1  /*
2   * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3   * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4   * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5   *
6   * May be copied or modified under the terms of the GNU General Public
7   * License.  See linux/COPYING for more information.
8   *
9   * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10   * DVD-RAM devices.
11   *
12   * Theory of operation:
13   *
14   * At the lowest level, there is the standard driver for the CD/DVD device,
15   * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16   * but it doesn't know anything about the special restrictions that apply to
17   * packet writing. One restriction is that write requests must be aligned to
18   * packet boundaries on the physical media, and the size of a write request
19   * must be equal to the packet size. Another restriction is that a
20   * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21   * command, if the previous command was a write.
22   *
23   * The purpose of the packet writing driver is to hide these restrictions from
24   * higher layers, such as file systems, and present a block device that can be
25   * randomly read and written using 2kB-sized blocks.
26   *
27   * The lowest layer in the packet writing driver is the packet I/O scheduler.
28   * Its data is defined by the struct packet_iosched and includes two bio
29   * queues with pending read and write requests. These queues are processed
30   * by the pkt_iosched_process_queue() function. The write requests in this
31   * queue are already properly aligned and sized. This layer is responsible for
32   * issuing the flush cache commands and scheduling the I/O in a good order.
33   *
34   * The next layer transforms unaligned write requests to aligned writes. This
35   * transformation requires reading missing pieces of data from the underlying
36   * block device, assembling the pieces to full packets and queuing them to the
37   * packet I/O scheduler.
38   *
39   * At the top layer there is a custom ->submit_bio function that forwards
40   * read requests directly to the iosched queue and puts write requests in the
41   * unaligned write queue. A kernel thread performs the necessary read
42   * gathering to convert the unaligned writes to aligned writes and then feeds
43   * them to the packet I/O scheduler.
44   *
45   *************************************************************************/
46  
47  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48  
49  #include <linux/backing-dev.h>
50  #include <linux/compat.h>
51  #include <linux/debugfs.h>
52  #include <linux/device.h>
53  #include <linux/errno.h>
54  #include <linux/file.h>
55  #include <linux/freezer.h>
56  #include <linux/kernel.h>
57  #include <linux/kthread.h>
58  #include <linux/miscdevice.h>
59  #include <linux/module.h>
60  #include <linux/mutex.h>
61  #include <linux/nospec.h>
62  #include <linux/pktcdvd.h>
63  #include <linux/proc_fs.h>
64  #include <linux/seq_file.h>
65  #include <linux/slab.h>
66  #include <linux/spinlock.h>
67  #include <linux/types.h>
68  #include <linux/uaccess.h>
69  
70  #include <scsi/scsi.h>
71  #include <scsi/scsi_cmnd.h>
72  #include <scsi/scsi_ioctl.h>
73  
74  #include <linux/unaligned.h>
75  
76  #define DRIVER_NAME	"pktcdvd"
77  
78  #define MAX_SPEED 0xffff
79  
80  static DEFINE_MUTEX(pktcdvd_mutex);
81  static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82  static struct proc_dir_entry *pkt_proc;
83  static int pktdev_major;
84  static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
85  static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
86  static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
87  static mempool_t psd_pool;
88  static struct bio_set pkt_bio_set;
89  
90  /* /sys/class/pktcdvd */
91  static struct class	class_pktcdvd;
92  static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
93  
94  /* forward declaration */
95  static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
96  static int pkt_remove_dev(dev_t pkt_dev);
97  
get_zone(sector_t sector,struct pktcdvd_device * pd)98  static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
99  {
100  	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
101  }
102  
103  /**********************************************************
104   * sysfs interface for pktcdvd
105   * by (C) 2006  Thomas Maier <balagi@justmail.de>
106  
107    /sys/class/pktcdvd/pktcdvd[0-7]/
108                       stat/reset
109                       stat/packets_started
110                       stat/packets_finished
111                       stat/kb_written
112                       stat/kb_read
113                       stat/kb_read_gather
114                       write_queue/size
115                       write_queue/congestion_off
116                       write_queue/congestion_on
117   **********************************************************/
118  
packets_started_show(struct device * dev,struct device_attribute * attr,char * buf)119  static ssize_t packets_started_show(struct device *dev,
120  				    struct device_attribute *attr, char *buf)
121  {
122  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
123  
124  	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
125  }
126  static DEVICE_ATTR_RO(packets_started);
127  
packets_finished_show(struct device * dev,struct device_attribute * attr,char * buf)128  static ssize_t packets_finished_show(struct device *dev,
129  				     struct device_attribute *attr, char *buf)
130  {
131  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
132  
133  	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
134  }
135  static DEVICE_ATTR_RO(packets_finished);
136  
kb_written_show(struct device * dev,struct device_attribute * attr,char * buf)137  static ssize_t kb_written_show(struct device *dev,
138  			       struct device_attribute *attr, char *buf)
139  {
140  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
141  
142  	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
143  }
144  static DEVICE_ATTR_RO(kb_written);
145  
kb_read_show(struct device * dev,struct device_attribute * attr,char * buf)146  static ssize_t kb_read_show(struct device *dev,
147  			    struct device_attribute *attr, char *buf)
148  {
149  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
150  
151  	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
152  }
153  static DEVICE_ATTR_RO(kb_read);
154  
kb_read_gather_show(struct device * dev,struct device_attribute * attr,char * buf)155  static ssize_t kb_read_gather_show(struct device *dev,
156  				   struct device_attribute *attr, char *buf)
157  {
158  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
159  
160  	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
161  }
162  static DEVICE_ATTR_RO(kb_read_gather);
163  
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)164  static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
165  			   const char *buf, size_t len)
166  {
167  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
168  
169  	if (len > 0) {
170  		pd->stats.pkt_started = 0;
171  		pd->stats.pkt_ended = 0;
172  		pd->stats.secs_w = 0;
173  		pd->stats.secs_rg = 0;
174  		pd->stats.secs_r = 0;
175  	}
176  	return len;
177  }
178  static DEVICE_ATTR_WO(reset);
179  
180  static struct attribute *pkt_stat_attrs[] = {
181  	&dev_attr_packets_finished.attr,
182  	&dev_attr_packets_started.attr,
183  	&dev_attr_kb_read.attr,
184  	&dev_attr_kb_written.attr,
185  	&dev_attr_kb_read_gather.attr,
186  	&dev_attr_reset.attr,
187  	NULL,
188  };
189  
190  static const struct attribute_group pkt_stat_group = {
191  	.name = "stat",
192  	.attrs = pkt_stat_attrs,
193  };
194  
size_show(struct device * dev,struct device_attribute * attr,char * buf)195  static ssize_t size_show(struct device *dev,
196  			 struct device_attribute *attr, char *buf)
197  {
198  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
199  	int n;
200  
201  	spin_lock(&pd->lock);
202  	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
203  	spin_unlock(&pd->lock);
204  	return n;
205  }
206  static DEVICE_ATTR_RO(size);
207  
init_write_congestion_marks(int * lo,int * hi)208  static void init_write_congestion_marks(int* lo, int* hi)
209  {
210  	if (*hi > 0) {
211  		*hi = max(*hi, 500);
212  		*hi = min(*hi, 1000000);
213  		if (*lo <= 0)
214  			*lo = *hi - 100;
215  		else {
216  			*lo = min(*lo, *hi - 100);
217  			*lo = max(*lo, 100);
218  		}
219  	} else {
220  		*hi = -1;
221  		*lo = -1;
222  	}
223  }
224  
congestion_off_show(struct device * dev,struct device_attribute * attr,char * buf)225  static ssize_t congestion_off_show(struct device *dev,
226  				   struct device_attribute *attr, char *buf)
227  {
228  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
229  	int n;
230  
231  	spin_lock(&pd->lock);
232  	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
233  	spin_unlock(&pd->lock);
234  	return n;
235  }
236  
congestion_off_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)237  static ssize_t congestion_off_store(struct device *dev,
238  				    struct device_attribute *attr,
239  				    const char *buf, size_t len)
240  {
241  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
242  	int val, ret;
243  
244  	ret = kstrtoint(buf, 10, &val);
245  	if (ret)
246  		return ret;
247  
248  	spin_lock(&pd->lock);
249  	pd->write_congestion_off = val;
250  	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
251  	spin_unlock(&pd->lock);
252  	return len;
253  }
254  static DEVICE_ATTR_RW(congestion_off);
255  
congestion_on_show(struct device * dev,struct device_attribute * attr,char * buf)256  static ssize_t congestion_on_show(struct device *dev,
257  				  struct device_attribute *attr, char *buf)
258  {
259  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
260  	int n;
261  
262  	spin_lock(&pd->lock);
263  	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
264  	spin_unlock(&pd->lock);
265  	return n;
266  }
267  
congestion_on_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)268  static ssize_t congestion_on_store(struct device *dev,
269  				   struct device_attribute *attr,
270  				   const char *buf, size_t len)
271  {
272  	struct pktcdvd_device *pd = dev_get_drvdata(dev);
273  	int val, ret;
274  
275  	ret = kstrtoint(buf, 10, &val);
276  	if (ret)
277  		return ret;
278  
279  	spin_lock(&pd->lock);
280  	pd->write_congestion_on = val;
281  	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
282  	spin_unlock(&pd->lock);
283  	return len;
284  }
285  static DEVICE_ATTR_RW(congestion_on);
286  
287  static struct attribute *pkt_wq_attrs[] = {
288  	&dev_attr_congestion_on.attr,
289  	&dev_attr_congestion_off.attr,
290  	&dev_attr_size.attr,
291  	NULL,
292  };
293  
294  static const struct attribute_group pkt_wq_group = {
295  	.name = "write_queue",
296  	.attrs = pkt_wq_attrs,
297  };
298  
299  static const struct attribute_group *pkt_groups[] = {
300  	&pkt_stat_group,
301  	&pkt_wq_group,
302  	NULL,
303  };
304  
pkt_sysfs_dev_new(struct pktcdvd_device * pd)305  static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306  {
307  	if (class_is_registered(&class_pktcdvd)) {
308  		pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
309  						    MKDEV(0, 0), pd, pkt_groups,
310  						    "%s", pd->disk->disk_name);
311  		if (IS_ERR(pd->dev))
312  			pd->dev = NULL;
313  	}
314  }
315  
pkt_sysfs_dev_remove(struct pktcdvd_device * pd)316  static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
317  {
318  	if (class_is_registered(&class_pktcdvd))
