1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (c) 2009, Microsoft Corporation.
4   *
5   * Authors:
6   *   Haiyang Zhang <haiyangz@microsoft.com>
7   *   Hank Janssen  <hjanssen@microsoft.com>
8   *   K. Y. Srinivasan <kys@microsoft.com>
9   */
10  
11  #include <linux/kernel.h>
12  #include <linux/wait.h>
13  #include <linux/sched.h>
14  #include <linux/completion.h>
15  #include <linux/string.h>
16  #include <linux/mm.h>
17  #include <linux/delay.h>
18  #include <linux/init.h>
19  #include <linux/slab.h>
20  #include <linux/module.h>
21  #include <linux/device.h>
22  #include <linux/hyperv.h>
23  #include <linux/blkdev.h>
24  #include <linux/dma-mapping.h>
25  
26  #include <scsi/scsi.h>
27  #include <scsi/scsi_cmnd.h>
28  #include <scsi/scsi_host.h>
29  #include <scsi/scsi_device.h>
30  #include <scsi/scsi_tcq.h>
31  #include <scsi/scsi_eh.h>
32  #include <scsi/scsi_devinfo.h>
33  #include <scsi/scsi_dbg.h>
34  #include <scsi/scsi_transport_fc.h>
35  #include <scsi/scsi_transport.h>
36  
37  /*
38   * All wire protocol details (storage protocol between the guest and the host)
39   * are consolidated here.
40   *
41   * Begin protocol definitions.
42   */
43  
44  /*
45   * Version history:
46   * V1 Beta: 0.1
47   * V1 RC < 2008/1/31: 1.0
48   * V1 RC > 2008/1/31:  2.0
49   * Win7: 4.2
50   * Win8: 5.1
51   * Win8.1: 6.0
52   * Win10: 6.2
53   */
54  
55  #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)	((((MAJOR_) & 0xff) << 8) | \
56  						(((MINOR_) & 0xff)))
57  #define VMSTOR_PROTO_VERSION_WIN6	VMSTOR_PROTO_VERSION(2, 0)
58  #define VMSTOR_PROTO_VERSION_WIN7	VMSTOR_PROTO_VERSION(4, 2)
59  #define VMSTOR_PROTO_VERSION_WIN8	VMSTOR_PROTO_VERSION(5, 1)
60  #define VMSTOR_PROTO_VERSION_WIN8_1	VMSTOR_PROTO_VERSION(6, 0)
61  #define VMSTOR_PROTO_VERSION_WIN10	VMSTOR_PROTO_VERSION(6, 2)
62  
63  /* channel callback timeout in ms */
64  #define CALLBACK_TIMEOUT               2
65  
66  /*  Packet structure describing virtual storage requests. */
67  enum vstor_packet_operation {
68  	VSTOR_OPERATION_COMPLETE_IO		= 1,
69  	VSTOR_OPERATION_REMOVE_DEVICE		= 2,
70  	VSTOR_OPERATION_EXECUTE_SRB		= 3,
71  	VSTOR_OPERATION_RESET_LUN		= 4,
72  	VSTOR_OPERATION_RESET_ADAPTER		= 5,
73  	VSTOR_OPERATION_RESET_BUS		= 6,
74  	VSTOR_OPERATION_BEGIN_INITIALIZATION	= 7,
75  	VSTOR_OPERATION_END_INITIALIZATION	= 8,
76  	VSTOR_OPERATION_QUERY_PROTOCOL_VERSION	= 9,
77  	VSTOR_OPERATION_QUERY_PROPERTIES	= 10,
78  	VSTOR_OPERATION_ENUMERATE_BUS		= 11,
79  	VSTOR_OPERATION_FCHBA_DATA              = 12,
80  	VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
81  	VSTOR_OPERATION_MAXIMUM                 = 13
82  };
83  
84  /*
85   * WWN packet for Fibre Channel HBA
86   */
87  
88  struct hv_fc_wwn_packet {
89  	u8	primary_active;
90  	u8	reserved1[3];
91  	u8	primary_port_wwn[8];
92  	u8	primary_node_wwn[8];
93  	u8	secondary_port_wwn[8];
94  	u8	secondary_node_wwn[8];
95  };
96  
97  
98  
99  /*
100   * SRB Flag Bits
101   */
102  
103  #define SRB_FLAGS_QUEUE_ACTION_ENABLE		0x00000002
104  #define SRB_FLAGS_DISABLE_DISCONNECT		0x00000004
105  #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER	0x00000008
106  #define SRB_FLAGS_BYPASS_FROZEN_QUEUE		0x00000010
107  #define SRB_FLAGS_DISABLE_AUTOSENSE		0x00000020
108  #define SRB_FLAGS_DATA_IN			0x00000040
109  #define SRB_FLAGS_DATA_OUT			0x00000080
110  #define SRB_FLAGS_NO_DATA_TRANSFER		0x00000000
111  #define SRB_FLAGS_UNSPECIFIED_DIRECTION	(SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
112  #define SRB_FLAGS_NO_QUEUE_FREEZE		0x00000100
113  #define SRB_FLAGS_ADAPTER_CACHE_ENABLE		0x00000200
114  #define SRB_FLAGS_FREE_SENSE_BUFFER		0x00000400
115  
116  /*
117   * This flag indicates the request is part of the workflow for processing a D3.
118   */
119  #define SRB_FLAGS_D3_PROCESSING			0x00000800
120  #define SRB_FLAGS_IS_ACTIVE			0x00010000
121  #define SRB_FLAGS_ALLOCATED_FROM_ZONE		0x00020000
122  #define SRB_FLAGS_SGLIST_FROM_POOL		0x00040000
123  #define SRB_FLAGS_BYPASS_LOCKED_QUEUE		0x00080000
124  #define SRB_FLAGS_NO_KEEP_AWAKE			0x00100000
125  #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE	0x00200000
126  #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT	0x00400000
127  #define SRB_FLAGS_DONT_START_NEXT_PACKET	0x00800000
128  #define SRB_FLAGS_PORT_DRIVER_RESERVED		0x0F000000
129  #define SRB_FLAGS_CLASS_DRIVER_RESERVED		0xF0000000
130  
131  #define SP_UNTAGGED			((unsigned char) ~0)
132  #define SRB_SIMPLE_TAG_REQUEST		0x20
133  
134  /*
135   * Platform neutral description of a scsi request -
136   * this remains the same across the write regardless of 32/64 bit
137   * note: it's patterned off the SCSI_PASS_THROUGH structure
138   */
139  #define STORVSC_MAX_CMD_LEN			0x10
140  
141  /* Sense buffer size is the same for all versions since Windows 8 */
142  #define STORVSC_SENSE_BUFFER_SIZE		0x14
143  #define STORVSC_MAX_BUF_LEN_WITH_PADDING	0x14
144  
145  /*
146   * The storage protocol version is determined during the
147   * initial exchange with the host.  It will indicate which
148   * storage functionality is available in the host.
149  */
150  static int vmstor_proto_version;
151  
152  #define STORVSC_LOGGING_NONE	0
153  #define STORVSC_LOGGING_ERROR	1
154  #define STORVSC_LOGGING_WARN	2
155  
156  static int logging_level = STORVSC_LOGGING_ERROR;
157  module_param(logging_level, int, S_IRUGO|S_IWUSR);
158  MODULE_PARM_DESC(logging_level,
159  	"Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
160  
do_logging(int level)161  static inline bool do_logging(int level)
162  {
163  	return logging_level >= level;
164  }
165  
166  #define storvsc_log(dev, level, fmt, ...)			\
167  do {								\
168  	if (do_logging(level))					\
169  		dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);	\
170  } while (0)
171  
172  struct vmscsi_request {
173  	u16 length;
174  	u8 srb_status;
175  	u8 scsi_status;
176  
177  	u8  port_number;
178  	u8  path_id;
179  	u8  target_id;
180  	u8  lun;
181  
182  	u8  cdb_length;
183  	u8  sense_info_length;
184  	u8  data_in;
185  	u8  reserved;
186  
187  	u32 data_transfer_length;
188  
189  	union {
190  		u8 cdb[STORVSC_MAX_CMD_LEN];
191  		u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
192  		u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
193  	};
194  	/*
195  	 * The following was added in win8.
196  	 */
197  	u16 reserve;
198  	u8  queue_tag;
199  	u8  queue_action;
200  	u32 srb_flags;
201  	u32 time_out_value;
202  	u32 queue_sort_ey;
203  
204  } __attribute((packed));
205  
206  /*
207   * The list of windows version in order of preference.
208   */
209  
210  static const int protocol_version[] = {
211  		VMSTOR_PROTO_VERSION_WIN10,
212  		VMSTOR_PROTO_VERSION_WIN8_1,
213  		VMSTOR_PROTO_VERSION_WIN8,
214  };
215  
216  
217  /*
218   * This structure is sent during the initialization phase to get the different
219   * properties of the channel.
220   */
221  
222  #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL		0x1
223  
224  struct vmstorage_channel_properties {
225  	u32 reserved;
226  	u16 max_channel_cnt;
227  	u16 reserved1;
228  
229  	u32 flags;
230  	u32   max_transfer_bytes;
231  
232  	u64  reserved2;
233  } __packed;
234  
235  /*  This structure is sent during the storage protocol negotiations. */
236  struct vmstorage_protocol_version {
237  	/* Major (MSW) and minor (LSW) version numbers. */
238  	u16 major_minor;
239  
240  	/*
241  	 * Revision number is auto-incremented whenever this file is changed
242  	 * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
243  	 * definitely indicate incompatibility--but it does indicate mismatched
244  	 * builds.
245  	 * This is only used on the windows side. Just set it to 0.
246  	 */
247  	u16 revision;
248  } __packed;
249  
250  /* Channel Property Flags */
251  #define STORAGE_CHANNEL_REMOVABLE_FLAG		0x1
252  #define STORAGE_CHANNEL_EMULATED_IDE_FLAG	0x2
253  
254  struct vstor_packet {
255  	/* Requested operation type */
256  	enum vstor_packet_operation operation;
257  
258  	/*  Flags - see below for values */
259  	u32 flags;
260  
261  	/* Status of the request returned from the server side. */
262  	u32 status;
263  
264  	/* Data payload area */
265  	union {
266  		/*
267  		 * Structure used to forward SCSI commands from the
268  		 * client to the server.
