8
16597 #define MAX_FUNCINFO_REC_SIZE 252
16598
check_btf_func_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)16599 static int check_btf_func_early(struct bpf_verifier_env *env,
16600 const union bpf_attr *attr,
16601 bpfptr_t uattr)
16602 {
16603 u32 krec_size = sizeof(struct bpf_func_info);
16604 const struct btf_type *type, *func_proto;
16605 u32 i, nfuncs, urec_size, min_size;
16606 struct bpf_func_info *krecord;
16607 struct bpf_prog *prog;
16608 const struct btf *btf;
16609 u32 prev_offset = 0;
16610 bpfptr_t urecord;
16611 int ret = -ENOMEM;
16612
16613 nfuncs = attr->func_info_cnt;
16614 if (!nfuncs) {
16615 if (check_abnormal_return(env))
16616 return -EINVAL;
16617 return 0;
16618 }
16619
16620 urec_size = attr->func_info_rec_size;
16621 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
16622 urec_size > MAX_FUNCINFO_REC_SIZE ||
16623 urec_size % sizeof(u32)) {
16624 verbose(env, "invalid func info rec size %u\n", urec_size);
16625 return -EINVAL;
16626 }
16627
16628 prog = env->prog;
16629 btf = prog->aux->btf;
16630
16631 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16632 min_size = min_t(u32, krec_size, urec_size);
16633
16634 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
16635 if (!krecord)
16636 return -ENOMEM;
16637
16638 for (i = 0; i < nfuncs; i++) {
16639 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
16640 if (ret) {
16641 if (ret == -E2BIG) {
16642 verbose(env, "nonzero tailing record in func info");
16643 /* set the size kernel expects so loader can zero
16644 * out the rest of the record.
16645 */
16646 if (copy_to_bpfptr_offset(uattr,
16647 offsetof(union bpf_attr, func_info_rec_size),
16648 &min_size, sizeof(min_size)))
16649 ret = -EFAULT;
16650 }
16651 goto err_free;
16652 }
16653
16654 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
16655 ret = -EFAULT;
16656 goto err_free;
16657 }
16658
16659 /* check insn_off */
16660 ret = -EINVAL;
16661 if (i == 0) {
16662 if (krecord[i].insn_off) {
16663 verbose(env,
16664 "nonzero insn_off %u for the first func info record",
16665 krecord[i].insn_off);
16666 goto err_free;
16667 }
16668 } else if (krecord[i].insn_off <= prev_offset) {
16669 verbose(env,
16670 "same or smaller insn offset (%u) than previous func info record (%u)",
16671 krecord[i].insn_off, prev_offset);
16672 goto err_free;
16673 }
16674
16675 /* check type_id */
16676 type = btf_type_by_id(btf, krecord[i].type_id);
16677 if (!type || !btf_type_is_func(type)) {
16678 verbose(env, "invalid type id %d in func info",
16679 krecord[i].type_id);
16680 goto err_free;
16681 }
16682
16683 func_proto = btf_type_by_id(btf, type->type);
16684 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
16685 /* btf_func_check() already verified it during BTF load */
16686 goto err_free;
16687
16688 prev_offset = krecord[i].insn_off;
16689 bpfptr_add(&urecord, urec_size);
16690 }
16691
16692 prog->aux->func_info = krecord;
16693 prog->aux->func_info_cnt = nfuncs;
16694 return 0;
16695
16696 err_free:
16697 kvfree(krecord);
16698 return ret;
16699 }
16700
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)16701 static int check_btf_func(struct bpf_verifier_env *env,
16702 const union bpf_attr *attr,
16703 bpfptr_t uattr)
16704 {
16705 const struct btf_type *type, *func_proto, *ret_type;
16706 u32 i, nfuncs, urec_size;
16707 struct bpf_func_info *krecord;
16708 struct bpf_func_info_aux *info_aux = NULL;
16709 struct bpf_prog *prog;
16710 const struct btf *btf;
16711 bpfptr_t urecord;
16712 bool scalar_return;
16713 int ret = -ENOMEM;
16714
16715 nfuncs = attr->func_info_cnt;
16716 if (!nfuncs) {
16717 if (check_abnormal_return(env))
16718 return -EINVAL;
16719 return 0;
16720 }
16721 if (nfuncs != env->subprog_cnt) {
16722 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
16723 return -EINVAL;
16724 }
16725
16726 urec_size = attr->func_info_rec_size;
16727
16728 prog = env->prog;
16729 btf = prog->aux->btf;
16730
16731 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16732
16733 krecord = prog->aux->func_info;
16734 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
16735 if (!info_aux)
16736 return -ENOMEM;
16737
16738 for (i = 0; i < nfuncs; i++) {
16739 /* check insn_off */
16740 ret = -EINVAL;
16741
16742 if (env->subprog_info[i].start != krecord[i].insn_off) {
16743 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
16744 goto err_free;
16745 }
16746
16747 /* Already checked type_id */
16748 type = btf_type_by_id(btf, krecord[i].type_id);
16749 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
16750 /* Already checked func_proto */
16751 func_proto = btf_type_by_id(btf, type->type);
16752
16753 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
16754 scalar_return =
16755 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
16756 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
16757 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
16758 goto err_free;
16759 }
16760 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
16761 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
16762 goto err_free;
16763 }
16764
16765 bpfptr_add(&urecord, urec_size);
16766 }
16767
16768 prog->aux->func_info_aux = info_aux;
16769 return 0;
16770
16771 err_free:
16772 kfree(info_aux);
16773 return ret;
16774 }
16775
adjust_btf_func(struct bpf_verifier_env * env)16776 static void adjust_btf_func(struct bpf_verifier_env *env)
16777 {
16778 struct bpf_prog_aux *aux = env->prog->aux;
16779 int i;
16780
16781 if (!aux->func_info)
16782 return;
16783
16784 /* func_info is not available for hidden subprogs */
16785 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
16786 aux->func_info[i].insn_off = env->subprog_info[i].start;
16787 }
16788
16789 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
16790 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
16791
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)16792 static int check_btf_line(struct bpf_verifier_env *env,
16793 const union bpf_attr *attr,
16794 bpfptr_t uattr)
16795 {
16796 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
16797 struct bpf_subprog_info *sub;
16798 struct bpf_line_info *linfo;
16799 struct bpf_prog *prog;
16800 const struct btf *btf;
16801 bpfptr_t ulinfo;
16802 int err;
16803
16804 nr_linfo = attr->line_info_cnt;
16805 if (!nr_linfo)
16806 return 0;
16807 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
16808 return -EINVAL;
16809
16810 rec_size = attr->line_info_rec_size;
16811 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
16812 rec_size > MAX_LINEINFO_REC_SIZE ||
16813 rec_size & (sizeof(u32) - 1))
16814 return -EINVAL;
16815
16816 /* Need to zero it in case the userspace may
16817 * pass in a smaller bpf_line_info object.
16818 */
16819 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
16820 GFP_KERNEL | __GFP_NOWARN);
16821 if (!linfo)
16822 return -ENOMEM;
16823
16824 prog = env->prog;
16825 btf = prog->aux->btf;
16826
16827 s = 0;
16828 sub = env->subprog_info;
16829 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
16830 expected_size = sizeof(struct bpf_line_info);
16831 ncopy = min_t(u32, expected_size, rec_size);
16832 for (i = 0; i < nr_linfo; i++) {
16833 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
16834 if (err) {
16835 if (err == -E2BIG) {
16836 verbose(env, "nonzero tailing record in line_info");
16837 if (copy_to_bpfptr_offset(uattr,
16838 offsetof(union bpf_attr, line_info_rec_size),
16839 &expected_size, sizeof(expected_size)))
16840 err = -EFAULT;
16841 }
16842 goto err_free;
16843 }
16844
16845 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
16846 err = -EFAULT;
16847 goto err_free;
16848 }
16849
16850 /*
16851 * Check insn_off to ensure
16852 * 1) strictly increasing AND
16853 * 2) bounded by prog->len
16854 *
16855 * The linfo[0].insn_off == 0 check logically falls into
16856 * the later "missing bpf_line_info for func..." case
16857 * because the first linfo[0].insn_off must be the
16858 * first sub also and the first sub must have
16859 * subprog_info[0].start == 0.
16860 */
16861 if ((i && linfo[i].insn_off <= prev_offset) ||
16862 linfo[i].insn_off >= prog->len) {
16863 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
16864 i, linfo[i].insn_off, prev_offset,
16865 prog->len);
16866 err = -EINVAL;
16867 goto err_free;
16868 }
16869
16870 if (!prog->insnsi[linfo[i].insn_off].code) {
16871 verbose(env,
16872 "Invalid insn code at line_info[%u].insn_off\n",
16873 i);
16874 err = -EINVAL;
16875 goto err_free;
16876 }
16877
16878 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
16879 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
16880 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
16881 err = -EINVAL;
16882 goto err_free;
16883 }
16884
16885 if (s != env->subprog_cnt) {
16886 if (linfo[i].insn_off == sub[s].start) {
16887 sub[s].linfo_idx = i;
16888 s++;
16889 } else if (sub[s].start < linfo[i].insn_off) {
16890 verbose(env, "missing bpf_line_info for func#%u\n", s);
16891 err = -EINVAL;
16892 goto err_free;
16893 }
16894 }
16895
16896 prev_offset = linfo[i].insn_off;
16897 bpfptr_add(&ulinfo, rec_size);
16898 }
16899
16900 if (s != env->subprog_cnt) {
16901 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
16902 env->subprog_cnt - s, s);
16903 err = -EINVAL;
16904 goto err_free;
16905 }
16906
16907 prog->aux->linfo = linfo;
16908 prog->aux->nr_linfo = nr_linfo;
16909
16910 return 0;
16911
16912 err_free:
16913 kvfree(linfo);
16914 return err;
16915 }
16916
16917 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
16918 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
16919
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)16920 static int check_core_relo(struct bpf_verifier_env *env,
16921 const union bpf_attr *attr,
16922 bpfptr_t uattr)
16923 {
16924 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16925 struct bpf_core_relo core_relo = {};
16926 struct bpf_prog *prog = env->prog;
16927 const struct btf *btf = prog->aux->btf;
16928 struct bpf_core_ctx ctx = {
16929 .log = &env->log,
16930 .btf = btf,
16931 };
16932 bpfptr_t u_core_relo;
16933 int err;
16934
16935 nr_core_relo = attr->core_relo_cnt;
16936 if (!nr_core_relo)
16937 return 0;
16938 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16939 return -EINVAL;
16940
16941 rec_size = attr->core_relo_rec_size;
16942 if (rec_size < MIN_CORE_RELO_SIZE ||
16943 rec_size > MAX_CORE_RELO_SIZE ||
16944 rec_size % sizeof(u32))
16945 return -EINVAL;
16946
16947 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16948 expected_size = sizeof(struct bpf_core_relo);
16949 ncopy = min_t(u32, expected_size, rec_size);
16950
16951 /* Unlike func_info and line_info, copy and apply each CO-RE
16952 * relocation record one at a time.
16953 */
16954 for (i = 0; i < nr_core_relo; i++) {
16955 /* future proofing when sizeof(bpf_core_relo) changes */
16956 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16957 if (err) {
16958 if (err == -E2BIG) {
16959 verbose(env, "nonzero tailing record in core_relo");
16960 if (copy_to_bpfptr_offset(uattr,
16961 offsetof(union bpf_attr, core_relo_rec_size),
16962 &expected_size, sizeof(expected_size)))
16963 err = -EFAULT;
16964 }
16965 break;
16966 }
16967
16968 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16969 err = -EFAULT;
16970 break;
16971 }
16972
16973 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16974 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16975 i, core_relo.insn_off, prog->len);
16976 err = -EINVAL;
16977 break;
16978 }
16979
16980 err = bpf_core_apply(&ctx, &core_relo, i,
16981 &prog->insnsi[core_relo.insn_off / 8]);
16982 if (err)
16983 break;
16984 bpfptr_add(&u_core_relo, rec_size);
16985 }
16986 return err;
16987 }
16988
check_btf_info_early(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)16989 static int check_btf_info_early(struct bpf_verifier_env *env,
16990 const union bpf_attr *attr,
16991 bpfptr_t uattr)
16992 {
16993 struct btf *btf;
16994 int err;
16995
16996 if (!attr->func_info_cnt && !attr->line_info_cnt) {
16997 if (check_abnormal_return(env))
16998 return -EINVAL;
16999 return 0;
17000 }
17001
17002 btf = btf_get_by_fd(attr->prog_btf_fd);
17003 if (IS_ERR(btf))
17004 return PTR_ERR(btf);
17005 if (btf_is_kernel(btf)) {
17006 btf_put(btf);
17007 return -EACCES;
17008 }
17009 env->prog->aux->btf = btf;
17010
17011 err = check_btf_func_early(env, attr, uattr);
17012 if (err)
17013 return err;
17014 return 0;
17015 }
17016
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)17017 static int check_btf_info(struct bpf_verifier_env *env,
17018 const union bpf_attr *attr,
17019 bpfptr_t uattr)
17020 {
17021 int err;
17022
17023 if (!attr->func_info_cnt && !attr->line_info_cnt) {
17024 if (check_abnormal_return(env))
17025 return -EINVAL;
17026 return 0;
17027 }
17028
17029 err = check_btf_func(env, attr, uattr);
17030 if (err)
17031 return err;
17032
17033 err = check_btf_line(env, attr, uattr);
17034 if (err)
17035 return err;
17036
17037 err = check_core_relo(env, attr, uattr);
17038 if (err)
17039 return err;
17040
17041 return 0;
17042 }
17043
17044 /* check %cur's range satisfies %old's */
range_within(const struct bpf_reg_state * old,const struct bpf_reg_state * cur)17045 static bool range_within(const struct bpf_reg_state *old,
17046 const struct bpf_reg_state *cur)
17047 {
17048 return old->umin_value <= cur->umin_value &&
17049 old->umax_value >= cur->umax_value &&
17050 old->smin_value <= cur->smin_value &&
17051 old->smax_value >= cur->smax_value &&
17052 old->u32_min_value <= cur->u32_min_value &&
17053 old->u32_max_value >= cur->u32_max_value &&
17054 old->s32_min_value <= cur->s32_min_value &&
17055 old->s32_max_value >= cur->s32_max_value;
17056 }
17057
17058 /* If in the old state two registers had the same id, then they need to have
17059 * the same id in the new state as well. But that id could be different from
17060 * the old state, so we need to track the mapping from old to new ids.
17061 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
17062 * regs with old id 5 must also have new id 9 for the new state to be safe. But
17063 * regs with a different old id could still have new id 9, we don't care about
17064 * that.
17065 * So we look through our idmap to see if this old id has been seen before. If
17066 * so, we require the new id to match; otherwise, we add the id pair to the map.
17067 */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)17068 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17069 {
17070 struct bpf_id_pair *map = idmap->map;
17071 unsigned int i;
17072
17073 /* either both IDs should be set or both should be zero */
17074 if (!!old_id != !!cur_id)
17075 return false;
17076
17077 if (old_id == 0) /* cur_id == 0 as well */
17078 return true;
17079
17080 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
17081 if (!map[i].old) {
17082 /* Reached an empty slot; haven't seen this id before */
17083 map[i].old = old_id;
17084 map[i].cur = cur_id;
17085 return true;
17086 }
17087 if (map[i].old == old_id)
17088 return map[i].cur == cur_id;
17089 if (map[i].cur == cur_id)
17090 return false;
17091 }
17092 /* We ran out of idmap slots, which should be impossible */
17093 WARN_ON_ONCE(1);
17094 return false;
17095 }
17096
17097 /* Similar to check_ids(), but allocate a unique temporary ID
17098 * for 'old_id' or 'cur_id' of zero.
17099 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
17100 */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)17101 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17102 {
17103 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
17104 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
17105
17106 return check_ids(old_id, cur_id, idmap);
17107 }
17108
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)17109 static void clean_func_state(struct bpf_verifier_env *env,
17110 struct bpf_func_state *st)
17111 {
17112 enum bpf_reg_liveness live;
17113 int i, j;
17114
17115 for (i = 0; i < BPF_REG_FP; i++) {
17116 live = st->regs[i].live;
17117 /* liveness must not touch this register anymore */
17118 st->regs[i].live |= REG_LIVE_DONE;
17119 if (!(live & REG_LIVE_READ))
17120 /* since the register is unused, clear its state
17121 * to make further comparison simpler
17122 */
17123 __mark_reg_not_init(env, &st->regs[i]);
17124 }
17125
17126 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
17127 live = st->stack[i].spilled_ptr.live;
17128 /* liveness must not touch this stack slot anymore */
17129 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
17130 if (!(live & REG_LIVE_READ)) {
17131 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
17132 for (j = 0; j < BPF_REG_SIZE; j++)
17133 st->stack[i].slot_type[j] = STACK_INVALID;
17134 }
17135 }
17136 }
17137
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)17138 static void clean_verifier_state(struct bpf_verifier_env *env,
17139 struct bpf_verifier_state *st)
17140 {
17141 int i;
17142
17143 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
17144 /* all regs in this state in all frames were already marked */
17145 return;
17146
17147 for (i = 0; i <= st->curframe; i++)
17148 clean_func_state(env, st->frame[i]);
17149 }
17150
17151 /* the parentage chains form a tree.
17152 * the verifier states are added to state lists at given insn and
17153 * pushed into state stack for future exploration.
17154 * when the verifier reaches bpf_exit insn some of the verifer states
17155 * stored in the state lists have their final liveness state already,
17156 * but a lot of states will get revised from liveness point of view when
17157 * the verifier explores other branches.
17158 * Example:
17159 * 1: r0 = 1
17160 * 2: if r1 == 100 goto pc+1
17161 * 3: r0 = 2
17162 * 4: exit
17163 * when the verifier reaches exit insn the register r0 in the state list of
17164 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
17165 * of insn 2 and goes exploring further. At the insn 4 it will walk the
17166 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
17167 *
17168 * Since the verifier pushes the branch states as it sees them while exploring
17169 * the program the condition of walking the branch instruction for the second
17170 * time means that all states below this branch were already explored and
17171 * their final liveness marks are already propagated.
17172 * Hence when the verifier completes the search of state list in is_state_visited()
17173 * we can call this clean_live_states() function to mark all liveness states
17174 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
17175 * will not be used.
17176 * This function also clears the registers and stack for states that !READ
17177 * to simplify state merging.
17178 *
17179 * Important note here that walking the same branch instruction in the callee
17180 * doesn't meant that the states are DONE. The verifier has to compare
17181 * the callsites
17182 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)17183 static void clean_live_states(struct bpf_verifier_env *env, int insn,
17184 struct bpf_verifier_state *cur)
17185 {
17186 struct bpf_verifier_state_list *sl;
17187
17188 sl = *explored_state(env, insn);
17189 while (sl) {
17190 if (sl->state.branches)
17191 goto next;
17192 if (sl->state.insn_idx != insn ||
17193 !same_callsites(&sl->state, cur))
17194 goto next;
17195 clean_verifier_state(env, &sl->state);
17196 next:
17197 sl = sl->next;
17198 }
17199 }
17200
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)17201 static bool regs_exact(const struct bpf_reg_state *rold,
17202 const struct bpf_reg_state *rcur,
17203 struct bpf_idmap *idmap)
17204 {
17205 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17206 check_ids(rold->id, rcur->id, idmap) &&
17207 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17208 }
17209
17210 enum exact_level {
17211 NOT_EXACT,
17212 EXACT,
17213 RANGE_WITHIN
17214 };
17215
17216 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,enum exact_level exact)17217 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
17218 struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
17219 enum exact_level exact)
17220 {
17221 if (exact == EXACT)
17222 return regs_exact(rold, rcur, idmap);
17223
17224 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
17225 /* explored state didn't use this */
17226 return true;
17227 if (rold->type == NOT_INIT) {
17228 if (exact == NOT_EXACT || rcur->type == NOT_INIT)
17229 /* explored state can't have used this */
17230 return true;
17231 }
17232
17233 /* Enforce that register types have to match exactly, including their
17234 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
17235 * rule.
17236 *
17237 * One can make a point that using a pointer register as unbounded
17238 * SCALAR would be technically acceptable, but this could lead to
17239 * pointer leaks because scalars are allowed to leak while pointers
17240 * are not. We could make this safe in special cases if root is
17241 * calling us, but it's probably not worth the hassle.
17242 *
17243 * Also, register types that are *not* MAYBE_NULL could technically be
17244 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
17245 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
17246 * to the same map).
17247 * However, if the old MAYBE_NULL register then got NULL checked,
17248 * doing so could have affected others with the same id, and we can't
17249 * check for that because we lost the id when we converted to
17250 * a non-MAYBE_NULL variant.
17251 * So, as a general rule we don't allow mixing MAYBE_NULL and
17252 * non-MAYBE_NULL registers as well.
17253 */
17254 if (rold->type != rcur->type)
17255 return false;
17256
17257 switch (base_type(rold->type)) {
17258 case SCALAR_VALUE:
17259 if (env->explore_alu_limits) {
17260 /* explore_alu_limits disables tnum_in() and range_within()
17261 * logic and requires everything to be strict
17262 */
17263 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17264 check_scalar_ids(rold->id, rcur->id, idmap);
17265 }
17266 if (!rold->precise && exact == NOT_EXACT)
17267 return true;
17268 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
17269 return false;
17270 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
17271 return false;
17272 /* Why check_ids() for scalar registers?
17273 *
17274 * Consider the following BPF code:
17275 * 1: r6 = ... unbound scalar, ID=a ...
17276 * 2: r7 = ... unbound scalar, ID=b ...
17277 * 3: if (r6 > r7) goto +1
17278 * 4: r6 = r7
17279 * 5: if (r6 > X) goto ...
17280 * 6: ... memory operation using r7 ...
17281 *
17282 * First verification path is [1-6]:
17283 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
17284 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
17285 * r7 <= X, because r6 and r7 share same id.
17286 * Next verification path is [1-4, 6].
17287 *
17288 * Instruction (6) would be reached in two states:
17289 * I. r6{.id=b}, r7{.id=b} via path 1-6;
17290 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
17291 *
17292 * Use check_ids() to distinguish these states.
17293 * ---
17294 * Also verify that new value satisfies old value range knowledge.
17295 */
17296 return range_within(rold, rcur) &&
17297 tnum_in(rold->var_off, rcur->var_off) &&
17298 check_scalar_ids(rold->id, rcur->id, idmap);
17299 case PTR_TO_MAP_KEY:
17300 case PTR_TO_MAP_VALUE:
17301 case PTR_TO_MEM:
17302 case PTR_TO_BUF:
17303 case PTR_TO_TP_BUFFER:
17304 /* If the new min/max/var_off satisfy the old ones and
17305 * everything else matches, we are OK.
17306 */
17307 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
17308 range_within(rold, rcur) &&
17309 tnum_in(rold->var_off, rcur->var_off) &&
17310 check_ids(rold->id, rcur->id, idmap) &&
17311 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17312 case PTR_TO_PACKET_META:
17313 case PTR_TO_PACKET:
17314 /* We must have at least as much range as the old ptr
17315 * did, so that any accesses which were safe before are
17316 * still safe. This is true even if old range < old off,
17317 * since someone could have accessed through (ptr - k), or
17318 * even done ptr -= k in a register, to get a safe access.
17319 */
17320 if (rold->range > rcur->range)
17321 return false;
17322 /* If the offsets don't match, we can't trust our alignment;
17323 * nor can we be sure that we won't fall out of range.