319  		device_unregister(pd->dev);
320  }
321  
322  
323  /********************************************************************
324    /sys/class/pktcdvd/
325                       add            map block device
326                       remove         unmap packet dev
327                       device_map     show mappings
328   *******************************************************************/
329  
device_map_show(const struct class * c,const struct class_attribute * attr,char * data)330  static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
331  			       char *data)
332  {
333  	int n = 0;
334  	int idx;
335  	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
336  	for (idx = 0; idx < MAX_WRITERS; idx++) {
337  		struct pktcdvd_device *pd = pkt_devs[idx];
338  		if (!pd)
339  			continue;
340  		n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
341  			pd->disk->disk_name,
342  			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
343  			MAJOR(file_bdev(pd->bdev_file)->bd_dev),
344  			MINOR(file_bdev(pd->bdev_file)->bd_dev));
345  	}
346  	mutex_unlock(&ctl_mutex);
347  	return n;
348  }
349  static CLASS_ATTR_RO(device_map);
350  
add_store(const struct class * c,const struct class_attribute * attr,const char * buf,size_t count)351  static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
352  			 const char *buf, size_t count)
353  {
354  	unsigned int major, minor;
355  
356  	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
357  		/* pkt_setup_dev() expects caller to hold reference to self */
358  		if (!try_module_get(THIS_MODULE))
359  			return -ENODEV;
360  
361  		pkt_setup_dev(MKDEV(major, minor), NULL);
362  
363  		module_put(THIS_MODULE);
364  
365  		return count;
366  	}
367  
368  	return -EINVAL;
369  }
370  static CLASS_ATTR_WO(add);
371  
remove_store(const struct class * c,const struct class_attribute * attr,const char * buf,size_t count)372  static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
373  			    const char *buf, size_t count)
374  {
375  	unsigned int major, minor;
376  	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
377  		pkt_remove_dev(MKDEV(major, minor));
378  		return count;
379  	}
380  	return -EINVAL;
381  }
382  static CLASS_ATTR_WO(remove);
383  
384  static struct attribute *class_pktcdvd_attrs[] = {
385  	&class_attr_add.attr,
386  	&class_attr_remove.attr,
387  	&class_attr_device_map.attr,
388  	NULL,
389  };
390  ATTRIBUTE_GROUPS(class_pktcdvd);
391  
392  static struct class class_pktcdvd = {
393  	.name		= DRIVER_NAME,
394  	.class_groups	= class_pktcdvd_groups,
395  };
396  
pkt_sysfs_init(void)397  static int pkt_sysfs_init(void)
398  {
399  	/*
400  	 * create control files in sysfs
401  	 * /sys/class/pktcdvd/...
402  	 */
403  	return class_register(&class_pktcdvd);
404  }
405  
pkt_sysfs_cleanup(void)406  static void pkt_sysfs_cleanup(void)
407  {
408  	class_unregister(&class_pktcdvd);
409  }
410  
411  /********************************************************************
412    entries in debugfs
413  
414    /sys/kernel/debug/pktcdvd[0-7]/
415  			info
416  
417   *******************************************************************/
418  
pkt_count_states(struct pktcdvd_device * pd,int * states)419  static void pkt_count_states(struct pktcdvd_device *pd, int *states)
420  {
421  	struct packet_data *pkt;
422  	int i;
423  
424  	for (i = 0; i < PACKET_NUM_STATES; i++)
425  		states[i] = 0;
426  
427  	spin_lock(&pd->cdrw.active_list_lock);
428  	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
429  		states[pkt->state]++;
430  	}
431  	spin_unlock(&pd->cdrw.active_list_lock);
432  }
433  
pkt_seq_show(struct seq_file * m,void * p)434  static int pkt_seq_show(struct seq_file *m, void *p)
435  {
436  	struct pktcdvd_device *pd = m->private;
437  	char *msg;
438  	int states[PACKET_NUM_STATES];
439  
440  	seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name,
441  		   file_bdev(pd->bdev_file));
442  
443  	seq_printf(m, "\nSettings:\n");
444  	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
445  
446  	if (pd->settings.write_type == 0)
447  		msg = "Packet";
448  	else
449  		msg = "Unknown";
450  	seq_printf(m, "\twrite type:\t\t%s\n", msg);
451  
452  	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
453  	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
454  
455  	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
456  
457  	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
458  		msg = "Mode 1";
459  	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
460  		msg = "Mode 2";
461  	else
462  		msg = "Unknown";
463  	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
464  
465  	seq_printf(m, "\nStatistics:\n");
466  	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
467  	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
468  	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
469  	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
470  	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
471  
472  	seq_printf(m, "\nMisc:\n");
473  	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
474  	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
475  	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
476  	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
477  	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
478  	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
479  
480  	seq_printf(m, "\nQueue state:\n");
481  	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
482  	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
483  	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector);
484  
485  	pkt_count_states(pd, states);
486  	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
487  		   states[0], states[1], states[2], states[3], states[4], states[5]);
488  
489  	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
490  			pd->write_congestion_off,
491  			pd->write_congestion_on);
492  	return 0;
493  }
494  DEFINE_SHOW_ATTRIBUTE(pkt_seq);
495  
pkt_debugfs_dev_new(struct pktcdvd_device * pd)496  static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
497  {
498  	if (!pkt_debugfs_root)
499  		return;
500  	pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
501  
502  	pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
503  					     pd, &pkt_seq_fops);
504  }
505  
pkt_debugfs_dev_remove(struct pktcdvd_device * pd)506  static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
507  {
508  	if (!pkt_debugfs_root)
509  		return;
510  	debugfs_remove(pd->dfs_f_info);
511  	debugfs_remove(pd->dfs_d_root);
512  	pd->dfs_f_info = NULL;
513  	pd->dfs_d_root = NULL;
514  }
515  
pkt_debugfs_init(void)516  static void pkt_debugfs_init(void)
517  {
518  	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
519  }
520  
pkt_debugfs_cleanup(void)521  static void pkt_debugfs_cleanup(void)
522  {
523  	debugfs_remove(pkt_debugfs_root);
524  	pkt_debugfs_root = NULL;
525  }
526  
527  /* ----------------------------------------------------------*/
528  
529  
pkt_bio_finished(struct pktcdvd_device * pd)530  static void pkt_bio_finished(struct pktcdvd_device *pd)
531  {
532  	struct device *ddev = disk_to_dev(pd->disk);
533  
534  	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
535  	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
536  		dev_dbg(ddev, "queue empty\n");
537  		atomic_set(&pd->iosched.attention, 1);
538  		wake_up(&pd->wqueue);
539  	}
540  }
541  
542  /*
543   * Allocate a packet_data struct
544   */
pkt_alloc_packet_data(int frames)545  static struct packet_data *pkt_alloc_packet_data(int frames)
546  {
547  	int i;
548  	struct packet_data *pkt;
549  
550  	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
551  	if (!pkt)
552  		goto no_pkt;
553  
554  	pkt->frames = frames;
555  	pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
556  	if (!pkt->w_bio)
557  		goto no_bio;
558  
559  	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
560  		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
561  		if (!pkt->pages[i])
562  			goto no_page;
563  	}
564  
565  	spin_lock_init(&pkt->lock);
566  	bio_list_init(&pkt->orig_bios);
567  
568  	for (i = 0; i < frames; i++) {
569  		pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
570  		if (!pkt->r_bios[i])
571  			goto no_rd_bio;
572  	}
573  
574  	return pkt;
575  
576  no_rd_bio:
577  	for (i = 0; i < frames; i++)
578  		kfree(pkt->r_bios[i]);
579  no_page:
580  	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
581  		if (pkt->pages[i])
582  			__free_page(pkt->pages[i]);
583  	kfree(pkt->w_bio);
584  no_bio:
585  	kfree(pkt);
586  no_pkt:
587  	return NULL;
588  }
589  
590  /*
591   * Free a packet_data struct
592   */
pkt_free_packet_data(struct packet_data * pkt)593  static void pkt_free_packet_data(struct packet_data *pkt)
594  {
595  	int i;
596  
597  	for (i = 0; i < pkt->frames; i++)
598  		kfree(pkt->r_bios[i]);
599  	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
600  		__free_page(pkt->pages[i]);
601  	kfree(pkt->w_bio);
602  	kfree(pkt);
603  }
604  
pkt_shrink_pktlist(struct pktcdvd_device * pd)605  static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
606  {
607  	struct packet_data *pkt, *next;
608  
609  	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
610  
611  	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
612  		pkt_free_packet_data(pkt);
613  	}
614  	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
615  }
616  
pkt_grow_pktlist(struct pktcdvd_device * pd,int nr_packets)617  static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
618  {
619  	struct packet_data *pkt;
620  
621  	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
622  
623  	while (nr_packets > 0) {
624  		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
625  		if (!pkt) {
626  			pkt_shrink_pktlist(pd);
627  			return 0;
628  		}
629  		pkt->id = nr_packets;
630  		pkt->pd = pd;
631  		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
632  		nr_packets--;
633  	}
634  	return 1;
635  }
636  
pkt_rbtree_next(struct pkt_rb_node * node)637  static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
638  {
639  	struct rb_node *n = rb_next(&node->rb_node);
640  	if (!n)
641  		return NULL;
642  	return rb_entry(n, struct pkt_rb_node, rb_node);
643  }
644  
pkt_rbtree_erase(struct pktcdvd_device * pd,struct pkt_rb_node * node)645  static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
646  {
647  	rb_erase(&node->rb_node, &pd->bio_queue);
648  	mempool_free(node, &pd->rb_pool);
649  	pd->bio_queue_size--;
650  	BUG_ON(pd->bio_queue_size < 0);
651  }
652  
653  /*
654   * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
655   */
pkt_rbtree_find(struct pktcdvd_device * pd,sector_t s)656  static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
657  {
658  	struct rb_node *n = pd->bio_queue.rb_node;
659  	struct rb_node *next;
660  	struct pkt_rb_node *tmp;
661  
662  	if (!n) {
663  		BUG_ON(pd->bio_queue_size > 0);
664  		return NULL;
665  	}
666  
667  	for (;;) {
668  		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
669  		if (s <= tmp->bio->bi_iter.bi_sector)
670  			next = n->rb_left;
671  		else
672  			next = n->rb_right;
673  		if (!next)
674  			break;
675  		n = next;
676  	}
677  
678  	if (s > tmp->bio->bi_iter.bi_sector) {
679  		tmp = pkt_rbtree_next(tmp);
680  		if (!tmp)
681  			return NULL;
682  	}
683  	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
684  	return tmp;
685  }
686  
687  /*
688   * Insert a node into the pd->bio_queue rb tree.
