1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sigreturn.c - tests for x86 sigreturn(2) and exit-to-userspace
4 * Copyright (c) 2014-2015 Andrew Lutomirski
5 *
6 * This is a series of tests that exercises the sigreturn(2) syscall and
7 * the IRET / SYSRET paths in the kernel.
8 *
9 * For now, this focuses on the effects of unusual CS and SS values,
10 * and it has a bunch of tests to make sure that ESP/RSP is restored
11 * properly.
12 *
13 * The basic idea behind these tests is to raise(SIGUSR1) to create a
14 * sigcontext frame, plug in the values to be tested, and then return,
15 * which implicitly invokes sigreturn(2) and programs the user context
16 * as desired.
17 *
18 * For tests for which we expect sigreturn and the subsequent return to
19 * user mode to succeed, we return to a short trampoline that generates
20 * SIGTRAP so that the meat of the tests can be ordinary C code in a
21 * SIGTRAP handler.
22 *
23 * The inner workings of each test is documented below.
24 *
25 * Do not run on outdated, unpatched kernels at risk of nasty crashes.
26 */
27
28 #define _GNU_SOURCE
29
30 #include <sys/time.h>
31 #include <time.h>
32 #include <stdlib.h>
33 #include <sys/syscall.h>
34 #include <unistd.h>
35 #include <stdio.h>
36 #include <string.h>
37 #include <inttypes.h>
38 #include <sys/mman.h>
39 #include <sys/signal.h>
40 #include <sys/ucontext.h>
41 #include <asm/ldt.h>
42 #include <err.h>
43 #include <setjmp.h>
44 #include <stddef.h>
45 #include <stdbool.h>
46 #include <sys/ptrace.h>
47 #include <sys/user.h>
48
49 /* Pull in AR_xyz defines. */
50 typedef unsigned int u32;
51 typedef unsigned short u16;
52 #include "../../../../arch/x86/include/asm/desc_defs.h"
53
54 /*
55 * Copied from asm/ucontext.h, as asm/ucontext.h conflicts badly with the glibc
56 * headers.
57 */
58 #ifdef __x86_64__
59 /*
60 * UC_SIGCONTEXT_SS will be set when delivering 64-bit or x32 signals on
61 * kernels that save SS in the sigcontext. All kernels that set
62 * UC_SIGCONTEXT_SS will correctly restore at least the low 32 bits of esp
63 * regardless of SS (i.e. they implement espfix).
64 *
65 * Kernels that set UC_SIGCONTEXT_SS will also set UC_STRICT_RESTORE_SS
66 * when delivering a signal that came from 64-bit code.
67 *
68 * Sigreturn restores SS as follows:
69 *
70 * if (saved SS is valid || UC_STRICT_RESTORE_SS is set ||
71 * saved CS is not 64-bit)
72 * new SS = saved SS (will fail IRET and signal if invalid)
73 * else
74 * new SS = a flat 32-bit data segment
75 */
76 #define UC_SIGCONTEXT_SS 0x2
77 #define UC_STRICT_RESTORE_SS 0x4
78 #endif
79
80 /*
81 * In principle, this test can run on Linux emulation layers (e.g.
82 * Illumos "LX branded zones"). Solaris-based kernels reserve LDT
83 * entries 0-5 for their own internal purposes, so start our LDT
84 * allocations above that reservation. (The tests don't pass on LX
85 * branded zones, but at least this lets them run.)
86 */
87 #define LDT_OFFSET 6
88
89 /* An aligned stack accessible through some of our segments. */
90 static unsigned char stack16[65536] __attribute__((aligned(4096)));
91
92 /*
93 * An aligned int3 instruction used as a trampoline. Some of the tests
94 * want to fish out their ss values, so this trampoline copies ss to eax
95 * before the int3.
96 */
97 asm (".pushsection .text\n\t"
98 ".type int3, @function\n\t"
99 ".align 4096\n\t"
100 "int3:\n\t"
101 "mov %ss,%ecx\n\t"
102 "int3\n\t"
103 ".size int3, . - int3\n\t"
104 ".align 4096, 0xcc\n\t"
105 ".popsection");
106 extern char int3[4096];
107
108 /*
109 * At startup, we prepapre:
110 *
111 * - ldt_nonexistent_sel: An LDT entry that doesn't exist (all-zero
112 * descriptor or out of bounds).