17324 */
17325 if (rold->off != rcur->off)
17326 return false;
17327 /* id relations must be preserved */
17328 if (!check_ids(rold->id, rcur->id, idmap))
17329 return false;
17330 /* new val must satisfy old val knowledge */
17331 return range_within(rold, rcur) &&
17332 tnum_in(rold->var_off, rcur->var_off);
17333 case PTR_TO_STACK:
17334 /* two stack pointers are equal only if they're pointing to
17335 * the same stack frame, since fp-8 in foo != fp-8 in bar
17336 */
17337 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
17338 case PTR_TO_ARENA:
17339 return true;
17340 default:
17341 return regs_exact(rold, rcur, idmap);
17342 }
17343 }
17344
17345 static struct bpf_reg_state unbound_reg;
17346
unbound_reg_init(void)17347 static __init int unbound_reg_init(void)
17348 {
17349 __mark_reg_unknown_imprecise(&unbound_reg);
17350 unbound_reg.live |= REG_LIVE_READ;
17351 return 0;
17352 }
17353 late_initcall(unbound_reg_init);
17354
is_stack_all_misc(struct bpf_verifier_env * env,struct bpf_stack_state * stack)17355 static bool is_stack_all_misc(struct bpf_verifier_env *env,
17356 struct bpf_stack_state *stack)
17357 {
17358 u32 i;
17359
17360 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
17361 if ((stack->slot_type[i] == STACK_MISC) ||
17362 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
17363 continue;
17364 return false;
17365 }
17366
17367 return true;
17368 }
17369
scalar_reg_for_stack(struct bpf_verifier_env * env,struct bpf_stack_state * stack)17370 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
17371 struct bpf_stack_state *stack)
17372 {
17373 if (is_spilled_scalar_reg64(stack))
17374 return &stack->spilled_ptr;
17375
17376 if (is_stack_all_misc(env, stack))
17377 return &unbound_reg;
17378
17379 return NULL;
17380 }
17381
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,enum exact_level exact)17382 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
17383 struct bpf_func_state *cur, struct bpf_idmap *idmap,
17384 enum exact_level exact)
17385 {
17386 int i, spi;
17387
17388 /* walk slots of the explored stack and ignore any additional
17389 * slots in the current stack, since explored(safe) state
17390 * didn't use them
17391 */
17392 for (i = 0; i < old->allocated_stack; i++) {
17393 struct bpf_reg_state *old_reg, *cur_reg;
17394
17395 spi = i / BPF_REG_SIZE;
17396
17397 if (exact != NOT_EXACT &&
17398 (i >= cur->allocated_stack ||
17399 old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17400 cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
17401 return false;
17402
17403 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
17404 && exact == NOT_EXACT) {
17405 i += BPF_REG_SIZE - 1;
17406 /* explored state didn't use this */
17407 continue;
17408 }
17409
17410 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
17411 continue;
17412
17413 if (env->allow_uninit_stack &&
17414 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
17415 continue;
17416
17417 /* explored stack has more populated slots than current stack
17418 * and these slots were used
17419 */
17420 if (i >= cur->allocated_stack)
17421 return false;
17422
17423 /* 64-bit scalar spill vs all slots MISC and vice versa.
17424 * Load from all slots MISC produces unbound scalar.
17425 * Construct a fake register for such stack and call
17426 * regsafe() to ensure scalar ids are compared.
17427 */
17428 old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
17429 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
17430 if (old_reg && cur_reg) {
17431 if (!regsafe(env, old_reg, cur_reg, idmap, exact))
17432 return false;
17433 i += BPF_REG_SIZE - 1;
17434 continue;
17435 }
17436
17437 /* if old state was safe with misc data in the stack
17438 * it will be safe with zero-initialized stack.
17439 * The opposite is not true
17440 */
17441 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
17442 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
17443 continue;
17444 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17445 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
17446 /* Ex: old explored (safe) state has STACK_SPILL in
17447 * this stack slot, but current has STACK_MISC ->
17448 * this verifier states are not equivalent,
17449 * return false to continue verification of this path
17450 */
17451 return false;
17452 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
17453 continue;
17454 /* Both old and cur are having same slot_type */
17455 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
17456 case STACK_SPILL:
17457 /* when explored and current stack slot are both storing
17458 * spilled registers, check that stored pointers types
17459 * are the same as well.
17460 * Ex: explored safe path could have stored
17461 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
17462 * but current path has stored:
17463 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
17464 * such verifier states are not equivalent.
17465 * return false to continue verification of this path
17466 */
17467 if (!regsafe(env, &old->stack[spi].spilled_ptr,
17468 &cur->stack[spi].spilled_ptr, idmap, exact))
17469 return false;
17470 break;
17471 case STACK_DYNPTR:
17472 old_reg = &old->stack[spi].spilled_ptr;
17473 cur_reg = &cur->stack[spi].spilled_ptr;
17474 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
17475 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
17476 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17477 return false;
17478 break;
17479 case STACK_ITER:
17480 old_reg = &old->stack[spi].spilled_ptr;
17481 cur_reg = &cur->stack[spi].spilled_ptr;
17482 /* iter.depth is not compared between states as it
17483 * doesn't matter for correctness and would otherwise
17484 * prevent convergence; we maintain it only to prevent
17485 * infinite loop check triggering, see
17486 * iter_active_depths_differ()
17487 */
17488 if (old_reg->iter.btf != cur_reg->iter.btf ||
17489 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
17490 old_reg->iter.state != cur_reg->iter.state ||
17491 /* ignore {old_reg,cur_reg}->iter.depth, see above */
17492 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17493 return false;
17494 break;
17495 case STACK_MISC:
17496 case STACK_ZERO:
17497 case STACK_INVALID:
17498 continue;
17499 /* Ensure that new unhandled slot types return false by default */
17500 default:
17501 return false;
17502 }
17503 }
17504 return true;
17505 }
17506
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap)17507 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
17508 struct bpf_idmap *idmap)
17509 {
17510 int i;
17511
17512 if (old->acquired_refs != cur->acquired_refs)
17513 return false;
17514
17515 for (i = 0; i < old->acquired_refs; i++) {
17516 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
17517 return false;
17518 }
17519
17520 return true;
17521 }
17522
17523 /* compare two verifier states
17524 *
17525 * all states stored in state_list are known to be valid, since
17526 * verifier reached 'bpf_exit' instruction through them
17527 *
17528 * this function is called when verifier exploring different branches of
17529 * execution popped from the state stack. If it sees an old state that has
17530 * more strict register state and more strict stack state then this execution
17531 * branch doesn't need to be explored further, since verifier already
17532 * concluded that more strict state leads to valid finish.
17533 *
17534 * Therefore two states are equivalent if register state is more conservative
17535 * and explored stack state is more conservative than the current one.
17536 * Example:
17537 * explored current
17538 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
17539 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
17540 *
17541 * In other words if current stack state (one being explored) has more
17542 * valid slots than old one that already passed validation, it means
17543 * the verifier can stop exploring and conclude that current state is valid too
17544 *
17545 * Similarly with registers. If explored state has register type as invalid
17546 * whereas register type in current state is meaningful, it means that
17547 * the current state will reach 'bpf_exit' instruction safely
17548 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,enum exact_level exact)17549 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
17550 struct bpf_func_state *cur, enum exact_level exact)
17551 {
17552 int i;
17553
17554 if (old->callback_depth > cur->callback_depth)
17555 return false;
17556
17557 for (i = 0; i < MAX_BPF_REG; i++)
17558 if (!regsafe(env, &old->regs[i], &cur->regs[i],
17559 &env->idmap_scratch, exact))
17560 return false;
17561
17562 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
17563 return false;
17564
17565 if (!refsafe(old, cur, &env->idmap_scratch))
17566 return false;
17567
17568 return true;
17569 }
17570
reset_idmap_scratch(struct bpf_verifier_env * env)17571 static void reset_idmap_scratch(struct bpf_verifier_env *env)
17572 {
17573 env->idmap_scratch.tmp_id_gen = env->id_gen;
17574 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
17575 }
17576
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,enum exact_level exact)17577 static bool states_equal(struct bpf_verifier_env *env,
17578 struct bpf_verifier_state *old,
17579 struct bpf_verifier_state *cur,
17580 enum exact_level exact)
17581 {
17582 int i;
17583
17584 if (old->curframe != cur->curframe)
17585 return false;
17586
17587 reset_idmap_scratch(env);
17588
17589 /* Verification state from speculative execution simulation
17590 * must never prune a non-speculative execution one.
17591 */
17592 if (old->speculative && !cur->speculative)
17593 return false;
17594
17595 if (old->active_lock.ptr != cur->active_lock.ptr)
17596 return false;
17597
17598 /* Old and cur active_lock's have to be either both present
17599 * or both absent.
17600 */
17601 if (!!old->active_lock.id != !!cur->active_lock.id)
17602 return false;
17603
17604 if (old->active_lock.id &&
17605 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
17606 return false;
17607
17608 if (old->active_rcu_lock != cur->active_rcu_lock)
17609 return false;
17610
17611 if (old->active_preempt_lock != cur->active_preempt_lock)
17612 return false;
17613
17614 if (old->in_sleepable != cur->in_sleepable)
17615 return false;
17616
17617 /* for states to be equal callsites have to be the same
17618 * and all frame states need to be equivalent
17619 */
17620 for (i = 0; i <= old->curframe; i++) {
17621 if (old->frame[i]->callsite != cur->frame[i]->callsite)
17622 return false;
17623 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
17624 return false;
17625 }
17626 return true;
17627 }
17628
17629 /* Return 0 if no propagation happened. Return negative error code if error
17630 * happened. Otherwise, return the propagated bit.
17631 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)17632 static int propagate_liveness_reg(struct bpf_verifier_env *env,
17633 struct bpf_reg_state *reg,
17634 struct bpf_reg_state *parent_reg)
17635 {
17636 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
17637 u8 flag = reg->live & REG_LIVE_READ;
17638 int err;
17639
17640 /* When comes here, read flags of PARENT_REG or REG could be any of
17641 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
17642 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
17643 */
17644 if (parent_flag == REG_LIVE_READ64 ||
17645 /* Or if there is no read flag from REG. */
17646 !flag ||
17647 /* Or if the read flag from REG is the same as PARENT_REG. */
17648 parent_flag == flag)
17649 return 0;
17650
17651 err = mark_reg_read(env, reg, parent_reg, flag);
17652 if (err)
17653 return err;
17654
17655 return flag;
17656 }
17657
17658 /* A write screens off any subsequent reads; but write marks come from the
17659 * straight-line code between a state and its parent. When we arrive at an
17660 * equivalent state (jump target or such) we didn't arrive by the straight-line
17661 * code, so read marks in the state must propagate to the parent regardless
17662 * of the state's write marks. That's what 'parent == state->parent' comparison
17663 * in mark_reg_read() is for.
17664 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)17665 static int propagate_liveness(struct bpf_verifier_env *env,
17666 const struct bpf_verifier_state *vstate,
17667 struct bpf_verifier_state *vparent)
17668 {
17669 struct bpf_reg_state *state_reg, *parent_reg;
17670 struct bpf_func_state *state, *parent;
17671 int i, frame, err = 0;
17672
17673 if (vparent->curframe != vstate->curframe) {
17674 WARN(1, "propagate_live: parent frame %d current frame %d\n",
17675 vparent->curframe, vstate->curframe);
17676 return -EFAULT;
17677 }
17678 /* Propagate read liveness of registers... */
17679 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
17680 for (frame = 0; frame <= vstate->curframe; frame++) {
17681 parent = vparent->frame[frame];
17682 state = vstate->frame[frame];
17683 parent_reg = parent->regs;
17684 state_reg = state->regs;
17685 /* We don't need to worry about FP liveness, it's read-only */
17686 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
17687 err = propagate_liveness_reg(env, &state_reg[i],
17688 &parent_reg[i]);
17689 if (err < 0)
17690 return err;
17691 if (err == REG_LIVE_READ64)
17692 mark_insn_zext(env, &parent_reg[i]);
17693 }
17694
17695 /* Propagate stack slots. */
17696 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
17697 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
17698 parent_reg = &parent->stack[i].spilled_ptr;
17699 state_reg = &state->stack[i].spilled_ptr;
17700 err = propagate_liveness_reg(env, state_reg,
17701 parent_reg);
17702 if (err < 0)
17703 return err;
17704 }
17705 }
17706 return 0;
17707 }
17708
17709 /* find precise scalars in the previous equivalent state and
17710 * propagate them into the current state
17711 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)17712 static int propagate_precision(struct bpf_verifier_env *env,
17713 const struct bpf_verifier_state *old)
17714 {
17715 struct bpf_reg_state *state_reg;
17716 struct bpf_func_state *state;
17717 int i, err = 0, fr;
17718 bool first;
17719
17720 for (fr = old->curframe; fr >= 0; fr--) {
17721 state = old->frame[fr];
17722 state_reg = state->regs;
17723 first = true;
17724 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
17725 if (state_reg->type != SCALAR_VALUE ||
17726 !state_reg->precise ||
17727 !(state_reg->live & REG_LIVE_READ))
17728 continue;
17729 if (env->log.level & BPF_LOG_LEVEL2) {
17730 if (first)
17731 verbose(env, "frame %d: propagating r%d", fr, i);
17732 else
17733 verbose(env, ",r%d", i);
17734 }
17735 bt_set_frame_reg(&env->bt, fr, i);
17736 first = false;
17737 }
17738
17739 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17740 if (!is_spilled_reg(&state->stack[i]))
17741 continue;
17742 state_reg = &state->stack[i].spilled_ptr;
17743 if (state_reg->type != SCALAR_VALUE ||
17744 !state_reg->precise ||
17745 !(state_reg->live & REG_LIVE_READ))
17746 continue;
17747 if (env->log.level & BPF_LOG_LEVEL2) {
17748 if (first)
17749 verbose(env, "frame %d: propagating fp%d",
17750 fr, (-i - 1) * BPF_REG_SIZE);
17751 else
17752 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
17753 }
17754 bt_set_frame_slot(&env->bt, fr, i);
17755 first = false;
17756 }
17757 if (!first)
17758 verbose(env, "\n");
17759 }
17760
17761 err = mark_chain_precision_batch(env);
17762 if (err < 0)
17763 return err;
17764
17765 return 0;
17766 }
17767
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)17768 static bool states_maybe_looping(struct bpf_verifier_state *old,
17769 struct bpf_verifier_state *cur)
17770 {
17771 struct bpf_func_state *fold, *fcur;
17772 int i, fr = cur->curframe;
17773
17774 if (old->curframe != fr)
17775 return false;
17776
17777 fold = old->frame[fr];
17778 fcur = cur->frame[fr];
17779 for (i = 0; i < MAX_BPF_REG; i++)
17780 if (memcmp(&fold->regs[i], &fcur->regs[i],
17781 offsetof(struct bpf_reg_state, parent)))
17782 return false;
17783 return true;
17784 }
17785
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)17786 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
17787 {
17788 return env->insn_aux_data[insn_idx].is_iter_next;
17789 }
17790
17791 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
17792 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
17793 * states to match, which otherwise would look like an infinite loop. So while
17794 * iter_next() calls are taken care of, we still need to be careful and
17795 * prevent erroneous and too eager declaration of "ininite loop", when
17796 * iterators are involved.
17797 *
17798 * Here's a situation in pseudo-BPF assembly form:
17799 *
17800 * 0: again: ; set up iter_next() call args
17801 * 1: r1 = &it ; <CHECKPOINT HERE>
17802 * 2: call bpf_iter_num_next ; this is iter_next() call
17803 * 3: if r0 == 0 goto done
17804 * 4: ... something useful here ...
17805 * 5: goto again ; another iteration
17806 * 6: done:
17807 * 7: r1 = &it
17808 * 8: call bpf_iter_num_destroy ; clean up iter state
17809 * 9: exit
17810 *
17811 * This is a typical loop. Let's assume that we have a prune point at 1:,
17812 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
17813 * again`, assuming other heuristics don't get in a way).
17814 *
17815 * When we first time come to 1:, let's say we have some state X. We proceed
17816 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
17817 * Now we come back to validate that forked ACTIVE state. We proceed through
17818 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
17819 * are converging. But the problem is that we don't know that yet, as this
17820 * convergence has to happen at iter_next() call site only. So if nothing is
17821 * done, at 1: verifier will use bounded loop logic and declare infinite
17822 * looping (and would be *technically* correct, if not for iterator's
17823 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
17824 * don't want that. So what we do in process_iter_next_call() when we go on
17825 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
17826 * a different iteration. So when we suspect an infinite loop, we additionally
17827 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
17828 * pretend we are not looping and wait for next iter_next() call.
17829 *
17830 * This only applies to ACTIVE state. In DRAINED state we don't expect to
17831 * loop, because that would actually mean infinite loop, as DRAINED state is
17832 * "sticky", and so we'll keep returning into the same instruction with the
17833 * same state (at least in one of possible code paths).
17834 *
17835 * This approach allows to keep infinite loop heuristic even in the face of
17836 * active iterator. E.g., C snippet below is and will be detected as
17837 * inifintely looping:
17838 *
17839 * struct bpf_iter_num it;
17840 * int *p, x;
17841 *
17842 * bpf_iter_num_new(&it, 0, 10);
17843 * while ((p = bpf_iter_num_next(&t))) {
17844 * x = p;
17845 * while (x--) {} // <<-- infinite loop here
17846 * }
17847 *
17848 */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)17849 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
17850 {
17851 struct bpf_reg_state *slot, *cur_slot;
17852 struct bpf_func_state *state;
17853 int i, fr;
17854
17855 for (fr = old->curframe; fr >= 0; fr--) {
17856 state = old->frame[fr];
17857 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17858 if (state->stack[i].slot_type[0] != STACK_ITER)
17859 continue;
17860
17861 slot = &state->stack[i].spilled_ptr;
17862 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
17863 continue;
17864
17865 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
17866 if (cur_slot->iter.depth != slot->iter.depth)
17867 return true;
17868 }
17869 }
17870 return false;
17871 }
17872
is_state_visited(struct bpf_verifier_env * env,int insn_idx)17873 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
17874 {
17875 struct bpf_verifier_state_list *new_sl;
17876 struct bpf_verifier_state_list *sl, **pprev;
17877 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
17878 int i, j, n, err, states_cnt = 0;
17879 bool force_new_state, add_new_state, force_exact;
17880
17881 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
17882 /* Avoid accumulating infinitely long jmp history */
17883 cur->jmp_history_cnt > 40;
17884
17885 /* bpf progs typically have pruning point every 4 instructions
17886 * http://vger.kernel.org/bpfconf2019.html#session-1
17887 * Do not add new state for future pruning if the verifier hasn't seen
17888 * at least 2 jumps and at least 8 instructions.
17889 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
17890 * In tests that amounts to up to 50% reduction into total verifier
17891 * memory consumption and 20% verifier time speedup.
17892 */
17893 add_new_state = force_new_state;
17894 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
17895 env->insn_processed - env->prev_insn_processed >= 8)
17896 add_new_state = true;
17897
17898 pprev = explored_state(env, insn_idx);
17899 sl = *pprev;
17900
17901 clean_live_states(env, insn_idx, cur);
17902
17903 while (sl) {
17904 states_cnt++;
17905 if (sl->state.insn_idx != insn_idx)
17906 goto next;
17907
17908 if (sl->state.branches) {
17909 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
17910
17911 if (frame->in_async_callback_fn &&
17912 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
17913 /* Different async_entry_cnt means that the verifier is
17914 * processing another entry into async callback.
17915 * Seeing the same state is not an indication of infinite
17916 * loop or infinite recursion.
17917 * But finding the same state doesn't mean that it's safe
17918 * to stop processing the current state. The previous state
17919 * hasn't yet reached bpf_exit, since state.branches > 0.
17920 * Checking in_async_callback_fn alone is not enough either.
17921 * Since the verifier still needs to catch infinite loops
17922 * inside async callbacks.
17923 */
17924 goto skip_inf_loop_check;
17925 }
17926 /* BPF open-coded iterators loop detection is special.
17927 * states_maybe_looping() logic is too simplistic in detecting
17928 * states that *might* be equivalent, because it doesn't know
17929 * about ID remapping, so don't even perform it.
17930 * See process_iter_next_call() and iter_active_depths_differ()
17931 * for overview of the logic. When current and one of parent
17932 * states are detected as equivalent, it's a good thing: we prove
17933 * convergence and can stop simulating further iterations.
17934 * It's safe to assume that iterator loop will finish, taking into
17935 * account iter_next() contract of eventually returning
17936 * sticky NULL result.
17937 *
17938 * Note, that states have to be compared exactly in this case because
17939 * read and precision marks might not be finalized inside the loop.
17940 * E.g. as in the program below:
17941 *
17942 * 1. r7 = -16
17943 * 2. r6 = bpf_get_prandom_u32()
17944 * 3. while (bpf_iter_num_next(&fp[-8])) {
17945 * 4. if (r6 != 42) {
17946 * 5. r7 = -32
17947 * 6. r6 = bpf_get_prandom_u32()
17948 * 7. continue
17949 * 8. }
17950 * 9. r0 = r10
17951 * 10. r0 += r7
17952 * 11. r8 = *(u64 *)(r0 + 0)
17953 * 12. r6 = bpf_get_prandom_u32()
17954 * 13. }
17955 *
17956 * Here verifier would first visit path 1-3, create a checkpoint at 3
17957 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
17958 * not have read or precision mark for r7 yet, thus inexact states
17959 * comparison would discard current state with r7=-32
17960 * => unsafe memory access at 11 would not be caught.
17961 */
17962 if (is_iter_next_insn(env, insn_idx)) {
17963 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17964 struct bpf_func_state *cur_frame;
17965 struct bpf_reg_state *iter_state, *iter_reg;
17966 int spi;
17967
17968 cur_frame = cur->frame[cur->curframe];
17969 /* btf_check_iter_kfuncs() enforces that
17970 * iter state pointer is always the first arg
17971 */
17972 iter_reg = &cur_frame->regs[BPF_REG_1];
17973 /* current state is valid due to states_equal(),
17974 * so we can assume valid iter and reg state,
17975 * no need for extra (re-)validations
17976 */
17977 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
17978 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
17979 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
17980 update_loop_entry(cur, &sl->state);
17981 goto hit;
17982 }
17983 }
17984 goto skip_inf_loop_check;
17985 }
17986 if (is_may_goto_insn_at(env, insn_idx)) {
17987 if (sl->state.may_goto_depth != cur->may_goto_depth &&
17988 states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17989 update_loop_entry(cur, &sl->state);
17990 goto hit;
17991 }
17992 }
17993 if (calls_callback(env, insn_idx)) {
17994 if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
17995 goto hit;
17996 goto skip_inf_loop_check;
17997 }
17998 /* attempt to detect infinite loop to avoid unnecessary doomed work */
17999 if (states_maybe_looping(&sl->state, cur) &&
18000 states_equal(env, &sl->state, cur, EXACT) &&
18001 !iter_active_depths_differ(&sl->state, cur) &&
18002 sl->state.may_goto_depth == cur->may_goto_depth &&
18003 sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
18004 verbose_linfo(env, insn_idx, "; ");
18005 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
18006 verbose(env, "cur state:");
18007 print_verifier_state(env, cur->frame[cur->curframe], true);
18008 verbose(env, "old state:");
18009 print_verifier_state(env, sl->state.frame[cur->curframe], true);
18010 return -EINVAL;
18011 }
18012 /* if the verifier is processing a loop, avoid adding new state
18013 * too often, since different loop iterations have distinct
18014 * states and may not help future pruning.
18015 * This threshold shouldn't be too low to make sure that
18016 * a loop with large bound will be rejected quickly.
18017 * The most abusive loop will be:
18018 * r1 += 1
18019 * if r1 < 1000000 goto pc-2
18020 * 1M insn_procssed limit / 100 == 10k peak states.
18021 * This threshold shouldn't be too high either, since states
18022 * at the end of the loop are likely to be useful in pruning.
18023 */
18024 skip_inf_loop_check:
18025 if (!force_new_state &&
18026 env->jmps_processed - env->prev_jmps_processed < 20 &&
18027 env->insn_processed - env->prev_insn_processed < 100)
18028 add_new_state = false;
18029 goto miss;
18030 }
18031 /* If sl->state is a part of a loop and this loop's entry is a part of
18032 * current verification path then states have to be compared exactly.
18033 * 'force_exact' is needed to catch the following case:
18034 *
18035 * initial Here state 'succ' was processed first,
18036 * | it was eventually tracked to produce a
18037 * V state identical to 'hdr'.
18038 * .---------> hdr All branches from 'succ' had been explored
18039 * | | and thus 'succ' has its .branches == 0.
18040 * | V
18041 * | .------... Suppose states 'cur' and 'succ' correspond
18042 * | | | to the same instruction + callsites.
18043 * | V V In such case it is necessary to check
18044 * | ... ... if 'succ' and 'cur' are states_equal().
18045 * | | | If 'succ' and 'cur' are a part of the
18046 * | V V same loop exact flag has to be set.
18047 * | succ <- cur To check if that is the case, verify
18048 * | | if loop entry of 'succ' is in current
18049 * | V DFS path.
18050 * | ...
18051 * | |
18052 * '----'
18053 *
18054 * Additional details are in the comment before get_loop_entry().