689   */
pkt_rbtree_insert(struct pktcdvd_device * pd,struct pkt_rb_node * node)690  static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
691  {
692  	struct rb_node **p = &pd->bio_queue.rb_node;
693  	struct rb_node *parent = NULL;
694  	sector_t s = node->bio->bi_iter.bi_sector;
695  	struct pkt_rb_node *tmp;
696  
697  	while (*p) {
698  		parent = *p;
699  		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
700  		if (s < tmp->bio->bi_iter.bi_sector)
701  			p = &(*p)->rb_left;
702  		else
703  			p = &(*p)->rb_right;
704  	}
705  	rb_link_node(&node->rb_node, parent, p);
706  	rb_insert_color(&node->rb_node, &pd->bio_queue);
707  	pd->bio_queue_size++;
708  }
709  
710  /*
711   * Send a packet_command to the underlying block device and
712   * wait for completion.
713   */
pkt_generic_packet(struct pktcdvd_device * pd,struct packet_command * cgc)714  static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
715  {
716  	struct request_queue *q = bdev_get_queue(file_bdev(pd->bdev_file));
717  	struct scsi_cmnd *scmd;
718  	struct request *rq;
719  	int ret = 0;
720  
721  	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
722  			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
723  	if (IS_ERR(rq))
724  		return PTR_ERR(rq);
725  	scmd = blk_mq_rq_to_pdu(rq);
726  
727  	if (cgc->buflen) {
728  		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
729  				      GFP_NOIO);
730  		if (ret)
731  			goto out;
732  	}
733  
734  	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
735  	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
736  
737  	rq->timeout = 60*HZ;
738  	if (cgc->quiet)
739  		rq->rq_flags |= RQF_QUIET;
740  
741  	blk_execute_rq(rq, false);
742  	if (scmd->result)
743  		ret = -EIO;
744  out:
745  	blk_mq_free_request(rq);
746  	return ret;
747  }
748  
sense_key_string(__u8 index)749  static const char *sense_key_string(__u8 index)
750  {
751  	static const char * const info[] = {
752  		"No sense", "Recovered error", "Not ready",
753  		"Medium error", "Hardware error", "Illegal request",
754  		"Unit attention", "Data protect", "Blank check",
755  	};
756  
757  	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
758  }
759  
760  /*
761   * A generic sense dump / resolve mechanism should be implemented across
762   * all ATAPI + SCSI devices.
763   */
pkt_dump_sense(struct pktcdvd_device * pd,struct packet_command * cgc)764  static void pkt_dump_sense(struct pktcdvd_device *pd,
765  			   struct packet_command *cgc)
766  {
767  	struct device *ddev = disk_to_dev(pd->disk);
768  	struct scsi_sense_hdr *sshdr = cgc->sshdr;
769  
770  	if (sshdr)
771  		dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
772  			CDROM_PACKET_SIZE, cgc->cmd,
773  			sshdr->sense_key, sshdr->asc, sshdr->ascq,
774  			sense_key_string(sshdr->sense_key));
775  	else
776  		dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
777  }
778  
779  /*
780   * flush the drive cache to media
781   */
pkt_flush_cache(struct pktcdvd_device * pd)782  static int pkt_flush_cache(struct pktcdvd_device *pd)
783  {
784  	struct packet_command cgc;
785  
786  	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
787  	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
788  	cgc.quiet = 1;
789  
790  	/*
791  	 * the IMMED bit -- we default to not setting it, although that
792  	 * would allow a much faster close, this is safer
793  	 */
794  #if 0
795  	cgc.cmd[1] = 1 << 1;
796  #endif
797  	return pkt_generic_packet(pd, &cgc);
798  }
799  
800  /*
801   * speed is given as the normal factor, e.g. 4 for 4x
802   */
pkt_set_speed(struct pktcdvd_device * pd,unsigned write_speed,unsigned read_speed)803  static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
804  				unsigned write_speed, unsigned read_speed)
805  {
806  	struct packet_command cgc;
807  	struct scsi_sense_hdr sshdr;
808  	int ret;
809  
810  	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
811  	cgc.sshdr = &sshdr;
812  	cgc.cmd[0] = GPCMD_SET_SPEED;
813  	put_unaligned_be16(read_speed, &cgc.cmd[2]);
814  	put_unaligned_be16(write_speed, &cgc.cmd[4]);
815  
816  	ret = pkt_generic_packet(pd, &cgc);
817  	if (ret)
818  		pkt_dump_sense(pd, &cgc);
819  
820  	return ret;
821  }
822  
823  /*
824   * Queue a bio for processing by the low-level CD device. Must be called
825   * from process context.
826   */
pkt_queue_bio(struct pktcdvd_device * pd,struct bio * bio)827  static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
828  {
829  	/*
830  	 * Some CDRW drives can not handle writes larger than one packet,
831  	 * even if the size is a multiple of the packet size.
832  	 */
833  	bio->bi_opf |= REQ_NOMERGE;
834  
835  	spin_lock(&pd->iosched.lock);
836  	if (bio_data_dir(bio) == READ)
837  		bio_list_add(&pd->iosched.read_queue, bio);
838  	else
839  		bio_list_add(&pd->iosched.write_queue, bio);
840  	spin_unlock(&pd->iosched.lock);
841  
842  	atomic_set(&pd->iosched.attention, 1);
843  	wake_up(&pd->wqueue);
844  }
845  
846  /*
847   * Process the queued read/write requests. This function handles special
848   * requirements for CDRW drives:
849   * - A cache flush command must be inserted before a read request if the
850   *   previous request was a write.
851   * - Switching between reading and writing is slow, so don't do it more often
852   *   than necessary.
853   * - Optimize for throughput at the expense of latency. This means that streaming
854   *   writes will never be interrupted by a read, but if the drive has to seek
855   *   before the next write, switch to reading instead if there are any pending
856   *   read requests.
857   * - Set the read speed according to current usage pattern. When only reading
858   *   from the device, it's best to use the highest possible read speed, but
859   *   when switching often between reading and writing, it's better to have the
860   *   same read and write speeds.
861   */
pkt_iosched_process_queue(struct pktcdvd_device * pd)862  static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
863  {
864  	struct device *ddev = disk_to_dev(pd->disk);
865  
866  	if (atomic_read(&pd->iosched.attention) == 0)
867  		return;
868  	atomic_set(&pd->iosched.attention, 0);
869  
870  	for (;;) {
871  		struct bio *bio;
872  		int reads_queued, writes_queued;
873  
874  		spin_lock(&pd->iosched.lock);
875  		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
876  		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
877  		spin_unlock(&pd->iosched.lock);
878  
879  		if (!reads_queued && !writes_queued)
880  			break;
881  
882  		if (pd->iosched.writing) {
883  			int need_write_seek = 1;
884  			spin_lock(&pd->iosched.lock);
885  			bio = bio_list_peek(&pd->iosched.write_queue);
886  			spin_unlock(&pd->iosched.lock);
887  			if (bio && (bio->bi_iter.bi_sector ==
888  				    pd->iosched.last_write))
889  				need_write_seek = 0;
890  			if (need_write_seek && reads_queued) {
891  				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
892  					dev_dbg(ddev, "write, waiting\n");
893  					break;
894  				}
895  				pkt_flush_cache(pd);
896  				pd->iosched.writing = 0;
897  			}
898  		} else {
899  			if (!reads_queued && writes_queued) {
900  				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
901  					dev_dbg(ddev, "read, waiting\n");
902  					break;
903  				}
904  				pd->iosched.writing = 1;
905  			}
906  		}
907  
908  		spin_lock(&pd->iosched.lock);
909  		if (pd->iosched.writing)
910  			bio = bio_list_pop(&pd->iosched.write_queue);
911  		else
912  			bio = bio_list_pop(&pd->iosched.read_queue);
913  		spin_unlock(&pd->iosched.lock);
914  
915  		if (!bio)
916  			continue;
917  
918  		if (bio_data_dir(bio) == READ)
919  			pd->iosched.successive_reads +=
920  				bio->bi_iter.bi_size >> 10;
921  		else {
922  			pd->iosched.successive_reads = 0;
923  			pd->iosched.last_write = bio_end_sector(bio);
924  		}
925  		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
926  			if (pd->read_speed == pd->write_speed) {
927  				pd->read_speed = MAX_SPEED;
928  				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
929  			}
930  		} else {
931  			if (pd->read_speed != pd->write_speed) {
932  				pd->read_speed = pd->write_speed;
933  				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
934  			}
935  		}
936  
937  		atomic_inc(&pd->cdrw.pending_bios);
938  		submit_bio_noacct(bio);
939  	}
940  }
941  
942  /*
943   * Special care is needed if the underlying block device has a small
944   * max_phys_segments value.