113 * - code16_sel: A 16-bit LDT code segment pointing to int3.
114 * - data16_sel: A 16-bit LDT data segment pointing to stack16.
115 * - npcode32_sel: A 32-bit not-present LDT code segment pointing to int3.
116 * - npdata32_sel: A 32-bit not-present LDT data segment pointing to stack16.
117 * - gdt_data16_idx: A 16-bit GDT data segment pointing to stack16.
118 * - gdt_npdata32_idx: A 32-bit not-present GDT data segment pointing to
119 * stack16.
120 *
121 * For no particularly good reason, xyz_sel is a selector value with the
122 * RPL and LDT bits filled in, whereas xyz_idx is just an index into the
123 * descriptor table. These variables will be zero if their respective
124 * segments could not be allocated.
125 */
126 static unsigned short ldt_nonexistent_sel;
127 static unsigned short code16_sel, data16_sel, npcode32_sel, npdata32_sel;
128
129 static unsigned short gdt_data16_idx, gdt_npdata32_idx;
130
GDT3(int idx)131 static unsigned short GDT3(int idx)
132 {
133 return (idx << 3) | 3;
134 }
135
LDT3(int idx)136 static unsigned short LDT3(int idx)
137 {
138 return (idx << 3) | 7;
139 }
140
sethandler(int sig,void (* handler)(int,siginfo_t *,void *),int flags)141 static void sethandler(int sig, void (*handler)(int, siginfo_t *, void *),
142 int flags)
143 {
144 struct sigaction sa;
145 memset(&sa, 0, sizeof(sa));
146 sa.sa_sigaction = handler;
147 sa.sa_flags = SA_SIGINFO | flags;
148 sigemptyset(&sa.sa_mask);
149 if (sigaction(sig, &sa, 0))
150 err(1, "sigaction");
151 }
152
clearhandler(int sig)153 static void clearhandler(int sig)
154 {
155 struct sigaction sa;
156 memset(&sa, 0, sizeof(sa));
157 sa.sa_handler = SIG_DFL;
158 sigemptyset(&sa.sa_mask);
159 if (sigaction(sig, &sa, 0))
160 err(1, "sigaction");
161 }
162
add_ldt(const struct user_desc * desc,unsigned short * var,const char * name)163 static void add_ldt(const struct user_desc *desc, unsigned short *var,
164 const char *name)
165 {
166 if (syscall(SYS_modify_ldt, 1, desc, sizeof(*desc)) == 0) {
167 *var = LDT3(desc->entry_number);
168 } else {
169 printf("[NOTE]\tFailed to create %s segment\n", name);
170 *var = 0;
171 }
172 }
173
setup_ldt(void)174 static void setup_ldt(void)
175 {
176 if ((unsigned long)stack16 > (1ULL << 32) - sizeof(stack16))
177 errx(1, "stack16 is too high\n");
178 if ((unsigned long)int3 > (1ULL << 32) - sizeof(int3))
179 errx(1, "int3 is too high\n");
180
181 ldt_nonexistent_sel = LDT3(LDT_OFFSET + 2);
182
183 const struct user_desc code16_desc = {
184 .entry_number = LDT_OFFSET + 0,
185 .base_addr = (unsigned long)int3,
186 .limit = 4095,
187 .seg_32bit = 0,
188 .contents = 2, /* Code, not conforming */
189 .read_exec_only = 0,
190 .limit_in_pages = 0,
191 .seg_not_present = 0,
192 .useable = 0
193 };
194 add_ldt(&code16_desc, &code16_sel, "code16");
195
196 const struct user_desc data16_desc = {
197 .entry_number = LDT_OFFSET + 1,
198 .base_addr = (unsigned long)stack16,
199 .limit = 0xffff,
200 .seg_32bit = 0,
201 .contents = 0, /* Data, grow-up */
202 .read_exec_only = 0,
203 .limit_in_pages = 0,
204 .seg_not_present = 0,
205 .useable = 0
206 };
207 add_ldt(&data16_desc, &data16_sel, "data16");
208
209 const struct user_desc npcode32_desc = {
210 .entry_number = LDT_OFFSET + 3,
211 .base_addr = (unsigned long)int3,
212 .limit = 4095,
213 .seg_32bit = 1,
214 .contents = 2, /* Code, not conforming */
215 .read_exec_only = 0,