18055 */
18056 loop_entry = get_loop_entry(&sl->state);
18057 force_exact = loop_entry && loop_entry->branches > 0;
18058 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
18059 if (force_exact)
18060 update_loop_entry(cur, loop_entry);
18061 hit:
18062 sl->hit_cnt++;
18063 /* reached equivalent register/stack state,
18064 * prune the search.
18065 * Registers read by the continuation are read by us.
18066 * If we have any write marks in env->cur_state, they
18067 * will prevent corresponding reads in the continuation
18068 * from reaching our parent (an explored_state). Our
18069 * own state will get the read marks recorded, but
18070 * they'll be immediately forgotten as we're pruning
18071 * this state and will pop a new one.
18072 */
18073 err = propagate_liveness(env, &sl->state, cur);
18074
18075 /* if previous state reached the exit with precision and
18076 * current state is equivalent to it (except precision marks)
18077 * the precision needs to be propagated back in
18078 * the current state.
18079 */
18080 if (is_jmp_point(env, env->insn_idx))
18081 err = err ? : push_jmp_history(env, cur, 0, 0);
18082 err = err ? : propagate_precision(env, &sl->state);
18083 if (err)
18084 return err;
18085 return 1;
18086 }
18087 miss:
18088 /* when new state is not going to be added do not increase miss count.
18089 * Otherwise several loop iterations will remove the state
18090 * recorded earlier. The goal of these heuristics is to have
18091 * states from some iterations of the loop (some in the beginning
18092 * and some at the end) to help pruning.
18093 */
18094 if (add_new_state)
18095 sl->miss_cnt++;
18096 /* heuristic to determine whether this state is beneficial
18097 * to keep checking from state equivalence point of view.
18098 * Higher numbers increase max_states_per_insn and verification time,
18099 * but do not meaningfully decrease insn_processed.
18100 * 'n' controls how many times state could miss before eviction.
18101 * Use bigger 'n' for checkpoints because evicting checkpoint states
18102 * too early would hinder iterator convergence.
18103 */
18104 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
18105 if (sl->miss_cnt > sl->hit_cnt * n + n) {
18106 /* the state is unlikely to be useful. Remove it to
18107 * speed up verification
18108 */
18109 *pprev = sl->next;
18110 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
18111 !sl->state.used_as_loop_entry) {
18112 u32 br = sl->state.branches;
18113
18114 WARN_ONCE(br,
18115 "BUG live_done but branches_to_explore %d\n",
18116 br);
18117 free_verifier_state(&sl->state, false);
18118 kfree(sl);
18119 env->peak_states--;
18120 } else {
18121 /* cannot free this state, since parentage chain may
18122 * walk it later. Add it for free_list instead to
18123 * be freed at the end of verification
18124 */
18125 sl->next = env->free_list;
18126 env->free_list = sl;
18127 }
18128 sl = *pprev;
18129 continue;
18130 }
18131 next:
18132 pprev = &sl->next;
18133 sl = *pprev;
18134 }
18135
18136 if (env->max_states_per_insn < states_cnt)
18137 env->max_states_per_insn = states_cnt;
18138
18139 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
18140 return 0;
18141
18142 if (!add_new_state)
18143 return 0;
18144
18145 /* There were no equivalent states, remember the current one.
18146 * Technically the current state is not proven to be safe yet,
18147 * but it will either reach outer most bpf_exit (which means it's safe)
18148 * or it will be rejected. When there are no loops the verifier won't be
18149 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
18150 * again on the way to bpf_exit.
18151 * When looping the sl->state.branches will be > 0 and this state
18152 * will not be considered for equivalence until branches == 0.
18153 */
18154 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
18155 if (!new_sl)
18156 return -ENOMEM;
18157 env->total_states++;
18158 env->peak_states++;
18159 env->prev_jmps_processed = env->jmps_processed;
18160 env->prev_insn_processed = env->insn_processed;
18161
18162 /* forget precise markings we inherited, see __mark_chain_precision */
18163 if (env->bpf_capable)
18164 mark_all_scalars_imprecise(env, cur);
18165
18166 /* add new state to the head of linked list */
18167 new = &new_sl->state;
18168 err = copy_verifier_state(new, cur);
18169 if (err) {
18170 free_verifier_state(new, false);
18171 kfree(new_sl);
18172 return err;
18173 }
18174 new->insn_idx = insn_idx;
18175 WARN_ONCE(new->branches != 1,
18176 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
18177
18178 cur->parent = new;
18179 cur->first_insn_idx = insn_idx;
18180 cur->dfs_depth = new->dfs_depth + 1;
18181 clear_jmp_history(cur);
18182 new_sl->next = *explored_state(env, insn_idx);
18183 *explored_state(env, insn_idx) = new_sl;
18184 /* connect new state to parentage chain. Current frame needs all
18185 * registers connected. Only r6 - r9 of the callers are alive (pushed
18186 * to the stack implicitly by JITs) so in callers' frames connect just
18187 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
18188 * the state of the call instruction (with WRITTEN set), and r0 comes
18189 * from callee with its full parentage chain, anyway.
18190 */
18191 /* clear write marks in current state: the writes we did are not writes
18192 * our child did, so they don't screen off its reads from us.
18193 * (There are no read marks in current state, because reads always mark
18194 * their parent and current state never has children yet. Only
18195 * explored_states can get read marks.)
18196 */
18197 for (j = 0; j <= cur->curframe; j++) {
18198 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
18199 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
18200 for (i = 0; i < BPF_REG_FP; i++)
18201 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
18202 }
18203
18204 /* all stack frames are accessible from callee, clear them all */
18205 for (j = 0; j <= cur->curframe; j++) {
18206 struct bpf_func_state *frame = cur->frame[j];
18207 struct bpf_func_state *newframe = new->frame[j];
18208
18209 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
18210 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
18211 frame->stack[i].spilled_ptr.parent =
18212 &newframe->stack[i].spilled_ptr;
18213 }
18214 }
18215 return 0;
18216 }
18217
18218 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)18219 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
18220 {
18221 switch (base_type(type)) {
18222 case PTR_TO_CTX:
18223 case PTR_TO_SOCKET:
18224 case PTR_TO_SOCK_COMMON:
18225 case PTR_TO_TCP_SOCK:
18226 case PTR_TO_XDP_SOCK:
18227 case PTR_TO_BTF_ID:
18228 case PTR_TO_ARENA:
18229 return false;
18230 default:
18231 return true;
18232 }
18233 }
18234
18235 /* If an instruction was previously used with particular pointer types, then we
18236 * need to be careful to avoid cases such as the below, where it may be ok
18237 * for one branch accessing the pointer, but not ok for the other branch:
18238 *
18239 * R1 = sock_ptr
18240 * goto X;
18241 * ...
18242 * R1 = some_other_valid_ptr;
18243 * goto X;
18244 * ...
18245 * R2 = *(u32 *)(R1 + 0);
18246 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)18247 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
18248 {
18249 return src != prev && (!reg_type_mismatch_ok(src) ||
18250 !reg_type_mismatch_ok(prev));
18251 }
18252
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_mismatch)18253 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
18254 bool allow_trust_mismatch)
18255 {
18256 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
18257
18258 if (*prev_type == NOT_INIT) {
18259 /* Saw a valid insn
18260 * dst_reg = *(u32 *)(src_reg + off)
18261 * save type to validate intersecting paths
18262 */
18263 *prev_type = type;
18264 } else if (reg_type_mismatch(type, *prev_type)) {
18265 /* Abuser program is trying to use the same insn
18266 * dst_reg = *(u32*) (src_reg + off)
18267 * with different pointer types:
18268 * src_reg == ctx in one branch and
18269 * src_reg == stack|map in some other branch.
18270 * Reject it.
18271 */
18272 if (allow_trust_mismatch &&
18273 base_type(type) == PTR_TO_BTF_ID &&
18274 base_type(*prev_type) == PTR_TO_BTF_ID) {
18275 /*
18276 * Have to support a use case when one path through
18277 * the program yields TRUSTED pointer while another
18278 * is UNTRUSTED. Fallback to UNTRUSTED to generate
18279 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
18280 */
18281 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
18282 } else {
18283 verbose(env, "same insn cannot be used with different pointers\n");
18284 return -EINVAL;
18285 }
18286 }
18287
18288 return 0;
18289 }
18290
do_check(struct bpf_verifier_env * env)18291 static int do_check(struct bpf_verifier_env *env)
18292 {
18293 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18294 struct bpf_verifier_state *state = env->cur_state;
18295 struct bpf_insn *insns = env->prog->insnsi;
18296 struct bpf_reg_state *regs;
18297 int insn_cnt = env->prog->len;
18298 bool do_print_state = false;
18299 int prev_insn_idx = -1;
18300
18301 for (;;) {
18302 bool exception_exit = false;
18303 struct bpf_insn *insn;
18304 u8 class;
18305 int err;
18306
18307 /* reset current history entry on each new instruction */
18308 env->cur_hist_ent = NULL;
18309
18310 env->prev_insn_idx = prev_insn_idx;
18311 if (env->insn_idx >= insn_cnt) {
18312 verbose(env, "invalid insn idx %d insn_cnt %d\n",
18313 env->insn_idx, insn_cnt);
18314 return -EFAULT;
18315 }
18316
18317 insn = &insns[env->insn_idx];
18318 class = BPF_CLASS(insn->code);
18319
18320 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
18321 verbose(env,
18322 "BPF program is too large. Processed %d insn\n",
18323 env->insn_processed);
18324 return -E2BIG;
18325 }
18326
18327 state->last_insn_idx = env->prev_insn_idx;
18328
18329 if (is_prune_point(env, env->insn_idx)) {
18330 err = is_state_visited(env, env->insn_idx);
18331 if (err < 0)
18332 return err;
18333 if (err == 1) {
18334 /* found equivalent state, can prune the search */
18335 if (env->log.level & BPF_LOG_LEVEL) {
18336 if (do_print_state)
18337 verbose(env, "\nfrom %d to %d%s: safe\n",
18338 env->prev_insn_idx, env->insn_idx,
18339 env->cur_state->speculative ?
18340 " (speculative execution)" : "");
18341 else
18342 verbose(env, "%d: safe\n", env->insn_idx);
18343 }
18344 goto process_bpf_exit;
18345 }
18346 }
18347
18348 if (is_jmp_point(env, env->insn_idx)) {
18349 err = push_jmp_history(env, state, 0, 0);
18350 if (err)
18351 return err;
18352 }
18353
18354 if (signal_pending(current))
18355 return -EAGAIN;
18356
18357 if (need_resched())
18358 cond_resched();
18359
18360 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
18361 verbose(env, "\nfrom %d to %d%s:",
18362 env->prev_insn_idx, env->insn_idx,
18363 env->cur_state->speculative ?
18364 " (speculative execution)" : "");
18365 print_verifier_state(env, state->frame[state->curframe], true);
18366 do_print_state = false;
18367 }
18368
18369 if (env->log.level & BPF_LOG_LEVEL) {
18370 const struct bpf_insn_cbs cbs = {
18371 .cb_call = disasm_kfunc_name,
18372 .cb_print = verbose,
18373 .private_data = env,
18374 };
18375
18376 if (verifier_state_scratched(env))
18377 print_insn_state(env, state->frame[state->curframe]);
18378
18379 verbose_linfo(env, env->insn_idx, "; ");
18380 env->prev_log_pos = env->log.end_pos;
18381 verbose(env, "%d: ", env->insn_idx);
18382 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
18383 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
18384 env->prev_log_pos = env->log.end_pos;
18385 }
18386
18387 if (bpf_prog_is_offloaded(env->prog->aux)) {
18388 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
18389 env->prev_insn_idx);
18390 if (err)
18391 return err;
18392 }
18393
18394 regs = cur_regs(env);
18395 sanitize_mark_insn_seen(env);
18396 prev_insn_idx = env->insn_idx;
18397
18398 if (class == BPF_ALU || class == BPF_ALU64) {
18399 err = check_alu_op(env, insn);
18400 if (err)
18401 return err;
18402
18403 } else if (class == BPF_LDX) {
18404 enum bpf_reg_type src_reg_type;
18405
18406 /* check for reserved fields is already done */
18407
18408 /* check src operand */
18409 err = check_reg_arg(env, insn->src_reg, SRC_OP);
18410 if (err)
18411 return err;
18412
18413 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
18414 if (err)
18415 return err;
18416
18417 src_reg_type = regs[insn->src_reg].type;
18418
18419 /* check that memory (src_reg + off) is readable,
18420 * the state of dst_reg will be updated by this func
18421 */
18422 err = check_mem_access(env, env->insn_idx, insn->src_reg,
18423 insn->off, BPF_SIZE(insn->code),
18424 BPF_READ, insn->dst_reg, false,
18425 BPF_MODE(insn->code) == BPF_MEMSX);
18426 err = err ?: save_aux_ptr_type(env, src_reg_type, true);
18427 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx");
18428 if (err)
18429 return err;
18430 } else if (class == BPF_STX) {
18431 enum bpf_reg_type dst_reg_type;
18432
18433 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
18434 err = check_atomic(env, env->insn_idx, insn);
18435 if (err)
18436 return err;
18437 env->insn_idx++;
18438 continue;
18439 }
18440
18441 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
18442 verbose(env, "BPF_STX uses reserved fields\n");
18443 return -EINVAL;
18444 }
18445
18446 /* check src1 operand */
18447 err = check_reg_arg(env, insn->src_reg, SRC_OP);
18448 if (err)
18449 return err;
18450 /* check src2 operand */
18451 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18452 if (err)
18453 return err;
18454
18455 dst_reg_type = regs[insn->dst_reg].type;
18456
18457 /* check that memory (dst_reg + off) is writeable */
18458 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18459 insn->off, BPF_SIZE(insn->code),
18460 BPF_WRITE, insn->src_reg, false, false);
18461 if (err)
18462 return err;
18463
18464 err = save_aux_ptr_type(env, dst_reg_type, false);
18465 if (err)
18466 return err;
18467 } else if (class == BPF_ST) {
18468 enum bpf_reg_type dst_reg_type;
18469
18470 if (BPF_MODE(insn->code) != BPF_MEM ||
18471 insn->src_reg != BPF_REG_0) {
18472 verbose(env, "BPF_ST uses reserved fields\n");
18473 return -EINVAL;
18474 }
18475 /* check src operand */
18476 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18477 if (err)
18478 return err;
18479
18480 dst_reg_type = regs[insn->dst_reg].type;
18481
18482 /* check that memory (dst_reg + off) is writeable */
18483 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18484 insn->off, BPF_SIZE(insn->code),
18485 BPF_WRITE, -1, false, false);
18486 if (err)
18487 return err;
18488
18489 err = save_aux_ptr_type(env, dst_reg_type, false);
18490 if (err)
18491 return err;
18492 } else if (class == BPF_JMP || class == BPF_JMP32) {
18493 u8 opcode = BPF_OP(insn->code);
18494
18495 env->jmps_processed++;
18496 if (opcode == BPF_CALL) {
18497 if (BPF_SRC(insn->code) != BPF_K ||
18498 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
18499 && insn->off != 0) ||
18500 (insn->src_reg != BPF_REG_0 &&
18501 insn->src_reg != BPF_PSEUDO_CALL &&
18502 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
18503 insn->dst_reg != BPF_REG_0 ||
18504 class == BPF_JMP32) {
18505 verbose(env, "BPF_CALL uses reserved fields\n");
18506 return -EINVAL;
18507 }
18508
18509 if (env->cur_state->active_lock.ptr) {
18510 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
18511 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
18512 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
18513 verbose(env, "function calls are not allowed while holding a lock\n");
18514 return -EINVAL;
18515 }
18516 }
18517 if (insn->src_reg == BPF_PSEUDO_CALL) {
18518 err = check_func_call(env, insn, &env->insn_idx);
18519 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18520 err = check_kfunc_call(env, insn, &env->insn_idx);
18521 if (!err && is_bpf_throw_kfunc(insn)) {
18522 exception_exit = true;
18523 goto process_bpf_exit_full;
18524 }
18525 } else {
18526 err = check_helper_call(env, insn, &env->insn_idx);
18527 }
18528 if (err)
18529 return err;
18530
18531 mark_reg_scratched(env, BPF_REG_0);
18532 } else if (opcode == BPF_JA) {
18533 if (BPF_SRC(insn->code) != BPF_K ||
18534 insn->src_reg != BPF_REG_0 ||
18535 insn->dst_reg != BPF_REG_0 ||
18536 (class == BPF_JMP && insn->imm != 0) ||
18537 (class == BPF_JMP32 && insn->off != 0)) {
18538 verbose(env, "BPF_JA uses reserved fields\n");
18539 return -EINVAL;
18540 }
18541
18542 if (class == BPF_JMP)
18543 env->insn_idx += insn->off + 1;
18544 else
18545 env->insn_idx += insn->imm + 1;
18546 continue;
18547
18548 } else if (opcode == BPF_EXIT) {
18549 if (BPF_SRC(insn->code) != BPF_K ||
18550 insn->imm != 0 ||
18551 insn->src_reg != BPF_REG_0 ||
18552 insn->dst_reg != BPF_REG_0 ||
18553 class == BPF_JMP32) {
18554 verbose(env, "BPF_EXIT uses reserved fields\n");
18555 return -EINVAL;
18556 }
18557 process_bpf_exit_full:
18558 if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) {
18559 verbose(env, "bpf_spin_unlock is missing\n");
18560 return -EINVAL;
18561 }
18562
18563 if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) {
18564 verbose(env, "bpf_rcu_read_unlock is missing\n");
18565 return -EINVAL;
18566 }
18567
18568 if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) {
18569 verbose(env, "%d bpf_preempt_enable%s missing\n",
18570 env->cur_state->active_preempt_lock,
18571 env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are");
18572 return -EINVAL;
18573 }
18574
18575 /* We must do check_reference_leak here before
18576 * prepare_func_exit to handle the case when
18577 * state->curframe > 0, it may be a callback
18578 * function, for which reference_state must
18579 * match caller reference state when it exits.
18580 */
18581 err = check_reference_leak(env, exception_exit);
18582 if (err)
18583 return err;
18584
18585 /* The side effect of the prepare_func_exit
18586 * which is being skipped is that it frees
18587 * bpf_func_state. Typically, process_bpf_exit
18588 * will only be hit with outermost exit.
18589 * copy_verifier_state in pop_stack will handle
18590 * freeing of any extra bpf_func_state left over
18591 * from not processing all nested function
18592 * exits. We also skip return code checks as
18593 * they are not needed for exceptional exits.
18594 */
18595 if (exception_exit)
18596 goto process_bpf_exit;
18597
18598 if (state->curframe) {
18599 /* exit from nested function */
18600 err = prepare_func_exit(env, &env->insn_idx);
18601 if (err)
18602 return err;
18603 do_print_state = true;
18604 continue;
18605 }
18606
18607 err = check_return_code(env, BPF_REG_0, "R0");
18608 if (err)
18609 return err;
18610 process_bpf_exit:
18611 mark_verifier_state_scratched(env);
18612 update_branch_counts(env, env->cur_state);
18613 err = pop_stack(env, &prev_insn_idx,
18614 &env->insn_idx, pop_log);
18615 if (err < 0) {
18616 if (err != -ENOENT)
18617 return err;
18618 break;
18619 } else {
18620 do_print_state = true;
18621 continue;
18622 }
18623 } else {
18624 err = check_cond_jmp_op(env, insn, &env->insn_idx);
18625 if (err)
18626 return err;
18627 }
18628 } else if (class == BPF_LD) {
18629 u8 mode = BPF_MODE(insn->code);
18630
18631 if (mode == BPF_ABS || mode == BPF_IND) {
18632 err = check_ld_abs(env, insn);
18633 if (err)
18634 return err;
18635
18636 } else if (mode == BPF_IMM) {
18637 err = check_ld_imm(env, insn);
18638 if (err)
18639 return err;
18640
18641 env->insn_idx++;
18642 sanitize_mark_insn_seen(env);
18643 } else {
18644 verbose(env, "invalid BPF_LD mode\n");
18645 return -EINVAL;
18646 }
18647 } else {
18648 verbose(env, "unknown insn class %d\n", class);
18649 return -EINVAL;
18650 }
18651
18652 env->insn_idx++;
18653 }
18654
18655 return 0;
18656 }
18657
find_btf_percpu_datasec(struct btf * btf)18658 static int find_btf_percpu_datasec(struct btf *btf)
18659 {
18660 const struct btf_type *t;
18661 const char *tname;
18662 int i, n;
18663
18664 /*
18665 * Both vmlinux and module each have their own ".data..percpu"
18666 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
18667 * types to look at only module's own BTF types.