269  		 */
270  		struct vmscsi_request vm_srb;
271  
272  		/* Structure used to query channel properties. */
273  		struct vmstorage_channel_properties storage_channel_properties;
274  
275  		/* Used during version negotiations. */
276  		struct vmstorage_protocol_version version;
277  
278  		/* Fibre channel address packet */
279  		struct hv_fc_wwn_packet wwn_packet;
280  
281  		/* Number of sub-channels to create */
282  		u16 sub_channel_count;
283  
284  		/* This will be the maximum of the union members */
285  		u8  buffer[0x34];
286  	};
287  } __packed;
288  
289  /*
290   * Packet Flags:
291   *
292   * This flag indicates that the server should send back a completion for this
293   * packet.
294   */
295  
296  #define REQUEST_COMPLETION_FLAG	0x1
297  
298  /* Matches Windows-end */
299  enum storvsc_request_type {
300  	WRITE_TYPE = 0,
301  	READ_TYPE,
302  	UNKNOWN_TYPE,
303  };
304  
305  /*
306   * SRB status codes and masks. In the 8-bit field, the two high order bits
307   * are flags, while the remaining 6 bits are an integer status code.  The
308   * definitions here include only the subset of the integer status codes that
309   * are tested for in this driver.
310   */
311  #define SRB_STATUS_AUTOSENSE_VALID	0x80
312  #define SRB_STATUS_QUEUE_FROZEN		0x40
313  
314  /* SRB status integer codes */
315  #define SRB_STATUS_SUCCESS		0x01
316  #define SRB_STATUS_ABORTED		0x02
317  #define SRB_STATUS_ERROR		0x04
318  #define SRB_STATUS_INVALID_REQUEST	0x06
319  #define SRB_STATUS_TIMEOUT		0x09
320  #define SRB_STATUS_SELECTION_TIMEOUT	0x0A
321  #define SRB_STATUS_BUS_RESET		0x0E
322  #define SRB_STATUS_DATA_OVERRUN		0x12
323  #define SRB_STATUS_INVALID_LUN		0x20
324  #define SRB_STATUS_INTERNAL_ERROR	0x30
325  
326  #define SRB_STATUS(status) \
327  	(status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
328  /*
329   * This is the end of Protocol specific defines.
330   */
331  
332  static int storvsc_ringbuffer_size = (128 * 1024);
333  static int aligned_ringbuffer_size;
334  static u32 max_outstanding_req_per_channel;
335  static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
336  
337  static int storvsc_vcpus_per_sub_channel = 4;
338  static unsigned int storvsc_max_hw_queues;
339  
340  module_param(storvsc_ringbuffer_size, int, S_IRUGO);
341  MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
342  
343  module_param(storvsc_max_hw_queues, uint, 0644);
344  MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues");
345  
346  module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
347  MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
348  
349  static int ring_avail_percent_lowater = 10;
350  module_param(ring_avail_percent_lowater, int, S_IRUGO);
351  MODULE_PARM_DESC(ring_avail_percent_lowater,
352  		"Select a channel if available ring size > this in percent");
353  
354  /*
355   * Timeout in seconds for all devices managed by this driver.
356   */
357  static int storvsc_timeout = 180;
358  
359  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
360  static struct scsi_transport_template *fc_transport_template;
361  #endif
362  
363  static struct scsi_host_template scsi_driver;
364  static void storvsc_on_channel_callback(void *context);
365  
366  #define STORVSC_MAX_LUNS_PER_TARGET			255
367  #define STORVSC_MAX_TARGETS				2
368  #define STORVSC_MAX_CHANNELS				8
369  
370  #define STORVSC_FC_MAX_LUNS_PER_TARGET			255
371  #define STORVSC_FC_MAX_TARGETS				128
372  #define STORVSC_FC_MAX_CHANNELS				8
373  #define STORVSC_FC_MAX_XFER_SIZE			((u32)(512 * 1024))
374  
375  #define STORVSC_IDE_MAX_LUNS_PER_TARGET			64
376  #define STORVSC_IDE_MAX_TARGETS				1
377  #define STORVSC_IDE_MAX_CHANNELS			1
378  
379  /*
380   * Upper bound on the size of a storvsc packet.
381   */
382  #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\
383  			      sizeof(struct vstor_packet))
384  
385  struct storvsc_cmd_request {
386  	struct scsi_cmnd *cmd;
387  
388  	struct hv_device *device;
389  
390  	/* Synchronize the request/response if needed */
391  	struct completion wait_event;
392  
393  	struct vmbus_channel_packet_multipage_buffer mpb;
394  	struct vmbus_packet_mpb_array *payload;
395  	u32 payload_sz;
396  
397  	struct vstor_packet vstor_packet;
398  };
399  
400  
401  /* A storvsc device is a device object that contains a vmbus channel */
402  struct storvsc_device {
403  	struct hv_device *device;
404  
405  	bool	 destroy;
406  	bool	 drain_notify;
407  	atomic_t num_outstanding_req;
408  	struct Scsi_Host *host;
409  
410  	wait_queue_head_t waiting_to_drain;
411  
412  	/*
413  	 * Each unique Port/Path/Target represents 1 channel ie scsi
414  	 * controller. In reality, the pathid, targetid is always 0
415  	 * and the port is set by us
416  	 */
417  	unsigned int port_number;
418  	unsigned char path_id;
419  	unsigned char target_id;
420  
421  	/*
422  	 * Max I/O, the device can support.
423  	 */
424  	u32   max_transfer_bytes;
425  	/*
426  	 * Number of sub-channels we will open.
427  	 */
428  	u16 num_sc;
429  	struct vmbus_channel **stor_chns;
430  	/*
431  	 * Mask of CPUs bound to subchannels.
432  	 */
433  	struct cpumask alloced_cpus;
434  	/*
435  	 * Serializes modifications of stor_chns[] from storvsc_do_io()
436  	 * and storvsc_change_target_cpu().
437  	 */
438  	spinlock_t lock;
439  	/* Used for vsc/vsp channel reset process */
440  	struct storvsc_cmd_request init_request;
441  	struct storvsc_cmd_request reset_request;
442  	/*
443  	 * Currently active port and node names for FC devices.
444  	 */
445  	u64 node_name;
446  	u64 port_name;
447  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
448  	struct fc_rport *rport;
449  #endif
450  };
451  
452  struct hv_host_device {
453  	struct hv_device *dev;
454  	unsigned int port;
455  	unsigned char path;
456  	unsigned char target;
457  	struct workqueue_struct *handle_error_wq;
458  	struct work_struct host_scan_work;
459  	struct Scsi_Host *host;
460  };
461  
462  struct storvsc_scan_work {
463  	struct work_struct work;
464  	struct Scsi_Host *host;
465  	u8 lun;
466  	u8 tgt_id;
467  };
468  
storvsc_device_scan(struct work_struct * work)469  static void storvsc_device_scan(struct work_struct *work)
470  {
471  	struct storvsc_scan_work *wrk;
472  	struct scsi_device *sdev;
473  
474  	wrk = container_of(work, struct storvsc_scan_work, work);
475  
476  	sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
477  	if (!sdev)
478  		goto done;
479  	scsi_rescan_device(sdev);
480  	scsi_device_put(sdev);
481  
482  done:
483  	kfree(wrk);
484  }
485  
storvsc_host_scan(struct work_struct * work)486  static void storvsc_host_scan(struct work_struct *work)
487  {
488  	struct Scsi_Host *host;
489  	struct scsi_device *sdev;
490  	struct hv_host_device *host_device =
491  		container_of(work, struct hv_host_device, host_scan_work);
492  
493  	host = host_device->host;
494  	/*
495  	 * Before scanning the host, first check to see if any of the
496  	 * currently known devices have been hot removed. We issue a
497  	 * "unit ready" command against all currently known devices.
498  	 * This I/O will result in an error for devices that have been
499  	 * removed. As part of handling the I/O error, we remove the device.
500  	 *
501  	 * When a LUN is added or removed, the host sends us a signal to
502  	 * scan the host. Thus we are forced to discover the LUNs that
503  	 * may have been removed this way.
504  	 */
505  	mutex_lock(&host->scan_mutex);
506  	shost_for_each_device(sdev, host)
507  		scsi_test_unit_ready(sdev, 1, 1, NULL);
508  	mutex_unlock(&host->scan_mutex);
509  	/*
510  	 * Now scan the host to discover LUNs that may have been added.
511  	 */
512  	scsi_scan_host(host);
513  }
514  
storvsc_remove_lun(struct work_struct * work)515  static void storvsc_remove_lun(struct work_struct *work)
516  {
517  	struct storvsc_scan_work *wrk;
518  	struct scsi_device *sdev;
519  
520  	wrk = container_of(work, struct storvsc_scan_work, work);
521  	if (!scsi_host_get(wrk->host))
522  		goto done;
523  
524  	sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
525  
526  	if (sdev) {
527  		scsi_remove_device(sdev);
528  		scsi_device_put(sdev);
529  	}
530  	scsi_host_put(wrk->host);
531  
532  done:
533  	kfree(wrk);
534  }
535  
536  
537  /*
538   * We can get incoming messages from the host that are not in response to
539   * messages that we have sent out. An example of this would be messages
540   * received by the guest to notify dynamic addition/removal of LUNs. To
541   * deal with potential race conditions where the driver may be in the
542   * midst of being unloaded when we might receive an unsolicited message
543   * from the host, we have implemented a mechanism to gurantee sequential
544   * consistency:
545   *
546   * 1) Once the device is marked as being destroyed, we will fail all
547   *    outgoing messages.
548   * 2) We permit incoming messages when the device is being destroyed,
549   *    only to properly account for messages already sent out.