945   */
pkt_set_segment_merging(struct pktcdvd_device * pd,struct request_queue * q)946  static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
947  {
948  	struct device *ddev = disk_to_dev(pd->disk);
949  
950  	if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) {
951  		/*
952  		 * The cdrom device can handle one segment/frame
953  		 */
954  		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
955  		return 0;
956  	}
957  
958  	if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) {
959  		/*
960  		 * We can handle this case at the expense of some extra memory
961  		 * copies during write operations
962  		 */
963  		set_bit(PACKET_MERGE_SEGS, &pd->flags);
964  		return 0;
965  	}
966  
967  	dev_err(ddev, "cdrom max_phys_segments too small\n");
968  	return -EIO;
969  }
970  
pkt_end_io_read(struct bio * bio)971  static void pkt_end_io_read(struct bio *bio)
972  {
973  	struct packet_data *pkt = bio->bi_private;
974  	struct pktcdvd_device *pd = pkt->pd;
975  	BUG_ON(!pd);
976  
977  	dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
978  		bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status);
979  
980  	if (bio->bi_status)
981  		atomic_inc(&pkt->io_errors);
982  	bio_uninit(bio);
983  	if (atomic_dec_and_test(&pkt->io_wait)) {
984  		atomic_inc(&pkt->run_sm);
985  		wake_up(&pd->wqueue);
986  	}
987  	pkt_bio_finished(pd);
988  }
989  
pkt_end_io_packet_write(struct bio * bio)990  static void pkt_end_io_packet_write(struct bio *bio)
991  {
992  	struct packet_data *pkt = bio->bi_private;
993  	struct pktcdvd_device *pd = pkt->pd;
994  	BUG_ON(!pd);
995  
996  	dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
997  
998  	pd->stats.pkt_ended++;
999  
1000  	bio_uninit(bio);
1001  	pkt_bio_finished(pd);
1002  	atomic_dec(&pkt->io_wait);
1003  	atomic_inc(&pkt->run_sm);
1004  	wake_up(&pd->wqueue);
1005  }
1006  
1007  /*
1008   * Schedule reads for the holes in a packet
1009   */
pkt_gather_data(struct pktcdvd_device * pd,struct packet_data * pkt)1010  static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1011  {
1012  	struct device *ddev = disk_to_dev(pd->disk);
1013  	int frames_read = 0;
1014  	struct bio *bio;
1015  	int f;
1016  	char written[PACKET_MAX_SIZE];
1017  
1018  	BUG_ON(bio_list_empty(&pkt->orig_bios));
1019  
1020  	atomic_set(&pkt->io_wait, 0);
1021  	atomic_set(&pkt->io_errors, 0);
1022  
1023  	/*
1024  	 * Figure out which frames we need to read before we can write.
1025  	 */
1026  	memset(written, 0, sizeof(written));
1027  	spin_lock(&pkt->lock);
1028  	bio_list_for_each(bio, &pkt->orig_bios) {
1029  		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1030  			(CD_FRAMESIZE >> 9);
1031  		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1032  		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1033  		BUG_ON(first_frame < 0);
1034  		BUG_ON(first_frame + num_frames > pkt->frames);
1035  		for (f = first_frame; f < first_frame + num_frames; f++)
1036  			written[f] = 1;
1037  	}
1038  	spin_unlock(&pkt->lock);
1039  
1040  	if (pkt->cache_valid) {
1041  		dev_dbg(ddev, "zone %llx cached\n", pkt->sector);
1042  		goto out_account;
1043  	}
1044  
1045  	/*
1046  	 * Schedule reads for missing parts of the packet.
1047  	 */
1048  	for (f = 0; f < pkt->frames; f++) {
1049  		int p, offset;
1050  
1051  		if (written[f])
1052  			continue;
1053  
1054  		bio = pkt->r_bios[f];
1055  		bio_init(bio, file_bdev(pd->bdev_file), bio->bi_inline_vecs, 1,
1056  			 REQ_OP_READ);
1057  		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1058  		bio->bi_end_io = pkt_end_io_read;
1059  		bio->bi_private = pkt;
1060  
1061  		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1062  		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1063  		dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1064  			pkt->pages[p], offset);
1065  		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1066  			BUG();
1067  
1068  		atomic_inc(&pkt->io_wait);
1069  		pkt_queue_bio(pd, bio);
1070  		frames_read++;
1071  	}
1072  
1073  out_account:
1074  	dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector);
1075  	pd->stats.pkt_started++;
1076  	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1077  }
1078  
1079  /*
1080   * Find a packet matching zone, or the least recently used packet if
1081   * there is no match.
1082   */
pkt_get_packet_data(struct pktcdvd_device * pd,int zone)1083  static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1084  {
1085  	struct packet_data *pkt;
1086  
1087  	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1088  		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1089  			list_del_init(&pkt->list);
1090  			if (pkt->sector != zone)
1091  				pkt->cache_valid = 0;
1092  			return pkt;
1093  		}
1094  	}
1095  	BUG();
1096  	return NULL;
1097  }
1098  
pkt_put_packet_data(struct pktcdvd_device * pd,struct packet_data * pkt)1099  static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1100  {
1101  	if (pkt->cache_valid) {
1102  		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1103  	} else {
1104  		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1105  	}
1106  }
1107  
pkt_set_state(struct device * ddev,struct packet_data * pkt,enum packet_data_state state)1108  static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1109  				 enum packet_data_state state)
1110  {
1111  	static const char *state_name[] = {
1112  		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1113  	};
1114  	enum packet_data_state old_state = pkt->state;
1115  
1116  	dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1117  		pkt->id, pkt->sector, state_name[old_state], state_name[state]);
1118  
1119  	pkt->state = state;
1120  }
1121  
1122  /*
1123   * Scan the work queue to see if we can start a new packet.
1124   * returns non-zero if any work was done.
1125   */
pkt_handle_queue(struct pktcdvd_device * pd)1126  static int pkt_handle_queue(struct pktcdvd_device *pd)
1127  {
1128  	struct device *ddev = disk_to_dev(pd->disk);
1129  	struct packet_data *pkt, *p;
1130  	struct bio *bio = NULL;
1131  	sector_t zone = 0; /* Suppress gcc warning */
1132  	struct pkt_rb_node *node, *first_node;
1133  	struct rb_node *n;
1134  
1135  	atomic_set(&pd->scan_queue, 0);
1136  
1137  	if (list_empty(&pd->cdrw.pkt_free_list)) {
1138  		dev_dbg(ddev, "no pkt\n");
1139  		return 0;
1140  	}
1141  
1142  	/*
1143  	 * Try to find a zone we are not already working on.
1144  	 */
1145  	spin_lock(&pd->lock);
1146  	first_node = pkt_rbtree_find(pd, pd->current_sector);
1147  	if (!first_node) {
1148  		n = rb_first(&pd->bio_queue);
1149  		if (n)
1150  			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1151  	}
1152  	node = first_node;
1153  	while (node) {
1154  		bio = node->bio;
1155  		zone = get_zone(bio->bi_iter.bi_sector, pd);
1156  		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1157  			if (p->sector == zone) {
1158  				bio = NULL;
1159  				goto try_next_bio;
1160  			}
1161  		}
1162  		break;
1163  try_next_bio:
1164  		node = pkt_rbtree_next(node);
1165  		if (!node) {
1166  			n = rb_first(&pd->bio_queue);
1167  			if (n)
1168  				node = rb_entry(n, struct pkt_rb_node, rb_node);
1169  		}
1170  		if (node == first_node)
1171  			node = NULL;
1172  	}
1173  	spin_unlock(&pd->lock);
1174  	if (!bio) {
1175  		dev_dbg(ddev, "no bio\n");
1176  		return 0;
1177  	}
1178  
1179  	pkt = pkt_get_packet_data(pd, zone);
1180  
1181  	pd->current_sector = zone + pd->settings.size;
1182  	pkt->sector = zone;
1183  	BUG_ON(pkt->frames != pd->settings.size >> 2);
1184  	pkt->write_size = 0;
1185  
1186  	/*
1187  	 * Scan work queue for bios in the same zone and link them
1188  	 * to this packet.