18668 */
18669 n = btf_nr_types(btf);
18670 if (btf_is_module(btf))
18671 i = btf_nr_types(btf_vmlinux);
18672 else
18673 i = 1;
18674
18675 for(; i < n; i++) {
18676 t = btf_type_by_id(btf, i);
18677 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
18678 continue;
18679
18680 tname = btf_name_by_offset(btf, t->name_off);
18681 if (!strcmp(tname, ".data..percpu"))
18682 return i;
18683 }
18684
18685 return -ENOENT;
18686 }
18687
18688 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)18689 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
18690 struct bpf_insn *insn,
18691 struct bpf_insn_aux_data *aux)
18692 {
18693 const struct btf_var_secinfo *vsi;
18694 const struct btf_type *datasec;
18695 struct btf_mod_pair *btf_mod;
18696 const struct btf_type *t;
18697 const char *sym_name;
18698 bool percpu = false;
18699 u32 type, id = insn->imm;
18700 struct btf *btf;
18701 s32 datasec_id;
18702 u64 addr;
18703 int i, btf_fd, err;
18704
18705 btf_fd = insn[1].imm;
18706 if (btf_fd) {
18707 btf = btf_get_by_fd(btf_fd);
18708 if (IS_ERR(btf)) {
18709 verbose(env, "invalid module BTF object FD specified.\n");
18710 return -EINVAL;
18711 }
18712 } else {
18713 if (!btf_vmlinux) {
18714 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
18715 return -EINVAL;
18716 }
18717 btf = btf_vmlinux;
18718 btf_get(btf);
18719 }
18720
18721 t = btf_type_by_id(btf, id);
18722 if (!t) {
18723 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
18724 err = -ENOENT;
18725 goto err_put;
18726 }
18727
18728 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
18729 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
18730 err = -EINVAL;
18731 goto err_put;
18732 }
18733
18734 sym_name = btf_name_by_offset(btf, t->name_off);
18735 addr = kallsyms_lookup_name(sym_name);
18736 if (!addr) {
18737 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
18738 sym_name);
18739 err = -ENOENT;
18740 goto err_put;
18741 }
18742 insn[0].imm = (u32)addr;
18743 insn[1].imm = addr >> 32;
18744
18745 if (btf_type_is_func(t)) {
18746 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18747 aux->btf_var.mem_size = 0;
18748 goto check_btf;
18749 }
18750
18751 datasec_id = find_btf_percpu_datasec(btf);
18752 if (datasec_id > 0) {
18753 datasec = btf_type_by_id(btf, datasec_id);
18754 for_each_vsi(i, datasec, vsi) {
18755 if (vsi->type == id) {
18756 percpu = true;
18757 break;
18758 }
18759 }
18760 }
18761
18762 type = t->type;
18763 t = btf_type_skip_modifiers(btf, type, NULL);
18764 if (percpu) {
18765 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
18766 aux->btf_var.btf = btf;
18767 aux->btf_var.btf_id = type;
18768 } else if (!btf_type_is_struct(t)) {
18769 const struct btf_type *ret;
18770 const char *tname;
18771 u32 tsize;
18772
18773 /* resolve the type size of ksym. */
18774 ret = btf_resolve_size(btf, t, &tsize);
18775 if (IS_ERR(ret)) {
18776 tname = btf_name_by_offset(btf, t->name_off);
18777 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
18778 tname, PTR_ERR(ret));
18779 err = -EINVAL;
18780 goto err_put;
18781 }
18782 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18783 aux->btf_var.mem_size = tsize;
18784 } else {
18785 aux->btf_var.reg_type = PTR_TO_BTF_ID;
18786 aux->btf_var.btf = btf;
18787 aux->btf_var.btf_id = type;
18788 }
18789 check_btf:
18790 /* check whether we recorded this BTF (and maybe module) already */
18791 for (i = 0; i < env->used_btf_cnt; i++) {
18792 if (env->used_btfs[i].btf == btf) {
18793 btf_put(btf);
18794 return 0;
18795 }
18796 }
18797
18798 if (env->used_btf_cnt >= MAX_USED_BTFS) {
18799 err = -E2BIG;
18800 goto err_put;
18801 }
18802
18803 btf_mod = &env->used_btfs[env->used_btf_cnt];
18804 btf_mod->btf = btf;
18805 btf_mod->module = NULL;
18806
18807 /* if we reference variables from kernel module, bump its refcount */
18808 if (btf_is_module(btf)) {
18809 btf_mod->module = btf_try_get_module(btf);
18810 if (!btf_mod->module) {
18811 err = -ENXIO;
18812 goto err_put;
18813 }
18814 }
18815
18816 env->used_btf_cnt++;
18817
18818 return 0;
18819 err_put:
18820 btf_put(btf);
18821 return err;
18822 }
18823
is_tracing_prog_type(enum bpf_prog_type type)18824 static bool is_tracing_prog_type(enum bpf_prog_type type)
18825 {
18826 switch (type) {
18827 case BPF_PROG_TYPE_KPROBE:
18828 case BPF_PROG_TYPE_TRACEPOINT:
18829 case BPF_PROG_TYPE_PERF_EVENT:
18830 case BPF_PROG_TYPE_RAW_TRACEPOINT:
18831 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
18832 return true;
18833 default:
18834 return false;
18835 }
18836 }
18837
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)18838 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
18839 struct bpf_map *map,
18840 struct bpf_prog *prog)
18841
18842 {
18843 enum bpf_prog_type prog_type = resolve_prog_type(prog);
18844
18845 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
18846 btf_record_has_field(map->record, BPF_RB_ROOT)) {
18847 if (is_tracing_prog_type(prog_type)) {
18848 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
18849 return -EINVAL;
18850 }
18851 }
18852
18853 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
18854 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
18855 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
18856 return -EINVAL;
18857 }
18858
18859 if (is_tracing_prog_type(prog_type)) {
18860 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
18861 return -EINVAL;
18862 }
18863 }
18864
18865 if (btf_record_has_field(map->record, BPF_TIMER)) {
18866 if (is_tracing_prog_type(prog_type)) {
18867 verbose(env, "tracing progs cannot use bpf_timer yet\n");
18868 return -EINVAL;
18869 }
18870 }
18871
18872 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
18873 if (is_tracing_prog_type(prog_type)) {
18874 verbose(env, "tracing progs cannot use bpf_wq yet\n");
18875 return -EINVAL;
18876 }
18877 }
18878
18879 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
18880 !bpf_offload_prog_map_match(prog, map)) {
18881 verbose(env, "offload device mismatch between prog and map\n");
18882 return -EINVAL;
18883 }
18884
18885 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
18886 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
18887 return -EINVAL;
18888 }
18889
18890 if (prog->sleepable)
18891 switch (map->map_type) {
18892 case BPF_MAP_TYPE_HASH:
18893 case BPF_MAP_TYPE_LRU_HASH:
18894 case BPF_MAP_TYPE_ARRAY:
18895 case BPF_MAP_TYPE_PERCPU_HASH:
18896 case BPF_MAP_TYPE_PERCPU_ARRAY:
18897 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
18898 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
18899 case BPF_MAP_TYPE_HASH_OF_MAPS:
18900 case BPF_MAP_TYPE_RINGBUF:
18901 case BPF_MAP_TYPE_USER_RINGBUF:
18902 case BPF_MAP_TYPE_INODE_STORAGE:
18903 case BPF_MAP_TYPE_SK_STORAGE:
18904 case BPF_MAP_TYPE_TASK_STORAGE:
18905 case BPF_MAP_TYPE_CGRP_STORAGE:
18906 case BPF_MAP_TYPE_QUEUE:
18907 case BPF_MAP_TYPE_STACK:
18908 case BPF_MAP_TYPE_ARENA:
18909 break;
18910 default:
18911 verbose(env,
18912 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
18913 return -EINVAL;
18914 }
18915
18916 return 0;
18917 }
18918
bpf_map_is_cgroup_storage(struct bpf_map * map)18919 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
18920 {
18921 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
18922 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
18923 }
18924
18925 /* Add map behind fd to used maps list, if it's not already there, and return
18926 * its index. Also set *reused to true if this map was already in the list of
18927 * used maps.
18928 * Returns <0 on error, or >= 0 index, on success.
18929 */
add_used_map_from_fd(struct bpf_verifier_env * env,int fd,bool * reused)18930 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused)
18931 {
18932 CLASS(fd, f)(fd);
18933 struct bpf_map *map;
18934 int i;
18935
18936 map = __bpf_map_get(f);
18937 if (IS_ERR(map)) {
18938 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
18939 return PTR_ERR(map);
18940 }
18941
18942 /* check whether we recorded this map already */
18943 for (i = 0; i < env->used_map_cnt; i++) {
18944 if (env->used_maps[i] == map) {
18945 *reused = true;
18946 return i;
18947 }
18948 }
18949
18950 if (env->used_map_cnt >= MAX_USED_MAPS) {
18951 verbose(env, "The total number of maps per program has reached the limit of %u\n",
18952 MAX_USED_MAPS);
18953 return -E2BIG;
18954 }
18955
18956 if (env->prog->sleepable)
18957 atomic64_inc(&map->sleepable_refcnt);
18958
18959 /* hold the map. If the program is rejected by verifier,
18960 * the map will be released by release_maps() or it
18961 * will be used by the valid program until it's unloaded
18962 * and all maps are released in bpf_free_used_maps()
18963 */
18964 bpf_map_inc(map);
18965
18966 *reused = false;
18967 env->used_maps[env->used_map_cnt++] = map;
18968
18969 return env->used_map_cnt - 1;
18970 }
18971
18972 /* find and rewrite pseudo imm in ld_imm64 instructions:
18973 *
18974 * 1. if it accesses map FD, replace it with actual map pointer.
18975 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
18976 *
18977 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
18978 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)18979 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
18980 {
18981 struct bpf_insn *insn = env->prog->insnsi;
18982 int insn_cnt = env->prog->len;
18983 int i, err;
18984
18985 err = bpf_prog_calc_tag(env->prog);
18986 if (err)
18987 return err;
18988
18989 for (i = 0; i < insn_cnt; i++, insn++) {
18990 if (BPF_CLASS(insn->code) == BPF_LDX &&
18991 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
18992 insn->imm != 0)) {
18993 verbose(env, "BPF_LDX uses reserved fields\n");
18994 return -EINVAL;
18995 }
18996
18997 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
18998 struct bpf_insn_aux_data *aux;
18999 struct bpf_map *map;
19000 int map_idx;
19001 u64 addr;
19002 u32 fd;
19003 bool reused;
19004
19005 if (i == insn_cnt - 1 || insn[1].code != 0 ||
19006 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
19007 insn[1].off != 0) {
19008 verbose(env, "invalid bpf_ld_imm64 insn\n");
19009 return -EINVAL;
19010 }
19011
19012 if (insn[0].src_reg == 0)
19013 /* valid generic load 64-bit imm */
19014 goto next_insn;
19015
19016 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
19017 aux = &env->insn_aux_data[i];
19018 err = check_pseudo_btf_id(env, insn, aux);
19019 if (err)
19020 return err;
19021 goto next_insn;
19022 }
19023
19024 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
19025 aux = &env->insn_aux_data[i];
19026 aux->ptr_type = PTR_TO_FUNC;
19027 goto next_insn;
19028 }
19029
19030 /* In final convert_pseudo_ld_imm64() step, this is
19031 * converted into regular 64-bit imm load insn.
19032 */
19033 switch (insn[0].src_reg) {
19034 case BPF_PSEUDO_MAP_VALUE:
19035 case BPF_PSEUDO_MAP_IDX_VALUE:
19036 break;
19037 case BPF_PSEUDO_MAP_FD:
19038 case BPF_PSEUDO_MAP_IDX:
19039 if (insn[1].imm == 0)
19040 break;
19041 fallthrough;
19042 default:
19043 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
19044 return -EINVAL;
19045 }
19046
19047 switch (insn[0].src_reg) {
19048 case BPF_PSEUDO_MAP_IDX_VALUE:
19049 case BPF_PSEUDO_MAP_IDX:
19050 if (bpfptr_is_null(env->fd_array)) {
19051 verbose(env, "fd_idx without fd_array is invalid\n");
19052 return -EPROTO;
19053 }
19054 if (copy_from_bpfptr_offset(&fd, env->fd_array,
19055 insn[0].imm * sizeof(fd),
19056 sizeof(fd)))
19057 return -EFAULT;
19058 break;
19059 default:
19060 fd = insn[0].imm;
19061 break;
19062 }
19063
19064 map_idx = add_used_map_from_fd(env, fd, &reused);
19065 if (map_idx < 0)
19066 return map_idx;
19067 map = env->used_maps[map_idx];
19068
19069 aux = &env->insn_aux_data[i];
19070 aux->map_index = map_idx;
19071
19072 err = check_map_prog_compatibility(env, map, env->prog);
19073 if (err)
19074 return err;
19075
19076 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
19077 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
19078 addr = (unsigned long)map;
19079 } else {
19080 u32 off = insn[1].imm;
19081
19082 if (off >= BPF_MAX_VAR_OFF) {
19083 verbose(env, "direct value offset of %u is not allowed\n", off);
19084 return -EINVAL;
19085 }
19086
19087 if (!map->ops->map_direct_value_addr) {
19088 verbose(env, "no direct value access support for this map type\n");
19089 return -EINVAL;
19090 }
19091
19092 err = map->ops->map_direct_value_addr(map, &addr, off);
19093 if (err) {
19094 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
19095 map->value_size, off);
19096 return err;
19097 }
19098
19099 aux->map_off = off;
19100 addr += off;
19101 }
19102
19103 insn[0].imm = (u32)addr;
19104 insn[1].imm = addr >> 32;
19105
19106 /* proceed with extra checks only if its newly added used map */
19107 if (reused)
19108 goto next_insn;
19109
19110 if (bpf_map_is_cgroup_storage(map) &&
19111 bpf_cgroup_storage_assign(env->prog->aux, map)) {
19112 verbose(env, "only one cgroup storage of each type is allowed\n");
19113 return -EBUSY;
19114 }
19115 if (map->map_type == BPF_MAP_TYPE_ARENA) {
19116 if (env->prog->aux->arena) {
19117 verbose(env, "Only one arena per program\n");
19118 return -EBUSY;
19119 }
19120 if (!env->allow_ptr_leaks || !env->bpf_capable) {
19121 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
19122 return -EPERM;
19123 }
19124 if (!env->prog->jit_requested) {
19125 verbose(env, "JIT is required to use arena\n");
19126 return -EOPNOTSUPP;
19127 }
19128 if (!bpf_jit_supports_arena()) {
19129 verbose(env, "JIT doesn't support arena\n");
19130 return -EOPNOTSUPP;
19131 }
19132 env->prog->aux->arena = (void *)map;
19133 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
19134 verbose(env, "arena's user address must be set via map_extra or mmap()\n");
19135 return -EINVAL;
19136 }
19137 }
19138
19139 next_insn:
19140 insn++;
19141 i++;
19142 continue;
19143 }
19144
19145 /* Basic sanity check before we invest more work here. */
19146 if (!bpf_opcode_in_insntable(insn->code)) {
19147 verbose(env, "unknown opcode %02x\n", insn->code);
19148 return -EINVAL;
19149 }
19150 }
19151
19152 /* now all pseudo BPF_LD_IMM64 instructions load valid
19153 * 'struct bpf_map *' into a register instead of user map_fd.
19154 * These pointers will be used later by verifier to validate map access.
19155 */
19156 return 0;
19157 }
19158
19159 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)19160 static void release_maps(struct bpf_verifier_env *env)
19161 {
19162 __bpf_free_used_maps(env->prog->aux, env->used_maps,
19163 env->used_map_cnt);
19164 }
19165
19166 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)19167 static void release_btfs(struct bpf_verifier_env *env)
19168 {
19169 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
19170 }
19171
19172 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)19173 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
19174 {
19175 struct bpf_insn *insn = env->prog->insnsi;
19176 int insn_cnt = env->prog->len;
19177 int i;
19178
19179 for (i = 0; i < insn_cnt; i++, insn++) {
19180 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
19181 continue;
19182 if (insn->src_reg == BPF_PSEUDO_FUNC)
19183 continue;
19184 insn->src_reg = 0;
19185 }
19186 }
19187
19188 /* single env->prog->insni[off] instruction was replaced with the range
19189 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
19190 * [0, off) and [off, end) to new locations, so the patched range stays zero
19191 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)19192 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
19193 struct bpf_insn_aux_data *new_data,
19194 struct bpf_prog *new_prog, u32 off, u32 cnt)
19195 {
19196 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
19197 struct bpf_insn *insn = new_prog->insnsi;
19198 u32 old_seen = old_data[off].seen;
19199 u32 prog_len;
19200 int i;
19201
19202 /* aux info at OFF always needs adjustment, no matter fast path
19203 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
19204 * original insn at old prog.
19205 */
19206 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
19207
19208 if (cnt == 1)
19209 return;
19210 prog_len = new_prog->len;
19211
19212 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
19213 memcpy(new_data + off + cnt - 1, old_data + off,
19214 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
19215 for (i = off; i < off + cnt - 1; i++) {
19216 /* Expand insni[off]'s seen count to the patched range. */
19217 new_data[i].seen = old_seen;
19218 new_data[i].zext_dst = insn_has_def32(env, insn + i);
19219 }
19220 env->insn_aux_data = new_data;
19221 vfree(old_data);
19222 }
19223
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)19224 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
19225 {
19226 int i;
19227
19228 if (len == 1)
19229 return;
19230 /* NOTE: fake 'exit' subprog should be updated as well. */
19231 for (i = 0; i <= env->subprog_cnt; i++) {
19232 if (env->subprog_info[i].start <= off)
19233 continue;
19234 env->subprog_info[i].start += len - 1;
19235 }
19236 }
19237
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)19238 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
19239 {
19240 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
19241 int i, sz = prog->aux->size_poke_tab;
19242 struct bpf_jit_poke_descriptor *desc;
19243
19244 for (i = 0; i < sz; i++) {
19245 desc = &tab[i];
19246 if (desc->insn_idx <= off)
19247 continue;
19248 desc->insn_idx += len - 1;
19249 }
19250 }
19251
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)19252 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
19253 const struct bpf_insn *patch, u32 len)
19254 {
19255 struct bpf_prog *new_prog;
19256 struct bpf_insn_aux_data *new_data = NULL;
19257
19258 if (len > 1) {
19259 new_data = vzalloc(array_size(env->prog->len + len - 1,
19260 sizeof(struct bpf_insn_aux_data)));
19261 if (!new_data)
19262 return NULL;
19263 }
19264
19265 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
19266 if (IS_ERR(new_prog)) {
19267 if (PTR_ERR(new_prog) == -ERANGE)
19268 verbose(env,
19269 "insn %d cannot be patched due to 16-bit range\n",
19270 env->insn_aux_data[off].orig_idx);
19271 vfree(new_data);
19272 return NULL;
19273 }
19274 adjust_insn_aux_data(env, new_data, new_prog, off, len);
19275 adjust_subprog_starts(env, off, len);
19276 adjust_poke_descs(new_prog, off, len);
19277 return new_prog;
19278 }
19279
19280 /*
19281 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
19282 * jump offset by 'delta'.
19283 */
adjust_jmp_off(struct bpf_prog * prog,u32 tgt_idx,u32 delta)19284 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
19285 {
19286 struct bpf_insn *insn = prog->insnsi;
19287 u32 insn_cnt = prog->len, i;
19288 s32 imm;
19289 s16 off;
19290
19291 for (i = 0; i < insn_cnt; i++, insn++) {
19292 u8 code = insn->code;
19293
19294 if (tgt_idx <= i && i < tgt_idx + delta)
19295 continue;
19296
19297 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
19298 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
19299 continue;
19300
19301 if (insn->code == (BPF_JMP32 | BPF_JA)) {
19302 if (i + 1 + insn->imm != tgt_idx)
19303 continue;
19304 if (check_add_overflow(insn->imm, delta, &imm))
19305 return -ERANGE;
19306 insn->imm = imm;
19307 } else {
19308 if (i + 1 + insn->off != tgt_idx)
19309 continue;
19310 if (check_add_overflow(insn->off, delta, &off))
19311 return -ERANGE;
19312 insn->off = off;
19313 }
19314 }
19315 return 0;
19316 }
19317
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)19318 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
19319 u32 off, u32 cnt)
19320 {
19321 int i, j;
19322
19323 /* find first prog starting at or after off (first to remove) */
19324 for (i = 0; i < env->subprog_cnt; i++)
19325 if (env->subprog_info[i].start >= off)
19326 break;
19327 /* find first prog starting at or after off + cnt (first to stay) */
19328 for (j = i; j < env->subprog_cnt; j++)
19329 if (env->subprog_info[j].start >= off + cnt)
19330 break;
19331 /* if j doesn't start exactly at off + cnt, we are just removing
19332 * the front of previous prog
19333 */
19334 if (env->subprog_info[j].start != off + cnt)
19335 j--;
19336
19337 if (j > i) {
19338 struct bpf_prog_aux *aux = env->prog->aux;
19339 int move;
19340
19341 /* move fake 'exit' subprog as well */
19342 move = env->subprog_cnt + 1 - j;
19343
19344 memmove(env->subprog_info + i,
19345 env->subprog_info + j,
19346 sizeof(*env->subprog_info) * move);
19347 env->subprog_cnt -= j - i;
19348
19349 /* remove func_info */
19350 if (aux->func_info) {
19351 move = aux->func_info_cnt - j;
19352
19353 memmove(aux->func_info + i,
19354 aux->func_info + j,
19355 sizeof(*aux->func_info) * move);
19356 aux->func_info_cnt -= j - i;
19357 /* func_info->insn_off is set after all code rewrites,
19358 * in adjust_btf_func() - no need to adjust
19359 */
19360 }
19361 } else {
19362 /* convert i from "first prog to remove" to "first to adjust" */
19363 if (env->subprog_info[i].start == off)
19364 i++;
19365 }
19366
19367 /* update fake 'exit' subprog as well */
19368 for (; i <= env->subprog_cnt; i++)
19369 env->subprog_info[i].start -= cnt;
19370
19371 return 0;
19372 }
19373
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)19374 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
19375 u32 cnt)
19376 {
19377 struct bpf_prog *prog = env->prog;
19378 u32 i, l_off, l_cnt, nr_linfo;
19379 struct bpf_line_info *linfo;
19380
19381 nr_linfo = prog->aux->nr_linfo;
19382 if (!nr_linfo)
19383 return 0;
19384
19385 linfo = prog->aux->linfo;
19386
19387 /* find first line info to remove, count lines to be removed */
19388 for (i = 0; i < nr_linfo; i++)
19389 if (linfo[i].insn_off >= off)
19390 break;
19391
19392 l_off = i;
19393 l_cnt = 0;
19394 for (; i < nr_linfo; i++)
19395 if (linfo[i].insn_off < off + cnt)
19396 l_cnt++;
19397 else
19398 break;
19399
19400 /* First live insn doesn't match first live linfo, it needs to "inherit"
19401 * last removed linfo. prog is already modified, so prog->len == off
19402 * means no live instructions after (tail of the program was removed).
19403 */
19404 if (prog->len != off && l_cnt &&
19405 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
19406 l_cnt--;
19407 linfo[--i].insn_off = off + cnt;
19408 }
19409
19410 /* remove the line info which refer to the removed instructions */
19411 if (l_cnt) {
19412 memmove(linfo + l_off, linfo + i,
19413 sizeof(*linfo) * (nr_linfo - i));
19414
19415 prog->aux->nr_linfo -= l_cnt;
19416 nr_linfo = prog->aux->nr_linfo;
19417 }
19418
19419 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
19420 for (i = l_off; i < nr_linfo; i++)
19421 linfo[i].insn_off -= cnt;
19422
19423 /* fix up all subprogs (incl. 'exit') which start >= off */
19424 for (i = 0; i <= env->subprog_cnt; i++)
19425 if (env->subprog_info[i].linfo_idx > l_off) {
19426 /* program may have started in the removed region but
19427 * may not be fully removed
19428 */
19429 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
19430 env->subprog_info[i].linfo_idx -= l_cnt;
19431 else
19432 env->subprog_info[i].linfo_idx = l_off;
19433 }
19434
19435 return 0;
19436 }
19437
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)19438 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
19439 {
19440 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19441 unsigned int orig_prog_len = env->prog->len;
19442 int err;
19443
19444 if (bpf_prog_is_offloaded(env->prog->aux))
19445 bpf_prog_offload_remove_insns(env, off, cnt);
19446
19447 err = bpf_remove_insns(env->prog, off, cnt);
19448 if (err)
19449 return err;
19450
19451 err = adjust_subprog_starts_after_remove(env, off, cnt);
19452 if (err)
19453 return err;
19454
19455 err = bpf_adj_linfo_after_remove(env, off, cnt);
19456 if (err)
19457 return err;
19458
19459 memmove(aux_data + off, aux_data + off + cnt,
19460 sizeof(*aux_data) * (orig_prog_len - off - cnt));
19461
19462 return 0;
19463 }
19464
19465 /* The verifier does more data flow analysis than llvm and will not
19466 * explore branches that are dead at run time. Malicious programs can
19467 * have dead code too. Therefore replace all dead at-run-time code
19468 * with 'ja -1'.
19469 *
19470 * Just nops are not optimal, e.g. if they would sit at the end of the
19471 * program and through another bug we would manage to jump there, then
19472 * we'd execute beyond program memory otherwise. Returning exception
19473 * code also wouldn't work since we can have subprogs where the dead
19474 * code could be located.
19475 */
sanitize_dead_code(struct bpf_verifier_env * env)19476 static void sanitize_dead_code(struct bpf_verifier_env *env)
19477 {
19478 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19479 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
19480 struct bpf_insn *insn = env->prog->insnsi;
19481 const int insn_cnt = env->prog->len;
19482 int i;
19483
19484 for (i = 0; i < insn_cnt; i++) {
19485 if (aux_data[i].seen)
19486 continue;
19487 memcpy(insn + i, &trap, sizeof(trap));
19488 aux_data[i].zext_dst = false;
19489 }
19490 }
19491
insn_is_cond_jump(u8 code)19492 static bool insn_is_cond_jump(u8 code)
19493 {
19494 u8 op;
19495
19496 op = BPF_OP(code);
19497 if (BPF_CLASS(code) == BPF_JMP32)
19498 return op != BPF_JA;
19499
19500 if (BPF_CLASS(code) != BPF_JMP)
19501 return false;
19502
19503 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
19504 }
19505
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)19506 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
19507 {
19508 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19509 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19510 struct bpf_insn *insn = env->prog->insnsi;
19511 const int insn_cnt = env->prog->len;
19512 int i;
19513
19514 for (i = 0; i < insn_cnt; i++, insn++) {
19515 if (!insn_is_cond_jump(insn->code))
19516 continue;
19517
19518 if (!aux_data[i + 1].seen)
19519 ja.off = insn->off;
19520 else if (!aux_data[i + 1 + insn->off].seen)
19521 ja.off = 0;
19522 else
19523 continue;
19524
19525 if (bpf_prog_is_offloaded(env->prog->aux))
19526 bpf_prog_offload_replace_insn(env, i, &ja);
19527
19528 memcpy(insn, &ja, sizeof(ja));
19529 }
19530 }
19531
opt_remove_dead_code(struct bpf_verifier_env * env)19532 static int opt_remove_dead_code(struct bpf_verifier_env *env)
19533 {
19534 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19535 int insn_cnt = env->prog->len;
19536 int i, err;
19537
19538 for (i = 0; i < insn_cnt; i++) {
19539 int j;
19540
19541 j = 0;
19542 while (i + j < insn_cnt && !aux_data[i + j].seen)
19543 j++;
19544 if (!j)
19545 continue;
19546
19547 err = verifier_remove_insns(env, i, j);
19548 if (err)
19549 return err;
19550 insn_cnt = env->prog->len;
19551 }
19552
19553 return 0;
19554 }
19555
19556 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19557
opt_remove_nops(struct bpf_verifier_env * env)19558 static int opt_remove_nops(struct bpf_verifier_env *env)
19559 {
19560 const struct bpf_insn ja = NOP;
19561 struct bpf_insn *insn = env->prog->insnsi;
19562 int insn_cnt = env->prog->len;
19563 int i, err;
19564
19565 for (i = 0; i < insn_cnt; i++) {
19566 if (memcmp(&insn[i], &ja, sizeof(ja)))
19567 continue;
19568
19569 err = verifier_remove_insns(env, i, 1);
19570 if (err)
19571 return err;
19572 insn_cnt--;
19573 i--;
19574 }
19575
19576 return 0;
19577 }
19578
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)19579 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
19580 const union bpf_attr *attr)
19581 {
19582 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
19583 struct bpf_insn_aux_data *aux = env->insn_aux_data;
19584 int i, patch_len, delta = 0, len = env->prog->len;
19585 struct bpf_insn *insns = env->prog->insnsi;
19586 struct bpf_prog *new_prog;
19587 bool rnd_hi32;
19588
19589 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
19590 zext_patch[1] = BPF_ZEXT_REG(0);
19591 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
19592 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
19593 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
19594 for (i = 0; i < len; i++) {
19595 int adj_idx = i + delta;
19596 struct bpf_insn insn;
19597 int load_reg;
19598
19599 insn = insns[adj_idx];
19600 load_reg = insn_def_regno(&insn);
19601 if (!aux[adj_idx].zext_dst) {
19602 u8 code, class;
19603 u32 imm_rnd;
19604
19605 if (!rnd_hi32)
19606 continue;
19607
19608 code = insn.code;
19609 class = BPF_CLASS(code);
19610 if (load_reg == -1)
19611 continue;
19612
19613 /* NOTE: arg "reg" (the fourth one) is only used for
19614 * BPF_STX + SRC_OP, so it is safe to pass NULL
19615 * here.