550   */
551  
get_out_stor_device(struct hv_device * device)552  static inline struct storvsc_device *get_out_stor_device(
553  					struct hv_device *device)
554  {
555  	struct storvsc_device *stor_device;
556  
557  	stor_device = hv_get_drvdata(device);
558  
559  	if (stor_device && stor_device->destroy)
560  		stor_device = NULL;
561  
562  	return stor_device;
563  }
564  
565  
storvsc_wait_to_drain(struct storvsc_device * dev)566  static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
567  {
568  	dev->drain_notify = true;
569  	wait_event(dev->waiting_to_drain,
570  		   atomic_read(&dev->num_outstanding_req) == 0);
571  	dev->drain_notify = false;
572  }
573  
get_in_stor_device(struct hv_device * device)574  static inline struct storvsc_device *get_in_stor_device(
575  					struct hv_device *device)
576  {
577  	struct storvsc_device *stor_device;
578  
579  	stor_device = hv_get_drvdata(device);
580  
581  	if (!stor_device)
582  		goto get_in_err;
583  
584  	/*
585  	 * If the device is being destroyed; allow incoming
586  	 * traffic only to cleanup outstanding requests.
587  	 */
588  
589  	if (stor_device->destroy  &&
590  		(atomic_read(&stor_device->num_outstanding_req) == 0))
591  		stor_device = NULL;
592  
593  get_in_err:
594  	return stor_device;
595  
596  }
597  
storvsc_change_target_cpu(struct vmbus_channel * channel,u32 old,u32 new)598  static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
599  				      u32 new)
600  {
601  	struct storvsc_device *stor_device;
602  	struct vmbus_channel *cur_chn;
603  	bool old_is_alloced = false;
604  	struct hv_device *device;
605  	unsigned long flags;
606  	int cpu;
607  
608  	device = channel->primary_channel ?
609  			channel->primary_channel->device_obj
610  				: channel->device_obj;
611  	stor_device = get_out_stor_device(device);
612  	if (!stor_device)
613  		return;
614  
615  	/* See storvsc_do_io() -> get_og_chn(). */
616  	spin_lock_irqsave(&stor_device->lock, flags);
617  
618  	/*
619  	 * Determines if the storvsc device has other channels assigned to
620  	 * the "old" CPU to update the alloced_cpus mask and the stor_chns
621  	 * array.
622  	 */
623  	if (device->channel != channel && device->channel->target_cpu == old) {
624  		cur_chn = device->channel;
625  		old_is_alloced = true;
626  		goto old_is_alloced;
627  	}
628  	list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
629  		if (cur_chn == channel)
630  			continue;
631  		if (cur_chn->target_cpu == old) {
632  			old_is_alloced = true;
633  			goto old_is_alloced;
634  		}
635  	}
636  
637  old_is_alloced:
638  	if (old_is_alloced)
639  		WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
640  	else
641  		cpumask_clear_cpu(old, &stor_device->alloced_cpus);
642  
643  	/* "Flush" the stor_chns array. */
644  	for_each_possible_cpu(cpu) {
645  		if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
646  					cpu, &stor_device->alloced_cpus))
647  			WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
648  	}
649  
650  	WRITE_ONCE(stor_device->stor_chns[new], channel);
651  	cpumask_set_cpu(new, &stor_device->alloced_cpus);
652  
653  	spin_unlock_irqrestore(&stor_device->lock, flags);
654  }
655  
storvsc_next_request_id(struct vmbus_channel * channel,u64 rqst_addr)656  static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr)
657  {
658  	struct storvsc_cmd_request *request =
659  		(struct storvsc_cmd_request *)(unsigned long)rqst_addr;
660  
661  	if (rqst_addr == VMBUS_RQST_INIT)
662  		return VMBUS_RQST_INIT;
663  	if (rqst_addr == VMBUS_RQST_RESET)
664  		return VMBUS_RQST_RESET;
665  
666  	/*
667  	 * Cannot return an ID of 0, which is reserved for an unsolicited
668  	 * message from Hyper-V.
669  	 */
670  	return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1;
671  }
672  
handle_sc_creation(struct vmbus_channel * new_sc)673  static void handle_sc_creation(struct vmbus_channel *new_sc)
674  {
675  	struct hv_device *device = new_sc->primary_channel->device_obj;
676  	struct device *dev = &device->device;
677  	struct storvsc_device *stor_device;
678  	struct vmstorage_channel_properties props;
679  	int ret;
680  
681  	stor_device = get_out_stor_device(device);
682  	if (!stor_device)
683  		return;
684  
685  	memset(&props, 0, sizeof(struct vmstorage_channel_properties));
686  	new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE;
687  
688  	new_sc->next_request_id_callback = storvsc_next_request_id;
689  
690  	ret = vmbus_open(new_sc,
691  			 aligned_ringbuffer_size,
692  			 aligned_ringbuffer_size,
693  			 (void *)&props,
694  			 sizeof(struct vmstorage_channel_properties),
695  			 storvsc_on_channel_callback, new_sc);
696  
697  	/* In case vmbus_open() fails, we don't use the sub-channel. */
698  	if (ret != 0) {
699  		dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
700  		return;
701  	}
702  
703  	new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
704  
705  	/* Add the sub-channel to the array of available channels. */
706  	stor_device->stor_chns[new_sc->target_cpu] = new_sc;
707  	cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
708  }
709  
handle_multichannel_storage(struct hv_device * device,int max_chns)710  static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
711  {
712  	struct device *dev = &device->device;
713  	struct storvsc_device *stor_device;
714  	int num_sc;
715  	struct storvsc_cmd_request *request;
716  	struct vstor_packet *vstor_packet;
717  	int ret, t;
718  
719  	/*
720  	 * If the number of CPUs is artificially restricted, such as
721  	 * with maxcpus=1 on the kernel boot line, Hyper-V could offer
722  	 * sub-channels >= the number of CPUs. These sub-channels
723  	 * should not be created. The primary channel is already created
724  	 * and assigned to one CPU, so check against # CPUs - 1.
725  	 */
726  	num_sc = min((int)(num_online_cpus() - 1), max_chns);
727  	if (!num_sc)
728  		return;
729  
730  	stor_device = get_out_stor_device(device);
731  	if (!stor_device)
732  		return;
733  
734  	stor_device->num_sc = num_sc;
735  	request = &stor_device->init_request;
736  	vstor_packet = &request->vstor_packet;
737  
738  	/*
739  	 * Establish a handler for dealing with subchannels.
740  	 */
741  	vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
742  
743  	/*
744  	 * Request the host to create sub-channels.
745  	 */
746  	memset(request, 0, sizeof(struct storvsc_cmd_request));
747  	init_completion(&request->wait_event);
748  	vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
749  	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
750  	vstor_packet->sub_channel_count = num_sc;
751  
752  	ret = vmbus_sendpacket(device->channel, vstor_packet,
753  			       sizeof(struct vstor_packet),
754  			       VMBUS_RQST_INIT,
755  			       VM_PKT_DATA_INBAND,
756  			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
757  
758  	if (ret != 0) {
759  		dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
760  		return;
761  	}
762  
763  	t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
764  	if (t == 0) {
765  		dev_err(dev, "Failed to create sub-channel: timed out\n");
766  		return;
767  	}
768  
769  	if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
770  	    vstor_packet->status != 0) {
771  		dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
772  			vstor_packet->operation, vstor_packet->status);
773  		return;
774  	}
775  
776  	/*
777  	 * We need to do nothing here, because vmbus_process_offer()
778  	 * invokes channel->sc_creation_callback, which will open and use
779  	 * the sub-channel(s).
780  	 */
781  }
782  
cache_wwn(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet)783  static void cache_wwn(struct storvsc_device *stor_device,
784  		      struct vstor_packet *vstor_packet)
785  {
786  	/*
787  	 * Cache the currently active port and node ww names.
788  	 */
789  	if (vstor_packet->wwn_packet.primary_active) {
790  		stor_device->node_name =
791  			wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
792  		stor_device->port_name =
793  			wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
794  	} else {
795  		stor_device->node_name =
796  			wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
797  		stor_device->port_name =
798  			wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
799  	}
800  }
801  
802  
storvsc_execute_vstor_op(struct hv_device * device,struct storvsc_cmd_request * request,bool status_check)803  static int storvsc_execute_vstor_op(struct hv_device *device,
804  				    struct storvsc_cmd_request *request,
805  				    bool status_check)
806  {
807  	struct storvsc_device *stor_device;
808  	struct vstor_packet *vstor_packet;
809  	int ret, t;
810  
811  	stor_device = get_out_stor_device(device);
812  	if (!stor_device)
813  		return -ENODEV;
814  
815  	vstor_packet = &request->vstor_packet;
816  
817  	init_completion(&request->wait_event);
818  	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
819  
820  	ret = vmbus_sendpacket(device->channel, vstor_packet,
821  			       sizeof(struct vstor_packet),
822  			       VMBUS_RQST_INIT,
823  			       VM_PKT_DATA_INBAND,
824  			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
825  	if (ret != 0)
826  		return ret;
827  
828  	t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
829  	if (t == 0)
830  		return -ETIMEDOUT;
831  
832  	if (!status_check)
833  		return ret;
834  
835  	if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
836  	    vstor_packet->status != 0)
837  		return -EINVAL;
838  
839  	return ret;
840  }
841  
storvsc_channel_init(struct hv_device * device,bool is_fc)842  static int storvsc_channel_init(struct hv_device *device, bool is_fc)
843  {
844  	struct storvsc_device *stor_device;
845  	struct storvsc_cmd_request *request;
846  	struct vstor_packet *vstor_packet;
847  	int ret, i;
848  	int max_chns;
849  	bool process_sub_channels = false;
850  
851  	stor_device = get_out_stor_device(device);
852  	if (!stor_device)
853  		return -ENODEV;
854  
855  	request = &stor_device->init_request;
856  	vstor_packet = &request->vstor_packet;
857  
858  	/*
859  	 * Now, initiate the vsc/vsp initialization protocol on the open
860  	 * channel
861  	 */
862  	memset(request, 0, sizeof(struct storvsc_cmd_request));
863  	vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
864  	ret = storvsc_execute_vstor_op(device, request, true);
865  	if (ret)
866  		return ret;
867  	/*
868  	 * Query host supported protocol version.
