1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale MXS LRADC ADC driver
4  *
5  * Copyright (c) 2012 DENX Software Engineering, GmbH.
6  * Copyright (c) 2017 Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
7  *
8  * Authors:
9  *  Marek Vasut <marex@denx.de>
10  *  Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
11  */
12 
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/mfd/core.h>
18 #include <linux/mfd/mxs-lradc.h>
19 #include <linux/module.h>
20 #include <linux/of_irq.h>
21 #include <linux/platform_device.h>
22 #include <linux/sysfs.h>
23 
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/iio.h>
26 #include <linux/iio/trigger.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29 #include <linux/iio/sysfs.h>
30 
31 /*
32  * Make this runtime configurable if necessary. Currently, if the buffered mode
33  * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
34  * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
35  * seconds. The result is that the samples arrive every 500mS.
36  */
37 #define LRADC_DELAY_TIMER_PER	200
38 #define LRADC_DELAY_TIMER_LOOP	5
39 
40 #define VREF_MV_BASE 1850
41 
42 static const char *mx23_lradc_adc_irq_names[] = {
43 	"mxs-lradc-channel0",
44 	"mxs-lradc-channel1",
45 	"mxs-lradc-channel2",
46 	"mxs-lradc-channel3",
47 	"mxs-lradc-channel4",
48 	"mxs-lradc-channel5",
49 };
50 
51 static const char *mx28_lradc_adc_irq_names[] = {
52 	"mxs-lradc-thresh0",
53 	"mxs-lradc-thresh1",
54 	"mxs-lradc-channel0",
55 	"mxs-lradc-channel1",
56 	"mxs-lradc-channel2",
57 	"mxs-lradc-channel3",
58 	"mxs-lradc-channel4",
59 	"mxs-lradc-channel5",
60 	"mxs-lradc-button0",
61 	"mxs-lradc-button1",
62 };
63 
64 static const u32 mxs_lradc_adc_vref_mv[][LRADC_MAX_TOTAL_CHANS] = {
65 	[IMX23_LRADC] = {
66 		VREF_MV_BASE,		/* CH0 */
67 		VREF_MV_BASE,		/* CH1 */
68 		VREF_MV_BASE,		/* CH2 */
69 		VREF_MV_BASE,		/* CH3 */
70 		VREF_MV_BASE,		/* CH4 */
71 		VREF_MV_BASE,		/* CH5 */
72 		VREF_MV_BASE * 2,	/* CH6 VDDIO */
73 		VREF_MV_BASE * 4,	/* CH7 VBATT */
74 		VREF_MV_BASE,		/* CH8 Temp sense 0 */
75 		VREF_MV_BASE,		/* CH9 Temp sense 1 */
76 		VREF_MV_BASE,		/* CH10 */
77 		VREF_MV_BASE,		/* CH11 */
78 		VREF_MV_BASE,		/* CH12 USB_DP */
79 		VREF_MV_BASE,		/* CH13 USB_DN */
80 		VREF_MV_BASE,		/* CH14 VBG */
81 		VREF_MV_BASE * 4,	/* CH15 VDD5V */
82 	},
83 	[IMX28_LRADC] = {
84 		VREF_MV_BASE,		/* CH0 */
85 		VREF_MV_BASE,		/* CH1 */
86 		VREF_MV_BASE,		/* CH2 */
87 		VREF_MV_BASE,		/* CH3 */
88 		VREF_MV_BASE,		/* CH4 */
89 		VREF_MV_BASE,		/* CH5 */
90 		VREF_MV_BASE,		/* CH6 */
91 		VREF_MV_BASE * 4,	/* CH7 VBATT */
92 		VREF_MV_BASE,		/* CH8 Temp sense 0 */
93 		VREF_MV_BASE,		/* CH9 Temp sense 1 */
94 		VREF_MV_BASE * 2,	/* CH10 VDDIO */
95 		VREF_MV_BASE,		/* CH11 VTH */
96 		VREF_MV_BASE * 2,	/* CH12 VDDA */
97 		VREF_MV_BASE,		/* CH13 VDDD */
98 		VREF_MV_BASE,		/* CH14 VBG */
99 		VREF_MV_BASE * 4,	/* CH15 VDD5V */
100 	},
101 };
102 
103 enum mxs_lradc_divbytwo {
104 	MXS_LRADC_DIV_DISABLED = 0,
105 	MXS_LRADC_DIV_ENABLED,
106 };
107 
108 struct mxs_lradc_scale {
109 	unsigned int		integer;
110 	unsigned int		nano;
111 };
112 
113 struct mxs_lradc_adc {
114 	struct mxs_lradc	*lradc;
115 	struct device		*dev;
116 
117 	void __iomem		*base;
118 	/* Maximum of 8 channels + 8 byte ts */
119 	u32			buffer[10] __aligned(8);
120 	struct iio_trigger	*trig;
121 	struct completion	completion;
122 	spinlock_t		lock;
123 
124 	const u32		*vref_mv;
125 	struct mxs_lradc_scale	scale_avail[LRADC_MAX_TOTAL_CHANS][2];