19616 */
19617 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
19618 if (class == BPF_LD &&
19619 BPF_MODE(code) == BPF_IMM)
19620 i++;
19621 continue;
19622 }
19623
19624 /* ctx load could be transformed into wider load. */
19625 if (class == BPF_LDX &&
19626 aux[adj_idx].ptr_type == PTR_TO_CTX)
19627 continue;
19628
19629 imm_rnd = get_random_u32();
19630 rnd_hi32_patch[0] = insn;
19631 rnd_hi32_patch[1].imm = imm_rnd;
19632 rnd_hi32_patch[3].dst_reg = load_reg;
19633 patch = rnd_hi32_patch;
19634 patch_len = 4;
19635 goto apply_patch_buffer;
19636 }
19637
19638 /* Add in an zero-extend instruction if a) the JIT has requested
19639 * it or b) it's a CMPXCHG.
19640 *
19641 * The latter is because: BPF_CMPXCHG always loads a value into
19642 * R0, therefore always zero-extends. However some archs'
19643 * equivalent instruction only does this load when the
19644 * comparison is successful. This detail of CMPXCHG is
19645 * orthogonal to the general zero-extension behaviour of the
19646 * CPU, so it's treated independently of bpf_jit_needs_zext.
19647 */
19648 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
19649 continue;
19650
19651 /* Zero-extension is done by the caller. */
19652 if (bpf_pseudo_kfunc_call(&insn))
19653 continue;
19654
19655 if (WARN_ON(load_reg == -1)) {
19656 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
19657 return -EFAULT;
19658 }
19659
19660 zext_patch[0] = insn;
19661 zext_patch[1].dst_reg = load_reg;
19662 zext_patch[1].src_reg = load_reg;
19663 patch = zext_patch;
19664 patch_len = 2;
19665 apply_patch_buffer:
19666 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
19667 if (!new_prog)
19668 return -ENOMEM;
19669 env->prog = new_prog;
19670 insns = new_prog->insnsi;
19671 aux = env->insn_aux_data;
19672 delta += patch_len - 1;
19673 }
19674
19675 return 0;
19676 }
19677
19678 /* convert load instructions that access fields of a context type into a
19679 * sequence of instructions that access fields of the underlying structure:
19680 * struct __sk_buff -> struct sk_buff
19681 * struct bpf_sock_ops -> struct sock
19682 */
convert_ctx_accesses(struct bpf_verifier_env * env)19683 static int convert_ctx_accesses(struct bpf_verifier_env *env)
19684 {
19685 struct bpf_subprog_info *subprogs = env->subprog_info;
19686 const struct bpf_verifier_ops *ops = env->ops;
19687 int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0;
19688 const int insn_cnt = env->prog->len;
19689 struct bpf_insn *epilogue_buf = env->epilogue_buf;
19690 struct bpf_insn *insn_buf = env->insn_buf;
19691 struct bpf_insn *insn;
19692 u32 target_size, size_default, off;
19693 struct bpf_prog *new_prog;
19694 enum bpf_access_type type;
19695 bool is_narrower_load;
19696 int epilogue_idx = 0;
19697
19698 if (ops->gen_epilogue) {
19699 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
19700 -(subprogs[0].stack_depth + 8));
19701 if (epilogue_cnt >= INSN_BUF_SIZE) {
19702 verbose(env, "bpf verifier is misconfigured\n");
19703 return -EINVAL;
19704 } else if (epilogue_cnt) {
19705 /* Save the ARG_PTR_TO_CTX for the epilogue to use */
19706 cnt = 0;
19707 subprogs[0].stack_depth += 8;
19708 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
19709 -subprogs[0].stack_depth);
19710 insn_buf[cnt++] = env->prog->insnsi[0];
19711 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19712 if (!new_prog)
19713 return -ENOMEM;
19714 env->prog = new_prog;
19715 delta += cnt - 1;
19716 }
19717 }
19718
19719 if (ops->gen_prologue || env->seen_direct_write) {
19720 if (!ops->gen_prologue) {
19721 verbose(env, "bpf verifier is misconfigured\n");
19722 return -EINVAL;
19723 }
19724 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
19725 env->prog);
19726 if (cnt >= INSN_BUF_SIZE) {
19727 verbose(env, "bpf verifier is misconfigured\n");
19728 return -EINVAL;
19729 } else if (cnt) {
19730 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19731 if (!new_prog)
19732 return -ENOMEM;
19733
19734 env->prog = new_prog;
19735 delta += cnt - 1;
19736 }
19737 }
19738
19739 if (delta)
19740 WARN_ON(adjust_jmp_off(env->prog, 0, delta));
19741
19742 if (bpf_prog_is_offloaded(env->prog->aux))
19743 return 0;
19744
19745 insn = env->prog->insnsi + delta;
19746
19747 for (i = 0; i < insn_cnt; i++, insn++) {
19748 bpf_convert_ctx_access_t convert_ctx_access;
19749 u8 mode;
19750
19751 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
19752 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
19753 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
19754 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
19755 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
19756 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
19757 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
19758 type = BPF_READ;
19759 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
19760 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
19761 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
19762 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
19763 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
19764 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
19765 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
19766 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
19767 type = BPF_WRITE;
19768 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
19769 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
19770 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
19771 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
19772 env->prog->aux->num_exentries++;
19773 continue;
19774 } else if (insn->code == (BPF_JMP | BPF_EXIT) &&
19775 epilogue_cnt &&
19776 i + delta < subprogs[1].start) {
19777 /* Generate epilogue for the main prog */
19778 if (epilogue_idx) {
19779 /* jump back to the earlier generated epilogue */
19780 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
19781 cnt = 1;
19782 } else {
19783 memcpy(insn_buf, epilogue_buf,
19784 epilogue_cnt * sizeof(*epilogue_buf));
19785 cnt = epilogue_cnt;
19786 /* epilogue_idx cannot be 0. It must have at
19787 * least one ctx ptr saving insn before the
19788 * epilogue.
19789 */
19790 epilogue_idx = i + delta;
19791 }
19792 goto patch_insn_buf;
19793 } else {
19794 continue;
19795 }
19796
19797 if (type == BPF_WRITE &&
19798 env->insn_aux_data[i + delta].sanitize_stack_spill) {
19799 struct bpf_insn patch[] = {
19800 *insn,
19801 BPF_ST_NOSPEC(),
19802 };
19803
19804 cnt = ARRAY_SIZE(patch);
19805 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
19806 if (!new_prog)
19807 return -ENOMEM;
19808
19809 delta += cnt - 1;
19810 env->prog = new_prog;
19811 insn = new_prog->insnsi + i + delta;
19812 continue;
19813 }
19814
19815 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
19816 case PTR_TO_CTX:
19817 if (!ops->convert_ctx_access)
19818 continue;
19819 convert_ctx_access = ops->convert_ctx_access;
19820 break;
19821 case PTR_TO_SOCKET:
19822 case PTR_TO_SOCK_COMMON:
19823 convert_ctx_access = bpf_sock_convert_ctx_access;
19824 break;
19825 case PTR_TO_TCP_SOCK:
19826 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
19827 break;
19828 case PTR_TO_XDP_SOCK:
19829 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
19830 break;
19831 case PTR_TO_BTF_ID:
19832 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
19833 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
19834 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
19835 * be said once it is marked PTR_UNTRUSTED, hence we must handle
19836 * any faults for loads into such types. BPF_WRITE is disallowed
19837 * for this case.
19838 */
19839 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
19840 if (type == BPF_READ) {
19841 if (BPF_MODE(insn->code) == BPF_MEM)
19842 insn->code = BPF_LDX | BPF_PROBE_MEM |
19843 BPF_SIZE((insn)->code);
19844 else
19845 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
19846 BPF_SIZE((insn)->code);
19847 env->prog->aux->num_exentries++;
19848 }
19849 continue;
19850 case PTR_TO_ARENA:
19851 if (BPF_MODE(insn->code) == BPF_MEMSX) {
19852 verbose(env, "sign extending loads from arena are not supported yet\n");
19853 return -EOPNOTSUPP;
19854 }
19855 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
19856 env->prog->aux->num_exentries++;
19857 continue;
19858 default:
19859 continue;
19860 }
19861
19862 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
19863 size = BPF_LDST_BYTES(insn);
19864 mode = BPF_MODE(insn->code);
19865
19866 /* If the read access is a narrower load of the field,
19867 * convert to a 4/8-byte load, to minimum program type specific
19868 * convert_ctx_access changes. If conversion is successful,
19869 * we will apply proper mask to the result.
19870 */
19871 is_narrower_load = size < ctx_field_size;
19872 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
19873 off = insn->off;
19874 if (is_narrower_load) {
19875 u8 size_code;
19876
19877 if (type == BPF_WRITE) {
19878 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
19879 return -EINVAL;
19880 }
19881
19882 size_code = BPF_H;
19883 if (ctx_field_size == 4)
19884 size_code = BPF_W;
19885 else if (ctx_field_size == 8)
19886 size_code = BPF_DW;
19887
19888 insn->off = off & ~(size_default - 1);
19889 insn->code = BPF_LDX | BPF_MEM | size_code;
19890 }
19891
19892 target_size = 0;
19893 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
19894 &target_size);
19895 if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
19896 (ctx_field_size && !target_size)) {
19897 verbose(env, "bpf verifier is misconfigured\n");
19898 return -EINVAL;
19899 }
19900
19901 if (is_narrower_load && size < target_size) {
19902 u8 shift = bpf_ctx_narrow_access_offset(
19903 off, size, size_default) * 8;
19904 if (shift && cnt + 1 >= INSN_BUF_SIZE) {
19905 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
19906 return -EINVAL;
19907 }
19908 if (ctx_field_size <= 4) {
19909 if (shift)
19910 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
19911 insn->dst_reg,
19912 shift);
19913 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19914 (1 << size * 8) - 1);
19915 } else {
19916 if (shift)
19917 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
19918 insn->dst_reg,
19919 shift);
19920 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19921 (1ULL << size * 8) - 1);
19922 }
19923 }
19924 if (mode == BPF_MEMSX)
19925 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
19926 insn->dst_reg, insn->dst_reg,
19927 size * 8, 0);
19928
19929 patch_insn_buf:
19930 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19931 if (!new_prog)
19932 return -ENOMEM;
19933
19934 delta += cnt - 1;
19935
19936 /* keep walking new program and skip insns we just inserted */
19937 env->prog = new_prog;
19938 insn = new_prog->insnsi + i + delta;
19939 }
19940
19941 return 0;
19942 }
19943
jit_subprogs(struct bpf_verifier_env * env)19944 static int jit_subprogs(struct bpf_verifier_env *env)
19945 {
19946 struct bpf_prog *prog = env->prog, **func, *tmp;
19947 int i, j, subprog_start, subprog_end = 0, len, subprog;
19948 struct bpf_map *map_ptr;
19949 struct bpf_insn *insn;
19950 void *old_bpf_func;
19951 int err, num_exentries;
19952
19953 if (env->subprog_cnt <= 1)
19954 return 0;
19955
19956 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19957 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
19958 continue;
19959
19960 /* Upon error here we cannot fall back to interpreter but
19961 * need a hard reject of the program. Thus -EFAULT is
19962 * propagated in any case.
19963 */
19964 subprog = find_subprog(env, i + insn->imm + 1);
19965 if (subprog < 0) {
19966 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
19967 i + insn->imm + 1);
19968 return -EFAULT;
19969 }
19970 /* temporarily remember subprog id inside insn instead of
19971 * aux_data, since next loop will split up all insns into funcs
19972 */
19973 insn->off = subprog;
19974 /* remember original imm in case JIT fails and fallback
19975 * to interpreter will be needed
19976 */
19977 env->insn_aux_data[i].call_imm = insn->imm;
19978 /* point imm to __bpf_call_base+1 from JITs point of view */
19979 insn->imm = 1;
19980 if (bpf_pseudo_func(insn)) {
19981 #if defined(MODULES_VADDR)
19982 u64 addr = MODULES_VADDR;
19983 #else
19984 u64 addr = VMALLOC_START;
19985 #endif
19986 /* jit (e.g. x86_64) may emit fewer instructions
19987 * if it learns a u32 imm is the same as a u64 imm.
19988 * Set close enough to possible prog address.
19989 */
19990 insn[0].imm = (u32)addr;
19991 insn[1].imm = addr >> 32;
19992 }
19993 }
19994
19995 err = bpf_prog_alloc_jited_linfo(prog);
19996 if (err)
19997 goto out_undo_insn;
19998
19999 err = -ENOMEM;
20000 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
20001 if (!func)
20002 goto out_undo_insn;
20003
20004 for (i = 0; i < env->subprog_cnt; i++) {
20005 subprog_start = subprog_end;
20006 subprog_end = env->subprog_info[i + 1].start;
20007
20008 len = subprog_end - subprog_start;
20009 /* bpf_prog_run() doesn't call subprogs directly,
20010 * hence main prog stats include the runtime of subprogs.
20011 * subprogs don't have IDs and not reachable via prog_get_next_id
20012 * func[i]->stats will never be accessed and stays NULL
20013 */
20014 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
20015 if (!func[i])
20016 goto out_free;
20017 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
20018 len * sizeof(struct bpf_insn));
20019 func[i]->type = prog->type;
20020 func[i]->len = len;
20021 if (bpf_prog_calc_tag(func[i]))
20022 goto out_free;
20023 func[i]->is_func = 1;
20024 func[i]->sleepable = prog->sleepable;
20025 func[i]->aux->func_idx = i;
20026 /* Below members will be freed only at prog->aux */
20027 func[i]->aux->btf = prog->aux->btf;
20028 func[i]->aux->func_info = prog->aux->func_info;
20029 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
20030 func[i]->aux->poke_tab = prog->aux->poke_tab;
20031 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
20032
20033 for (j = 0; j < prog->aux->size_poke_tab; j++) {
20034 struct bpf_jit_poke_descriptor *poke;
20035
20036 poke = &prog->aux->poke_tab[j];
20037 if (poke->insn_idx < subprog_end &&
20038 poke->insn_idx >= subprog_start)
20039 poke->aux = func[i]->aux;
20040 }
20041
20042 func[i]->aux->name[0] = 'F';
20043 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
20044 func[i]->jit_requested = 1;
20045 func[i]->blinding_requested = prog->blinding_requested;
20046 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
20047 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
20048 func[i]->aux->linfo = prog->aux->linfo;
20049 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
20050 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
20051 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
20052 func[i]->aux->arena = prog->aux->arena;
20053 num_exentries = 0;
20054 insn = func[i]->insnsi;
20055 for (j = 0; j < func[i]->len; j++, insn++) {
20056 if (BPF_CLASS(insn->code) == BPF_LDX &&
20057 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20058 BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
20059 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
20060 num_exentries++;
20061 if ((BPF_CLASS(insn->code) == BPF_STX ||
20062 BPF_CLASS(insn->code) == BPF_ST) &&
20063 BPF_MODE(insn->code) == BPF_PROBE_MEM32)
20064 num_exentries++;
20065 if (BPF_CLASS(insn->code) == BPF_STX &&
20066 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
20067 num_exentries++;
20068 }
20069 func[i]->aux->num_exentries = num_exentries;
20070 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
20071 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
20072 if (!i)
20073 func[i]->aux->exception_boundary = env->seen_exception;
20074 func[i] = bpf_int_jit_compile(func[i]);
20075 if (!func[i]->jited) {
20076 err = -ENOTSUPP;
20077 goto out_free;
20078 }
20079 cond_resched();
20080 }
20081
20082 /* at this point all bpf functions were successfully JITed
20083 * now populate all bpf_calls with correct addresses and
20084 * run last pass of JIT
20085 */
20086 for (i = 0; i < env->subprog_cnt; i++) {
20087 insn = func[i]->insnsi;
20088 for (j = 0; j < func[i]->len; j++, insn++) {
20089 if (bpf_pseudo_func(insn)) {
20090 subprog = insn->off;
20091 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
20092 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
20093 continue;
20094 }
20095 if (!bpf_pseudo_call(insn))
20096 continue;
20097 subprog = insn->off;
20098 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
20099 }
20100
20101 /* we use the aux data to keep a list of the start addresses
20102 * of the JITed images for each function in the program
20103 *
20104 * for some architectures, such as powerpc64, the imm field
20105 * might not be large enough to hold the offset of the start
20106 * address of the callee's JITed image from __bpf_call_base
20107 *
20108 * in such cases, we can lookup the start address of a callee
20109 * by using its subprog id, available from the off field of
20110 * the call instruction, as an index for this list
20111 */
20112 func[i]->aux->func = func;
20113 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20114 func[i]->aux->real_func_cnt = env->subprog_cnt;
20115 }
20116 for (i = 0; i < env->subprog_cnt; i++) {
20117 old_bpf_func = func[i]->bpf_func;
20118 tmp = bpf_int_jit_compile(func[i]);
20119 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
20120 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
20121 err = -ENOTSUPP;
20122 goto out_free;
20123 }
20124 cond_resched();
20125 }
20126
20127 /* finally lock prog and jit images for all functions and
20128 * populate kallsysm. Begin at the first subprogram, since
20129 * bpf_prog_load will add the kallsyms for the main program.
20130 */
20131 for (i = 1; i < env->subprog_cnt; i++) {
20132 err = bpf_prog_lock_ro(func[i]);
20133 if (err)
20134 goto out_free;
20135 }
20136
20137 for (i = 1; i < env->subprog_cnt; i++)
20138 bpf_prog_kallsyms_add(func[i]);
20139
20140 /* Last step: make now unused interpreter insns from main
20141 * prog consistent for later dump requests, so they can
20142 * later look the same as if they were interpreted only.
20143 */
20144 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20145 if (bpf_pseudo_func(insn)) {
20146 insn[0].imm = env->insn_aux_data[i].call_imm;
20147 insn[1].imm = insn->off;
20148 insn->off = 0;
20149 continue;
20150 }
20151 if (!bpf_pseudo_call(insn))
20152 continue;
20153 insn->off = env->insn_aux_data[i].call_imm;
20154 subprog = find_subprog(env, i + insn->off + 1);
20155 insn->imm = subprog;
20156 }
20157
20158 prog->jited = 1;
20159 prog->bpf_func = func[0]->bpf_func;
20160 prog->jited_len = func[0]->jited_len;
20161 prog->aux->extable = func[0]->aux->extable;
20162 prog->aux->num_exentries = func[0]->aux->num_exentries;
20163 prog->aux->func = func;
20164 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20165 prog->aux->real_func_cnt = env->subprog_cnt;
20166 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
20167 prog->aux->exception_boundary = func[0]->aux->exception_boundary;
20168 bpf_prog_jit_attempt_done(prog);
20169 return 0;
20170 out_free:
20171 /* We failed JIT'ing, so at this point we need to unregister poke
20172 * descriptors from subprogs, so that kernel is not attempting to
20173 * patch it anymore as we're freeing the subprog JIT memory.
20174 */
20175 for (i = 0; i < prog->aux->size_poke_tab; i++) {
20176 map_ptr = prog->aux->poke_tab[i].tail_call.map;
20177 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
20178 }
20179 /* At this point we're guaranteed that poke descriptors are not
20180 * live anymore. We can just unlink its descriptor table as it's
20181 * released with the main prog.
20182 */
20183 for (i = 0; i < env->subprog_cnt; i++) {
20184 if (!func[i])
20185 continue;
20186 func[i]->aux->poke_tab = NULL;
20187 bpf_jit_free(func[i]);
20188 }
20189 kfree(func);
20190 out_undo_insn:
20191 /* cleanup main prog to be interpreted */
20192 prog->jit_requested = 0;
20193 prog->blinding_requested = 0;
20194 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20195 if (!bpf_pseudo_call(insn))
20196 continue;
20197 insn->off = 0;
20198 insn->imm = env->insn_aux_data[i].call_imm;
20199 }
20200 bpf_prog_jit_attempt_done(prog);
20201 return err;
20202 }
20203
fixup_call_args(struct bpf_verifier_env * env)20204 static int fixup_call_args(struct bpf_verifier_env *env)
20205 {
20206 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20207 struct bpf_prog *prog = env->prog;
20208 struct bpf_insn *insn = prog->insnsi;
20209 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
20210 int i, depth;
20211 #endif
20212 int err = 0;
20213
20214 if (env->prog->jit_requested &&
20215 !bpf_prog_is_offloaded(env->prog->aux)) {
20216 err = jit_subprogs(env);
20217 if (err == 0)
20218 return 0;
20219 if (err == -EFAULT)
20220 return err;
20221 }
20222 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20223 if (has_kfunc_call) {
20224 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
20225 return -EINVAL;
20226 }
20227 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
20228 /* When JIT fails the progs with bpf2bpf calls and tail_calls
20229 * have to be rejected, since interpreter doesn't support them yet.
20230 */
20231 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
20232 return -EINVAL;
20233 }
20234 for (i = 0; i < prog->len; i++, insn++) {
20235 if (bpf_pseudo_func(insn)) {
20236 /* When JIT fails the progs with callback calls
20237 * have to be rejected, since interpreter doesn't support them yet.