869  	 */
870  
871  	for (i = 0; i < ARRAY_SIZE(protocol_version); i++) {
872  		/* reuse the packet for version range supported */
873  		memset(vstor_packet, 0, sizeof(struct vstor_packet));
874  		vstor_packet->operation =
875  			VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
876  
877  		vstor_packet->version.major_minor = protocol_version[i];
878  
879  		/*
880  		 * The revision number is only used in Windows; set it to 0.
881  		 */
882  		vstor_packet->version.revision = 0;
883  		ret = storvsc_execute_vstor_op(device, request, false);
884  		if (ret != 0)
885  			return ret;
886  
887  		if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
888  			return -EINVAL;
889  
890  		if (vstor_packet->status == 0) {
891  			vmstor_proto_version = protocol_version[i];
892  
893  			break;
894  		}
895  	}
896  
897  	if (vstor_packet->status != 0) {
898  		dev_err(&device->device, "Obsolete Hyper-V version\n");
899  		return -EINVAL;
900  	}
901  
902  
903  	memset(vstor_packet, 0, sizeof(struct vstor_packet));
904  	vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
905  	ret = storvsc_execute_vstor_op(device, request, true);
906  	if (ret != 0)
907  		return ret;
908  
909  	/*
910  	 * Check to see if multi-channel support is there.
911  	 * Hosts that implement protocol version of 5.1 and above
912  	 * support multi-channel.
913  	 */
914  	max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
915  
916  	/*
917  	 * Allocate state to manage the sub-channels.
918  	 * We allocate an array based on the numbers of possible CPUs
919  	 * (Hyper-V does not support cpu online/offline).
920  	 * This Array will be sparseley populated with unique
921  	 * channels - primary + sub-channels.
922  	 * We will however populate all the slots to evenly distribute
923  	 * the load.
924  	 */
925  	stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
926  					 GFP_KERNEL);
927  	if (stor_device->stor_chns == NULL)
928  		return -ENOMEM;
929  
930  	device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
931  
932  	stor_device->stor_chns[device->channel->target_cpu] = device->channel;
933  	cpumask_set_cpu(device->channel->target_cpu,
934  			&stor_device->alloced_cpus);
935  
936  	if (vstor_packet->storage_channel_properties.flags &
937  	    STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
938  		process_sub_channels = true;
939  
940  	stor_device->max_transfer_bytes =
941  		vstor_packet->storage_channel_properties.max_transfer_bytes;
942  
943  	if (!is_fc)
944  		goto done;
945  
946  	/*
947  	 * For FC devices retrieve FC HBA data.
948  	 */
949  	memset(vstor_packet, 0, sizeof(struct vstor_packet));
950  	vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
951  	ret = storvsc_execute_vstor_op(device, request, true);
952  	if (ret != 0)
953  		return ret;
954  
955  	/*
956  	 * Cache the currently active port and node ww names.
957  	 */
958  	cache_wwn(stor_device, vstor_packet);
959  
960  done:
961  
962  	memset(vstor_packet, 0, sizeof(struct vstor_packet));
963  	vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
964  	ret = storvsc_execute_vstor_op(device, request, true);
965  	if (ret != 0)
966  		return ret;
967  
968  	if (process_sub_channels)
969  		handle_multichannel_storage(device, max_chns);
970  
971  	return ret;
972  }
973  
storvsc_handle_error(struct vmscsi_request * vm_srb,struct scsi_cmnd * scmnd,struct Scsi_Host * host,u8 asc,u8 ascq)974  static void storvsc_handle_error(struct vmscsi_request *vm_srb,
975  				struct scsi_cmnd *scmnd,
976  				struct Scsi_Host *host,
977  				u8 asc, u8 ascq)
978  {
979  	struct storvsc_scan_work *wrk;
980  	void (*process_err_fn)(struct work_struct *work);
981  	struct hv_host_device *host_dev = shost_priv(host);
982  
983  	switch (SRB_STATUS(vm_srb->srb_status)) {
984  	case SRB_STATUS_ERROR:
985  	case SRB_STATUS_ABORTED:
986  	case SRB_STATUS_INVALID_REQUEST:
987  	case SRB_STATUS_INTERNAL_ERROR:
988  	case SRB_STATUS_TIMEOUT:
989  	case SRB_STATUS_SELECTION_TIMEOUT:
990  	case SRB_STATUS_BUS_RESET:
991  	case SRB_STATUS_DATA_OVERRUN:
992  		if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) {
993  			/* Check for capacity change */
994  			if ((asc == 0x2a) && (ascq == 0x9)) {
995  				process_err_fn = storvsc_device_scan;
996  				/* Retry the I/O that triggered this. */
997  				set_host_byte(scmnd, DID_REQUEUE);
998  				goto do_work;
999  			}
1000  
1001  			/*
1002  			 * Check for "Operating parameters have changed"
1003  			 * due to Hyper-V changing the VHD/VHDX BlockSize
1004  			 * when adding/removing a differencing disk. This
1005  			 * causes discard_granularity to change, so do a
1006  			 * rescan to pick up the new granularity. We don't
1007  			 * want scsi_report_sense() to output a message
1008  			 * that a sysadmin wouldn't know what to do with.
1009  			 */
1010  			if ((asc == 0x3f) && (ascq != 0x03) &&
1011  					(ascq != 0x0e)) {
1012  				process_err_fn = storvsc_device_scan;
1013  				set_host_byte(scmnd, DID_REQUEUE);
1014  				goto do_work;
1015  			}
1016  
1017  			/*
1018  			 * Otherwise, let upper layer deal with the
1019  			 * error when sense message is present
1020  			 */
1021  			return;
1022  		}
1023  
1024  		/*
1025  		 * If there is an error; offline the device since all
1026  		 * error recovery strategies would have already been
1027  		 * deployed on the host side. However, if the command
1028  		 * were a pass-through command deal with it appropriately.
1029  		 */
1030  		switch (scmnd->cmnd[0]) {
1031  		case ATA_16:
1032  		case ATA_12:
1033  			set_host_byte(scmnd, DID_PASSTHROUGH);
1034  			break;
1035  		/*
1036  		 * On some Hyper-V hosts TEST_UNIT_READY command can
1037  		 * return SRB_STATUS_ERROR. Let the upper level code
1038  		 * deal with it based on the sense information.
1039  		 */
1040  		case TEST_UNIT_READY:
1041  			break;
1042  		default:
1043  			set_host_byte(scmnd, DID_ERROR);
1044  		}
1045  		return;
1046  
1047  	case SRB_STATUS_INVALID_LUN:
1048  		set_host_byte(scmnd, DID_NO_CONNECT);
1049  		process_err_fn = storvsc_remove_lun;
1050  		goto do_work;
1051  
1052  	}
1053  	return;
1054  
1055  do_work:
1056  	/*
1057  	 * We need to schedule work to process this error; schedule it.
1058  	 */
1059  	wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1060  	if (!wrk) {
1061  		set_host_byte(scmnd, DID_BAD_TARGET);
1062  		return;
1063  	}
1064  
1065  	wrk->host = host;
1066  	wrk->lun = vm_srb->lun;
1067  	wrk->tgt_id = vm_srb->target_id;
1068  	INIT_WORK(&wrk->work, process_err_fn);
1069  	queue_work(host_dev->handle_error_wq, &wrk->work);
1070  }
1071  
1072  
storvsc_command_completion(struct storvsc_cmd_request * cmd_request,struct storvsc_device * stor_dev)1073  static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1074  				       struct storvsc_device *stor_dev)
1075  {
1076  	struct scsi_cmnd *scmnd = cmd_request->cmd;
1077  	struct scsi_sense_hdr sense_hdr;
1078  	struct vmscsi_request *vm_srb;
1079  	u32 data_transfer_length;
1080  	struct Scsi_Host *host;
1081  	u32 payload_sz = cmd_request->payload_sz;
1082  	void *payload = cmd_request->payload;
1083  	bool sense_ok;
1084  
1085  	host = stor_dev->host;
1086  
1087  	vm_srb = &cmd_request->vstor_packet.vm_srb;
1088  	data_transfer_length = vm_srb->data_transfer_length;
1089  
1090  	scmnd->result = vm_srb->scsi_status;
1091  
1092  	if (scmnd->result) {
1093  		sense_ok = scsi_normalize_sense(scmnd->sense_buffer,
1094  				SCSI_SENSE_BUFFERSIZE, &sense_hdr);
1095  
1096  		if (sense_ok && do_logging(STORVSC_LOGGING_WARN))
1097  			scsi_print_sense_hdr(scmnd->device, "storvsc",
1098  					     &sense_hdr);
1099  	}
1100  
1101  	if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1102  		storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1103  					 sense_hdr.ascq);
1104  		/*
1105  		 * The Windows driver set data_transfer_length on
1106  		 * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1107  		 * is untouched.  In these cases we set it to 0.
1108  		 */
1109  		if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1110  			data_transfer_length = 0;
1111  	}
1112  
1113  	/* Validate data_transfer_length (from Hyper-V) */
1114  	if (data_transfer_length > cmd_request->payload->range.len)
1115  		data_transfer_length = cmd_request->payload->range.len;
1116  
1117  	scsi_set_resid(scmnd,
1118  		cmd_request->payload->range.len - data_transfer_length);
1119  
1120  	scsi_done(scmnd);
1121  
1122  	if (payload_sz >
1123  		sizeof(struct vmbus_channel_packet_multipage_buffer))
1124  		kfree(payload);
1125  }
1126  
storvsc_on_io_completion(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1127  static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1128  				  struct vstor_packet *vstor_packet,
1129  				  struct storvsc_cmd_request *request)
1130  {
1131  	struct vstor_packet *stor_pkt;
1132  	struct hv_device *device = stor_device->device;
1133  
1134  	stor_pkt = &request->vstor_packet;
1135  
1136  	/*
1137  	 * The current SCSI handling on the host side does
1138  	 * not correctly handle:
1139  	 * INQUIRY command with page code parameter set to 0x80
1140  	 * MODE_SENSE command with cmd[2] == 0x1c
1141  	 *
1142  	 * Setup srb and scsi status so this won't be fatal.