126 	unsigned long		is_divided;
127 };
128 
129 
130 /* Raw I/O operations */
mxs_lradc_adc_read_single(struct iio_dev * iio_dev,int chan,int * val)131 static int mxs_lradc_adc_read_single(struct iio_dev *iio_dev, int chan,
132 				     int *val)
133 {
134 	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
135 	struct mxs_lradc *lradc = adc->lradc;
136 	int ret;
137 
138 	/*
139 	 * See if there is no buffered operation in progress. If there is simply
140 	 * bail out. This can be improved to support both buffered and raw IO at
141 	 * the same time, yet the code becomes horribly complicated. Therefore I
142 	 * applied KISS principle here.
143 	 */
144 	ret = iio_device_claim_direct_mode(iio_dev);
145 	if (ret)
146 		return ret;
147 
148 	reinit_completion(&adc->completion);
149 
150 	/*
151 	 * No buffered operation in progress, map the channel and trigger it.
152 	 * Virtual channel 0 is always used here as the others are always not
153 	 * used if doing raw sampling.
154 	 */
155 	if (lradc->soc == IMX28_LRADC)
156 		writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
157 		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
158 	writel(0x1, adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
159 
160 	/* Enable / disable the divider per requirement */
161 	if (test_bit(chan, &adc->is_divided))
162 		writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
163 		       adc->base + LRADC_CTRL2 + STMP_OFFSET_REG_SET);
164 	else
165 		writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
166 		       adc->base + LRADC_CTRL2 + STMP_OFFSET_REG_CLR);
167 
168 	/* Clean the slot's previous content, then set new one. */
169 	writel(LRADC_CTRL4_LRADCSELECT_MASK(0),
170 	       adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_CLR);
171 	writel(chan, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_SET);
172 
173 	writel(0, adc->base + LRADC_CH(0));
174 
175 	/* Enable the IRQ and start sampling the channel. */
176 	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
177 	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);
178 	writel(BIT(0), adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_SET);
179 
180 	/* Wait for completion on the channel, 1 second max. */
181 	ret = wait_for_completion_killable_timeout(&adc->completion, HZ);
182 	if (!ret)
183 		ret = -ETIMEDOUT;
184 	if (ret < 0)
185 		goto err;
186 
187 	/* Read the data. */
188 	*val = readl(adc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK;
189 	ret = IIO_VAL_INT;
190 
191 err:
192 	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
193 	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
194 
195 	iio_device_release_direct_mode(iio_dev);
196 
197 	return ret;
198 }
199 
mxs_lradc_adc_read_temp(struct iio_dev * iio_dev,int * val)200 static int mxs_lradc_adc_read_temp(struct iio_dev *iio_dev, int *val)
201 {
202 	int ret, min, max;
203 
204 	ret = mxs_lradc_adc_read_single(iio_dev, 8, &min);
205 	if (ret != IIO_VAL_INT)
206 		return ret;
207 
208 	ret = mxs_lradc_adc_read_single(iio_dev, 9, &max);
209 	if (ret != IIO_VAL_INT)
210 		return ret;
211 
212 	*val = max - min;
213 
214 	return IIO_VAL_INT;
215 }
216 
mxs_lradc_adc_read_raw(struct iio_dev * iio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long m)217 static int mxs_lradc_adc_read_raw(struct iio_dev *iio_dev,
218 			      const struct iio_chan_spec *chan,
219 			      int *val, int *val2, long m)
220 {