1189  	 */
1190  	spin_lock(&pd->lock);
1191  	dev_dbg(ddev, "looking for zone %llx\n", zone);
1192  	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1193  		sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1194  
1195  		bio = node->bio;
1196  		dev_dbg(ddev, "found zone=%llx\n", tmp);
1197  		if (tmp != zone)
1198  			break;
1199  		pkt_rbtree_erase(pd, node);
1200  		spin_lock(&pkt->lock);
1201  		bio_list_add(&pkt->orig_bios, bio);
1202  		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1203  		spin_unlock(&pkt->lock);
1204  	}
1205  	/* check write congestion marks, and if bio_queue_size is
1206  	 * below, wake up any waiters
1207  	 */
1208  	if (pd->congested &&
1209  	    pd->bio_queue_size <= pd->write_congestion_off) {
1210  		pd->congested = false;
1211  		wake_up_var(&pd->congested);
1212  	}
1213  	spin_unlock(&pd->lock);
1214  
1215  	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1216  	pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1217  	atomic_set(&pkt->run_sm, 1);
1218  
1219  	spin_lock(&pd->cdrw.active_list_lock);
1220  	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1221  	spin_unlock(&pd->cdrw.active_list_lock);
1222  
1223  	return 1;
1224  }
1225  
1226  /**
1227   * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1228   * another
1229   * @src: source bio list
1230   * @dst: destination bio list
1231   *
1232   * Stops when it reaches the end of either the @src list or @dst list - that is,
1233   * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1234   * bios).
1235   */
bio_list_copy_data(struct bio * dst,struct bio * src)1236  static void bio_list_copy_data(struct bio *dst, struct bio *src)
1237  {
1238  	struct bvec_iter src_iter = src->bi_iter;
1239  	struct bvec_iter dst_iter = dst->bi_iter;
1240  
1241  	while (1) {
1242  		if (!src_iter.bi_size) {
1243  			src = src->bi_next;
1244  			if (!src)
1245  				break;
1246  
1247  			src_iter = src->bi_iter;
1248  		}
1249  
1250  		if (!dst_iter.bi_size) {
1251  			dst = dst->bi_next;
1252  			if (!dst)
1253  				break;
1254  
1255  			dst_iter = dst->bi_iter;
1256  		}
1257  
1258  		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1259  	}
1260  }
1261  
1262  /*
1263   * Assemble a bio to write one packet and queue the bio for processing
1264   * by the underlying block device.
1265   */
pkt_start_write(struct pktcdvd_device * pd,struct packet_data * pkt)1266  static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1267  {
1268  	struct device *ddev = disk_to_dev(pd->disk);
1269  	int f;
1270  
1271  	bio_init(pkt->w_bio, file_bdev(pd->bdev_file), pkt->w_bio->bi_inline_vecs,
1272  		 pkt->frames, REQ_OP_WRITE);
1273  	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1274  	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1275  	pkt->w_bio->bi_private = pkt;
1276  
1277  	/* XXX: locking? */
1278  	for (f = 0; f < pkt->frames; f++) {
1279  		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1280  		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1281  
1282  		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1283  			BUG();
1284  	}
1285  	dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1286  
1287  	/*
1288  	 * Fill-in bvec with data from orig_bios.
1289  	 */
1290  	spin_lock(&pkt->lock);
1291  	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1292  
1293  	pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
1294  	spin_unlock(&pkt->lock);
1295  
1296  	dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector);
1297  
1298  	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1299  		pkt->cache_valid = 1;
1300  	else
1301  		pkt->cache_valid = 0;
1302  
1303  	/* Start the write request */
1304  	atomic_set(&pkt->io_wait, 1);
1305  	pkt_queue_bio(pd, pkt->w_bio);
1306  }
1307  
pkt_finish_packet(struct packet_data * pkt,blk_status_t status)1308  static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1309  {
1310  	struct bio *bio;
1311  
1312  	if (status)
1313  		pkt->cache_valid = 0;
1314  
1315  	/* Finish all bios corresponding to this packet */
1316  	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1317  		bio->bi_status = status;
1318  		bio_endio(bio);
1319  	}
1320  }
1321  
pkt_run_state_machine(struct pktcdvd_device * pd,struct packet_data * pkt)1322  static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1323  {
1324  	struct device *ddev = disk_to_dev(pd->disk);
1325  
1326  	dev_dbg(ddev, "pkt %d\n", pkt->id);
1327  
1328  	for (;;) {
1329  		switch (pkt->state) {
1330  		case PACKET_WAITING_STATE:
1331  			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1332  				return;
1333  
1334  			pkt->sleep_time = 0;
1335  			pkt_gather_data(pd, pkt);
1336  			pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1337  			break;
1338  
1339  		case PACKET_READ_WAIT_STATE:
1340  			if (atomic_read(&pkt->io_wait) > 0)
1341  				return;
1342  
1343  			if (atomic_read(&pkt->io_errors) > 0) {
1344  				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1345  			} else {
1346  				pkt_start_write(pd, pkt);
1347  			}
1348  			break;
1349  
1350  		case PACKET_WRITE_WAIT_STATE:
1351  			if (atomic_read(&pkt->io_wait) > 0)
1352  				return;
1353  
1354  			if (!pkt->w_bio->bi_status) {
1355  				pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1356  			} else {
1357  				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1358  			}
1359  			break;
1360  
1361  		case PACKET_RECOVERY_STATE:
1362  			dev_dbg(ddev, "No recovery possible\n");
1363  			pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1364  			break;
1365  
1366  		case PACKET_FINISHED_STATE:
1367  			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1368  			return;
1369  
1370  		default:
1371  			BUG();
1372  			break;
1373  		}
1374  	}
1375  }
1376  
pkt_handle_packets(struct pktcdvd_device * pd)1377  static void pkt_handle_packets(struct pktcdvd_device *pd)
1378  {
1379  	struct device *ddev = disk_to_dev(pd->disk);
1380  	struct packet_data *pkt, *next;
1381  
1382  	/*
1383  	 * Run state machine for active packets
1384  	 */
1385  	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1386  		if (atomic_read(&pkt->run_sm) > 0) {
1387  			atomic_set(&pkt->run_sm, 0);
1388  			pkt_run_state_machine(pd, pkt);
1389  		}
1390  	}
1391  
1392  	/*
1393  	 * Move no longer active packets to the free list
1394  	 */
1395  	spin_lock(&pd->cdrw.active_list_lock);
1396  	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1397  		if (pkt->state == PACKET_FINISHED_STATE) {
1398  			list_del(&pkt->list);
1399  			pkt_put_packet_data(pd, pkt);
1400  			pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1401  			atomic_set(&pd->scan_queue, 1);
1402  		}
1403  	}
1404  	spin_unlock(&pd->cdrw.active_list_lock);
1405  }
1406  
1407  /*
1408   * kcdrwd is woken up when writes have been queued for one of our
1409   * registered devices
1410   */
kcdrwd(void * foobar)1411  static int kcdrwd(void *foobar)
1412  {
1413  	struct pktcdvd_device *pd = foobar;
1414  	struct device *ddev = disk_to_dev(pd->disk);
1415  	struct packet_data *pkt;
1416  	int states[PACKET_NUM_STATES];
1417  	long min_sleep_time, residue;
1418  
1419  	set_user_nice(current, MIN_NICE);
1420  	set_freezable();
1421  
1422  	for (;;) {
1423  		DECLARE_WAITQUEUE(wait, current);
1424  
1425  		/*
1426  		 * Wait until there is something to do
1427  		 */
1428  		add_wait_queue(&pd->wqueue, &wait);
1429  		for (;;) {
1430  			set_current_state(TASK_INTERRUPTIBLE);
1431  
1432  			/* Check if we need to run pkt_handle_queue */
1433  			if (atomic_read(&pd->scan_queue) > 0)
1434  				goto work_to_do;
1435  
1436  			/* Check if we need to run the state machine for some packet */
1437  			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1438  				if (atomic_read(&pkt->run_sm) > 0)
1439  					goto work_to_do;
1440  			}
1441  
1442  			/* Check if we need to process the iosched queues */
1443  			if (atomic_read(&pd->iosched.attention) != 0)
1444  				goto work_to_do;
1445  
1446  			/* Otherwise, go to sleep */
1447  			pkt_count_states(pd, states);
1448  			dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1449  				states[0], states[1], states[2], states[3], states[4], states[5]);
1450  
1451  			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1452  			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1453  				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1454  					min_sleep_time = pkt->sleep_time;
1455  			}
1456  
1457  			dev_dbg(ddev, "sleeping\n");
1458  			residue = schedule_timeout(min_sleep_time);
1459  			dev_dbg(ddev, "wake up\n");
1460  
1461  			/* make swsusp happy with our thread */
1462  			try_to_freeze();
1463  
1464  			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1465  				if (!pkt->sleep_time)
1466  					continue;
1467  				pkt->sleep_time -= min_sleep_time - residue;
1468  				if (pkt->sleep_time <= 0) {
1469  					pkt->sleep_time = 0;
1470  					atomic_inc(&pkt->run_sm);
1471  				}
1472  			}
1473  
1474  			if (kthread_should_stop())
1475  				break;
1476  		}
1477  work_to_do:
1478  		set_current_state(TASK_RUNNING);
1479  		remove_wait_queue(&pd->wqueue, &wait);
1480  
1481  		if (kthread_should_stop())
1482  			break;
1483  
1484  		/*
1485  		 * if pkt_handle_queue returns true, we can queue
1486  		 * another request.