1143  	 * We do this so we can distinguish truly fatal failues
1144  	 * (srb status == 0x4) and off-line the device in that case.
1145  	 */
1146  
1147  	if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1148  	   (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1149  		vstor_packet->vm_srb.scsi_status = 0;
1150  		vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1151  	}
1152  
1153  	/* Copy over the status...etc */
1154  	stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1155  	stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1156  
1157  	/*
1158  	 * Copy over the sense_info_length, but limit to the known max
1159  	 * size if Hyper-V returns a bad value.
1160  	 */
1161  	stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE,
1162  		vstor_packet->vm_srb.sense_info_length);
1163  
1164  	if (vstor_packet->vm_srb.scsi_status != 0 ||
1165  	    vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) {
1166  
1167  		/*
1168  		 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can
1169  		 * return errors when detecting devices using TEST_UNIT_READY,
1170  		 * and logging these as errors produces unhelpful noise.
1171  		 */
1172  		int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ?
1173  			STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR;
1174  
1175  		storvsc_log(device, loglevel,
1176  			"tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n",
1177  			scsi_cmd_to_rq(request->cmd)->tag,
1178  			stor_pkt->vm_srb.cdb[0],
1179  			vstor_packet->vm_srb.scsi_status,
1180  			vstor_packet->vm_srb.srb_status,
1181  			vstor_packet->status);
1182  	}
1183  
1184  	if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION &&
1185  	    (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID))
1186  		memcpy(request->cmd->sense_buffer,
1187  		       vstor_packet->vm_srb.sense_data,
1188  		       stor_pkt->vm_srb.sense_info_length);
1189  
1190  	stor_pkt->vm_srb.data_transfer_length =
1191  		vstor_packet->vm_srb.data_transfer_length;
1192  
1193  	storvsc_command_completion(request, stor_device);
1194  
1195  	if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1196  		stor_device->drain_notify)
1197  		wake_up(&stor_device->waiting_to_drain);
1198  }
1199  
storvsc_on_receive(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1200  static void storvsc_on_receive(struct storvsc_device *stor_device,
1201  			     struct vstor_packet *vstor_packet,
1202  			     struct storvsc_cmd_request *request)
1203  {
1204  	struct hv_host_device *host_dev;
1205  	switch (vstor_packet->operation) {
1206  	case VSTOR_OPERATION_COMPLETE_IO:
1207  		storvsc_on_io_completion(stor_device, vstor_packet, request);
1208  		break;
1209  
1210  	case VSTOR_OPERATION_REMOVE_DEVICE:
1211  	case VSTOR_OPERATION_ENUMERATE_BUS:
1212  		host_dev = shost_priv(stor_device->host);
1213  		queue_work(
1214  			host_dev->handle_error_wq, &host_dev->host_scan_work);
1215  		break;
1216  
1217  	case VSTOR_OPERATION_FCHBA_DATA:
1218  		cache_wwn(stor_device, vstor_packet);
1219  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1220  		fc_host_node_name(stor_device->host) = stor_device->node_name;
1221  		fc_host_port_name(stor_device->host) = stor_device->port_name;
1222  #endif
1223  		break;
1224  	default:
1225  		break;
1226  	}
1227  }
1228  
storvsc_on_channel_callback(void * context)1229  static void storvsc_on_channel_callback(void *context)
1230  {
1231  	struct vmbus_channel *channel = (struct vmbus_channel *)context;
1232  	const struct vmpacket_descriptor *desc;
1233  	struct hv_device *device;
1234  	struct storvsc_device *stor_device;
1235  	struct Scsi_Host *shost;
1236  	unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT);
1237  
1238  	if (channel->primary_channel != NULL)
1239  		device = channel->primary_channel->device_obj;
1240  	else
1241  		device = channel->device_obj;
1242  
1243  	stor_device = get_in_stor_device(device);
1244  	if (!stor_device)
1245  		return;
1246  
1247  	shost = stor_device->host;
1248  
1249  	foreach_vmbus_pkt(desc, channel) {
1250  		struct vstor_packet *packet = hv_pkt_data(desc);
1251  		struct storvsc_cmd_request *request = NULL;
1252  		u32 pktlen = hv_pkt_datalen(desc);
1253  		u64 rqst_id = desc->trans_id;
1254  		u32 minlen = rqst_id ? sizeof(struct vstor_packet) :
1255  			sizeof(enum vstor_packet_operation);
1256  
1257  		if (unlikely(time_after(jiffies, time_limit))) {
1258  			hv_pkt_iter_close(channel);
1259  			return;
1260  		}
1261  
1262  		if (pktlen < minlen) {
1263  			dev_err(&device->device,
1264  				"Invalid pkt: id=%llu, len=%u, minlen=%u\n",
1265  				rqst_id, pktlen, minlen);
1266  			continue;
1267  		}
1268  
1269  		if (rqst_id == VMBUS_RQST_INIT) {
1270  			request = &stor_device->init_request;
1271  		} else if (rqst_id == VMBUS_RQST_RESET) {
1272  			request = &stor_device->reset_request;
1273  		} else {
1274  			/* Hyper-V can send an unsolicited message with ID of 0 */
1275  			if (rqst_id == 0) {
1276  				/*
1277  				 * storvsc_on_receive() looks at the vstor_packet in the message
1278  				 * from the ring buffer.
1279  				 *
1280  				 * - If the operation in the vstor_packet is COMPLETE_IO, then
1281  				 *   we call storvsc_on_io_completion(), and dereference the
1282  				 *   guest memory address.  Make sure we don't call
1283  				 *   storvsc_on_io_completion() with a guest memory address
1284  				 *   that is zero if Hyper-V were to construct and send such
1285  				 *   a bogus packet.
1286  				 *
1287  				 * - If the operation in the vstor_packet is FCHBA_DATA, then
1288  				 *   we call cache_wwn(), and access the data payload area of
1289  				 *   the packet (wwn_packet); however, there is no guarantee
1290  				 *   that the packet is big enough to contain such area.
1291  				 *   Future-proof the code by rejecting such a bogus packet.
1292  				 */
1293  				if (packet->operation == VSTOR_OPERATION_COMPLETE_IO ||
1294  				    packet->operation == VSTOR_OPERATION_FCHBA_DATA) {
1295  					dev_err(&device->device, "Invalid packet with ID of 0\n");
1296  					continue;
1297  				}
1298  			} else {
1299  				struct scsi_cmnd *scmnd;
1300  
1301  				/* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */
1302  				scmnd = scsi_host_find_tag(shost, rqst_id - 1);
1303  				if (scmnd == NULL) {
1304  					dev_err(&device->device, "Incorrect transaction ID\n");
1305  					continue;
1306  				}
1307  				request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd);
1308  				scsi_dma_unmap(scmnd);
1309  			}
1310  
1311  			storvsc_on_receive(stor_device, packet, request);
1312  			continue;
1313  		}
1314  
1315  		memcpy(&request->vstor_packet, packet,
1316  		       sizeof(struct vstor_packet));
1317  		complete(&request->wait_event);
1318  	}
1319  }
1320  
storvsc_connect_to_vsp(struct hv_device * device,u32 ring_size,bool is_fc)1321  static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1322  				  bool is_fc)
1323  {
1324  	struct vmstorage_channel_properties props;
1325  	int ret;
1326  
1327  	memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1328  
1329  	device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE;
1330  	device->channel->next_request_id_callback = storvsc_next_request_id;
1331  
1332  	ret = vmbus_open(device->channel,
1333  			 ring_size,
1334  			 ring_size,
1335  			 (void *)&props,
1336  			 sizeof(struct vmstorage_channel_properties),
1337  			 storvsc_on_channel_callback, device->channel);
1338  
1339  	if (ret != 0)
1340  		return ret;
1341  
1342  	ret = storvsc_channel_init(device, is_fc);
1343  
1344  	return ret;
1345  }
1346  
storvsc_dev_remove(struct hv_device * device)1347  static int storvsc_dev_remove(struct hv_device *device)
1348  {
1349  	struct storvsc_device *stor_device;
1350  
1351  	stor_device = hv_get_drvdata(device);
1352  
1353  	stor_device->destroy = true;
1354  
1355  	/* Make sure flag is set before waiting */
1356  	wmb();
1357  
1358  	/*
1359  	 * At this point, all outbound traffic should be disable. We
1360  	 * only allow inbound traffic (responses) to proceed so that
1361  	 * outstanding requests can be completed.
1362  	 */
1363  
1364  	storvsc_wait_to_drain(stor_device);
1365  
1366  	/*
1367  	 * Since we have already drained, we don't need to busy wait
1368  	 * as was done in final_release_stor_device()
1369  	 * Note that we cannot set the ext pointer to NULL until
1370  	 * we have drained - to drain the outgoing packets, we need to
1371  	 * allow incoming packets.
1372  	 */
1373  	hv_set_drvdata(device, NULL);
1374  
1375  	/* Close the channel */
1376  	vmbus_close(device->channel);
1377  
1378  	kfree(stor_device->stor_chns);
1379  	kfree(stor_device);
1380  	return 0;
1381  }
1382  
get_og_chn(struct storvsc_device * stor_device,u16 q_num)1383  static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1384  					u16 q_num)
1385  {
1386  	u16 slot = 0;
1387  	u16 hash_qnum;
1388  	const struct cpumask *node_mask;
1389  	int num_channels, tgt_cpu;
1390  
1391  	if (stor_device->num_sc == 0) {
1392  		stor_device->stor_chns[q_num] = stor_device->device->channel;
1393  		return stor_device->device->channel;
1394  	}
1395  
1396  	/*
1397  	 * Our channel array is sparsley populated and we
1398  	 * initiated I/O on a processor/hw-q that does not
1399  	 * currently have a designated channel. Fix this.