221 	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
222 
223 	switch (m) {
224 	case IIO_CHAN_INFO_RAW:
225 		if (chan->type == IIO_TEMP)
226 			return mxs_lradc_adc_read_temp(iio_dev, val);
227 
228 		return mxs_lradc_adc_read_single(iio_dev, chan->channel, val);
229 
230 	case IIO_CHAN_INFO_SCALE:
231 		if (chan->type == IIO_TEMP) {
232 			/*
233 			 * From the datasheet, we have to multiply by 1.012 and
234 			 * divide by 4
235 			 */
236 			*val = 0;
237 			*val2 = 253000;
238 			return IIO_VAL_INT_PLUS_MICRO;
239 		}
240 
241 		*val = adc->vref_mv[chan->channel];
242 		*val2 = chan->scan_type.realbits -
243 			test_bit(chan->channel, &adc->is_divided);
244 		return IIO_VAL_FRACTIONAL_LOG2;
245 
246 	case IIO_CHAN_INFO_OFFSET:
247 		if (chan->type == IIO_TEMP) {
248 			/*
249 			 * The calculated value from the ADC is in Kelvin, we
250 			 * want Celsius for hwmon so the offset is -273.15
251 			 * The offset is applied before scaling so it is
252 			 * actually -213.15 * 4 / 1.012 = -1079.644268
253 			 */
254 			*val = -1079;
255 			*val2 = 644268;
256 
257 			return IIO_VAL_INT_PLUS_MICRO;
258 		}
259 
260 		return -EINVAL;
261 
262 	default:
263 		break;
264 	}
265 
266 	return -EINVAL;
267 }
268 
mxs_lradc_adc_write_raw(struct iio_dev * iio_dev,const struct iio_chan_spec * chan,int val,int val2,long m)269 static int mxs_lradc_adc_write_raw(struct iio_dev *iio_dev,
270 				   const struct iio_chan_spec *chan,
271 				   int val, int val2, long m)
272 {
273 	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
274 	struct mxs_lradc_scale *scale_avail =
275 			adc->scale_avail[chan->channel];
276 	int ret;
277 
278 	ret = iio_device_claim_direct_mode(iio_dev);
279 	if (ret)
280 		return ret;
281 
282 	switch (m) {
283 	case IIO_CHAN_INFO_SCALE:
284 		ret = -EINVAL;
285 		if (val == scale_avail[MXS_LRADC_DIV_DISABLED].integer &&
286 		    val2 == scale_avail[MXS_LRADC_DIV_DISABLED].nano) {
287 			/* divider by two disabled */
288 			clear_bit(chan->channel, &adc->is_divided);
289 			ret = 0;
290 		} else if (val == scale_avail[MXS_LRADC_DIV_ENABLED].integer &&
291 			   val2 == scale_avail[MXS_LRADC_DIV_ENABLED].nano) {
292 			/* divider by two enabled */
293 			set_bit(chan->channel, &adc->is_divided);
294 			ret = 0;
295 		}
296 
297 		break;
298 	default:
299 		ret = -EINVAL;
300 		break;
301 	}
302 
303 	iio_device_release_direct_mode(iio_dev);
304 
305 	return ret;
306 }
307 
mxs_lradc_adc_write_raw_get_fmt(struct iio_dev * iio_dev,const struct iio_chan_spec * chan,long m)308 static int mxs_lradc_adc_write_raw_get_fmt(struct iio_dev *iio_dev,
309 					   const struct iio_chan_spec *chan,
310 					   long m)
311 {
312 	return IIO_VAL_INT_PLUS_NANO;
313 }
314 
mxs_lradc_adc_show_scale_avail(struct device * dev,struct device_attribute * attr,char * buf)315 static ssize_t mxs_lradc_adc_show_scale_avail(struct device *dev,
316 						 struct device_attribute *attr,
317 						 char *buf)
318 {
319 	struct iio_dev *iio = dev_to_iio_dev(dev);
320 	struct mxs_lradc_adc *adc = iio_priv(iio);
321 	struct iio_dev_attr *iio_attr = to_iio_dev_attr(attr);
322 	int i, ch, len = 0;
323 
324 	ch = iio_attr->address;
325 	for (i = 0; i < ARRAY_SIZE(adc->scale_avail[ch]); i++)
326 		len += sprintf(buf + len, "%u.%09u ",
327 			       adc->scale_avail[ch][i].integer,
328 			       adc->scale_avail[ch][i].nano);
329 
330 	len += sprintf(buf + len, "\n");
331 
332 	return len;
333 }
334 
335 #define SHOW_SCALE_AVAILABLE_ATTR(ch)\