1487  		 */
1488  		while (pkt_handle_queue(pd))
1489  			;
1490  
1491  		/*
1492  		 * Handle packet state machine
1493  		 */
1494  		pkt_handle_packets(pd);
1495  
1496  		/*
1497  		 * Handle iosched queues
1498  		 */
1499  		pkt_iosched_process_queue(pd);
1500  	}
1501  
1502  	return 0;
1503  }
1504  
pkt_print_settings(struct pktcdvd_device * pd)1505  static void pkt_print_settings(struct pktcdvd_device *pd)
1506  {
1507  	dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1508  		 pd->settings.fp ? "Fixed" : "Variable",
1509  		 pd->settings.size >> 2,
1510  		 pd->settings.block_mode == 8 ? '1' : '2');
1511  }
1512  
pkt_mode_sense(struct pktcdvd_device * pd,struct packet_command * cgc,int page_code,int page_control)1513  static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1514  {
1515  	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1516  
1517  	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1518  	cgc->cmd[2] = page_code | (page_control << 6);
1519  	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1520  	cgc->data_direction = CGC_DATA_READ;
1521  	return pkt_generic_packet(pd, cgc);
1522  }
1523  
pkt_mode_select(struct pktcdvd_device * pd,struct packet_command * cgc)1524  static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1525  {
1526  	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1527  	memset(cgc->buffer, 0, 2);
1528  	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1529  	cgc->cmd[1] = 0x10;		/* PF */
1530  	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1531  	cgc->data_direction = CGC_DATA_WRITE;
1532  	return pkt_generic_packet(pd, cgc);
1533  }
1534  
pkt_get_disc_info(struct pktcdvd_device * pd,disc_information * di)1535  static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1536  {
1537  	struct packet_command cgc;
1538  	int ret;
1539  
1540  	/* set up command and get the disc info */
1541  	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1542  	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1543  	cgc.cmd[8] = cgc.buflen = 2;
1544  	cgc.quiet = 1;
1545  
1546  	ret = pkt_generic_packet(pd, &cgc);
1547  	if (ret)
1548  		return ret;
1549  
1550  	/* not all drives have the same disc_info length, so requeue
1551  	 * packet with the length the drive tells us it can supply
1552  	 */
1553  	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1554  		     sizeof(di->disc_information_length);
1555  
1556  	if (cgc.buflen > sizeof(disc_information))
1557  		cgc.buflen = sizeof(disc_information);
1558  
1559  	cgc.cmd[8] = cgc.buflen;
1560  	return pkt_generic_packet(pd, &cgc);
1561  }
1562  
pkt_get_track_info(struct pktcdvd_device * pd,__u16 track,__u8 type,track_information * ti)1563  static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1564  {
1565  	struct packet_command cgc;
1566  	int ret;
1567  
1568  	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1569  	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1570  	cgc.cmd[1] = type & 3;
1571  	put_unaligned_be16(track, &cgc.cmd[4]);
1572  	cgc.cmd[8] = 8;
1573  	cgc.quiet = 1;
1574  
1575  	ret = pkt_generic_packet(pd, &cgc);
1576  	if (ret)
1577  		return ret;
1578  
1579  	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1580  		     sizeof(ti->track_information_length);
1581  
1582  	if (cgc.buflen > sizeof(track_information))
1583  		cgc.buflen = sizeof(track_information);
1584  
1585  	cgc.cmd[8] = cgc.buflen;
1586  	return pkt_generic_packet(pd, &cgc);
1587  }
1588  
pkt_get_last_written(struct pktcdvd_device * pd,long * last_written)1589  static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1590  						long *last_written)
1591  {
1592  	disc_information di;
1593  	track_information ti;
1594  	__u32 last_track;
1595  	int ret;
1596  
1597  	ret = pkt_get_disc_info(pd, &di);
1598  	if (ret)
1599  		return ret;
1600  
1601  	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1602  	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1603  	if (ret)
1604  		return ret;
1605  
1606  	/* if this track is blank, try the previous. */
1607  	if (ti.blank) {
1608  		last_track--;
1609  		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1610  		if (ret)
1611  			return ret;
1612  	}
1613  
1614  	/* if last recorded field is valid, return it. */
1615  	if (ti.lra_v) {
1616  		*last_written = be32_to_cpu(ti.last_rec_address);
1617  	} else {
1618  		/* make it up instead */
1619  		*last_written = be32_to_cpu(ti.track_start) +
1620  				be32_to_cpu(ti.track_size);
1621  		if (ti.free_blocks)
1622  			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1623  	}
1624  	return 0;
1625  }
1626  
1627  /*
1628   * write mode select package based on pd->settings
1629   */
pkt_set_write_settings(struct pktcdvd_device * pd)1630  static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1631  {
1632  	struct device *ddev = disk_to_dev(pd->disk);
1633  	struct packet_command cgc;
1634  	struct scsi_sense_hdr sshdr;
1635  	write_param_page *wp;
1636  	char buffer[128];
1637  	int ret, size;
1638  
1639  	/* doesn't apply to DVD+RW or DVD-RAM */
1640  	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1641  		return 0;
1642  
1643  	memset(buffer, 0, sizeof(buffer));
1644  	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1645  	cgc.sshdr = &sshdr;
1646  	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1647  	if (ret) {
1648  		pkt_dump_sense(pd, &cgc);
1649  		return ret;
1650  	}
1651  
1652  	size = 2 + get_unaligned_be16(&buffer[0]);
1653  	pd->mode_offset = get_unaligned_be16(&buffer[6]);
1654  	if (size > sizeof(buffer))
1655  		size = sizeof(buffer);
1656  
1657  	/*
1658  	 * now get it all
1659  	 */
1660  	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1661  	cgc.sshdr = &sshdr;
1662  	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1663  	if (ret) {
1664  		pkt_dump_sense(pd, &cgc);
1665  		return ret;
1666  	}
1667  
1668  	/*
1669  	 * write page is offset header + block descriptor length
1670  	 */
1671  	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1672  
1673  	wp->fp = pd->settings.fp;
1674  	wp->track_mode = pd->settings.track_mode;
1675  	wp->write_type = pd->settings.write_type;
1676  	wp->data_block_type = pd->settings.block_mode;
1677  
1678  	wp->multi_session = 0;
1679  
1680  #ifdef PACKET_USE_LS
1681  	wp->link_size = 7;
1682  	wp->ls_v = 1;
1683  #endif
1684  
1685  	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1686  		wp->session_format = 0;
1687  		wp->subhdr2 = 0x20;
1688  	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1689  		wp->session_format = 0x20;
1690  		wp->subhdr2 = 8;
1691  #if 0
1692  		wp->mcn[0] = 0x80;
1693  		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1694  #endif
1695  	} else {
1696  		/*
1697  		 * paranoia
1698  		 */
1699  		dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1700  		return 1;
1701  	}
1702  	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1703  
1704  	cgc.buflen = cgc.cmd[8] = size;
1705  	ret = pkt_mode_select(pd, &cgc);
1706  	if (ret) {
1707  		pkt_dump_sense(pd, &cgc);
1708  		return ret;
1709  	}
1710  
1711  	pkt_print_settings(pd);
1712  	return 0;
1713  }
1714  
1715  /*
1716   * 1 -- we can write to this track, 0 -- we can't
1717   */
pkt_writable_track(struct pktcdvd_device * pd,track_information * ti)1718  static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1719  {
1720  	struct device *ddev = disk_to_dev(pd->disk);
1721  
1722  	switch (pd->mmc3_profile) {
1723  		case 0x1a: /* DVD+RW */
1724  		case 0x12: /* DVD-RAM */
1725  			/* The track is always writable on DVD+RW/DVD-RAM */
1726  			return 1;
1727  		default:
1728  			break;
1729  	}
1730  
1731  	if (!ti->packet || !ti->fp)
1732  		return 0;
1733  
1734  	/*
1735  	 * "good" settings as per Mt Fuji.
1736  	 */
1737  	if (ti->rt == 0 && ti->blank == 0)
1738  		return 1;
1739  
1740  	if (ti->rt == 0 && ti->blank == 1)
1741  		return 1;
1742  
1743  	if (ti->rt == 1 && ti->blank == 0)
1744  		return 1;
1745  
1746  	dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1747  	return 0;
1748  }
1749  
1750  /*
1751   * 1 -- we can write to this disc, 0 -- we can't
1752   */
pkt_writable_disc(struct pktcdvd_device * pd,disc_information * di)1753  static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1754  {
1755  	struct device *ddev = disk_to_dev(pd->disk);
1756  
1757  	switch (pd->mmc3_profile) {
1758  		case 0x0a: /* CD-RW */
1759  		case 0xffff: /* MMC3 not supported */
1760  			break;
1761  		case 0x1a: /* DVD+RW */
1762  		case 0x13: /* DVD-RW */
1763  		case 0x12: /* DVD-RAM */
1764  			return 1;
1765  		default:
1766  			dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1767  			return 0;
1768  	}
1769  
1770  	/*
1771  	 * for disc type 0xff we should probably reserve a new track.
1772  	 * but i'm not sure, should we leave this to user apps? probably.