1400  	 * The strategy is simple:
1401  	 * I. Ensure NUMA locality
1402  	 * II. Distribute evenly (best effort)
1403  	 */
1404  
1405  	node_mask = cpumask_of_node(cpu_to_node(q_num));
1406  
1407  	num_channels = 0;
1408  	for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1409  		if (cpumask_test_cpu(tgt_cpu, node_mask))
1410  			num_channels++;
1411  	}
1412  	if (num_channels == 0) {
1413  		stor_device->stor_chns[q_num] = stor_device->device->channel;
1414  		return stor_device->device->channel;
1415  	}
1416  
1417  	hash_qnum = q_num;
1418  	while (hash_qnum >= num_channels)
1419  		hash_qnum -= num_channels;
1420  
1421  	for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1422  		if (!cpumask_test_cpu(tgt_cpu, node_mask))
1423  			continue;
1424  		if (slot == hash_qnum)
1425  			break;
1426  		slot++;
1427  	}
1428  
1429  	stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1430  
1431  	return stor_device->stor_chns[q_num];
1432  }
1433  
1434  
storvsc_do_io(struct hv_device * device,struct storvsc_cmd_request * request,u16 q_num)1435  static int storvsc_do_io(struct hv_device *device,
1436  			 struct storvsc_cmd_request *request, u16 q_num)
1437  {
1438  	struct storvsc_device *stor_device;
1439  	struct vstor_packet *vstor_packet;
1440  	struct vmbus_channel *outgoing_channel, *channel;
1441  	unsigned long flags;
1442  	int ret = 0;
1443  	const struct cpumask *node_mask;
1444  	int tgt_cpu;
1445  
1446  	vstor_packet = &request->vstor_packet;
1447  	stor_device = get_out_stor_device(device);
1448  
1449  	if (!stor_device)
1450  		return -ENODEV;
1451  
1452  
1453  	request->device  = device;
1454  	/*
1455  	 * Select an appropriate channel to send the request out.
1456  	 */
1457  	/* See storvsc_change_target_cpu(). */
1458  	outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1459  	if (outgoing_channel != NULL) {
1460  		if (outgoing_channel->target_cpu == q_num) {
1461  			/*
1462  			 * Ideally, we want to pick a different channel if
1463  			 * available on the same NUMA node.
1464  			 */
1465  			node_mask = cpumask_of_node(cpu_to_node(q_num));
1466  			for_each_cpu_wrap(tgt_cpu,
1467  				 &stor_device->alloced_cpus, q_num + 1) {
1468  				if (!cpumask_test_cpu(tgt_cpu, node_mask))
1469  					continue;
1470  				if (tgt_cpu == q_num)
1471  					continue;
1472  				channel = READ_ONCE(
1473  					stor_device->stor_chns[tgt_cpu]);
1474  				if (channel == NULL)
1475  					continue;
1476  				if (hv_get_avail_to_write_percent(
1477  							&channel->outbound)
1478  						> ring_avail_percent_lowater) {
1479  					outgoing_channel = channel;
1480  					goto found_channel;
1481  				}
1482  			}
1483  
1484  			/*
1485  			 * All the other channels on the same NUMA node are
1486  			 * busy. Try to use the channel on the current CPU
1487  			 */
1488  			if (hv_get_avail_to_write_percent(
1489  						&outgoing_channel->outbound)
1490  					> ring_avail_percent_lowater)
1491  				goto found_channel;
1492  
1493  			/*
1494  			 * If we reach here, all the channels on the current
1495  			 * NUMA node are busy. Try to find a channel in
1496  			 * other NUMA nodes
1497  			 */
1498  			for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1499  				if (cpumask_test_cpu(tgt_cpu, node_mask))
1500  					continue;
1501  				channel = READ_ONCE(
1502  					stor_device->stor_chns[tgt_cpu]);
1503  				if (channel == NULL)
1504  					continue;
1505  				if (hv_get_avail_to_write_percent(
1506  							&channel->outbound)
1507  						> ring_avail_percent_lowater) {
1508  					outgoing_channel = channel;
1509  					goto found_channel;
1510  				}
1511  			}
1512  		}
1513  	} else {
1514  		spin_lock_irqsave(&stor_device->lock, flags);
1515  		outgoing_channel = stor_device->stor_chns[q_num];
1516  		if (outgoing_channel != NULL) {
1517  			spin_unlock_irqrestore(&stor_device->lock, flags);
1518  			goto found_channel;
1519  		}
1520  		outgoing_channel = get_og_chn(stor_device, q_num);
1521  		spin_unlock_irqrestore(&stor_device->lock, flags);
1522  	}
1523  
1524  found_channel:
1525  	vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1526  
1527  	vstor_packet->vm_srb.length = sizeof(struct vmscsi_request);
1528  
1529  
1530  	vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE;
1531  
1532  
1533  	vstor_packet->vm_srb.data_transfer_length =
1534  	request->payload->range.len;
1535  
1536  	vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1537  
1538  	if (request->payload->range.len) {
1539  
1540  		ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1541  				request->payload, request->payload_sz,
1542  				vstor_packet,
1543  				sizeof(struct vstor_packet),
1544  				(unsigned long)request);
1545  	} else {
1546  		ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1547  			       sizeof(struct vstor_packet),
1548  			       (unsigned long)request,
1549  			       VM_PKT_DATA_INBAND,
1550  			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1551  	}
1552  
1553  	if (ret != 0)
1554  		return ret;
1555  
1556  	atomic_inc(&stor_device->num_outstanding_req);
1557  
1558  	return ret;
1559  }
1560  
storvsc_device_alloc(struct scsi_device * sdevice)1561  static int storvsc_device_alloc(struct scsi_device *sdevice)
1562  {
1563  	/*
1564  	 * Set blist flag to permit the reading of the VPD pages even when
1565  	 * the target may claim SPC-2 compliance. MSFT targets currently
1566  	 * claim SPC-2 compliance while they implement post SPC-2 features.
1567  	 * With this flag we can correctly handle WRITE_SAME_16 issues.
1568  	 *
1569  	 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1570  	 * still supports REPORT LUN.
1571  	 */
1572  	sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1573  
1574  	return 0;
1575  }
1576  
storvsc_device_configure(struct scsi_device * sdevice)1577  static int storvsc_device_configure(struct scsi_device *sdevice)
1578  {
1579  	blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1580  
1581  	/* storvsc devices don't support MAINTENANCE_IN SCSI cmd */
1582  	sdevice->no_report_opcodes = 1;
1583  	sdevice->no_write_same = 1;
1584  
1585  	/*
1586  	 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1587  	 * if the device is a MSFT virtual device.  If the host is
1588  	 * WIN10 or newer, allow write_same.
1589  	 */
1590  	if (!strncmp(sdevice->vendor, "Msft", 4)) {
1591  		switch (vmstor_proto_version) {
1592  		case VMSTOR_PROTO_VERSION_WIN8:
1593  		case VMSTOR_PROTO_VERSION_WIN8_1:
1594  			sdevice->scsi_level = SCSI_SPC_3;
1595  			break;
1596  		}
1597  
1598  		if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1599  			sdevice->no_write_same = 0;
1600  	}
1601  
1602  	return 0;
1603  }
1604  
storvsc_get_chs(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int * info)1605  static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1606  			   sector_t capacity, int *info)
1607  {
1608  	sector_t nsect = capacity;
1609  	sector_t cylinders = nsect;
1610  	int heads, sectors_pt;
1611  
1612  	/*
1613  	 * We are making up these values; let us keep it simple.
1614  	 */
1615  	heads = 0xff;
1616  	sectors_pt = 0x3f;      /* Sectors per track */
1617  	sector_div(cylinders, heads * sectors_pt);
1618  	if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1619  		cylinders = 0xffff;
1620  
1621  	info[0] = heads;
1622  	info[1] = sectors_pt;
1623  	info[2] = (int)cylinders;
1624  
1625  	return 0;
1626  }
1627  
storvsc_host_reset_handler(struct scsi_cmnd * scmnd)1628  static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1629  {
1630  	struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1631  	struct hv_device *device = host_dev->dev;
1632  
1633  	struct storvsc_device *stor_device;
1634  	struct storvsc_cmd_request *request;
1635  	struct vstor_packet *vstor_packet;
1636  	int ret, t;
1637  
1638  	stor_device = get_out_stor_device(device);
1639  	if (!stor_device)
1640  		return FAILED;
1641  
1642  	request = &stor_device->reset_request;
1643  	vstor_packet = &request->vstor_packet;
1644  	memset(vstor_packet, 0, sizeof(struct vstor_packet));
1645  
1646  	init_completion(&request->wait_event);
1647  
1648  	vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1649  	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1650  	vstor_packet->vm_srb.path_id = stor_device->path_id;
1651  
1652  	ret = vmbus_sendpacket(device->channel, vstor_packet,
1653  			       sizeof(struct vstor_packet),
1654  			       VMBUS_RQST_RESET,
1655  			       VM_PKT_DATA_INBAND,
1656  			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1657  	if (ret != 0)
1658  		return FAILED;
1659  
1660  	t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1661  	if (t == 0)
1662  		return TIMEOUT_ERROR;
1663  
1664  
1665  	/*
1666  	 * At this point, all outstanding requests in the adapter
1667  	 * should have been flushed out and return to us
1668  	 * There is a potential race here where the host may be in
1669  	 * the process of responding when we return from here.
1670  	 * Just wait for all in-transit packets to be accounted for
1671  	 * before we return from here.
1672  	 */
1673  	storvsc_wait_to_drain(stor_device);
1674  
1675  	return SUCCESS;
1676  }
1677  
1678  /*
1679   * The host guarantees to respond to each command, although I/O latencies might
1680   * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1681   * chance to perform EH.
1682   */
storvsc_eh_timed_out(struct scsi_cmnd * scmnd)1683  static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1684  {
1685  	return SCSI_EH_RESET_TIMER;
1686  }
1687  
storvsc_scsi_cmd_ok(struct scsi_cmnd * scmnd)1688  static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1689  {
1690  	bool allowed = true;
1691  	u8 scsi_op = scmnd->cmnd[0];
1692  
1693  	switch (scsi_op) {
1694  	/* the host does not handle WRITE_SAME, log accident usage */
1695  	case WRITE_SAME:
1696  	/*
1697  	 * smartd sends this command and the host does not handle
1698  	 * this. So, don't send it.