336 	IIO_DEVICE_ATTR(in_voltage##ch##_scale_available, 0444,\
337 			mxs_lradc_adc_show_scale_avail, NULL, ch)
338 
339 static SHOW_SCALE_AVAILABLE_ATTR(0);
340 static SHOW_SCALE_AVAILABLE_ATTR(1);
341 static SHOW_SCALE_AVAILABLE_ATTR(2);
342 static SHOW_SCALE_AVAILABLE_ATTR(3);
343 static SHOW_SCALE_AVAILABLE_ATTR(4);
344 static SHOW_SCALE_AVAILABLE_ATTR(5);
345 static SHOW_SCALE_AVAILABLE_ATTR(6);
346 static SHOW_SCALE_AVAILABLE_ATTR(7);
347 static SHOW_SCALE_AVAILABLE_ATTR(10);
348 static SHOW_SCALE_AVAILABLE_ATTR(11);
349 static SHOW_SCALE_AVAILABLE_ATTR(12);
350 static SHOW_SCALE_AVAILABLE_ATTR(13);
351 static SHOW_SCALE_AVAILABLE_ATTR(14);
352 static SHOW_SCALE_AVAILABLE_ATTR(15);
353 
354 static struct attribute *mxs_lradc_adc_attributes[] = {
355 	&iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
356 	&iio_dev_attr_in_voltage1_scale_available.dev_attr.attr,
357 	&iio_dev_attr_in_voltage2_scale_available.dev_attr.attr,
358 	&iio_dev_attr_in_voltage3_scale_available.dev_attr.attr,
359 	&iio_dev_attr_in_voltage4_scale_available.dev_attr.attr,
360 	&iio_dev_attr_in_voltage5_scale_available.dev_attr.attr,
361 	&iio_dev_attr_in_voltage6_scale_available.dev_attr.attr,
362 	&iio_dev_attr_in_voltage7_scale_available.dev_attr.attr,
363 	&iio_dev_attr_in_voltage10_scale_available.dev_attr.attr,
364 	&iio_dev_attr_in_voltage11_scale_available.dev_attr.attr,
365 	&iio_dev_attr_in_voltage12_scale_available.dev_attr.attr,
366 	&iio_dev_attr_in_voltage13_scale_available.dev_attr.attr,
367 	&iio_dev_attr_in_voltage14_scale_available.dev_attr.attr,
368 	&iio_dev_attr_in_voltage15_scale_available.dev_attr.attr,
369 	NULL
370 };
371 
372 static const struct attribute_group mxs_lradc_adc_attribute_group = {
373 	.attrs = mxs_lradc_adc_attributes,
374 };
375 
376 static const struct iio_info mxs_lradc_adc_iio_info = {
377 	.read_raw		= mxs_lradc_adc_read_raw,
378 	.write_raw		= mxs_lradc_adc_write_raw,
379 	.write_raw_get_fmt	= mxs_lradc_adc_write_raw_get_fmt,
380 	.attrs			= &mxs_lradc_adc_attribute_group,
381 };
382 
383 /* IRQ Handling */
mxs_lradc_adc_handle_irq(int irq,void * data)384 static irqreturn_t mxs_lradc_adc_handle_irq(int irq, void *data)
385 {
386 	struct iio_dev *iio = data;
387 	struct mxs_lradc_adc *adc = iio_priv(iio);
388 	struct mxs_lradc *lradc = adc->lradc;
389 	unsigned long reg = readl(adc->base + LRADC_CTRL1);
390 	unsigned long flags;
391 
392 	if (!(reg & mxs_lradc_irq_mask(lradc)))
393 		return IRQ_NONE;
394 
395 	if (iio_buffer_enabled(iio)) {
396 		if (reg & lradc->buffer_vchans) {
397 			spin_lock_irqsave(&adc->lock, flags);
398 			iio_trigger_poll(iio->trig);
399 			spin_unlock_irqrestore(&adc->lock, flags);
400 		}
401 	} else if (reg & LRADC_CTRL1_LRADC_IRQ(0)) {
402 		complete(&adc->completion);
403 	}
404 
405 	writel(reg & mxs_lradc_irq_mask(lradc),
406 	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
407 
408 	return IRQ_HANDLED;
409 }
410 
411 
412 /* Trigger handling */
mxs_lradc_adc_trigger_handler(int irq,void * p)413 static irqreturn_t mxs_lradc_adc_trigger_handler(int irq, void *p)
414 {
415 	struct iio_poll_func *pf = p;
416 	struct iio_dev *iio = pf->indio_dev;
417 	struct mxs_lradc_adc *adc = iio_priv(iio);
418 	const u32 chan_value = LRADC_CH_ACCUMULATE |
419 		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
420 	unsigned int i, j = 0;
421 
422 	for_each_set_bit(i, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
423 		adc->buffer[j] = readl(adc->base + LRADC_CH(j));
424 		writel(chan_value, adc->base + LRADC_CH(j));