216 .limit_in_pages = 0,
217 .seg_not_present = 1,
218 .useable = 0
219 };
220 add_ldt(&npcode32_desc, &npcode32_sel, "npcode32");
221
222 const struct user_desc npdata32_desc = {
223 .entry_number = LDT_OFFSET + 4,
224 .base_addr = (unsigned long)stack16,
225 .limit = 0xffff,
226 .seg_32bit = 1,
227 .contents = 0, /* Data, grow-up */
228 .read_exec_only = 0,
229 .limit_in_pages = 0,
230 .seg_not_present = 1,
231 .useable = 0
232 };
233 add_ldt(&npdata32_desc, &npdata32_sel, "npdata32");
234
235 struct user_desc gdt_data16_desc = {
236 .entry_number = -1,
237 .base_addr = (unsigned long)stack16,
238 .limit = 0xffff,
239 .seg_32bit = 0,
240 .contents = 0, /* Data, grow-up */
241 .read_exec_only = 0,
242 .limit_in_pages = 0,
243 .seg_not_present = 0,
244 .useable = 0
245 };
246
247 if (syscall(SYS_set_thread_area, &gdt_data16_desc) == 0) {
248 /*
249 * This probably indicates vulnerability to CVE-2014-8133.
250 * Merely getting here isn't definitive, though, and we'll
251 * diagnose the problem for real later on.
252 */
253 printf("[WARN]\tset_thread_area allocated data16 at index %d\n",
254 gdt_data16_desc.entry_number);
255 gdt_data16_idx = gdt_data16_desc.entry_number;
256 } else {
257 printf("[OK]\tset_thread_area refused 16-bit data\n");
258 }
259
260 struct user_desc gdt_npdata32_desc = {
261 .entry_number = -1,
262 .base_addr = (unsigned long)stack16,
263 .limit = 0xffff,
264 .seg_32bit = 1,
265 .contents = 0, /* Data, grow-up */
266 .read_exec_only = 0,
267 .limit_in_pages = 0,
268 .seg_not_present = 1,
269 .useable = 0
270 };
271
272 if (syscall(SYS_set_thread_area, &gdt_npdata32_desc) == 0) {
273 /*
274 * As a hardening measure, newer kernels don't allow this.
275 */
276 printf("[WARN]\tset_thread_area allocated npdata32 at index %d\n",
277 gdt_npdata32_desc.entry_number);
278 gdt_npdata32_idx = gdt_npdata32_desc.entry_number;
279 } else {
280 printf("[OK]\tset_thread_area refused 16-bit data\n");
281 }
282 }
283
284 /* State used by our signal handlers. */
285 static gregset_t initial_regs, requested_regs, resulting_regs;
286
287 /* Instructions for the SIGUSR1 handler. */
288 static volatile unsigned short sig_cs, sig_ss;
289 static volatile sig_atomic_t sig_trapped, sig_err, sig_trapno;
290 #ifdef __x86_64__
291 static volatile sig_atomic_t sig_corrupt_final_ss;
292 #endif
293
294 /* Abstractions for some 32-bit vs 64-bit differences. */
295 #ifdef __x86_64__
296 # define REG_IP REG_RIP
297 # define REG_SP REG_RSP
298 # define REG_CX REG_RCX
299
300 struct selectors {
301 unsigned short cs, gs, fs, ss;
302 };
303
ssptr(ucontext_t * ctx)304 static unsigned short *ssptr(ucontext_t *ctx)
305 {
306 struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
307 return &sels->ss;
308 }
309
csptr(ucontext_t * ctx)310 static unsigned short *csptr(ucontext_t *ctx)
311 {
312 struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
313 return &sels->cs;
314 }
315 #else
316 # define REG_IP REG_EIP
317 # define REG_SP REG_ESP
318 # define REG_CX REG_ECX
319
ssptr(ucontext_t * ctx)320 static greg_t *ssptr(ucontext_t *ctx)
321 {
322 return &ctx->uc_mcontext.gregs[REG_SS];
323 }
324
csptr(ucontext_t * ctx)325 static greg_t *csptr(ucontext_t *ctx)
326 {
327 return &ctx->uc_mcontext.gregs[REG_CS];
328 }
329 #endif
330
331 /*
332 * Checks a given selector for its code bitness or returns -1 if it's not
333 * a usable code segment selector.