1699  	 */
1700  	case SET_WINDOW:
1701  		set_host_byte(scmnd, DID_ERROR);
1702  		allowed = false;
1703  		break;
1704  	default:
1705  		break;
1706  	}
1707  	return allowed;
1708  }
1709  
storvsc_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * scmnd)1710  static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1711  {
1712  	int ret;
1713  	struct hv_host_device *host_dev = shost_priv(host);
1714  	struct hv_device *dev = host_dev->dev;
1715  	struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1716  	struct scatterlist *sgl;
1717  	struct vmscsi_request *vm_srb;
1718  	struct vmbus_packet_mpb_array  *payload;
1719  	u32 payload_sz;
1720  	u32 length;
1721  
1722  	if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1723  		/*
1724  		 * On legacy hosts filter unimplemented commands.
1725  		 * Future hosts are expected to correctly handle
1726  		 * unsupported commands. Furthermore, it is
1727  		 * possible that some of the currently
1728  		 * unsupported commands maybe supported in
1729  		 * future versions of the host.
1730  		 */
1731  		if (!storvsc_scsi_cmd_ok(scmnd)) {
1732  			scsi_done(scmnd);
1733  			return 0;
1734  		}
1735  	}
1736  
1737  	/* Setup the cmd request */
1738  	cmd_request->cmd = scmnd;
1739  
1740  	memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1741  	vm_srb = &cmd_request->vstor_packet.vm_srb;
1742  	vm_srb->time_out_value = 60;
1743  
1744  	vm_srb->srb_flags |=
1745  		SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1746  
1747  	if (scmnd->device->tagged_supported) {
1748  		vm_srb->srb_flags |=
1749  		(SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1750  		vm_srb->queue_tag = SP_UNTAGGED;
1751  		vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST;
1752  	}
1753  
1754  	/* Build the SRB */
1755  	switch (scmnd->sc_data_direction) {
1756  	case DMA_TO_DEVICE:
1757  		vm_srb->data_in = WRITE_TYPE;
1758  		vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT;
1759  		break;
1760  	case DMA_FROM_DEVICE:
1761  		vm_srb->data_in = READ_TYPE;
1762  		vm_srb->srb_flags |= SRB_FLAGS_DATA_IN;
1763  		break;
1764  	case DMA_NONE:
1765  		vm_srb->data_in = UNKNOWN_TYPE;
1766  		vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1767  		break;
1768  	default:
1769  		/*
1770  		 * This is DMA_BIDIRECTIONAL or something else we are never
1771  		 * supposed to see here.
1772  		 */
1773  		WARN(1, "Unexpected data direction: %d\n",
1774  		     scmnd->sc_data_direction);
1775  		return -EINVAL;
1776  	}
1777  
1778  
1779  	vm_srb->port_number = host_dev->port;
1780  	vm_srb->path_id = scmnd->device->channel;
1781  	vm_srb->target_id = scmnd->device->id;
1782  	vm_srb->lun = scmnd->device->lun;
1783  
1784  	vm_srb->cdb_length = scmnd->cmd_len;
1785  
1786  	memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1787  
1788  	sgl = (struct scatterlist *)scsi_sglist(scmnd);
1789  
1790  	length = scsi_bufflen(scmnd);
1791  	payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1792  	payload_sz = 0;
1793  
1794  	if (scsi_sg_count(scmnd)) {
1795  		unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset);
1796  		unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1797  		struct scatterlist *sg;
1798  		unsigned long hvpfn, hvpfns_to_add;
1799  		int j, i = 0, sg_count;
1800  
1801  		payload_sz = (hvpg_count * sizeof(u64) +
1802  			      sizeof(struct vmbus_packet_mpb_array));
1803  
1804  		if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1805  			payload = kzalloc(payload_sz, GFP_ATOMIC);
1806  			if (!payload)
1807  				return SCSI_MLQUEUE_DEVICE_BUSY;
1808  		}
1809  
1810  		payload->range.len = length;
1811  		payload->range.offset = offset_in_hvpg;
1812  
1813  		sg_count = scsi_dma_map(scmnd);
1814  		if (sg_count < 0) {
1815  			ret = SCSI_MLQUEUE_DEVICE_BUSY;
1816  			goto err_free_payload;
1817  		}
1818  
1819  		for_each_sg(sgl, sg, sg_count, j) {
1820  			/*
1821  			 * Init values for the current sgl entry. hvpfns_to_add
1822  			 * is in units of Hyper-V size pages. Handling the
1823  			 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles
1824  			 * values of sgl->offset that are larger than PAGE_SIZE.
1825  			 * Such offsets are handled even on other than the first
1826  			 * sgl entry, provided they are a multiple of PAGE_SIZE.
1827  			 */
1828  			hvpfn = HVPFN_DOWN(sg_dma_address(sg));
1829  			hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) +
1830  						 sg_dma_len(sg)) - hvpfn;
1831  
1832  			/*
1833  			 * Fill the next portion of the PFN array with
1834  			 * sequential Hyper-V PFNs for the continguous physical
1835  			 * memory described by the sgl entry. The end of the
1836  			 * last sgl should be reached at the same time that
1837  			 * the PFN array is filled.
1838  			 */
1839  			while (hvpfns_to_add--)
1840  				payload->range.pfn_array[i++] = hvpfn++;
1841  		}
1842  	}
1843  
1844  	cmd_request->payload = payload;
1845  	cmd_request->payload_sz = payload_sz;
1846  
1847  	/* Invokes the vsc to start an IO */
1848  	ret = storvsc_do_io(dev, cmd_request, get_cpu());
1849  	put_cpu();
1850  
1851  	if (ret)
1852  		scsi_dma_unmap(scmnd);
1853  
1854  	if (ret == -EAGAIN) {
1855  		/* no more space */
1856  		ret = SCSI_MLQUEUE_DEVICE_BUSY;
1857  		goto err_free_payload;
1858  	}
1859  
1860  	return 0;
1861  
1862  err_free_payload:
1863  	if (payload_sz > sizeof(cmd_request->mpb))
1864  		kfree(payload);
1865  
1866  	return ret;
1867  }
1868  
1869  static struct scsi_host_template scsi_driver = {
1870  	.module	=		THIS_MODULE,
1871  	.name =			"storvsc_host_t",
1872  	.cmd_size =             sizeof(struct storvsc_cmd_request),
1873  	.bios_param =		storvsc_get_chs,
1874  	.queuecommand =		storvsc_queuecommand,
1875  	.eh_host_reset_handler =	storvsc_host_reset_handler,
1876  	.proc_name =		"storvsc_host",
1877  	.eh_timed_out =		storvsc_eh_timed_out,
1878  	.slave_alloc =		storvsc_device_alloc,
1879  	.slave_configure =	storvsc_device_configure,
1880  	.cmd_per_lun =		2048,
1881  	.this_id =		-1,
1882  	/* Ensure there are no gaps in presented sgls */
1883  	.virt_boundary_mask =	HV_HYP_PAGE_SIZE - 1,
1884  	.no_write_same =	1,
1885  	.track_queue_depth =	1,
1886  	.change_queue_depth =	storvsc_change_queue_depth,
1887  };
1888  
1889  enum {
1890  	SCSI_GUID,
1891  	IDE_GUID,
1892  	SFC_GUID,
1893  };
1894  
1895  static const struct hv_vmbus_device_id id_table[] = {
1896  	/* SCSI guid */
1897  	{ HV_SCSI_GUID,
1898  	  .driver_data = SCSI_GUID
1899  	},
1900  	/* IDE guid */
1901  	{ HV_IDE_GUID,
1902  	  .driver_data = IDE_GUID
1903  	},
1904  	/* Fibre Channel GUID */
1905  	{
1906  	  HV_SYNTHFC_GUID,
1907  	  .driver_data = SFC_GUID
1908  	},
1909  	{ },
1910  };
1911  
1912  MODULE_DEVICE_TABLE(vmbus, id_table);
1913  
1914  static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1915  
hv_dev_is_fc(struct hv_device * hv_dev)1916  static bool hv_dev_is_fc(struct hv_device *hv_dev)
1917  {
1918  	return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1919  }
1920  
storvsc_probe(struct hv_device * device,const struct hv_vmbus_device_id * dev_id)1921  static int storvsc_probe(struct hv_device *device,
1922  			const struct hv_vmbus_device_id *dev_id)
1923  {
1924  	int ret;
1925  	int num_cpus = num_online_cpus();
1926  	int num_present_cpus = num_present_cpus();
1927  	struct Scsi_Host *host;
1928  	struct hv_host_device *host_dev;
1929  	bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1930  	bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1931  	int target = 0;
1932  	struct storvsc_device *stor_device;
1933  	int max_sub_channels = 0;
1934  	u32 max_xfer_bytes;
1935  
1936  	/*
1937  	 * We support sub-channels for storage on SCSI and FC controllers.
1938  	 * The number of sub-channels offerred is based on the number of
1939  	 * VCPUs in the guest.