425 		adc->buffer[j] &= LRADC_CH_VALUE_MASK;
426 		adc->buffer[j] /= LRADC_DELAY_TIMER_LOOP;
427 		j++;
428 	}
429 
430 	iio_push_to_buffers_with_timestamp(iio, adc->buffer, pf->timestamp);
431 
432 	iio_trigger_notify_done(iio->trig);
433 
434 	return IRQ_HANDLED;
435 }
436 
mxs_lradc_adc_configure_trigger(struct iio_trigger * trig,bool state)437 static int mxs_lradc_adc_configure_trigger(struct iio_trigger *trig, bool state)
438 {
439 	struct iio_dev *iio = iio_trigger_get_drvdata(trig);
440 	struct mxs_lradc_adc *adc = iio_priv(iio);
441 	const u32 st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR;
442 
443 	writel(LRADC_DELAY_KICK, adc->base + (LRADC_DELAY(0) + st));
444 
445 	return 0;
446 }
447 
448 static const struct iio_trigger_ops mxs_lradc_adc_trigger_ops = {
449 	.set_trigger_state = &mxs_lradc_adc_configure_trigger,
450 };
451 
mxs_lradc_adc_trigger_init(struct iio_dev * iio)452 static int mxs_lradc_adc_trigger_init(struct iio_dev *iio)
453 {
454 	int ret;
455 	struct iio_trigger *trig;
456 	struct mxs_lradc_adc *adc = iio_priv(iio);
457 
458 	trig = devm_iio_trigger_alloc(&iio->dev, "%s-dev%i", iio->name,
459 				      iio_device_id(iio));
460 	if (!trig)
461 		return -ENOMEM;
462 
463 	trig->dev.parent = adc->dev;
464 	iio_trigger_set_drvdata(trig, iio);
465 	trig->ops = &mxs_lradc_adc_trigger_ops;
466 
467 	ret = iio_trigger_register(trig);
468 	if (ret)
469 		return ret;
470 
471 	adc->trig = trig;
472 
473 	return 0;
474 }
475 
mxs_lradc_adc_trigger_remove(struct iio_dev * iio)476 static void mxs_lradc_adc_trigger_remove(struct iio_dev *iio)
477 {
478 	struct mxs_lradc_adc *adc = iio_priv(iio);
479 
480 	iio_trigger_unregister(adc->trig);
481 }
482 
mxs_lradc_adc_buffer_preenable(struct iio_dev * iio)483 static int mxs_lradc_adc_buffer_preenable(struct iio_dev *iio)
484 {
485 	struct mxs_lradc_adc *adc = iio_priv(iio);
486 	struct mxs_lradc *lradc = adc->lradc;
487 	int chan, ofs = 0;
488 	unsigned long enable = 0;
489 	u32 ctrl4_set = 0;
490 	u32 ctrl4_clr = 0;
491 	u32 ctrl1_irq = 0;
492 	const u32 chan_value = LRADC_CH_ACCUMULATE |
493 		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
494 
495 	if (lradc->soc == IMX28_LRADC)
496 		writel(lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
497 		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
498 	writel(lradc->buffer_vchans,
499 	       adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
500 
501 	for_each_set_bit(chan, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
502 		ctrl4_set |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs);
503 		ctrl4_clr |= LRADC_CTRL4_LRADCSELECT_MASK(ofs);
504 		ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs);
505 		writel(chan_value, adc->base + LRADC_CH(ofs));
506 		bitmap_set(&enable, ofs, 1);
507 		ofs++;
508 	}
509 
510 	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
511 	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);
512 	writel(ctrl4_clr, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_CLR);
513 	writel(ctrl4_set, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_SET);
514 	writel(ctrl1_irq, adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);
515 	writel(enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET,
516 	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_SET);
517 
518 	return 0;
519 }
520 
mxs_lradc_adc_buffer_postdisable(struct iio_dev * iio)521 static int mxs_lradc_adc_buffer_postdisable(struct iio_dev *iio)