334 */
cs_bitness(unsigned short cs)335 int cs_bitness(unsigned short cs)
336 {
337 uint32_t valid = 0, ar;
338 asm ("lar %[cs], %[ar]\n\t"
339 "jnz 1f\n\t"
340 "mov $1, %[valid]\n\t"
341 "1:"
342 : [ar] "=r" (ar), [valid] "+rm" (valid)
343 : [cs] "r" (cs));
344
345 if (!valid)
346 return -1;
347
348 bool db = (ar & (1 << 22));
349 bool l = (ar & (1 << 21));
350
351 if (!(ar & (1<<11)))
352 return -1; /* Not code. */
353
354 if (l && !db)
355 return 64;
356 else if (!l && db)
357 return 32;
358 else if (!l && !db)
359 return 16;
360 else
361 return -1; /* Unknown bitness. */
362 }
363
364 /*
365 * Checks a given selector for its code bitness or returns -1 if it's not
366 * a usable code segment selector.
367 */
is_valid_ss(unsigned short cs)368 bool is_valid_ss(unsigned short cs)
369 {
370 uint32_t valid = 0, ar;
371 asm ("lar %[cs], %[ar]\n\t"
372 "jnz 1f\n\t"
373 "mov $1, %[valid]\n\t"
374 "1:"
375 : [ar] "=r" (ar), [valid] "+rm" (valid)
376 : [cs] "r" (cs));
377
378 if (!valid)
379 return false;
380
381 if ((ar & AR_TYPE_MASK) != AR_TYPE_RWDATA &&
382 (ar & AR_TYPE_MASK) != AR_TYPE_RWDATA_EXPDOWN)
383 return false;
384
385 return (ar & AR_P);
386 }
387
388 /* Number of errors in the current test case. */
389 static volatile sig_atomic_t nerrs;
390
validate_signal_ss(int sig,ucontext_t * ctx)391 static void validate_signal_ss(int sig, ucontext_t *ctx)
392 {
393 #ifdef __x86_64__
394 bool was_64bit = (cs_bitness(*csptr(ctx)) == 64);
395
396 if (!(ctx->uc_flags & UC_SIGCONTEXT_SS)) {
397 printf("[FAIL]\tUC_SIGCONTEXT_SS was not set\n");
398 nerrs++;
399
400 /*
401 * This happens on Linux 4.1. The rest will fail, too, so
402 * return now to reduce the noise.
403 */
404 return;
405 }
406
407 /* UC_STRICT_RESTORE_SS is set iff we came from 64-bit mode. */
408 if (!!(ctx->uc_flags & UC_STRICT_RESTORE_SS) != was_64bit) {
409 printf("[FAIL]\tUC_STRICT_RESTORE_SS was wrong in signal %d\n",
410 sig);
411 nerrs++;
412 }
413
414 if (is_valid_ss(*ssptr(ctx))) {
415 /*
416 * DOSEMU was written before 64-bit sigcontext had SS, and
417 * it tries to figure out the signal source SS by looking at
418 * the physical register. Make sure that keeps working.
419 */
420 unsigned short hw_ss;
421 asm ("mov %%ss, %0" : "=rm" (hw_ss));
422 if (hw_ss != *ssptr(ctx)) {
423 printf("[FAIL]\tHW SS didn't match saved SS\n");
424 nerrs++;
425 }
426 }
427 #endif
428 }
429
430 /*
431 * SIGUSR1 handler. Sets CS and SS as requested and points IP to the
432 * int3 trampoline. Sets SP to a large known value so that we can see
433 * whether the value round-trips back to user mode correctly.
434 */
sigusr1(int sig,siginfo_t * info,void * ctx_void)435 static void sigusr1(int sig, siginfo_t *info, void *ctx_void)
436 {
437 ucontext_t *ctx = (ucontext_t*)ctx_void;
438
439 validate_signal_ss(sig, ctx);
440
441 memcpy(&initial_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
442
443 *csptr(ctx) = sig_cs;
444 *ssptr(ctx) = sig_ss;
445
446 ctx->uc_mcontext.gregs[REG_IP] =
447 sig_cs == code16_sel ? 0 : (unsigned long)&int3;
448 ctx->uc_mcontext.gregs[REG_SP] = (unsigned long)0x8badf00d5aadc0deULL;
449 ctx->uc_mcontext.gregs[REG_CX] = 0;
450
451 #ifdef __i386__
452 /*
453 * Make sure the kernel doesn't inadvertently use DS or ES-relative
454 * accesses in a region where user DS or ES is loaded.