20238 */
20239 verbose(env, "callbacks are not allowed in non-JITed programs\n");
20240 return -EINVAL;
20241 }
20242
20243 if (!bpf_pseudo_call(insn))
20244 continue;
20245 depth = get_callee_stack_depth(env, insn, i);
20246 if (depth < 0)
20247 return depth;
20248 bpf_patch_call_args(insn, depth);
20249 }
20250 err = 0;
20251 #endif
20252 return err;
20253 }
20254
20255 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,u32 func_id,u16 offset,unsigned long * addr)20256 static void specialize_kfunc(struct bpf_verifier_env *env,
20257 u32 func_id, u16 offset, unsigned long *addr)
20258 {
20259 struct bpf_prog *prog = env->prog;
20260 bool seen_direct_write;
20261 void *xdp_kfunc;
20262 bool is_rdonly;
20263
20264 if (bpf_dev_bound_kfunc_id(func_id)) {
20265 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
20266 if (xdp_kfunc) {
20267 *addr = (unsigned long)xdp_kfunc;
20268 return;
20269 }
20270 /* fallback to default kfunc when not supported by netdev */
20271 }
20272
20273 if (offset)
20274 return;
20275
20276 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
20277 seen_direct_write = env->seen_direct_write;
20278 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
20279
20280 if (is_rdonly)
20281 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
20282
20283 /* restore env->seen_direct_write to its original value, since
20284 * may_access_direct_pkt_data mutates it
20285 */
20286 env->seen_direct_write = seen_direct_write;
20287 }
20288 }
20289
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)20290 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
20291 u16 struct_meta_reg,
20292 u16 node_offset_reg,
20293 struct bpf_insn *insn,
20294 struct bpf_insn *insn_buf,
20295 int *cnt)
20296 {
20297 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
20298 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
20299
20300 insn_buf[0] = addr[0];
20301 insn_buf[1] = addr[1];
20302 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
20303 insn_buf[3] = *insn;
20304 *cnt = 4;
20305 }
20306
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)20307 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
20308 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
20309 {
20310 const struct bpf_kfunc_desc *desc;
20311
20312 if (!insn->imm) {
20313 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
20314 return -EINVAL;
20315 }
20316
20317 *cnt = 0;
20318
20319 /* insn->imm has the btf func_id. Replace it with an offset relative to
20320 * __bpf_call_base, unless the JIT needs to call functions that are
20321 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
20322 */
20323 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
20324 if (!desc) {
20325 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
20326 insn->imm);
20327 return -EFAULT;
20328 }
20329
20330 if (!bpf_jit_supports_far_kfunc_call())
20331 insn->imm = BPF_CALL_IMM(desc->addr);
20332 if (insn->off)
20333 return 0;
20334 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
20335 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
20336 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20337 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20338 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
20339
20340 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
20341 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20342 insn_idx);
20343 return -EFAULT;
20344 }
20345
20346 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
20347 insn_buf[1] = addr[0];
20348 insn_buf[2] = addr[1];
20349 insn_buf[3] = *insn;
20350 *cnt = 4;
20351 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
20352 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
20353 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
20354 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20355 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20356
20357 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
20358 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20359 insn_idx);
20360 return -EFAULT;
20361 }
20362
20363 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
20364 !kptr_struct_meta) {
20365 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20366 insn_idx);
20367 return -EFAULT;
20368 }
20369
20370 insn_buf[0] = addr[0];
20371 insn_buf[1] = addr[1];
20372 insn_buf[2] = *insn;
20373 *cnt = 3;
20374 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
20375 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
20376 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20377 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20378 int struct_meta_reg = BPF_REG_3;
20379 int node_offset_reg = BPF_REG_4;
20380
20381 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
20382 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20383 struct_meta_reg = BPF_REG_4;
20384 node_offset_reg = BPF_REG_5;
20385 }
20386
20387 if (!kptr_struct_meta) {
20388 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20389 insn_idx);
20390 return -EFAULT;
20391 }
20392
20393 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
20394 node_offset_reg, insn, insn_buf, cnt);
20395 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
20396 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
20397 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
20398 *cnt = 1;
20399 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
20400 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
20401
20402 insn_buf[0] = ld_addrs[0];
20403 insn_buf[1] = ld_addrs[1];
20404 insn_buf[2] = *insn;
20405 *cnt = 3;
20406 }
20407 return 0;
20408 }
20409
20410 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
add_hidden_subprog(struct bpf_verifier_env * env,struct bpf_insn * patch,int len)20411 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
20412 {
20413 struct bpf_subprog_info *info = env->subprog_info;
20414 int cnt = env->subprog_cnt;
20415 struct bpf_prog *prog;
20416
20417 /* We only reserve one slot for hidden subprogs in subprog_info. */
20418 if (env->hidden_subprog_cnt) {
20419 verbose(env, "verifier internal error: only one hidden subprog supported\n");
20420 return -EFAULT;
20421 }
20422 /* We're not patching any existing instruction, just appending the new
20423 * ones for the hidden subprog. Hence all of the adjustment operations
20424 * in bpf_patch_insn_data are no-ops.
20425 */
20426 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
20427 if (!prog)
20428 return -ENOMEM;
20429 env->prog = prog;
20430 info[cnt + 1].start = info[cnt].start;
20431 info[cnt].start = prog->len - len + 1;
20432 env->subprog_cnt++;
20433 env->hidden_subprog_cnt++;
20434 return 0;
20435 }
20436
20437 /* Do various post-verification rewrites in a single program pass.
20438 * These rewrites simplify JIT and interpreter implementations.
20439 */
do_misc_fixups(struct bpf_verifier_env * env)20440 static int do_misc_fixups(struct bpf_verifier_env *env)
20441 {
20442 struct bpf_prog *prog = env->prog;
20443 enum bpf_attach_type eatype = prog->expected_attach_type;
20444 enum bpf_prog_type prog_type = resolve_prog_type(prog);
20445 struct bpf_insn *insn = prog->insnsi;
20446 const struct bpf_func_proto *fn;
20447 const int insn_cnt = prog->len;
20448 const struct bpf_map_ops *ops;
20449 struct bpf_insn_aux_data *aux;
20450 struct bpf_insn *insn_buf = env->insn_buf;
20451 struct bpf_prog *new_prog;
20452 struct bpf_map *map_ptr;
20453 int i, ret, cnt, delta = 0, cur_subprog = 0;
20454 struct bpf_subprog_info *subprogs = env->subprog_info;
20455 u16 stack_depth = subprogs[cur_subprog].stack_depth;
20456 u16 stack_depth_extra = 0;
20457
20458 if (env->seen_exception && !env->exception_callback_subprog) {
20459 struct bpf_insn patch[] = {
20460 env->prog->insnsi[insn_cnt - 1],
20461 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
20462 BPF_EXIT_INSN(),
20463 };
20464
20465 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
20466 if (ret < 0)
20467 return ret;
20468 prog = env->prog;
20469 insn = prog->insnsi;
20470
20471 env->exception_callback_subprog = env->subprog_cnt - 1;
20472 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */
20473 mark_subprog_exc_cb(env, env->exception_callback_subprog);
20474 }
20475
20476 for (i = 0; i < insn_cnt;) {
20477 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
20478 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
20479 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
20480 /* convert to 32-bit mov that clears upper 32-bit */
20481 insn->code = BPF_ALU | BPF_MOV | BPF_X;
20482 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
20483 insn->off = 0;
20484 insn->imm = 0;
20485 } /* cast from as(0) to as(1) should be handled by JIT */
20486 goto next_insn;
20487 }
20488
20489 if (env->insn_aux_data[i + delta].needs_zext)
20490 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
20491 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
20492
20493 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */
20494 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
20495 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
20496 insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
20497 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
20498 insn->off == 1 && insn->imm == -1) {
20499 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20500 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20501 struct bpf_insn *patchlet;
20502 struct bpf_insn chk_and_sdiv[] = {
20503 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20504 BPF_NEG | BPF_K, insn->dst_reg,
20505 0, 0, 0),
20506 };
20507 struct bpf_insn chk_and_smod[] = {
20508 BPF_MOV32_IMM(insn->dst_reg, 0),
20509 };
20510
20511 patchlet = isdiv ? chk_and_sdiv : chk_and_smod;
20512 cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod);
20513
20514 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20515 if (!new_prog)
20516 return -ENOMEM;
20517
20518 delta += cnt - 1;
20519 env->prog = prog = new_prog;
20520 insn = new_prog->insnsi + i + delta;
20521 goto next_insn;
20522 }
20523
20524 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
20525 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
20526 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
20527 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
20528 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
20529 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20530 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20531 bool is_sdiv = isdiv && insn->off == 1;
20532 bool is_smod = !isdiv && insn->off == 1;
20533 struct bpf_insn *patchlet;
20534 struct bpf_insn chk_and_div[] = {
20535 /* [R,W]x div 0 -> 0 */
20536 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20537 BPF_JNE | BPF_K, insn->src_reg,
20538 0, 2, 0),
20539 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
20540 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20541 *insn,
20542 };
20543 struct bpf_insn chk_and_mod[] = {
20544 /* [R,W]x mod 0 -> [R,W]x */
20545 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20546 BPF_JEQ | BPF_K, insn->src_reg,
20547 0, 1 + (is64 ? 0 : 1), 0),
20548 *insn,
20549 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20550 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20551 };
20552 struct bpf_insn chk_and_sdiv[] = {
20553 /* [R,W]x sdiv 0 -> 0
20554 * LLONG_MIN sdiv -1 -> LLONG_MIN
20555 * INT_MIN sdiv -1 -> INT_MIN
20556 */
20557 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20558 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20559 BPF_ADD | BPF_K, BPF_REG_AX,
20560 0, 0, 1),
20561 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20562 BPF_JGT | BPF_K, BPF_REG_AX,
20563 0, 4, 1),
20564 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20565 BPF_JEQ | BPF_K, BPF_REG_AX,
20566 0, 1, 0),
20567 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20568 BPF_MOV | BPF_K, insn->dst_reg,
20569 0, 0, 0),
20570 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
20571 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20572 BPF_NEG | BPF_K, insn->dst_reg,
20573 0, 0, 0),
20574 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20575 *insn,
20576 };
20577 struct bpf_insn chk_and_smod[] = {
20578 /* [R,W]x mod 0 -> [R,W]x */
20579 /* [R,W]x mod -1 -> 0 */
20580 BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20581 BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20582 BPF_ADD | BPF_K, BPF_REG_AX,
20583 0, 0, 1),
20584 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20585 BPF_JGT | BPF_K, BPF_REG_AX,
20586 0, 3, 1),
20587 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20588 BPF_JEQ | BPF_K, BPF_REG_AX,
20589 0, 3 + (is64 ? 0 : 1), 1),
20590 BPF_MOV32_IMM(insn->dst_reg, 0),
20591 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20592 *insn,
20593 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20594 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20595 };
20596
20597 if (is_sdiv) {
20598 patchlet = chk_and_sdiv;
20599 cnt = ARRAY_SIZE(chk_and_sdiv);
20600 } else if (is_smod) {
20601 patchlet = chk_and_smod;
20602 cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0);
20603 } else {
20604 patchlet = isdiv ? chk_and_div : chk_and_mod;
20605 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
20606 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
20607 }
20608
20609 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20610 if (!new_prog)
20611 return -ENOMEM;
20612
20613 delta += cnt - 1;
20614 env->prog = prog = new_prog;
20615 insn = new_prog->insnsi + i + delta;
20616 goto next_insn;
20617 }
20618
20619 /* Make it impossible to de-reference a userspace address */
20620 if (BPF_CLASS(insn->code) == BPF_LDX &&
20621 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20622 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
20623 struct bpf_insn *patch = &insn_buf[0];
20624 u64 uaddress_limit = bpf_arch_uaddress_limit();
20625
20626 if (!uaddress_limit)
20627 goto next_insn;
20628
20629 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
20630 if (insn->off)
20631 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
20632 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
20633 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
20634 *patch++ = *insn;
20635 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
20636 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
20637
20638 cnt = patch - insn_buf;
20639 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20640 if (!new_prog)
20641 return -ENOMEM;
20642
20643 delta += cnt - 1;
20644 env->prog = prog = new_prog;
20645 insn = new_prog->insnsi + i + delta;
20646 goto next_insn;
20647 }
20648
20649 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
20650 if (BPF_CLASS(insn->code) == BPF_LD &&
20651 (BPF_MODE(insn->code) == BPF_ABS ||
20652 BPF_MODE(insn->code) == BPF_IND)) {
20653 cnt = env->ops->gen_ld_abs(insn, insn_buf);
20654 if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
20655 verbose(env, "bpf verifier is misconfigured\n");
20656 return -EINVAL;
20657 }
20658
20659 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20660 if (!new_prog)
20661 return -ENOMEM;
20662
20663 delta += cnt - 1;
20664 env->prog = prog = new_prog;
20665 insn = new_prog->insnsi + i + delta;
20666 goto next_insn;
20667 }
20668
20669 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
20670 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
20671 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
20672 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
20673 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
20674 struct bpf_insn *patch = &insn_buf[0];
20675 bool issrc, isneg, isimm;
20676 u32 off_reg;
20677
20678 aux = &env->insn_aux_data[i + delta];
20679 if (!aux->alu_state ||
20680 aux->alu_state == BPF_ALU_NON_POINTER)
20681 goto next_insn;
20682
20683 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
20684 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
20685 BPF_ALU_SANITIZE_SRC;
20686 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
20687
20688 off_reg = issrc ? insn->src_reg : insn->dst_reg;
20689 if (isimm) {
20690 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20691 } else {
20692 if (isneg)
20693 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20694 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20695 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
20696 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
20697 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
20698 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
20699 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
20700 }
20701 if (!issrc)
20702 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
20703 insn->src_reg = BPF_REG_AX;
20704 if (isneg)
20705 insn->code = insn->code == code_add ?
20706 code_sub : code_add;
20707 *patch++ = *insn;
20708 if (issrc && isneg && !isimm)
20709 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20710 cnt = patch - insn_buf;
20711
20712 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20713 if (!new_prog)
20714 return -ENOMEM;
20715
20716 delta += cnt - 1;
20717 env->prog = prog = new_prog;
20718 insn = new_prog->insnsi + i + delta;
20719 goto next_insn;
20720 }
20721
20722 if (is_may_goto_insn(insn)) {
20723 int stack_off = -stack_depth - 8;
20724
20725 stack_depth_extra = 8;
20726 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
20727 if (insn->off >= 0)
20728 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
20729 else
20730 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
20731 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
20732 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
20733 cnt = 4;
20734
20735 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20736 if (!new_prog)
20737 return -ENOMEM;
20738
20739 delta += cnt - 1;
20740 env->prog = prog = new_prog;
20741 insn = new_prog->insnsi + i + delta;
20742 goto next_insn;
20743 }
20744
20745 if (insn->code != (BPF_JMP | BPF_CALL))
20746 goto next_insn;
20747 if (insn->src_reg == BPF_PSEUDO_CALL)
20748 goto next_insn;
20749 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
20750 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
20751 if (ret)
20752 return ret;
20753 if (cnt == 0)
20754 goto next_insn;
20755
20756 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20757 if (!new_prog)
20758 return -ENOMEM;
20759
20760 delta += cnt - 1;
20761 env->prog = prog = new_prog;
20762 insn = new_prog->insnsi + i + delta;
20763 goto next_insn;
20764 }
20765
20766 /* Skip inlining the helper call if the JIT does it. */
20767 if (bpf_jit_inlines_helper_call(insn->imm))
20768 goto next_insn;
20769
20770 if (insn->imm == BPF_FUNC_get_route_realm)
20771 prog->dst_needed = 1;
20772 if (insn->imm == BPF_FUNC_get_prandom_u32)
20773 bpf_user_rnd_init_once();
20774 if (insn->imm == BPF_FUNC_override_return)
20775 prog->kprobe_override = 1;
20776 if (insn->imm == BPF_FUNC_tail_call) {
20777 /* If we tail call into other programs, we
20778 * cannot make any assumptions since they can
20779 * be replaced dynamically during runtime in
20780 * the program array.
20781 */
20782 prog->cb_access = 1;
20783 if (!allow_tail_call_in_subprogs(env))
20784 prog->aux->stack_depth = MAX_BPF_STACK;
20785 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
20786
20787 /* mark bpf_tail_call as different opcode to avoid
20788 * conditional branch in the interpreter for every normal
20789 * call and to prevent accidental JITing by JIT compiler
20790 * that doesn't support bpf_tail_call yet
20791 */
20792 insn->imm = 0;
20793 insn->code = BPF_JMP | BPF_TAIL_CALL;
20794
20795 aux = &env->insn_aux_data[i + delta];
20796 if (env->bpf_capable && !prog->blinding_requested &&
20797 prog->jit_requested &&
20798 !bpf_map_key_poisoned(aux) &&
20799 !bpf_map_ptr_poisoned(aux) &&
20800 !bpf_map_ptr_unpriv(aux)) {
20801 struct bpf_jit_poke_descriptor desc = {
20802 .reason = BPF_POKE_REASON_TAIL_CALL,
20803 .tail_call.map = aux->map_ptr_state.map_ptr,
20804 .tail_call.key = bpf_map_key_immediate(aux),
20805 .insn_idx = i + delta,
20806 };
20807
20808 ret = bpf_jit_add_poke_descriptor(prog, &desc);
20809 if (ret < 0) {
20810 verbose(env, "adding tail call poke descriptor failed\n");
20811 return ret;
20812 }
20813
20814 insn->imm = ret + 1;
20815 goto next_insn;
20816 }
20817
20818 if (!bpf_map_ptr_unpriv(aux))
20819 goto next_insn;
20820
20821 /* instead of changing every JIT dealing with tail_call
20822 * emit two extra insns:
20823 * if (index >= max_entries) goto out;
20824 * index &= array->index_mask;
20825 * to avoid out-of-bounds cpu speculation
20826 */
20827 if (bpf_map_ptr_poisoned(aux)) {
20828 verbose(env, "tail_call abusing map_ptr\n");
20829 return -EINVAL;
20830 }
20831
20832 map_ptr = aux->map_ptr_state.map_ptr;
20833 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
20834 map_ptr->max_entries, 2);
20835 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
20836 container_of(map_ptr,
20837 struct bpf_array,
20838 map)->index_mask);
20839 insn_buf[2] = *insn;
20840 cnt = 3;
20841 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20842 if (!new_prog)
20843 return -ENOMEM;
20844
20845 delta += cnt - 1;
20846 env->prog = prog = new_prog;
20847 insn = new_prog->insnsi + i + delta;
20848 goto next_insn;
20849 }
20850
20851 if (insn->imm == BPF_FUNC_timer_set_callback) {
20852 /* The verifier will process callback_fn as many times as necessary
20853 * with different maps and the register states prepared by
20854 * set_timer_callback_state will be accurate.
20855 *
20856 * The following use case is valid:
20857 * map1 is shared by prog1, prog2, prog3.
20858 * prog1 calls bpf_timer_init for some map1 elements
20859 * prog2 calls bpf_timer_set_callback for some map1 elements.
20860 * Those that were not bpf_timer_init-ed will return -EINVAL.
20861 * prog3 calls bpf_timer_start for some map1 elements.
20862 * Those that were not both bpf_timer_init-ed and
20863 * bpf_timer_set_callback-ed will return -EINVAL.
20864 */
20865 struct bpf_insn ld_addrs[2] = {
20866 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
20867 };
20868
20869 insn_buf[0] = ld_addrs[0];
20870 insn_buf[1] = ld_addrs[1];
20871 insn_buf[2] = *insn;
20872 cnt = 3;
20873
20874 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20875 if (!new_prog)
20876 return -ENOMEM;
20877
20878 delta += cnt - 1;
20879 env->prog = prog = new_prog;
20880 insn = new_prog->insnsi + i + delta;
20881 goto patch_call_imm;
20882 }
20883
20884 if (is_storage_get_function(insn->imm)) {
20885 if (!in_sleepable(env) ||
20886 env->insn_aux_data[i + delta].storage_get_func_atomic)
20887 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
20888 else
20889 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
20890 insn_buf[1] = *insn;
20891 cnt = 2;
20892
20893 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20894 if (!new_prog)
20895 return -ENOMEM;
20896
20897 delta += cnt - 1;
20898 env->prog = prog = new_prog;
20899 insn = new_prog->insnsi + i + delta;
20900 goto patch_call_imm;
20901 }
20902
20903 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
20904 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
20905 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
20906 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
20907 */
20908 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
20909 insn_buf[1] = *insn;
20910 cnt = 2;
20911
20912 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20913 if (!new_prog)
20914 return -ENOMEM;
20915
20916 delta += cnt - 1;
20917 env->prog = prog = new_prog;
20918 insn = new_prog->insnsi + i + delta;
20919 goto patch_call_imm;
20920 }
20921
20922 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
20923 * and other inlining handlers are currently limited to 64 bit
20924 * only.
20925 */
20926 if (prog->jit_requested && BITS_PER_LONG == 64 &&
20927 (insn->imm == BPF_FUNC_map_lookup_elem ||
20928 insn->imm == BPF_FUNC_map_update_elem ||
20929 insn->imm == BPF_FUNC_map_delete_elem ||
20930 insn->imm == BPF_FUNC_map_push_elem ||
20931 insn->imm == BPF_FUNC_map_pop_elem ||
20932 insn->imm == BPF_FUNC_map_peek_elem ||
20933 insn->imm == BPF_FUNC_redirect_map ||
20934 insn->imm == BPF_FUNC_for_each_map_elem ||
20935 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
20936 aux = &env->insn_aux_data[i + delta];
20937 if (bpf_map_ptr_poisoned(aux))
20938 goto patch_call_imm;
20939
20940 map_ptr = aux->map_ptr_state.map_ptr;
20941 ops = map_ptr->ops;
20942 if (insn->imm == BPF_FUNC_map_lookup_elem &&
20943 ops->map_gen_lookup) {
20944 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
20945 if (cnt == -EOPNOTSUPP)
20946 goto patch_map_ops_generic;
20947 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
20948 verbose(env, "bpf verifier is misconfigured\n");
20949 return -EINVAL;
20950 }
20951
20952 new_prog = bpf_patch_insn_data(env, i + delta,
20953 insn_buf, cnt);
20954 if (!new_prog)
20955 return -ENOMEM;
20956
20957 delta += cnt - 1;
20958 env->prog = prog = new_prog;
20959 insn = new_prog->insnsi + i + delta;
20960 goto next_insn;
20961 }
20962
20963 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
20964 (void *(*)(struct bpf_map *map, void *key))NULL));
20965 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
20966 (long (*)(struct bpf_map *map, void *key))NULL));
20967 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
20968 (long (*)(struct bpf_map *map, void *key, void *value,
20969 u64 flags))NULL));
20970 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
20971 (long (*)(struct bpf_map *map, void *value,
20972 u64 flags))NULL));
20973 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
20974 (long (*)(struct bpf_map *map, void *value))NULL));
20975 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
20976 (long (*)(struct bpf_map *map, void *value))NULL));
20977 BUILD_BUG_ON(!__same_type(ops->map_redirect,
20978 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
20979 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
20980 (long (*)(struct bpf_map *map,
20981 bpf_callback_t callback_fn,
20982 void *callback_ctx,
20983 u64 flags))NULL));
20984 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
20985 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
20986
20987 patch_map_ops_generic:
20988 switch (insn->imm) {
20989 case BPF_FUNC_map_lookup_elem:
20990 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
20991 goto next_insn;
20992 case BPF_FUNC_map_update_elem:
20993 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
20994 goto next_insn;
20995 case BPF_FUNC_map_delete_elem:
20996 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
20997 goto next_insn;
20998 case BPF_FUNC_map_push_elem:
20999 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
21000 goto next_insn;
21001 case BPF_FUNC_map_pop_elem:
21002 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
21003 goto next_insn;
21004 case BPF_FUNC_map_peek_elem:
21005 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
21006 goto next_insn;
21007 case BPF_FUNC_redirect_map:
21008 insn->imm = BPF_CALL_IMM(ops->map_redirect);
21009 goto next_insn;
21010 case BPF_FUNC_for_each_map_elem:
21011 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
21012 goto next_insn;
21013 case BPF_FUNC_map_lookup_percpu_elem:
21014 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
21015 goto next_insn;
21016 }
21017
21018 goto patch_call_imm;
21019 }
21020
21021 /* Implement bpf_jiffies64 inline. */
21022 if (prog->jit_requested && BITS_PER_LONG == 64 &&
21023 insn->imm == BPF_FUNC_jiffies64) {
21024 struct bpf_insn ld_jiffies_addr[2] = {
21025 BPF_LD_IMM64(BPF_REG_0,
21026 (unsigned long)&jiffies),
21027 };
21028
21029 insn_buf[0] = ld_jiffies_addr[0];
21030 insn_buf[1] = ld_jiffies_addr[1];
21031 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
21032 BPF_REG_0, 0);
21033 cnt = 3;
21034
21035 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
21036 cnt);
21037 if (!new_prog)
21038 return -ENOMEM;
21039
21040 delta += cnt - 1;
21041 env->prog = prog = new_prog;
21042 insn = new_prog->insnsi + i + delta;
21043 goto next_insn;
21044 }
21045
21046 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
21047 /* Implement bpf_get_smp_processor_id() inline. */
21048 if (insn->imm == BPF_FUNC_get_smp_processor_id &&
21049 verifier_inlines_helper_call(env, insn->imm)) {
21050 /* BPF_FUNC_get_smp_processor_id inlining is an
21051 * optimization, so if pcpu_hot.cpu_number is ever
21052 * changed in some incompatible and hard to support
21053 * way, it's fine to back out this inlining logic
21054 */
21055 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
21056 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
21057 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
21058 cnt = 3;
21059
21060 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21061 if (!new_prog)
21062 return -ENOMEM;
21063
21064 delta += cnt - 1;
21065 env->prog = prog = new_prog;
21066 insn = new_prog->insnsi + i + delta;
21067 goto next_insn;
21068 }
21069 #endif
21070 /* Implement bpf_get_func_arg inline. */
21071 if (prog_type == BPF_PROG_TYPE_TRACING &&
21072 insn->imm == BPF_FUNC_get_func_arg) {
21073 /* Load nr_args from ctx - 8 */
21074 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21075 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
21076 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
21077 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
21078 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
21079 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21080 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
21081 insn_buf[7] = BPF_JMP_A(1);
21082 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21083 cnt = 9;
21084
21085 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21086 if (!new_prog)
21087 return -ENOMEM;
21088
21089 delta += cnt - 1;
21090 env->prog = prog = new_prog;
21091 insn = new_prog->insnsi + i + delta;
21092 goto next_insn;
21093 }
21094
21095 /* Implement bpf_get_func_ret inline. */
21096 if (prog_type == BPF_PROG_TYPE_TRACING &&
21097 insn->imm == BPF_FUNC_get_func_ret) {
21098 if (eatype == BPF_TRACE_FEXIT ||
21099 eatype == BPF_MODIFY_RETURN) {
21100 /* Load nr_args from ctx - 8 */
21101 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21102 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
21103 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
21104 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21105 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
21106 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
21107 cnt = 6;
21108 } else {
21109 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
21110 cnt = 1;
21111 }
21112
21113 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21114 if (!new_prog)
21115 return -ENOMEM;
21116
21117 delta += cnt - 1;
21118 env->prog = prog = new_prog;
21119 insn = new_prog->insnsi + i + delta;
21120 goto next_insn;
21121 }
21122
21123 /* Implement get_func_arg_cnt inline. */
21124 if (prog_type == BPF_PROG_TYPE_TRACING &&
21125 insn->imm == BPF_FUNC_get_func_arg_cnt) {
21126 /* Load nr_args from ctx - 8 */
21127 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21128
21129 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21130 if (!new_prog)
21131 return -ENOMEM;
21132
21133 env->prog = prog = new_prog;
21134 insn = new_prog->insnsi + i + delta;
21135 goto next_insn;
21136 }
21137
21138 /* Implement bpf_get_func_ip inline. */
21139 if (prog_type == BPF_PROG_TYPE_TRACING &&
21140 insn->imm == BPF_FUNC_get_func_ip) {
21141 /* Load IP address from ctx - 16 */
21142 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
21143
21144 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21145 if (!new_prog)
21146 return -ENOMEM;
21147
21148 env->prog = prog = new_prog;
21149 insn = new_prog->insnsi + i + delta;
21150 goto next_insn;
21151 }
21152
21153 /* Implement bpf_get_branch_snapshot inline. */
21154 if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
21155 prog->jit_requested && BITS_PER_LONG == 64 &&
21156 insn->imm == BPF_FUNC_get_branch_snapshot) {
21157 /* We are dealing with the following func protos:
21158 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
21159 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
21160 */
21161 const u32 br_entry_size = sizeof(struct perf_branch_entry);
21162
21163 /* struct perf_branch_entry is part of UAPI and is
21164 * used as an array element, so extremely unlikely to
21165 * ever grow or shrink
21166 */
21167 BUILD_BUG_ON(br_entry_size != 24);
21168
21169 /* if (unlikely(flags)) return -EINVAL */
21170 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
21171
21172 /* Transform size (bytes) into number of entries (cnt = size / 24).