522 {
523 	struct mxs_lradc_adc *adc = iio_priv(iio);
524 	struct mxs_lradc *lradc = adc->lradc;
525 
526 	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
527 	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);
528 
529 	writel(lradc->buffer_vchans,
530 	       adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
531 	if (lradc->soc == IMX28_LRADC)
532 		writel(lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
533 		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
534 
535 	return 0;
536 }
537 
mxs_lradc_adc_validate_scan_mask(struct iio_dev * iio,const unsigned long * mask)538 static bool mxs_lradc_adc_validate_scan_mask(struct iio_dev *iio,
539 					     const unsigned long *mask)
540 {
541 	struct mxs_lradc_adc *adc = iio_priv(iio);
542 	struct mxs_lradc *lradc = adc->lradc;
543 	const int map_chans = bitmap_weight(mask, LRADC_MAX_TOTAL_CHANS);
544 	int rsvd_chans = 0;
545 	unsigned long rsvd_mask = 0;
546 
547 	if (lradc->use_touchbutton)
548 		rsvd_mask |= CHAN_MASK_TOUCHBUTTON;
549 	if (lradc->touchscreen_wire == MXS_LRADC_TOUCHSCREEN_4WIRE)
550 		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_4WIRE;
551 	if (lradc->touchscreen_wire == MXS_LRADC_TOUCHSCREEN_5WIRE)
552 		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_5WIRE;
553 
554 	if (lradc->use_touchbutton)
555 		rsvd_chans++;
556 	if (lradc->touchscreen_wire)
557 		rsvd_chans += 2;
558 
559 	/* Test for attempts to map channels with special mode of operation. */
560 	if (bitmap_intersects(mask, &rsvd_mask, LRADC_MAX_TOTAL_CHANS))
561 		return false;
562 
563 	/* Test for attempts to map more channels then available slots. */
564 	if (map_chans + rsvd_chans > LRADC_MAX_MAPPED_CHANS)
565 		return false;
566 
567 	return true;
568 }
569 
570 static const struct iio_buffer_setup_ops mxs_lradc_adc_buffer_ops = {
571 	.preenable = &mxs_lradc_adc_buffer_preenable,
572 	.postdisable = &mxs_lradc_adc_buffer_postdisable,
573 	.validate_scan_mask = &mxs_lradc_adc_validate_scan_mask,
574 };
575 
576 /* Driver initialization */
577 #define MXS_ADC_CHAN(idx, chan_type, name) {			\
578 	.type = (chan_type),					\
579 	.indexed = 1,						\
580 	.scan_index = (idx),					\
581 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
582 			      BIT(IIO_CHAN_INFO_SCALE),		\
583 	.channel = (idx),					\
584 	.address = (idx),					\
585 	.scan_type = {						\
586 		.sign = 'u',					\
587 		.realbits = LRADC_RESOLUTION,			\
588 		.storagebits = 32,				\
589 	},							\
590 	.datasheet_name = (name),				\
591 }
592 
593 static const struct iio_chan_spec mx23_lradc_chan_spec[] = {
594 	MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
595 	MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
596 	MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
597 	MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
598 	MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
599 	MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
600 	MXS_ADC_CHAN(6, IIO_VOLTAGE, "VDDIO"),
601 	MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
602 	/* Combined Temperature sensors */
603 	{
604 		.type = IIO_TEMP,
605 		.indexed = 1,
606 		.scan_index = 8,
607 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
608 				      BIT(IIO_CHAN_INFO_OFFSET) |
609 				      BIT(IIO_CHAN_INFO_SCALE),
610 		.channel = 8,
611 		.scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
612 		.datasheet_name = "TEMP_DIE",
613 	},
614 	/* Hidden channel to keep indexes */