455 *
456 * Skip this for 64-bit builds because long mode doesn't care about
457 * DS and ES and skipping it increases test coverage a little bit,
458 * since 64-bit kernels can still run the 32-bit build.
459 */
460 ctx->uc_mcontext.gregs[REG_DS] = 0;
461 ctx->uc_mcontext.gregs[REG_ES] = 0;
462 #endif
463
464 memcpy(&requested_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
465 requested_regs[REG_CX] = *ssptr(ctx); /* The asm code does this. */
466
467 return;
468 }
469
470 /*
471 * Called after a successful sigreturn (via int3) or from a failed
472 * sigreturn (directly by kernel). Restores our state so that the
473 * original raise(SIGUSR1) returns.
474 */
sigtrap(int sig,siginfo_t * info,void * ctx_void)475 static void sigtrap(int sig, siginfo_t *info, void *ctx_void)
476 {
477 ucontext_t *ctx = (ucontext_t*)ctx_void;
478
479 validate_signal_ss(sig, ctx);
480
481 sig_err = ctx->uc_mcontext.gregs[REG_ERR];
482 sig_trapno = ctx->uc_mcontext.gregs[REG_TRAPNO];
483
484 unsigned short ss;
485 asm ("mov %%ss,%0" : "=r" (ss));
486
487 greg_t asm_ss = ctx->uc_mcontext.gregs[REG_CX];
488 if (asm_ss != sig_ss && sig == SIGTRAP) {
489 /* Sanity check failure. */
490 printf("[FAIL]\tSIGTRAP: ss = %hx, frame ss = %x, ax = %llx\n",
491 ss, *ssptr(ctx), (unsigned long long)asm_ss);
492 nerrs++;
493 }
494
495 memcpy(&resulting_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
496 memcpy(&ctx->uc_mcontext.gregs, &initial_regs, sizeof(gregset_t));
497
498 #ifdef __x86_64__
499 if (sig_corrupt_final_ss) {
500 if (ctx->uc_flags & UC_STRICT_RESTORE_SS) {
501 printf("[FAIL]\tUC_STRICT_RESTORE_SS was set inappropriately\n");
502 nerrs++;
503 } else {
504 /*
505 * DOSEMU transitions from 32-bit to 64-bit mode by
506 * adjusting sigcontext, and it requires that this work
507 * even if the saved SS is bogus.
508 */
509 printf("\tCorrupting SS on return to 64-bit mode\n");
510 *ssptr(ctx) = 0;
511 }
512 }
513 #endif
514
515 sig_trapped = sig;
516 }
517
518 #ifdef __x86_64__
519 /* Tests recovery if !UC_STRICT_RESTORE_SS */
sigusr2(int sig,siginfo_t * info,void * ctx_void)520 static void sigusr2(int sig, siginfo_t *info, void *ctx_void)
521 {
522 ucontext_t *ctx = (ucontext_t*)ctx_void;
523
524 if (!(ctx->uc_flags & UC_STRICT_RESTORE_SS)) {
525 printf("[FAIL]\traise(2) didn't set UC_STRICT_RESTORE_SS\n");
526 nerrs++;
527 return; /* We can't do the rest. */
528 }
529
530 ctx->uc_flags &= ~UC_STRICT_RESTORE_SS;
531 *ssptr(ctx) = 0;
532
533 /* Return. The kernel should recover without sending another signal. */
534 }
535
test_nonstrict_ss(void)536 static int test_nonstrict_ss(void)
537 {
538 clearhandler(SIGUSR1);
539 clearhandler(SIGTRAP);