21173 * But to avoid expensive division instruction, we implement
21174 * divide-by-3 through multiplication, followed by further
21175 * division by 8 through 3-bit right shift.
21176 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
21177 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
21178 *
21179 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
21180 */
21181 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
21182 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
21183 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
21184
21185 /* call perf_snapshot_branch_stack implementation */
21186 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
21187 /* if (entry_cnt == 0) return -ENOENT */
21188 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
21189 /* return entry_cnt * sizeof(struct perf_branch_entry) */
21190 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
21191 insn_buf[7] = BPF_JMP_A(3);
21192 /* return -EINVAL; */
21193 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21194 insn_buf[9] = BPF_JMP_A(1);
21195 /* return -ENOENT; */
21196 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
21197 cnt = 11;
21198
21199 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21200 if (!new_prog)
21201 return -ENOMEM;
21202
21203 delta += cnt - 1;
21204 env->prog = prog = new_prog;
21205 insn = new_prog->insnsi + i + delta;
21206 goto next_insn;
21207 }
21208
21209 /* Implement bpf_kptr_xchg inline */
21210 if (prog->jit_requested && BITS_PER_LONG == 64 &&
21211 insn->imm == BPF_FUNC_kptr_xchg &&
21212 bpf_jit_supports_ptr_xchg()) {
21213 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
21214 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
21215 cnt = 2;
21216
21217 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21218 if (!new_prog)
21219 return -ENOMEM;
21220
21221 delta += cnt - 1;
21222 env->prog = prog = new_prog;
21223 insn = new_prog->insnsi + i + delta;
21224 goto next_insn;
21225 }
21226 patch_call_imm:
21227 fn = env->ops->get_func_proto(insn->imm, env->prog);
21228 /* all functions that have prototype and verifier allowed
21229 * programs to call them, must be real in-kernel functions
21230 */
21231 if (!fn->func) {
21232 verbose(env,
21233 "kernel subsystem misconfigured func %s#%d\n",
21234 func_id_name(insn->imm), insn->imm);
21235 return -EFAULT;
21236 }
21237 insn->imm = fn->func - __bpf_call_base;
21238 next_insn:
21239 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21240 subprogs[cur_subprog].stack_depth += stack_depth_extra;
21241 subprogs[cur_subprog].stack_extra = stack_depth_extra;
21242 cur_subprog++;
21243 stack_depth = subprogs[cur_subprog].stack_depth;
21244 stack_depth_extra = 0;
21245 }
21246 i++;
21247 insn++;
21248 }
21249
21250 env->prog->aux->stack_depth = subprogs[0].stack_depth;
21251 for (i = 0; i < env->subprog_cnt; i++) {
21252 int subprog_start = subprogs[i].start;
21253 int stack_slots = subprogs[i].stack_extra / 8;
21254
21255 if (!stack_slots)
21256 continue;
21257 if (stack_slots > 1) {
21258 verbose(env, "verifier bug: stack_slots supports may_goto only\n");
21259 return -EFAULT;
21260 }
21261
21262 /* Add ST insn to subprog prologue to init extra stack */
21263 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
21264 -subprogs[i].stack_depth, BPF_MAX_LOOPS);
21265 /* Copy first actual insn to preserve it */
21266 insn_buf[1] = env->prog->insnsi[subprog_start];
21267
21268 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
21269 if (!new_prog)
21270 return -ENOMEM;
21271 env->prog = prog = new_prog;
21272 /*
21273 * If may_goto is a first insn of a prog there could be a jmp
21274 * insn that points to it, hence adjust all such jmps to point
21275 * to insn after BPF_ST that inits may_goto count.
21276 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
21277 */
21278 WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1));
21279 }
21280
21281 /* Since poke tab is now finalized, publish aux to tracker. */
21282 for (i = 0; i < prog->aux->size_poke_tab; i++) {
21283 map_ptr = prog->aux->poke_tab[i].tail_call.map;
21284 if (!map_ptr->ops->map_poke_track ||
21285 !map_ptr->ops->map_poke_untrack ||
21286 !map_ptr->ops->map_poke_run) {
21287 verbose(env, "bpf verifier is misconfigured\n");
21288 return -EINVAL;
21289 }
21290
21291 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
21292 if (ret < 0) {
21293 verbose(env, "tracking tail call prog failed\n");
21294 return ret;
21295 }
21296 }
21297
21298 sort_kfunc_descs_by_imm_off(env->prog);
21299
21300 return 0;
21301 }
21302
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * total_cnt)21303 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
21304 int position,
21305 s32 stack_base,
21306 u32 callback_subprogno,
21307 u32 *total_cnt)
21308 {
21309 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
21310 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
21311 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
21312 int reg_loop_max = BPF_REG_6;
21313 int reg_loop_cnt = BPF_REG_7;
21314 int reg_loop_ctx = BPF_REG_8;
21315
21316 struct bpf_insn *insn_buf = env->insn_buf;
21317 struct bpf_prog *new_prog;
21318 u32 callback_start;
21319 u32 call_insn_offset;
21320 s32 callback_offset;
21321 u32 cnt = 0;
21322
21323 /* This represents an inlined version of bpf_iter.c:bpf_loop,
21324 * be careful to modify this code in sync.
21325 */
21326
21327 /* Return error and jump to the end of the patch if
21328 * expected number of iterations is too big.
21329 */
21330 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
21331 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
21332 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
21333 /* spill R6, R7, R8 to use these as loop vars */
21334 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
21335 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
21336 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
21337 /* initialize loop vars */
21338 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
21339 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
21340 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
21341 /* loop header,
21342 * if reg_loop_cnt >= reg_loop_max skip the loop body
21343 */
21344 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
21345 /* callback call,
21346 * correct callback offset would be set after patching
21347 */
21348 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
21349 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
21350 insn_buf[cnt++] = BPF_CALL_REL(0);
21351 /* increment loop counter */
21352 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
21353 /* jump to loop header if callback returned 0 */
21354 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
21355 /* return value of bpf_loop,
21356 * set R0 to the number of iterations
21357 */
21358 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
21359 /* restore original values of R6, R7, R8 */
21360 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
21361 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
21362 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
21363
21364 *total_cnt = cnt;
21365 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
21366 if (!new_prog)
21367 return new_prog;
21368
21369 /* callback start is known only after patching */
21370 callback_start = env->subprog_info[callback_subprogno].start;
21371 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
21372 call_insn_offset = position + 12;
21373 callback_offset = callback_start - call_insn_offset - 1;
21374 new_prog->insnsi[call_insn_offset].imm = callback_offset;
21375
21376 return new_prog;
21377 }
21378
is_bpf_loop_call(struct bpf_insn * insn)21379 static bool is_bpf_loop_call(struct bpf_insn *insn)
21380 {
21381 return insn->code == (BPF_JMP | BPF_CALL) &&
21382 insn->src_reg == 0 &&
21383 insn->imm == BPF_FUNC_loop;
21384 }
21385
21386 /* For all sub-programs in the program (including main) check
21387 * insn_aux_data to see if there are bpf_loop calls that require
21388 * inlining. If such calls are found the calls are replaced with a
21389 * sequence of instructions produced by `inline_bpf_loop` function and
21390 * subprog stack_depth is increased by the size of 3 registers.
21391 * This stack space is used to spill values of the R6, R7, R8. These
21392 * registers are used to store the loop bound, counter and context
21393 * variables.
21394 */
optimize_bpf_loop(struct bpf_verifier_env * env)21395 static int optimize_bpf_loop(struct bpf_verifier_env *env)
21396 {
21397 struct bpf_subprog_info *subprogs = env->subprog_info;
21398 int i, cur_subprog = 0, cnt, delta = 0;
21399 struct bpf_insn *insn = env->prog->insnsi;
21400 int insn_cnt = env->prog->len;
21401 u16 stack_depth = subprogs[cur_subprog].stack_depth;
21402 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21403 u16 stack_depth_extra = 0;
21404
21405 for (i = 0; i < insn_cnt; i++, insn++) {
21406 struct bpf_loop_inline_state *inline_state =
21407 &env->insn_aux_data[i + delta].loop_inline_state;
21408
21409 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
21410 struct bpf_prog *new_prog;
21411
21412 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
21413 new_prog = inline_bpf_loop(env,
21414 i + delta,
21415 -(stack_depth + stack_depth_extra),
21416 inline_state->callback_subprogno,
21417 &cnt);
21418 if (!new_prog)
21419 return -ENOMEM;
21420
21421 delta += cnt - 1;
21422 env->prog = new_prog;
21423 insn = new_prog->insnsi + i + delta;
21424 }
21425
21426 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21427 subprogs[cur_subprog].stack_depth += stack_depth_extra;
21428 cur_subprog++;
21429 stack_depth = subprogs[cur_subprog].stack_depth;
21430 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21431 stack_depth_extra = 0;
21432 }
21433 }
21434
21435 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21436
21437 return 0;
21438 }
21439
21440 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
21441 * adjust subprograms stack depth when possible.
21442 */
remove_fastcall_spills_fills(struct bpf_verifier_env * env)21443 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
21444 {
21445 struct bpf_subprog_info *subprog = env->subprog_info;
21446 struct bpf_insn_aux_data *aux = env->insn_aux_data;
21447 struct bpf_insn *insn = env->prog->insnsi;
21448 int insn_cnt = env->prog->len;
21449 u32 spills_num;
21450 bool modified = false;
21451 int i, j;
21452
21453 for (i = 0; i < insn_cnt; i++, insn++) {
21454 if (aux[i].fastcall_spills_num > 0) {
21455 spills_num = aux[i].fastcall_spills_num;
21456 /* NOPs would be removed by opt_remove_nops() */
21457 for (j = 1; j <= spills_num; ++j) {
21458 *(insn - j) = NOP;
21459 *(insn + j) = NOP;
21460 }
21461 modified = true;
21462 }
21463 if ((subprog + 1)->start == i + 1) {
21464 if (modified && !subprog->keep_fastcall_stack)
21465 subprog->stack_depth = -subprog->fastcall_stack_off;
21466 subprog++;
21467 modified = false;
21468 }
21469 }
21470
21471 return 0;
21472 }
21473
free_states(struct bpf_verifier_env * env)21474 static void free_states(struct bpf_verifier_env *env)
21475 {
21476 struct bpf_verifier_state_list *sl, *sln;
21477 int i;
21478
21479 sl = env->free_list;
21480 while (sl) {
21481 sln = sl->next;
21482 free_verifier_state(&sl->state, false);
21483 kfree(sl);
21484 sl = sln;
21485 }
21486 env->free_list = NULL;
21487
21488 if (!env->explored_states)
21489 return;
21490
21491 for (i = 0; i < state_htab_size(env); i++) {
21492 sl = env->explored_states[i];
21493
21494 while (sl) {
21495 sln = sl->next;
21496 free_verifier_state(&sl->state, false);
21497 kfree(sl);
21498 sl = sln;
21499 }
21500 env->explored_states[i] = NULL;
21501 }
21502 }
21503
do_check_common(struct bpf_verifier_env * env,int subprog)21504 static int do_check_common(struct bpf_verifier_env *env, int subprog)
21505 {
21506 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
21507 struct bpf_subprog_info *sub = subprog_info(env, subprog);
21508 struct bpf_verifier_state *state;
21509 struct bpf_reg_state *regs;
21510 int ret, i;
21511
21512 env->prev_linfo = NULL;
21513 env->pass_cnt++;
21514
21515 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
21516 if (!state)
21517 return -ENOMEM;
21518 state->curframe = 0;
21519 state->speculative = false;
21520 state->branches = 1;
21521 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
21522 if (!state->frame[0]) {
21523 kfree(state);
21524 return -ENOMEM;
21525 }
21526 env->cur_state = state;
21527 init_func_state(env, state->frame[0],
21528 BPF_MAIN_FUNC /* callsite */,
21529 0 /* frameno */,
21530 subprog);
21531 state->first_insn_idx = env->subprog_info[subprog].start;
21532 state->last_insn_idx = -1;
21533
21534 regs = state->frame[state->curframe]->regs;
21535 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
21536 const char *sub_name = subprog_name(env, subprog);
21537 struct bpf_subprog_arg_info *arg;
21538 struct bpf_reg_state *reg;
21539
21540 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
21541 ret = btf_prepare_func_args(env, subprog);
21542 if (ret)
21543 goto out;
21544
21545 if (subprog_is_exc_cb(env, subprog)) {
21546 state->frame[0]->in_exception_callback_fn = true;
21547 /* We have already ensured that the callback returns an integer, just
21548 * like all global subprogs. We need to determine it only has a single
21549 * scalar argument.
21550 */
21551 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
21552 verbose(env, "exception cb only supports single integer argument\n");
21553 ret = -EINVAL;
21554 goto out;
21555 }
21556 }
21557 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
21558 arg = &sub->args[i - BPF_REG_1];
21559 reg = ®s[i];
21560
21561 if (arg->arg_type == ARG_PTR_TO_CTX) {
21562 reg->type = PTR_TO_CTX;
21563 mark_reg_known_zero(env, regs, i);
21564 } else if (arg->arg_type == ARG_ANYTHING) {
21565 reg->type = SCALAR_VALUE;
21566 mark_reg_unknown(env, regs, i);
21567 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
21568 /* assume unspecial LOCAL dynptr type */
21569 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
21570 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
21571 reg->type = PTR_TO_MEM;
21572 if (arg->arg_type & PTR_MAYBE_NULL)
21573 reg->type |= PTR_MAYBE_NULL;
21574 mark_reg_known_zero(env, regs, i);
21575 reg->mem_size = arg->mem_size;
21576 reg->id = ++env->id_gen;
21577 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
21578 reg->type = PTR_TO_BTF_ID;
21579 if (arg->arg_type & PTR_MAYBE_NULL)
21580 reg->type |= PTR_MAYBE_NULL;
21581 if (arg->arg_type & PTR_UNTRUSTED)
21582 reg->type |= PTR_UNTRUSTED;
21583 if (arg->arg_type & PTR_TRUSTED)
21584 reg->type |= PTR_TRUSTED;
21585 mark_reg_known_zero(env, regs, i);
21586 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
21587 reg->btf_id = arg->btf_id;
21588 reg->id = ++env->id_gen;
21589 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
21590 /* caller can pass either PTR_TO_ARENA or SCALAR */
21591 mark_reg_unknown(env, regs, i);
21592 } else {
21593 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
21594 i - BPF_REG_1, arg->arg_type);
21595 ret = -EFAULT;
21596 goto out;
21597 }
21598 }
21599 } else {
21600 /* if main BPF program has associated BTF info, validate that
21601 * it's matching expected signature, and otherwise mark BTF
21602 * info for main program as unreliable
21603 */
21604 if (env->prog->aux->func_info_aux) {
21605 ret = btf_prepare_func_args(env, 0);
21606 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
21607 env->prog->aux->func_info_aux[0].unreliable = true;
21608 }
21609
21610 /* 1st arg to a function */
21611 regs[BPF_REG_1].type = PTR_TO_CTX;
21612 mark_reg_known_zero(env, regs, BPF_REG_1);
21613 }
21614
21615 ret = do_check(env);
21616 out:
21617 /* check for NULL is necessary, since cur_state can be freed inside
21618 * do_check() under memory pressure.
21619 */
21620 if (env->cur_state) {
21621 free_verifier_state(env->cur_state, true);
21622 env->cur_state = NULL;
21623 }
21624 while (!pop_stack(env, NULL, NULL, false));
21625 if (!ret && pop_log)
21626 bpf_vlog_reset(&env->log, 0);
21627 free_states(env);
21628 return ret;
21629 }
21630
21631 /* Lazily verify all global functions based on their BTF, if they are called
21632 * from main BPF program or any of subprograms transitively.
21633 * BPF global subprogs called from dead code are not validated.
21634 * All callable global functions must pass verification.
21635 * Otherwise the whole program is rejected.
21636 * Consider:
21637 * int bar(int);
21638 * int foo(int f)
21639 * {
21640 * return bar(f);
21641 * }
21642 * int bar(int b)
21643 * {
21644 * ...
21645 * }
21646 * foo() will be verified first for R1=any_scalar_value. During verification it
21647 * will be assumed that bar() already verified successfully and call to bar()
21648 * from foo() will be checked for type match only. Later bar() will be verified
21649 * independently to check that it's safe for R1=any_scalar_value.
21650 */
do_check_subprogs(struct bpf_verifier_env * env)21651 static int do_check_subprogs(struct bpf_verifier_env *env)
21652 {
21653 struct bpf_prog_aux *aux = env->prog->aux;
21654 struct bpf_func_info_aux *sub_aux;
21655 int i, ret, new_cnt;
21656
21657 if (!aux->func_info)
21658 return 0;
21659
21660 /* exception callback is presumed to be always called */
21661 if (env->exception_callback_subprog)
21662 subprog_aux(env, env->exception_callback_subprog)->called = true;
21663
21664 again:
21665 new_cnt = 0;
21666 for (i = 1; i < env->subprog_cnt; i++) {
21667 if (!subprog_is_global(env, i))
21668 continue;
21669
21670 sub_aux = subprog_aux(env, i);
21671 if (!sub_aux->called || sub_aux->verified)
21672 continue;
21673
21674 env->insn_idx = env->subprog_info[i].start;
21675 WARN_ON_ONCE(env->insn_idx == 0);
21676 ret = do_check_common(env, i);
21677 if (ret) {
21678 return ret;
21679 } else if (env->log.level & BPF_LOG_LEVEL) {
21680 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
21681 i, subprog_name(env, i));
21682 }
21683
21684 /* We verified new global subprog, it might have called some
21685 * more global subprogs that we haven't verified yet, so we
21686 * need to do another pass over subprogs to verify those.
21687 */
21688 sub_aux->verified = true;
21689 new_cnt++;
21690 }
21691
21692 /* We can't loop forever as we verify at least one global subprog on
21693 * each pass.
21694 */
21695 if (new_cnt)
21696 goto again;
21697
21698 return 0;
21699 }
21700
do_check_main(struct bpf_verifier_env * env)21701 static int do_check_main(struct bpf_verifier_env *env)
21702 {
21703 int ret;
21704
21705 env->insn_idx = 0;
21706 ret = do_check_common(env, 0);
21707 if (!ret)
21708 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21709 return ret;
21710 }
21711
21712
print_verification_stats(struct bpf_verifier_env * env)21713 static void print_verification_stats(struct bpf_verifier_env *env)
21714 {
21715 int i;
21716
21717 if (env->log.level & BPF_LOG_STATS) {
21718 verbose(env, "verification time %lld usec\n",
21719 div_u64(env->verification_time, 1000));
21720 verbose(env, "stack depth ");
21721 for (i = 0; i < env->subprog_cnt; i++) {
21722 u32 depth = env->subprog_info[i].stack_depth;
21723
21724 verbose(env, "%d", depth);
21725 if (i + 1 < env->subprog_cnt)
21726 verbose(env, "+");
21727 }
21728 verbose(env, "\n");
21729 }
21730 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
21731 "total_states %d peak_states %d mark_read %d\n",
21732 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
21733 env->max_states_per_insn, env->total_states,
21734 env->peak_states, env->longest_mark_read_walk);
21735 }
21736
check_struct_ops_btf_id(struct bpf_verifier_env * env)21737 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
21738 {
21739 const struct btf_type *t, *func_proto;
21740 const struct bpf_struct_ops_desc *st_ops_desc;
21741 const struct bpf_struct_ops *st_ops;
21742 const struct btf_member *member;
21743 struct bpf_prog *prog = env->prog;
21744 u32 btf_id, member_idx;
21745 struct btf *btf;
21746 const char *mname;
21747 int err;
21748
21749 if (!prog->gpl_compatible) {
21750 verbose(env, "struct ops programs must have a GPL compatible license\n");
21751 return -EINVAL;
21752 }
21753
21754 if (!prog->aux->attach_btf_id)
21755 return -ENOTSUPP;
21756
21757 btf = prog->aux->attach_btf;
21758 if (btf_is_module(btf)) {
21759 /* Make sure st_ops is valid through the lifetime of env */
21760 env->attach_btf_mod = btf_try_get_module(btf);
21761 if (!env->attach_btf_mod) {
21762 verbose(env, "struct_ops module %s is not found\n",
21763 btf_get_name(btf));
21764 return -ENOTSUPP;
21765 }
21766 }
21767
21768 btf_id = prog->aux->attach_btf_id;
21769 st_ops_desc = bpf_struct_ops_find(btf, btf_id);
21770 if (!st_ops_desc) {
21771 verbose(env, "attach_btf_id %u is not a supported struct\n",
21772 btf_id);
21773 return -ENOTSUPP;
21774 }
21775 st_ops = st_ops_desc->st_ops;
21776
21777 t = st_ops_desc->type;
21778 member_idx = prog->expected_attach_type;
21779 if (member_idx >= btf_type_vlen(t)) {
21780 verbose(env, "attach to invalid member idx %u of struct %s\n",
21781 member_idx, st_ops->name);
21782 return -EINVAL;
21783 }
21784
21785 member = &btf_type_member(t)[member_idx];
21786 mname = btf_name_by_offset(btf, member->name_off);
21787 func_proto = btf_type_resolve_func_ptr(btf, member->type,
21788 NULL);
21789 if (!func_proto) {
21790 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
21791 mname, member_idx, st_ops->name);
21792 return -EINVAL;
21793 }
21794
21795 err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8);
21796 if (err) {
21797 verbose(env, "attach to unsupported member %s of struct %s\n",
21798 mname, st_ops->name);
21799 return err;
21800 }
21801
21802 if (st_ops->check_member) {
21803 err = st_ops->check_member(t, member, prog);
21804
21805 if (err) {
21806 verbose(env, "attach to unsupported member %s of struct %s\n",
21807 mname, st_ops->name);
21808 return err;
21809 }
21810 }
21811
21812 /* btf_ctx_access() used this to provide argument type info */
21813 prog->aux->ctx_arg_info =
21814 st_ops_desc->arg_info[member_idx].info;
21815 prog->aux->ctx_arg_info_size =
21816 st_ops_desc->arg_info[member_idx].cnt;
21817
21818 prog->aux->attach_func_proto = func_proto;
21819 prog->aux->attach_func_name = mname;
21820 env->ops = st_ops->verifier_ops;
21821
21822 return 0;
21823 }
21824 #define SECURITY_PREFIX "security_"
21825
check_attach_modify_return(unsigned long addr,const char * func_name)21826 static int check_attach_modify_return(unsigned long addr, const char *func_name)
21827 {
21828 if (within_error_injection_list(addr) ||
21829 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
21830 return 0;
21831
21832 return -EINVAL;
21833 }
21834
21835 /* list of non-sleepable functions that are otherwise on
21836 * ALLOW_ERROR_INJECTION list
21837 */
21838 BTF_SET_START(btf_non_sleepable_error_inject)
21839 /* Three functions below can be called from sleepable and non-sleepable context.