615 	{
616 		.type = IIO_TEMP,
617 		.indexed = 1,
618 		.scan_index = -1,
619 		.channel = 9,
620 	},
621 	MXS_ADC_CHAN(10, IIO_VOLTAGE, NULL),
622 	MXS_ADC_CHAN(11, IIO_VOLTAGE, NULL),
623 	MXS_ADC_CHAN(12, IIO_VOLTAGE, "USB_DP"),
624 	MXS_ADC_CHAN(13, IIO_VOLTAGE, "USB_DN"),
625 	MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
626 	MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
627 };
628 
629 static const struct iio_chan_spec mx28_lradc_chan_spec[] = {
630 	MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
631 	MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
632 	MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
633 	MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
634 	MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
635 	MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
636 	MXS_ADC_CHAN(6, IIO_VOLTAGE, "LRADC6"),
637 	MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
638 	/* Combined Temperature sensors */
639 	{
640 		.type = IIO_TEMP,
641 		.indexed = 1,
642 		.scan_index = 8,
643 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
644 				      BIT(IIO_CHAN_INFO_OFFSET) |
645 				      BIT(IIO_CHAN_INFO_SCALE),
646 		.channel = 8,
647 		.scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
648 		.datasheet_name = "TEMP_DIE",
649 	},
650 	/* Hidden channel to keep indexes */
651 	{
652 		.type = IIO_TEMP,
653 		.indexed = 1,
654 		.scan_index = -1,
655 		.channel = 9,
656 	},
657 	MXS_ADC_CHAN(10, IIO_VOLTAGE, "VDDIO"),
658 	MXS_ADC_CHAN(11, IIO_VOLTAGE, "VTH"),
659 	MXS_ADC_CHAN(12, IIO_VOLTAGE, "VDDA"),
660 	MXS_ADC_CHAN(13, IIO_VOLTAGE, "VDDD"),
661 	MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
662 	MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
663 };
664 
mxs_lradc_adc_hw_init(struct mxs_lradc_adc * adc)665 static void mxs_lradc_adc_hw_init(struct mxs_lradc_adc *adc)
666 {
667 	/* The ADC always uses DELAY CHANNEL 0. */
668 	const u32 adc_cfg =
669 		(1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + 0)) |
670 		(LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET);
671 
672 	/* Configure DELAY CHANNEL 0 for generic ADC sampling. */
673 	writel(adc_cfg, adc->base + LRADC_DELAY(0));
674 
675 	/*
676 	 * Start internal temperature sensing by clearing bit
677 	 * HW_LRADC_CTRL2_TEMPSENSE_PWD. This bit can be left cleared
678 	 * after power up.
679 	 */
680 	writel(0, adc->base + LRADC_CTRL2);
681 }
682 
mxs_lradc_adc_hw_stop(struct mxs_lradc_adc * adc)683 static void mxs_lradc_adc_hw_stop(struct mxs_lradc_adc *adc)
684 {
685 	writel(0, adc->base + LRADC_DELAY(0));
686 }
687 
mxs_lradc_adc_probe(struct platform_device * pdev)688 static int mxs_lradc_adc_probe(struct platform_device *pdev)
689 {
690 	struct device *dev = &pdev->dev;
691 	struct mxs_lradc *lradc = dev_get_drvdata(dev->parent);
692 	struct mxs_lradc_adc *adc;
693 	struct iio_dev *iio;
694 	struct resource *iores;
695 	int ret, irq, virq, i, s, n;
696 	u64 scale_uv;
697 	const char **irq_name;
698 
699 	/* Allocate the IIO device. */
700 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
701 	if (!iio) {
702 		dev_err(dev, "Failed to allocate IIO device\n");
703 		return -ENOMEM;
704 	}
705 
706 	adc = iio_priv(iio);
707 	adc->lradc = lradc;
708 	adc->dev = dev;
709 
710 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
711 	if (!iores)
712 		return -EINVAL;
713 
714 	adc->base = devm_ioremap(dev, iores->start, resource_size(iores));
715 	if (!adc->base)