1773  	 */
1774  	if (di->disc_type == 0xff) {
1775  		dev_notice(ddev, "unknown disc - no track?\n");
1776  		return 0;
1777  	}
1778  
1779  	if (di->disc_type != 0x20 && di->disc_type != 0) {
1780  		dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1781  		return 0;
1782  	}
1783  
1784  	if (di->erasable == 0) {
1785  		dev_err(ddev, "disc not erasable\n");
1786  		return 0;
1787  	}
1788  
1789  	if (di->border_status == PACKET_SESSION_RESERVED) {
1790  		dev_err(ddev, "can't write to last track (reserved)\n");
1791  		return 0;
1792  	}
1793  
1794  	return 1;
1795  }
1796  
pkt_probe_settings(struct pktcdvd_device * pd)1797  static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1798  {
1799  	struct device *ddev = disk_to_dev(pd->disk);
1800  	struct packet_command cgc;
1801  	unsigned char buf[12];
1802  	disc_information di;
1803  	track_information ti;
1804  	int ret, track;
1805  
1806  	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1807  	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1808  	cgc.cmd[8] = 8;
1809  	ret = pkt_generic_packet(pd, &cgc);
1810  	pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]);
1811  
1812  	memset(&di, 0, sizeof(disc_information));
1813  	memset(&ti, 0, sizeof(track_information));
1814  
1815  	ret = pkt_get_disc_info(pd, &di);
1816  	if (ret) {
1817  		dev_err(ddev, "failed get_disc\n");
1818  		return ret;
1819  	}
1820  
1821  	if (!pkt_writable_disc(pd, &di))
1822  		return -EROFS;
1823  
1824  	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1825  
1826  	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1827  	ret = pkt_get_track_info(pd, track, 1, &ti);
1828  	if (ret) {
1829  		dev_err(ddev, "failed get_track\n");
1830  		return ret;
1831  	}
1832  
1833  	if (!pkt_writable_track(pd, &ti)) {
1834  		dev_err(ddev, "can't write to this track\n");
1835  		return -EROFS;
1836  	}
1837  
1838  	/*
1839  	 * we keep packet size in 512 byte units, makes it easier to
1840  	 * deal with request calculations.
1841  	 */
1842  	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1843  	if (pd->settings.size == 0) {
1844  		dev_notice(ddev, "detected zero packet size!\n");
1845  		return -ENXIO;
1846  	}
1847  	if (pd->settings.size > PACKET_MAX_SECTORS) {
1848  		dev_err(ddev, "packet size is too big\n");
1849  		return -EROFS;
1850  	}
1851  	pd->settings.fp = ti.fp;
1852  	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1853  
1854  	if (ti.nwa_v) {
1855  		pd->nwa = be32_to_cpu(ti.next_writable);
1856  		set_bit(PACKET_NWA_VALID, &pd->flags);
1857  	}
1858  
1859  	/*
1860  	 * in theory we could use lra on -RW media as well and just zero
1861  	 * blocks that haven't been written yet, but in practice that
1862  	 * is just a no-go. we'll use that for -R, naturally.
1863  	 */
1864  	if (ti.lra_v) {
1865  		pd->lra = be32_to_cpu(ti.last_rec_address);
1866  		set_bit(PACKET_LRA_VALID, &pd->flags);
1867  	} else {
1868  		pd->lra = 0xffffffff;
1869  		set_bit(PACKET_LRA_VALID, &pd->flags);
1870  	}
1871  
1872  	/*
1873  	 * fine for now
1874  	 */
1875  	pd->settings.link_loss = 7;
1876  	pd->settings.write_type = 0;	/* packet */
1877  	pd->settings.track_mode = ti.track_mode;
1878  
1879  	/*
1880  	 * mode1 or mode2 disc
1881  	 */
1882  	switch (ti.data_mode) {
1883  		case PACKET_MODE1:
1884  			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1885  			break;
1886  		case PACKET_MODE2:
1887  			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1888  			break;
1889  		default:
1890  			dev_err(ddev, "unknown data mode\n");
1891  			return -EROFS;
1892  	}
1893  	return 0;
1894  }
1895  
1896  /*
1897   * enable/disable write caching on drive
1898   */
pkt_write_caching(struct pktcdvd_device * pd)1899  static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
1900  {
1901  	struct device *ddev = disk_to_dev(pd->disk);
1902  	struct packet_command cgc;
1903  	struct scsi_sense_hdr sshdr;
1904  	unsigned char buf[64];
1905  	bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1906  	int ret;
1907  
1908  	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1909  	cgc.sshdr = &sshdr;
1910  	cgc.buflen = pd->mode_offset + 12;
1911  
1912  	/*
1913  	 * caching mode page might not be there, so quiet this command
1914  	 */
1915  	cgc.quiet = 1;
1916  
1917  	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1918  	if (ret)
1919  		return ret;
1920  
1921  	/*
1922  	 * use drive write caching -- we need deferred error handling to be
1923  	 * able to successfully recover with this option (drive will return good
1924  	 * status as soon as the cdb is validated).
1925  	 */
1926  	buf[pd->mode_offset + 10] |= (set << 2);
1927  
1928  	cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]);
1929  	ret = pkt_mode_select(pd, &cgc);
1930  	if (ret) {
1931  		dev_err(ddev, "write caching control failed\n");
1932  		pkt_dump_sense(pd, &cgc);
1933  	} else if (!ret && set)
1934  		dev_notice(ddev, "enabled write caching\n");
1935  	return ret;
1936  }
1937  
pkt_lock_door(struct pktcdvd_device * pd,int lockflag)1938  static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1939  {
1940  	struct packet_command cgc;
1941  
1942  	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1943  	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1944  	cgc.cmd[4] = lockflag ? 1 : 0;
1945  	return pkt_generic_packet(pd, &cgc);
1946  }
1947  
1948  /*
1949   * Returns drive maximum write speed
1950   */
pkt_get_max_speed(struct pktcdvd_device * pd,unsigned * write_speed)1951  static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1952  						unsigned *write_speed)
1953  {
1954  	struct packet_command cgc;
1955  	struct scsi_sense_hdr sshdr;
1956  	unsigned char buf[256+18];
1957  	unsigned char *cap_buf;
1958  	int ret, offset;
1959  
1960  	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1961  	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1962  	cgc.sshdr = &sshdr;
1963  
1964  	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1965  	if (ret) {
1966  		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1967  			     sizeof(struct mode_page_header);
1968  		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1969  		if (ret) {
1970  			pkt_dump_sense(pd, &cgc);
1971  			return ret;
1972  		}
1973  	}
1974  
1975  	offset = 20;			    /* Obsoleted field, used by older drives */
1976  	if (cap_buf[1] >= 28)
1977  		offset = 28;		    /* Current write speed selected */
1978  	if (cap_buf[1] >= 30) {
1979  		/* If the drive reports at least one "Logical Unit Write
1980  		 * Speed Performance Descriptor Block", use the information
1981  		 * in the first block. (contains the highest speed)
1982  		 */
1983  		int num_spdb = get_unaligned_be16(&cap_buf[30]);
1984  		if (num_spdb > 0)
1985  			offset = 34;
1986  	}
1987  
1988  	*write_speed = get_unaligned_be16(&cap_buf[offset]);
1989  	return 0;
1990  }
1991  
1992  /* These tables from cdrecord - I don't have orange book */
1993  /* standard speed CD-RW (1-4x) */
1994  static char clv_to_speed[16] = {
1995  	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1996  	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1997  };
1998  /* high speed CD-RW (-10x) */
1999  static char hs_clv_to_speed[16] = {
2000  	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2001  	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2002  };
2003  /* ultra high speed CD-RW */
2004  static char us_clv_to_speed[16] = {
2005  	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2006  	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2007  };
2008  
2009  /*
2010   * reads the maximum media speed from ATIP
2011   */
pkt_media_speed(struct pktcdvd_device * pd,unsigned * speed)2012  static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2013  						unsigned *speed)
2014  {
2015  	struct device *ddev = disk_to_dev(pd->disk);
2016  	struct packet_command cgc;
2017  	struct scsi_sense_hdr sshdr;
2018  	unsigned char buf[64];
2019  	unsigned int size, st, sp;
2020  	int ret;
2021  
2022  	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2023  	cgc.sshdr = &sshdr;
2024  	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2025  	cgc.cmd[1] = 2;
2026  	cgc.cmd[2] = 4; /* READ ATIP */
2027  	cgc.cmd[8] = 2;
2028  	ret = pkt_generic_packet(pd, &cgc);
2029  	if (ret) {
2030  		pkt_dump_sense(pd, &cgc);
2031  		return ret;
2032  	}
2033  	size = 2 + get_unaligned_be16(&buf[0]);
2034  	if (size > sizeof(buf))
2035  		size = sizeof(buf);
2036  
2037  	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2038  	cgc.sshdr = &sshdr;
2039  	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2040  	cgc.cmd[1] = 2;
2041  	cgc.cmd[2] = 4;
2042  	cgc.cmd[8] = size;
2043  	ret = pkt_generic_packet(pd, &cgc);
2044  	if (ret) {
2045  		pkt_dump_sense(pd, &cgc);
2046  		return ret;
2047  	}
2048  
2049  	if (!(buf[6] & 0x40)) {
2050  		dev_notice(ddev, "disc type is not CD-RW\n");
2051  		return 1;
2052  	}
2053  	if (!(buf[6] & 0x4)) {
2054  		dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2055  		return 1;
2056  	}
2057  
2058  	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2059  
2060  	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2061  
2062  	/* Info from cdrecord */
2063  	switch (st) {
2064  		case 0: /* standard speed */
2065  			*speed = clv_to_speed[sp];
2066  			break;
2067  		case 1: /* high speed */
2068  			*speed = hs_clv_to_speed[sp];
2069  			break;
2070  		case 2: /* ultra high speed */
2071  			*speed = us_clv_to_speed[sp];
2072  			break;
2073  		default:
2074  			dev_notice(ddev, "unknown disc sub-type %d\n", st);
2075  			return 1;
2076  	}
2077  	if (*speed) {
2078  		dev_info(ddev, "maximum media speed: %d\n", *speed);
2079  		return 0;
2080  	} else {
2081  		dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2082  		return 1;
2083  	}
2084  }
2085  
pkt_perform_opc(struct pktcdvd_device * pd)2086  static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2087  {
2088  	struct device *ddev = disk_to_dev(pd->disk);
2089  	struct packet_command cgc;
2090  	struct scsi_sense_hdr sshdr;
2091  	int ret;
2092  
2093  	dev_dbg(ddev, "Performing OPC\n");
2094  
2095  	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2096  	cgc.sshdr = &sshdr;
2097  	cgc.timeout = 60*HZ;
2098  	cgc.cmd[0] = GPCMD_SEND_OPC;
2099  	cgc.cmd[1] = 1;
2100  	ret = pkt_generic_packet(pd, &cgc);
2101  	if (ret)
2102  		pkt_dump_sense(pd, &cgc);
2103  	return ret;
2104  }
2105  
pkt_open_write(struct pktcdvd_device * pd)2106  static int pkt_open_write(struct pktcdvd_device *pd)
2107  {
2108  	struct device *ddev = disk_to_dev(pd->disk);
2109  	int ret;
2110  	unsigned int write_speed, media_write_speed, read_speed;
2111  
2112  	ret = pkt_probe_settings(pd);
2113  	if (ret) {
2114  		dev_dbg(ddev, "failed probe\n");
2115  		return ret;
2116  	}
2117  
2118  	ret = pkt_set_write_settings(pd);
2119  	if (ret) {
2120  		dev_notice(ddev, "failed saving write settings\n");
2121  		return -EIO;
2122  	}
2123  
2124  	pkt_write_caching(pd);
2125  
2126  	ret = pkt_get_max_speed(pd, &write_speed);
2127  	if (ret)
2128  		write_speed = 16 * 177;
2129  	switch (pd->mmc3_profile) {
2130  		case 0x13: /* DVD-RW */
2131  		case 0x1a: /* DVD+RW */
2132  		case 0x12: /* DVD-RAM */
2133  			dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2134  			break;
2135  		default:
2136  			ret = pkt_media_speed(pd, &media_write_speed);
2137  			if (ret)
2138  				media_write_speed = 16;
2139  			write_speed = min(write_speed, media_write_speed * 177);
2140  			dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2141  			break;
2142  	}
2143  	read_speed = write_speed;
2144  
2145  	ret = pkt_set_speed(pd, write_speed, read_speed);
2146  	if (ret) {
2147  		dev_notice(ddev, "couldn't set write speed\n");
2148  		return -EIO;
2149  	}
2150  	pd->write_speed = write_speed;
2151  	pd->read_speed = read_speed;
2152  
2153  	ret = pkt_perform_opc(pd);
2154  	if (ret)
2155  		dev_notice(ddev, "Optimum Power Calibration failed\n");
2156  
2157  	return 0;
2158  }
2159  
2160  /*
2161   * called at open time.