1940  	 */
1941  	if (!dev_is_ide)
1942  		max_sub_channels =
1943  			(num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1944  
1945  	scsi_driver.can_queue = max_outstanding_req_per_channel *
1946  				(max_sub_channels + 1) *
1947  				(100 - ring_avail_percent_lowater) / 100;
1948  
1949  	host = scsi_host_alloc(&scsi_driver,
1950  			       sizeof(struct hv_host_device));
1951  	if (!host)
1952  		return -ENOMEM;
1953  
1954  	host_dev = shost_priv(host);
1955  	memset(host_dev, 0, sizeof(struct hv_host_device));
1956  
1957  	host_dev->port = host->host_no;
1958  	host_dev->dev = device;
1959  	host_dev->host = host;
1960  
1961  
1962  	stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1963  	if (!stor_device) {
1964  		ret = -ENOMEM;
1965  		goto err_out0;
1966  	}
1967  
1968  	stor_device->destroy = false;
1969  	init_waitqueue_head(&stor_device->waiting_to_drain);
1970  	stor_device->device = device;
1971  	stor_device->host = host;
1972  	spin_lock_init(&stor_device->lock);
1973  	hv_set_drvdata(device, stor_device);
1974  	dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1);
1975  
1976  	stor_device->port_number = host->host_no;
1977  	ret = storvsc_connect_to_vsp(device, aligned_ringbuffer_size, is_fc);
1978  	if (ret)
1979  		goto err_out1;
1980  
1981  	host_dev->path = stor_device->path_id;
1982  	host_dev->target = stor_device->target_id;
1983  
1984  	switch (dev_id->driver_data) {
1985  	case SFC_GUID:
1986  		host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1987  		host->max_id = STORVSC_FC_MAX_TARGETS;
1988  		host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1989  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1990  		host->transportt = fc_transport_template;
1991  #endif
1992  		break;
1993  
1994  	case SCSI_GUID:
1995  		host->max_lun = STORVSC_MAX_LUNS_PER_TARGET;
1996  		host->max_id = STORVSC_MAX_TARGETS;
1997  		host->max_channel = STORVSC_MAX_CHANNELS - 1;
1998  		break;
1999  
2000  	default:
2001  		host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
2002  		host->max_id = STORVSC_IDE_MAX_TARGETS;
2003  		host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
2004  		break;
2005  	}
2006  	/* max cmd length */
2007  	host->max_cmd_len = STORVSC_MAX_CMD_LEN;
2008  	/*
2009  	 * Any reasonable Hyper-V configuration should provide
2010  	 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE,
2011  	 * protecting it from any weird value.
2012  	 */
2013  	max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE);
2014  	if (is_fc)
2015  		max_xfer_bytes = min(max_xfer_bytes, STORVSC_FC_MAX_XFER_SIZE);
2016  
2017  	/* max_hw_sectors_kb */
2018  	host->max_sectors = max_xfer_bytes >> 9;
2019  	/*
2020  	 * There are 2 requirements for Hyper-V storvsc sgl segments,
2021  	 * based on which the below calculation for max segments is
2022  	 * done:
2023  	 *
2024  	 * 1. Except for the first and last sgl segment, all sgl segments
2025  	 *    should be align to HV_HYP_PAGE_SIZE, that also means the
2026  	 *    maximum number of segments in a sgl can be calculated by
2027  	 *    dividing the total max transfer length by HV_HYP_PAGE_SIZE.
2028  	 *
2029  	 * 2. Except for the first and last, each entry in the SGL must
2030  	 *    have an offset that is a multiple of HV_HYP_PAGE_SIZE.
2031  	 */
2032  	host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1;
2033  	/*
2034  	 * For non-IDE disks, the host supports multiple channels.
2035  	 * Set the number of HW queues we are supporting.
2036  	 */
2037  	if (!dev_is_ide) {
2038  		if (storvsc_max_hw_queues > num_present_cpus) {
2039  			storvsc_max_hw_queues = 0;
2040  			storvsc_log(device, STORVSC_LOGGING_WARN,
2041  				"Resetting invalid storvsc_max_hw_queues value to default.\n");
2042  		}
2043  		if (storvsc_max_hw_queues)
2044  			host->nr_hw_queues = storvsc_max_hw_queues;
2045  		else
2046  			host->nr_hw_queues = num_present_cpus;
2047  	}
2048  
2049  	/*
2050  	 * Set the error handler work queue.
2051  	 */
2052  	host_dev->handle_error_wq =
2053  			alloc_ordered_workqueue("storvsc_error_wq_%d",
2054  						0,
2055  						host->host_no);
2056  	if (!host_dev->handle_error_wq) {
2057  		ret = -ENOMEM;
2058  		goto err_out2;
2059  	}
2060  	INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2061  	/* Register the HBA and start the scsi bus scan */
2062  	ret = scsi_add_host(host, &device->device);
2063  	if (ret != 0)
2064  		goto err_out3;
2065  
2066  	if (!dev_is_ide) {
2067  		scsi_scan_host(host);
2068  	} else {
2069  		target = (device->dev_instance.b[5] << 8 |
2070  			 device->dev_instance.b[4]);
2071  		ret = scsi_add_device(host, 0, target, 0);
2072  		if (ret)
2073  			goto err_out4;
2074  	}
2075  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2076  	if (host->transportt == fc_transport_template) {
2077  		struct fc_rport_identifiers ids = {
2078  			.roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2079  		};
2080  
2081  		fc_host_node_name(host) = stor_device->node_name;
2082  		fc_host_port_name(host) = stor_device->port_name;
2083  		stor_device->rport = fc_remote_port_add(host, 0, &ids);
2084  		if (!stor_device->rport) {
2085  			ret = -ENOMEM;
2086  			goto err_out4;
2087  		}
2088  	}
2089  #endif
2090  	return 0;
2091  
2092  err_out4:
2093  	scsi_remove_host(host);
2094  
2095  err_out3:
2096  	destroy_workqueue(host_dev->handle_error_wq);
2097  
2098  err_out2:
2099  	/*
2100  	 * Once we have connected with the host, we would need to
2101  	 * invoke storvsc_dev_remove() to rollback this state and
2102  	 * this call also frees up the stor_device; hence the jump around
2103  	 * err_out1 label.
2104  	 */
2105  	storvsc_dev_remove(device);
2106  	goto err_out0;
2107  
2108  err_out1:
2109  	kfree(stor_device->stor_chns);
2110  	kfree(stor_device);
2111  
2112  err_out0:
2113  	scsi_host_put(host);
2114  	return ret;
2115  }
2116  
2117  /* Change a scsi target's queue depth */
storvsc_change_queue_depth(struct scsi_device * sdev,int queue_depth)2118  static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2119  {
2120  	if (queue_depth > scsi_driver.can_queue)
2121  		queue_depth = scsi_driver.can_queue;
2122  
2123  	return scsi_change_queue_depth(sdev, queue_depth);
2124  }
2125  
storvsc_remove(struct hv_device * dev)2126  static void storvsc_remove(struct hv_device *dev)
2127  {
2128  	struct storvsc_device *stor_device = hv_get_drvdata(dev);
2129  	struct Scsi_Host *host = stor_device->host;
2130  	struct hv_host_device *host_dev = shost_priv(host);
2131  
2132  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2133  	if (host->transportt == fc_transport_template) {
2134  		fc_remote_port_delete(stor_device->rport);
2135  		fc_remove_host(host);
2136  	}
2137  #endif
2138  	destroy_workqueue(host_dev->handle_error_wq);
2139  	scsi_remove_host(host);
2140  	storvsc_dev_remove(dev);
2141  	scsi_host_put(host);
2142  }
2143  
storvsc_suspend(struct hv_device * hv_dev)2144  static int storvsc_suspend(struct hv_device *hv_dev)
2145  {
2146  	struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2147  	struct Scsi_Host *host = stor_device->host;
2148  	struct hv_host_device *host_dev = shost_priv(host);
2149  
2150  	storvsc_wait_to_drain(stor_device);
2151  
2152  	drain_workqueue(host_dev->handle_error_wq);
2153  
2154  	vmbus_close(hv_dev->channel);
2155  
2156  	kfree(stor_device->stor_chns);
2157  	stor_device->stor_chns = NULL;
2158  
2159  	cpumask_clear(&stor_device->alloced_cpus);
2160  
2161  	return 0;
2162  }
2163  
storvsc_resume(struct hv_device * hv_dev)2164  static int storvsc_resume(struct hv_device *hv_dev)
2165  {
2166  	int ret;
2167  
2168  	ret = storvsc_connect_to_vsp(hv_dev, aligned_ringbuffer_size,
2169  				     hv_dev_is_fc(hv_dev));
2170  	return ret;
2171  }
2172  
2173  static struct hv_driver storvsc_drv = {
2174  	.name = KBUILD_MODNAME,
2175  	.id_table = id_table,
2176  	.probe = storvsc_probe,
2177  	.remove = storvsc_remove,
2178  	.suspend = storvsc_suspend,
2179  	.resume = storvsc_resume,
2180  	.driver = {
2181  		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2182  	},
2183  };
2184  
2185  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2186  static struct fc_function_template fc_transport_functions = {
2187  	.show_host_node_name = 1,
2188  	.show_host_port_name = 1,
2189  };
2190  #endif
2191  
storvsc_drv_init(void)2192  static int __init storvsc_drv_init(void)
2193  {
2194  	int ret;
2195  
2196  	/*
2197  	 * Divide the ring buffer data size (which is 1 page less
2198  	 * than the ring buffer size since that page is reserved for
2199  	 * the ring buffer indices) by the max request size (which is
2200  	 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2201  	 */
2202  	aligned_ringbuffer_size = VMBUS_RING_SIZE(storvsc_ringbuffer_size);
2203  	max_outstanding_req_per_channel =
2204  		((aligned_ringbuffer_size - PAGE_SIZE) /
2205  		ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2206  		sizeof(struct vstor_packet) + sizeof(u64),
2207  		sizeof(u64)));
2208  
2209  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2210  	fc_transport_template = fc_attach_transport(&fc_transport_functions);
2211  	if (!fc_transport_template)
2212  		return -ENODEV;
2213  #endif
2214  
2215  	ret = vmbus_driver_register(&storvsc_drv);
2216  
2217  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2218  	if (ret)
2219  		fc_release_transport(fc_transport_template);
2220  #endif
2221  
2222  	return ret;
2223  }
2224  
storvsc_drv_exit(void)2225  static void __exit storvsc_drv_exit(void)
2226  {
2227  	vmbus_driver_unregister(&storvsc_drv);
2228  #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2229  	fc_release_transport(fc_transport_template);
2230  #endif
2231  }
2232  
2233  MODULE_LICENSE("GPL");
2234  MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2235  module_init(storvsc_drv_init);
2236  module_exit(storvsc_drv_exit);
2237