540 clearhandler(SIGSEGV);
541 clearhandler(SIGILL);
542 sethandler(SIGUSR2, sigusr2, 0);
543
544 nerrs = 0;
545
546 printf("[RUN]\tClear UC_STRICT_RESTORE_SS and corrupt SS\n");
547 raise(SIGUSR2);
548 if (!nerrs)
549 printf("[OK]\tIt worked\n");
550
551 return nerrs;
552 }
553 #endif
554
555 /* Finds a usable code segment of the requested bitness. */
find_cs(int bitness)556 int find_cs(int bitness)
557 {
558 unsigned short my_cs;
559
560 asm ("mov %%cs,%0" : "=r" (my_cs));
561
562 if (cs_bitness(my_cs) == bitness)
563 return my_cs;
564 if (cs_bitness(my_cs + (2 << 3)) == bitness)
565 return my_cs + (2 << 3);
566 if (my_cs > (2<<3) && cs_bitness(my_cs - (2 << 3)) == bitness)
567 return my_cs - (2 << 3);
568 if (cs_bitness(code16_sel) == bitness)
569 return code16_sel;
570
571 printf("[WARN]\tCould not find %d-bit CS\n", bitness);
572 return -1;
573 }
574
test_valid_sigreturn(int cs_bits,bool use_16bit_ss,int force_ss)575 static int test_valid_sigreturn(int cs_bits, bool use_16bit_ss, int force_ss)
576 {
577 int cs = find_cs(cs_bits);
578 if (cs == -1) {
579 printf("[SKIP]\tCode segment unavailable for %d-bit CS, %d-bit SS\n",
580 cs_bits, use_16bit_ss ? 16 : 32);
581 return 0;
582 }
583
584 if (force_ss != -1) {
585 sig_ss = force_ss;
586 } else {
587 if (use_16bit_ss) {
588 if (!data16_sel) {
589 printf("[SKIP]\tData segment unavailable for %d-bit CS, 16-bit SS\n",
590 cs_bits);
591 return 0;
592 }
593 sig_ss = data16_sel;
594 } else {
595 asm volatile ("mov %%ss,%0" : "=r" (sig_ss));
596 }
597 }
598
599 sig_cs = cs;
600
601 printf("[RUN]\tValid sigreturn: %d-bit CS (%hx), %d-bit SS (%hx%s)\n",
602 cs_bits, sig_cs, use_16bit_ss ? 16 : 32, sig_ss,
603 (sig_ss & 4) ? "" : ", GDT");
604
605 raise(SIGUSR1);
606
607 nerrs = 0;
608
609 /*
610 * Check that each register had an acceptable value when the
611 * int3 trampoline was invoked.
612 */
613 for (int i = 0; i < NGREG; i++) {
614 greg_t req = requested_regs[i], res = resulting_regs[i];
615
616 if (i == REG_TRAPNO || i == REG_IP)
617 continue; /* don't care */
618
619 if (i == REG_SP) {
620 /*
621 * If we were using a 16-bit stack segment, then
622 * the kernel is a bit stuck: IRET only restores
623 * the low 16 bits of ESP/RSP if SS is 16-bit.
624 * The kernel uses a hack to restore bits 31:16,
625 * but that hack doesn't help with bits 63:32.
626 * On Intel CPUs, bits 63:32 end up zeroed, and, on
627 * AMD CPUs, they leak the high bits of the kernel
628 * espfix64 stack pointer. There's very little that
629 * the kernel can do about it.
630 *
631 * Similarly, if we are returning to a 32-bit context,
632 * the CPU will often lose the high 32 bits of RSP.