21840 * Assume non-sleepable from bpf safety point of view.
21841 */
BTF_ID(func,__filemap_add_folio)21842 BTF_ID(func, __filemap_add_folio)
21843 #ifdef CONFIG_FAIL_PAGE_ALLOC
21844 BTF_ID(func, should_fail_alloc_page)
21845 #endif
21846 #ifdef CONFIG_FAILSLAB
21847 BTF_ID(func, should_failslab)
21848 #endif
21849 BTF_SET_END(btf_non_sleepable_error_inject)
21850
21851 static int check_non_sleepable_error_inject(u32 btf_id)
21852 {
21853 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
21854 }
21855
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)21856 int bpf_check_attach_target(struct bpf_verifier_log *log,
21857 const struct bpf_prog *prog,
21858 const struct bpf_prog *tgt_prog,
21859 u32 btf_id,
21860 struct bpf_attach_target_info *tgt_info)
21861 {
21862 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
21863 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
21864 char trace_symbol[KSYM_SYMBOL_LEN];
21865 const char prefix[] = "btf_trace_";
21866 struct bpf_raw_event_map *btp;
21867 int ret = 0, subprog = -1, i;
21868 const struct btf_type *t;
21869 bool conservative = true;
21870 const char *tname, *fname;
21871 struct btf *btf;
21872 long addr = 0;
21873 struct module *mod = NULL;
21874
21875 if (!btf_id) {
21876 bpf_log(log, "Tracing programs must provide btf_id\n");
21877 return -EINVAL;
21878 }
21879 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
21880 if (!btf) {
21881 bpf_log(log,
21882 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
21883 return -EINVAL;
21884 }
21885 t = btf_type_by_id(btf, btf_id);
21886 if (!t) {
21887 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
21888 return -EINVAL;
21889 }
21890 tname = btf_name_by_offset(btf, t->name_off);
21891 if (!tname) {
21892 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
21893 return -EINVAL;
21894 }
21895 if (tgt_prog) {
21896 struct bpf_prog_aux *aux = tgt_prog->aux;
21897
21898 if (bpf_prog_is_dev_bound(prog->aux) &&
21899 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
21900 bpf_log(log, "Target program bound device mismatch");
21901 return -EINVAL;
21902 }
21903
21904 for (i = 0; i < aux->func_info_cnt; i++)
21905 if (aux->func_info[i].type_id == btf_id) {
21906 subprog = i;
21907 break;
21908 }
21909 if (subprog == -1) {
21910 bpf_log(log, "Subprog %s doesn't exist\n", tname);
21911 return -EINVAL;
21912 }
21913 if (aux->func && aux->func[subprog]->aux->exception_cb) {
21914 bpf_log(log,
21915 "%s programs cannot attach to exception callback\n",
21916 prog_extension ? "Extension" : "FENTRY/FEXIT");
21917 return -EINVAL;
21918 }
21919 conservative = aux->func_info_aux[subprog].unreliable;
21920 if (prog_extension) {
21921 if (conservative) {
21922 bpf_log(log,
21923 "Cannot replace static functions\n");
21924 return -EINVAL;
21925 }
21926 if (!prog->jit_requested) {
21927 bpf_log(log,
21928 "Extension programs should be JITed\n");
21929 return -EINVAL;
21930 }
21931 }
21932 if (!tgt_prog->jited) {
21933 bpf_log(log, "Can attach to only JITed progs\n");
21934 return -EINVAL;
21935 }
21936 if (prog_tracing) {
21937 if (aux->attach_tracing_prog) {
21938 /*
21939 * Target program is an fentry/fexit which is already attached
21940 * to another tracing program. More levels of nesting
21941 * attachment are not allowed.
21942 */
21943 bpf_log(log, "Cannot nest tracing program attach more than once\n");
21944 return -EINVAL;
21945 }
21946 } else if (tgt_prog->type == prog->type) {
21947 /*
21948 * To avoid potential call chain cycles, prevent attaching of a
21949 * program extension to another extension. It's ok to attach
21950 * fentry/fexit to extension program.
21951 */
21952 bpf_log(log, "Cannot recursively attach\n");
21953 return -EINVAL;
21954 }
21955 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
21956 prog_extension &&
21957 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
21958 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
21959 /* Program extensions can extend all program types
21960 * except fentry/fexit. The reason is the following.
21961 * The fentry/fexit programs are used for performance
21962 * analysis, stats and can be attached to any program
21963 * type. When extension program is replacing XDP function
21964 * it is necessary to allow performance analysis of all
21965 * functions. Both original XDP program and its program
21966 * extension. Hence attaching fentry/fexit to
21967 * BPF_PROG_TYPE_EXT is allowed. If extending of
21968 * fentry/fexit was allowed it would be possible to create
21969 * long call chain fentry->extension->fentry->extension
21970 * beyond reasonable stack size. Hence extending fentry
21971 * is not allowed.
21972 */
21973 bpf_log(log, "Cannot extend fentry/fexit\n");
21974 return -EINVAL;
21975 }
21976 } else {
21977 if (prog_extension) {
21978 bpf_log(log, "Cannot replace kernel functions\n");
21979 return -EINVAL;
21980 }
21981 }
21982
21983 switch (prog->expected_attach_type) {
21984 case BPF_TRACE_RAW_TP:
21985 if (tgt_prog) {
21986 bpf_log(log,
21987 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
21988 return -EINVAL;
21989 }
21990 if (!btf_type_is_typedef(t)) {
21991 bpf_log(log, "attach_btf_id %u is not a typedef\n",
21992 btf_id);
21993 return -EINVAL;
21994 }
21995 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
21996 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
21997 btf_id, tname);
21998 return -EINVAL;
21999 }
22000 tname += sizeof(prefix) - 1;
22001
22002 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument
22003 * names. Thus using bpf_raw_event_map to get argument names.
22004 */
22005 btp = bpf_get_raw_tracepoint(tname);
22006 if (!btp)
22007 return -EINVAL;
22008 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
22009 trace_symbol);
22010 bpf_put_raw_tracepoint(btp);
22011
22012 if (fname)
22013 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
22014
22015 if (!fname || ret < 0) {
22016 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
22017 prefix, tname);
22018 t = btf_type_by_id(btf, t->type);
22019 if (!btf_type_is_ptr(t))
22020 /* should never happen in valid vmlinux build */
22021 return -EINVAL;
22022 } else {
22023 t = btf_type_by_id(btf, ret);
22024 if (!btf_type_is_func(t))
22025 /* should never happen in valid vmlinux build */
22026 return -EINVAL;
22027 }
22028
22029 t = btf_type_by_id(btf, t->type);
22030 if (!btf_type_is_func_proto(t))
22031 /* should never happen in valid vmlinux build */
22032 return -EINVAL;
22033
22034 break;
22035 case BPF_TRACE_ITER:
22036 if (!btf_type_is_func(t)) {
22037 bpf_log(log, "attach_btf_id %u is not a function\n",
22038 btf_id);
22039 return -EINVAL;
22040 }
22041 t = btf_type_by_id(btf, t->type);
22042 if (!btf_type_is_func_proto(t))
22043 return -EINVAL;
22044 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22045 if (ret)
22046 return ret;
22047 break;
22048 default:
22049 if (!prog_extension)
22050 return -EINVAL;
22051 fallthrough;
22052 case BPF_MODIFY_RETURN:
22053 case BPF_LSM_MAC:
22054 case BPF_LSM_CGROUP:
22055 case BPF_TRACE_FENTRY:
22056 case BPF_TRACE_FEXIT:
22057 if (!btf_type_is_func(t)) {
22058 bpf_log(log, "attach_btf_id %u is not a function\n",
22059 btf_id);
22060 return -EINVAL;
22061 }
22062 if (prog_extension &&
22063 btf_check_type_match(log, prog, btf, t))
22064 return -EINVAL;
22065 t = btf_type_by_id(btf, t->type);
22066 if (!btf_type_is_func_proto(t))
22067 return -EINVAL;
22068
22069 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
22070 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
22071 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
22072 return -EINVAL;
22073
22074 if (tgt_prog && conservative)
22075 t = NULL;
22076
22077 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22078 if (ret < 0)
22079 return ret;
22080
22081 if (tgt_prog) {
22082 if (subprog == 0)
22083 addr = (long) tgt_prog->bpf_func;
22084 else
22085 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
22086 } else {
22087 if (btf_is_module(btf)) {
22088 mod = btf_try_get_module(btf);
22089 if (mod)
22090 addr = find_kallsyms_symbol_value(mod, tname);
22091 else
22092 addr = 0;
22093 } else {
22094 addr = kallsyms_lookup_name(tname);
22095 }
22096 if (!addr) {
22097 module_put(mod);
22098 bpf_log(log,
22099 "The address of function %s cannot be found\n",
22100 tname);
22101 return -ENOENT;
22102 }
22103 }
22104
22105 if (prog->sleepable) {
22106 ret = -EINVAL;
22107 switch (prog->type) {
22108 case BPF_PROG_TYPE_TRACING:
22109
22110 /* fentry/fexit/fmod_ret progs can be sleepable if they are
22111 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
22112 */
22113 if (!check_non_sleepable_error_inject(btf_id) &&
22114 within_error_injection_list(addr))
22115 ret = 0;
22116 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
22117 * in the fmodret id set with the KF_SLEEPABLE flag.
22118 */
22119 else {
22120 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
22121 prog);
22122
22123 if (flags && (*flags & KF_SLEEPABLE))
22124 ret = 0;
22125 }
22126 break;
22127 case BPF_PROG_TYPE_LSM:
22128 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
22129 * Only some of them are sleepable.
22130 */
22131 if (bpf_lsm_is_sleepable_hook(btf_id))
22132 ret = 0;
22133 break;
22134 default:
22135 break;
22136 }
22137 if (ret) {
22138 module_put(mod);
22139 bpf_log(log, "%s is not sleepable\n", tname);
22140 return ret;
22141 }
22142 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
22143 if (tgt_prog) {
22144 module_put(mod);
22145 bpf_log(log, "can't modify return codes of BPF programs\n");
22146 return -EINVAL;
22147 }
22148 ret = -EINVAL;
22149 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
22150 !check_attach_modify_return(addr, tname))
22151 ret = 0;
22152 if (ret) {
22153 module_put(mod);
22154 bpf_log(log, "%s() is not modifiable\n", tname);
22155 return ret;
22156 }
22157 }
22158
22159 break;
22160 }
22161 tgt_info->tgt_addr = addr;
22162 tgt_info->tgt_name = tname;
22163 tgt_info->tgt_type = t;
22164 tgt_info->tgt_mod = mod;
22165 return 0;
22166 }
22167
BTF_SET_START(btf_id_deny)22168 BTF_SET_START(btf_id_deny)
22169 BTF_ID_UNUSED
22170 #ifdef CONFIG_SMP
22171 BTF_ID(func, migrate_disable)
22172 BTF_ID(func, migrate_enable)
22173 #endif
22174 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
22175 BTF_ID(func, rcu_read_unlock_strict)
22176 #endif
22177 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
22178 BTF_ID(func, preempt_count_add)
22179 BTF_ID(func, preempt_count_sub)
22180 #endif
22181 #ifdef CONFIG_PREEMPT_RCU
22182 BTF_ID(func, __rcu_read_lock)
22183 BTF_ID(func, __rcu_read_unlock)
22184 #endif
22185 BTF_SET_END(btf_id_deny)
22186
22187 static bool can_be_sleepable(struct bpf_prog *prog)
22188 {
22189 if (prog->type == BPF_PROG_TYPE_TRACING) {
22190 switch (prog->expected_attach_type) {
22191 case BPF_TRACE_FENTRY:
22192 case BPF_TRACE_FEXIT:
22193 case BPF_MODIFY_RETURN:
22194 case BPF_TRACE_ITER:
22195 return true;
22196 default:
22197 return false;
22198 }
22199 }
22200 return prog->type == BPF_PROG_TYPE_LSM ||
22201 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
22202 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
22203 }
22204
check_attach_btf_id(struct bpf_verifier_env * env)22205 static int check_attach_btf_id(struct bpf_verifier_env *env)
22206 {
22207 struct bpf_prog *prog = env->prog;
22208 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
22209 struct bpf_attach_target_info tgt_info = {};
22210 u32 btf_id = prog->aux->attach_btf_id;
22211 struct bpf_trampoline *tr;
22212 int ret;
22213 u64 key;
22214
22215 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
22216 if (prog->sleepable)
22217 /* attach_btf_id checked to be zero already */
22218 return 0;
22219 verbose(env, "Syscall programs can only be sleepable\n");
22220 return -EINVAL;
22221 }
22222
22223 if (prog->sleepable && !can_be_sleepable(prog)) {
22224 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
22225 return -EINVAL;
22226 }
22227
22228 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
22229 return check_struct_ops_btf_id(env);
22230
22231 if (prog->type != BPF_PROG_TYPE_TRACING &&
22232 prog->type != BPF_PROG_TYPE_LSM &&
22233 prog->type != BPF_PROG_TYPE_EXT)
22234 return 0;
22235
22236 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
22237 if (ret)
22238 return ret;
22239
22240 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
22241 /* to make freplace equivalent to their targets, they need to
22242 * inherit env->ops and expected_attach_type for the rest of the
22243 * verification
22244 */
22245 env->ops = bpf_verifier_ops[tgt_prog->type];
22246 prog->expected_attach_type = tgt_prog->expected_attach_type;
22247 }
22248
22249 /* store info about the attachment target that will be used later */
22250 prog->aux->attach_func_proto = tgt_info.tgt_type;
22251 prog->aux->attach_func_name = tgt_info.tgt_name;
22252 prog->aux->mod = tgt_info.tgt_mod;
22253
22254 if (tgt_prog) {
22255 prog->aux->saved_dst_prog_type = tgt_prog->type;
22256 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
22257 }
22258
22259 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
22260 prog->aux->attach_btf_trace = true;
22261 return 0;
22262 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
22263 if (!bpf_iter_prog_supported(prog))
22264 return -EINVAL;
22265 return 0;
22266 }
22267
22268 if (prog->type == BPF_PROG_TYPE_LSM) {
22269 ret = bpf_lsm_verify_prog(&env->log, prog);
22270 if (ret < 0)
22271 return ret;
22272 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
22273 btf_id_set_contains(&btf_id_deny, btf_id)) {
22274 return -EINVAL;
22275 }
22276
22277 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
22278 tr = bpf_trampoline_get(key, &tgt_info);
22279 if (!tr)
22280 return -ENOMEM;
22281
22282 if (tgt_prog && tgt_prog->aux->tail_call_reachable)
22283 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
22284
22285 prog->aux->dst_trampoline = tr;
22286 return 0;
22287 }
22288
bpf_get_btf_vmlinux(void)22289 struct btf *bpf_get_btf_vmlinux(void)
22290 {
22291 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
22292 mutex_lock(&bpf_verifier_lock);
22293 if (!btf_vmlinux)
22294 btf_vmlinux = btf_parse_vmlinux();
22295 mutex_unlock(&bpf_verifier_lock);
22296 }
22297 return btf_vmlinux;
22298 }
22299
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)22300 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
22301 {
22302 u64 start_time = ktime_get_ns();
22303 struct bpf_verifier_env *env;
22304 int i, len, ret = -EINVAL, err;
22305 u32 log_true_size;
22306 bool is_priv;
22307
22308 /* no program is valid */
22309 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
22310 return -EINVAL;
22311
22312 /* 'struct bpf_verifier_env' can be global, but since it's not small,
22313 * allocate/free it every time bpf_check() is called
22314 */
22315 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
22316 if (!env)
22317 return -ENOMEM;
22318
22319 env->bt.env = env;
22320
22321 len = (*prog)->len;
22322 env->insn_aux_data =
22323 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
22324 ret = -ENOMEM;
22325 if (!env->insn_aux_data)
22326 goto err_free_env;
22327 for (i = 0; i < len; i++)
22328 env->insn_aux_data[i].orig_idx = i;
22329 env->prog = *prog;
22330 env->ops = bpf_verifier_ops[env->prog->type];
22331 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
22332
22333 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
22334 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
22335 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
22336 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
22337 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
22338
22339 bpf_get_btf_vmlinux();
22340
22341 /* grab the mutex to protect few globals used by verifier */
22342 if (!is_priv)
22343 mutex_lock(&bpf_verifier_lock);
22344
22345 /* user could have requested verbose verifier output
22346 * and supplied buffer to store the verification trace
22347 */
22348 ret = bpf_vlog_init(&env->log, attr->log_level,
22349 (char __user *) (unsigned long) attr->log_buf,
22350 attr->log_size);
22351 if (ret)
22352 goto err_unlock;
22353
22354 mark_verifier_state_clean(env);
22355
22356 if (IS_ERR(btf_vmlinux)) {
22357 /* Either gcc or pahole or kernel are broken. */
22358 verbose(env, "in-kernel BTF is malformed\n");
22359 ret = PTR_ERR(btf_vmlinux);
22360 goto skip_full_check;
22361 }
22362
22363 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
22364 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
22365 env->strict_alignment = true;
22366 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
22367 env->strict_alignment = false;
22368
22369 if (is_priv)
22370 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
22371 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
22372
22373 env->explored_states = kvcalloc(state_htab_size(env),
22374 sizeof(struct bpf_verifier_state_list *),
22375 GFP_USER);
22376 ret = -ENOMEM;
22377 if (!env->explored_states)
22378 goto skip_full_check;
22379
22380 ret = check_btf_info_early(env, attr, uattr);
22381 if (ret < 0)
22382 goto skip_full_check;
22383
22384 ret = add_subprog_and_kfunc(env);
22385 if (ret < 0)
22386 goto skip_full_check;
22387
22388 ret = check_subprogs(env);
22389 if (ret < 0)
22390 goto skip_full_check;
22391
22392 ret = check_btf_info(env, attr, uattr);
22393 if (ret < 0)
22394 goto skip_full_check;
22395
22396 ret = check_attach_btf_id(env);
22397 if (ret)
22398 goto skip_full_check;
22399
22400 ret = resolve_pseudo_ldimm64(env);
22401 if (ret < 0)
22402 goto skip_full_check;
22403
22404 if (bpf_prog_is_offloaded(env->prog->aux)) {
22405 ret = bpf_prog_offload_verifier_prep(env->prog);
22406 if (ret)
22407 goto skip_full_check;
22408 }
22409
22410 ret = check_cfg(env);
22411 if (ret < 0)
22412 goto skip_full_check;
22413
22414 ret = mark_fastcall_patterns(env);
22415 if (ret < 0)
22416 goto skip_full_check;
22417
22418 ret = do_check_main(env);
22419 ret = ret ?: do_check_subprogs(env);
22420
22421 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
22422 ret = bpf_prog_offload_finalize(env);
22423
22424 skip_full_check:
22425 kvfree(env->explored_states);
22426
22427 /* might decrease stack depth, keep it before passes that
22428 * allocate additional slots.
22429 */
22430 if (ret == 0)
22431 ret = remove_fastcall_spills_fills(env);
22432
22433 if (ret == 0)
22434 ret = check_max_stack_depth(env);
22435
22436 /* instruction rewrites happen after this point */
22437 if (ret == 0)
22438 ret = optimize_bpf_loop(env);
22439
22440 if (is_priv) {
22441 if (ret == 0)
22442 opt_hard_wire_dead_code_branches(env);
22443 if (ret == 0)
22444 ret = opt_remove_dead_code(env);
22445 if (ret == 0)
22446 ret = opt_remove_nops(env);
22447 } else {
22448 if (ret == 0)
22449 sanitize_dead_code(env);
22450 }
22451
22452 if (ret == 0)
22453 /* program is valid, convert *(u32*)(ctx + off) accesses */
22454 ret = convert_ctx_accesses(env);
22455
22456 if (ret == 0)
22457 ret = do_misc_fixups(env);
22458
22459 /* do 32-bit optimization after insn patching has done so those patched
22460 * insns could be handled correctly.
22461 */
22462 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
22463 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
22464 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
22465 : false;
22466 }
22467
22468 if (ret == 0)
22469 ret = fixup_call_args(env);
22470
22471 env->verification_time = ktime_get_ns() - start_time;
22472 print_verification_stats(env);
22473 env->prog->aux->verified_insns = env->insn_processed;
22474
22475 /* preserve original error even if log finalization is successful */
22476 err = bpf_vlog_finalize(&env->log, &log_true_size);
22477 if (err)
22478 ret = err;
22479
22480 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
22481 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
22482 &log_true_size, sizeof(log_true_size))) {
22483 ret = -EFAULT;
22484 goto err_release_maps;
22485 }
22486
22487 if (ret)
22488 goto err_release_maps;
22489
22490 if (env->used_map_cnt) {
22491 /* if program passed verifier, update used_maps in bpf_prog_info */
22492 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
22493 sizeof(env->used_maps[0]),
22494 GFP_KERNEL);
22495
22496 if (!env->prog->aux->used_maps) {
22497 ret = -ENOMEM;
22498 goto err_release_maps;
22499 }
22500
22501 memcpy(env->prog->aux->used_maps, env->used_maps,
22502 sizeof(env->used_maps[0]) * env->used_map_cnt);
22503 env->prog->aux->used_map_cnt = env->used_map_cnt;
22504 }
22505 if (env->used_btf_cnt) {
22506 /* if program passed verifier, update used_btfs in bpf_prog_aux */
22507 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
22508 sizeof(env->used_btfs[0]),
22509 GFP_KERNEL);
22510 if (!env->prog->aux->used_btfs) {
22511 ret = -ENOMEM;
22512 goto err_release_maps;
22513 }
22514
22515 memcpy(env->prog->aux->used_btfs, env->used_btfs,
22516 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
22517 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
22518 }
22519 if (env->used_map_cnt || env->used_btf_cnt) {
22520 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
22521 * bpf_ld_imm64 instructions
22522 */
22523 convert_pseudo_ld_imm64(env);
22524 }
22525
22526 adjust_btf_func(env);
22527
22528 err_release_maps:
22529 if (!env->prog->aux->used_maps)
22530 /* if we didn't copy map pointers into bpf_prog_info, release
22531 * them now. Otherwise free_used_maps() will release them.
22532 */
22533 release_maps(env);
22534 if (!env->prog->aux->used_btfs)
22535 release_btfs(env);
22536
22537 /* extension progs temporarily inherit the attach_type of their targets
22538 for verification purposes, so set it back to zero before returning
22539 */
22540 if (env->prog->type == BPF_PROG_TYPE_EXT)
22541 env->prog->expected_attach_type = 0;
22542
22543 *prog = env->prog;
22544
22545 module_put(env->attach_btf_mod);
22546 err_unlock:
22547 if (!is_priv)
22548 mutex_unlock(&bpf_verifier_lock);
22549 vfree(env->insn_aux_data);
22550 err_free_env:
22551 kvfree(env);
22552 return ret;
22553 }
22554