716 		return -ENOMEM;
717 
718 	init_completion(&adc->completion);
719 	spin_lock_init(&adc->lock);
720 
721 	platform_set_drvdata(pdev, iio);
722 
723 	iio->name = pdev->name;
724 	iio->dev.of_node = dev->parent->of_node;
725 	iio->info = &mxs_lradc_adc_iio_info;
726 	iio->modes = INDIO_DIRECT_MODE;
727 
728 	if (lradc->soc == IMX23_LRADC) {
729 		iio->channels = mx23_lradc_chan_spec;
730 		iio->num_channels = ARRAY_SIZE(mx23_lradc_chan_spec);
731 		irq_name = mx23_lradc_adc_irq_names;
732 		n = ARRAY_SIZE(mx23_lradc_adc_irq_names);
733 	} else {
734 		iio->channels = mx28_lradc_chan_spec;
735 		iio->num_channels = ARRAY_SIZE(mx28_lradc_chan_spec);
736 		irq_name = mx28_lradc_adc_irq_names;
737 		n = ARRAY_SIZE(mx28_lradc_adc_irq_names);
738 	}
739 
740 	ret = stmp_reset_block(adc->base);
741 	if (ret)
742 		return ret;
743 
744 	for (i = 0; i < n; i++) {
745 		irq = platform_get_irq_byname(pdev, irq_name[i]);
746 		if (irq < 0)
747 			return irq;
748 
749 		virq = irq_of_parse_and_map(dev->parent->of_node, irq);
750 
751 		ret = devm_request_irq(dev, virq, mxs_lradc_adc_handle_irq,
752 				       0, irq_name[i], iio);
753 		if (ret)
754 			return ret;
755 	}
756 
757 	ret = mxs_lradc_adc_trigger_init(iio);
758 	if (ret)
759 		return ret;
760 
761 	ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time,
762 					 &mxs_lradc_adc_trigger_handler,
763 					 &mxs_lradc_adc_buffer_ops);
764 	if (ret)
765 		goto err_trig;
766 
767 	adc->vref_mv = mxs_lradc_adc_vref_mv[lradc->soc];
768 
769 	/* Populate available ADC input ranges */
770 	for (i = 0; i < LRADC_MAX_TOTAL_CHANS; i++) {
771 		for (s = 0; s < ARRAY_SIZE(adc->scale_avail[i]); s++) {
772 			/*
773 			 * [s=0] = optional divider by two disabled (default)
774 			 * [s=1] = optional divider by two enabled
775 			 *
776 			 * The scale is calculated by doing:
777 			 *   Vref >> (realbits - s)
778 			 * which multiplies by two on the second component
779 			 * of the array.
780 			 */
781 			scale_uv = ((u64)adc->vref_mv[i] * 100000000) >>
782 				   (LRADC_RESOLUTION - s);
783 			adc->scale_avail[i][s].nano =
784 					do_div(scale_uv, 100000000) * 10;
785 			adc->scale_avail[i][s].integer = scale_uv;
786 		}
787 	}
788 
789 	/* Configure the hardware. */
790 	mxs_lradc_adc_hw_init(adc);
791 
792 	/* Register IIO device. */
793 	ret = iio_device_register(iio);
794 	if (ret) {
795 		dev_err(dev, "Failed to register IIO device\n");
796 		goto err_dev;
797 	}
798 
799 	return 0;
800 
801 err_dev:
802 	mxs_lradc_adc_hw_stop(adc);
803 	iio_triggered_buffer_cleanup(iio);
804 err_trig:
805 	mxs_lradc_adc_trigger_remove(iio);
806 	return ret;
807 }
808 
mxs_lradc_adc_remove(struct platform_device * pdev)809 static void mxs_lradc_adc_remove(struct platform_device *pdev)
810 {
811 	struct iio_dev *iio = platform_get_drvdata(pdev);
812 	struct mxs_lradc_adc *adc = iio_priv(iio);
813 
814 	iio_device_unregister(iio);
815 	mxs_lradc_adc_hw_stop(adc);
816 	iio_triggered_buffer_cleanup(iio);
817 	mxs_lradc_adc_trigger_remove(iio);
818 }
819 
820 static struct platform_driver mxs_lradc_adc_driver = {
821 	.driver = {
822 		.name	= "mxs-lradc-adc",
823 	},
824 	.probe	= mxs_lradc_adc_probe,
825 	.remove_new = mxs_lradc_adc_remove,
826 };
827 module_platform_driver(mxs_lradc_adc_driver);
828 
829 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
830 MODULE_DESCRIPTION("Freescale MXS LRADC driver general purpose ADC driver");
831 MODULE_LICENSE("GPL");
832 MODULE_ALIAS("platform:mxs-lradc-adc");
833