633 */
634
635 if (res == req)
636 continue;
637
638 if (cs_bits != 64 && ((res ^ req) & 0xFFFFFFFF) == 0) {
639 printf("[NOTE]\tSP: %llx -> %llx\n",
640 (unsigned long long)req,
641 (unsigned long long)res);
642 continue;
643 }
644
645 printf("[FAIL]\tSP mismatch: requested 0x%llx; got 0x%llx\n",
646 (unsigned long long)requested_regs[i],
647 (unsigned long long)resulting_regs[i]);
648 nerrs++;
649 continue;
650 }
651
652 bool ignore_reg = false;
653 #if __i386__
654 if (i == REG_UESP)
655 ignore_reg = true;
656 #else
657 if (i == REG_CSGSFS) {
658 struct selectors *req_sels =
659 (void *)&requested_regs[REG_CSGSFS];
660 struct selectors *res_sels =
661 (void *)&resulting_regs[REG_CSGSFS];
662 if (req_sels->cs != res_sels->cs) {
663 printf("[FAIL]\tCS mismatch: requested 0x%hx; got 0x%hx\n",
664 req_sels->cs, res_sels->cs);
665 nerrs++;
666 }
667
668 if (req_sels->ss != res_sels->ss) {
669 printf("[FAIL]\tSS mismatch: requested 0x%hx; got 0x%hx\n",
670 req_sels->ss, res_sels->ss);
671 nerrs++;
672 }
673
674 continue;
675 }
676 #endif
677
678 /* Sanity check on the kernel */
679 if (i == REG_CX && req != res) {
680 printf("[FAIL]\tCX (saved SP) mismatch: requested 0x%llx; got 0x%llx\n",
681 (unsigned long long)req,
682 (unsigned long long)res);
683 nerrs++;
684 continue;
685 }
686
687 if (req != res && !ignore_reg) {
688 printf("[FAIL]\tReg %d mismatch: requested 0x%llx; got 0x%llx\n",
689 i, (unsigned long long)req,
690 (unsigned long long)res);
691 nerrs++;
692 }
693 }
694
695 if (nerrs == 0)
696 printf("[OK]\tall registers okay\n");
697
698 return nerrs;
699 }
700
test_bad_iret(int cs_bits,unsigned short ss,int force_cs)701 static int test_bad_iret(int cs_bits, unsigned short ss, int force_cs)
702 {
703 int cs = force_cs == -1 ? find_cs(cs_bits) : force_cs;
704 if (cs == -1)
705 return 0;
706
707 sig_cs = cs;
708 sig_ss = ss;
709
710 printf("[RUN]\t%d-bit CS (%hx), bogus SS (%hx)\n",
711 cs_bits, sig_cs, sig_ss);
712
713 sig_trapped = 0;
714 raise(SIGUSR1);
715 if (sig_trapped) {
716 char errdesc[32] = "";
717 if (sig_err) {
718 const char *src = (sig_err & 1) ? " EXT" : "";
719 const char *table;
720 if ((sig_err & 0x6) == 0x0)
721 table = "GDT";
722 else if ((sig_err & 0x6) == 0x4)
723 table = "LDT";
724 else if ((sig_err & 0x6) == 0x2)
725 table = "IDT";
726 else
727 table = "???";
728
729 sprintf(errdesc, "%s%s index %d, ",
730 table, src, sig_err >> 3);
731 }
732
733 char trapname[32];
734 if (sig_trapno == 13)
735 strcpy(trapname, "GP");
736 else if (sig_trapno == 11)
737 strcpy(trapname, "NP");
738 else if (sig_trapno == 12)
739 strcpy(trapname, "SS");
740 else if (sig_trapno == 32)
741 strcpy(trapname, "IRET"); /* X86_TRAP_IRET */
742 else
743 sprintf(trapname, "%d", sig_trapno);
744
745 printf("[OK]\tGot #%s(0x%lx) (i.e. %s%s)\n",
746 trapname, (unsigned long)sig_err,
747 errdesc, strsignal(sig_trapped));
748 return 0;
749 } else {
750 /*
751 * This also implicitly tests UC_STRICT_RESTORE_SS:
752 * We check that these signals set UC_STRICT_RESTORE_SS and,
753 * if UC_STRICT_RESTORE_SS doesn't cause strict behavior,
754 * then we won't get SIGSEGV.
755 */
756 printf("[FAIL]\tDid not get SIGSEGV\n");
757 return 1;
758 }
759 }
760
main()761 int main()
762 {
763 int total_nerrs = 0;
764 unsigned short my_cs, my_ss;
765
766 asm volatile ("mov %%cs,%0" : "=r" (my_cs));
767 asm volatile ("mov %%ss,%0" : "=r" (my_ss));
768 setup_ldt();
769
770 stack_t stack = {
771 /* Our sigaltstack scratch space. */
772 .ss_sp = malloc(sizeof(char) * SIGSTKSZ),
773 .ss_size = SIGSTKSZ,
774 };
775 if (sigaltstack(&stack, NULL) != 0)
776 err(1, "sigaltstack");
777
778 sethandler(SIGUSR1, sigusr1, 0);
779 sethandler(SIGTRAP, sigtrap, SA_ONSTACK);
780
781 /* Easy cases: return to a 32-bit SS in each possible CS bitness. */
782 total_nerrs += test_valid_sigreturn(64, false, -1);
783 total_nerrs += test_valid_sigreturn(32, false, -1);
784 total_nerrs += test_valid_sigreturn(16, false, -1);
785
786 /*
787 * Test easy espfix cases: return to a 16-bit LDT SS in each possible
788 * CS bitness. NB: with a long mode CS, the SS bitness is irrelevant.
789 *
790 * This catches the original missing-espfix-on-64-bit-kernels issue
791 * as well as CVE-2014-8134.
792 */
793 total_nerrs += test_valid_sigreturn(64, true, -1);
794 total_nerrs += test_valid_sigreturn(32, true, -1);
795 total_nerrs += test_valid_sigreturn(16, true, -1);
796
797 if (gdt_data16_idx) {
798 /*
799 * For performance reasons, Linux skips espfix if SS points
800 * to the GDT. If we were able to allocate a 16-bit SS in
801 * the GDT, see if it leaks parts of the kernel stack pointer.
802 *
803 * This tests for CVE-2014-8133.
804 */
805 total_nerrs += test_valid_sigreturn(64, true,
806 GDT3(gdt_data16_idx));
807 total_nerrs += test_valid_sigreturn(32, true,
808 GDT3(gdt_data16_idx));
809 total_nerrs += test_valid_sigreturn(16, true,
810 GDT3(gdt_data16_idx));
811 }
812
813 #ifdef __x86_64__
814 /* Nasty ABI case: check SS corruption handling. */
815 sig_corrupt_final_ss = 1;
816 total_nerrs += test_valid_sigreturn(32, false, -1);
817 total_nerrs += test_valid_sigreturn(32, true, -1);
818 sig_corrupt_final_ss = 0;
819 #endif
820
821 /*
822 * We're done testing valid sigreturn cases. Now we test states
823 * for which sigreturn itself will succeed but the subsequent
824 * entry to user mode will fail.
825 *
826 * Depending on the failure mode and the kernel bitness, these
827 * entry failures can generate SIGSEGV, SIGBUS, or SIGILL.
828 */
829 clearhandler(SIGTRAP);
830 sethandler(SIGSEGV, sigtrap, SA_ONSTACK);
831 sethandler(SIGBUS, sigtrap, SA_ONSTACK);
832 sethandler(SIGILL, sigtrap, SA_ONSTACK); /* 32-bit kernels do this */
833
834 /* Easy failures: invalid SS, resulting in #GP(0) */
835 test_bad_iret(64, ldt_nonexistent_sel, -1);
836 test_bad_iret(32, ldt_nonexistent_sel, -1);
837 test_bad_iret(16, ldt_nonexistent_sel, -1);
838
839 /* These fail because SS isn't a data segment, resulting in #GP(SS) */
840 test_bad_iret(64, my_cs, -1);
841 test_bad_iret(32, my_cs, -1);
842 test_bad_iret(16, my_cs, -1);
843
844 /* Try to return to a not-present code segment, triggering #NP(SS). */
845 test_bad_iret(32, my_ss, npcode32_sel);
846
847 /*
848 * Try to return to a not-present but otherwise valid data segment.
849 * This will cause IRET to fail with #SS on the espfix stack. This
850 * exercises CVE-2014-9322.
851 *
852 * Note that, if espfix is enabled, 64-bit Linux will lose track
853 * of the actual cause of failure and report #GP(0) instead.
854 * This would be very difficult for Linux to avoid, because
855 * espfix64 causes IRET failures to be promoted to #DF, so the
856 * original exception frame is never pushed onto the stack.
857 */
858 test_bad_iret(32, npdata32_sel, -1);
859
860 /*
861 * Try to return to a not-present but otherwise valid data
862 * segment without invoking espfix. Newer kernels don't allow
863 * this to happen in the first place. On older kernels, though,
864 * this can trigger CVE-2014-9322.
865 */
866 if (gdt_npdata32_idx)
867 test_bad_iret(32, GDT3(gdt_npdata32_idx), -1);
868
869 #ifdef __x86_64__
870 total_nerrs += test_nonstrict_ss();
871 #endif
872
873 free(stack.ss_sp);
874 return total_nerrs ? 1 : 0;
875 }
876