2162   */
pkt_open_dev(struct pktcdvd_device * pd,bool write)2163  static int pkt_open_dev(struct pktcdvd_device *pd, bool write)
2164  {
2165  	struct device *ddev = disk_to_dev(pd->disk);
2166  	int ret;
2167  	long lba;
2168  	struct request_queue *q;
2169  	struct file *bdev_file;
2170  
2171  	/*
2172  	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2173  	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2174  	 * so open should not fail.
2175  	 */
2176  	bdev_file = bdev_file_open_by_dev(file_bdev(pd->bdev_file)->bd_dev,
2177  				       BLK_OPEN_READ, pd, NULL);
2178  	if (IS_ERR(bdev_file)) {
2179  		ret = PTR_ERR(bdev_file);
2180  		goto out;
2181  	}
2182  	pd->f_open_bdev = bdev_file;
2183  
2184  	ret = pkt_get_last_written(pd, &lba);
2185  	if (ret) {
2186  		dev_err(ddev, "pkt_get_last_written failed\n");
2187  		goto out_putdev;
2188  	}
2189  
2190  	set_capacity(pd->disk, lba << 2);
2191  	set_capacity_and_notify(file_bdev(pd->bdev_file)->bd_disk, lba << 2);
2192  
2193  	q = bdev_get_queue(file_bdev(pd->bdev_file));
2194  	if (write) {
2195  		ret = pkt_open_write(pd);
2196  		if (ret)
2197  			goto out_putdev;
2198  		set_bit(PACKET_WRITABLE, &pd->flags);
2199  	} else {
2200  		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2201  		clear_bit(PACKET_WRITABLE, &pd->flags);
2202  	}
2203  
2204  	ret = pkt_set_segment_merging(pd, q);
2205  	if (ret)
2206  		goto out_putdev;
2207  
2208  	if (write) {
2209  		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2210  			dev_err(ddev, "not enough memory for buffers\n");
2211  			ret = -ENOMEM;
2212  			goto out_putdev;
2213  		}
2214  		dev_info(ddev, "%lukB available on disc\n", lba << 1);
2215  	}
2216  	set_blocksize(bdev_file, CD_FRAMESIZE);
2217  
2218  	return 0;
2219  
2220  out_putdev:
2221  	fput(bdev_file);
2222  out:
2223  	return ret;
2224  }
2225  
2226  /*
2227   * called when the device is closed. makes sure that the device flushes
2228   * the internal cache before we close.
2229   */
pkt_release_dev(struct pktcdvd_device * pd,int flush)2230  static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2231  {
2232  	struct device *ddev = disk_to_dev(pd->disk);
2233  
2234  	if (flush && pkt_flush_cache(pd))
2235  		dev_notice(ddev, "not flushing cache\n");
2236  
2237  	pkt_lock_door(pd, 0);
2238  
2239  	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2240  	fput(pd->f_open_bdev);
2241  	pd->f_open_bdev = NULL;
2242  
2243  	pkt_shrink_pktlist(pd);
2244  }
2245  
pkt_find_dev_from_minor(unsigned int dev_minor)2246  static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2247  {
2248  	if (dev_minor >= MAX_WRITERS)
2249  		return NULL;
2250  
2251  	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2252  	return pkt_devs[dev_minor];
2253  }
2254  
pkt_open(struct gendisk * disk,blk_mode_t mode)2255  static int pkt_open(struct gendisk *disk, blk_mode_t mode)
2256  {
2257  	struct pktcdvd_device *pd = NULL;
2258  	int ret;
2259  
2260  	mutex_lock(&pktcdvd_mutex);
2261  	mutex_lock(&ctl_mutex);
2262  	pd = pkt_find_dev_from_minor(disk->first_minor);
2263  	if (!pd) {
2264  		ret = -ENODEV;
2265  		goto out;
2266  	}
2267  	BUG_ON(pd->refcnt < 0);
2268  
2269  	pd->refcnt++;
2270  	if (pd->refcnt > 1) {
2271  		if ((mode & BLK_OPEN_WRITE) &&
2272  		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2273  			ret = -EBUSY;
2274  			goto out_dec;
2275  		}
2276  	} else {
2277  		ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE);
2278  		if (ret)
2279  			goto out_dec;
2280  	}
2281  	mutex_unlock(&ctl_mutex);
2282  	mutex_unlock(&pktcdvd_mutex);
2283  	return 0;
2284  
2285  out_dec:
2286  	pd->refcnt--;
2287  out:
2288  	mutex_unlock(&ctl_mutex);
2289  	mutex_unlock(&pktcdvd_mutex);
2290  	return ret;
2291  }
2292  
pkt_release(struct gendisk * disk)2293  static void pkt_release(struct gendisk *disk)
2294  {
2295  	struct pktcdvd_device *pd = disk->private_data;
2296  
2297  	mutex_lock(&pktcdvd_mutex);
2298  	mutex_lock(&ctl_mutex);
2299  	pd->refcnt--;
2300  	BUG_ON(pd->refcnt < 0);
2301  	if (pd->refcnt == 0) {
2302  		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2303  		pkt_release_dev(pd, flush);
2304  	}
2305  	mutex_unlock(&ctl_mutex);
2306  	mutex_unlock(&pktcdvd_mutex);
2307  }
2308  
2309  
pkt_end_io_read_cloned(struct bio * bio)2310  static void pkt_end_io_read_cloned(struct bio *bio)
2311  {
2312  	struct packet_stacked_data *psd = bio->bi_private;
2313  	struct pktcdvd_device *pd = psd->pd;
2314  
2315  	psd->bio->bi_status = bio->bi_status;
2316  	bio_put(bio);
2317  	bio_endio(psd->bio);
2318  	mempool_free(psd, &psd_pool);
2319  	pkt_bio_finished(pd);
2320  }
2321  
pkt_make_request_read(struct pktcdvd_device * pd,struct bio * bio)2322  static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2323  {
2324  	struct bio *cloned_bio = bio_alloc_clone(file_bdev(pd->bdev_file), bio,
2325  		GFP_NOIO, &pkt_bio_set);
2326  	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2327  
2328  	psd->pd = pd;
2329  	psd->bio = bio;
2330  	cloned_bio->bi_private = psd;
2331  	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2332  	pd->stats.secs_r += bio_sectors(bio);
2333  	pkt_queue_bio(pd, cloned_bio);
2334  }
2335  
pkt_make_request_write(struct bio * bio)2336  static void pkt_make_request_write(struct bio *bio)
2337  {
2338  	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2339  	sector_t zone;
2340  	struct packet_data *pkt;
2341  	int was_empty, blocked_bio;
2342  	struct pkt_rb_node *node;
2343  
2344  	zone = get_zone(bio->bi_iter.bi_sector, pd);
2345  
2346  	/*
2347  	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2348  	 * just append this bio to that packet.
2349  	 */
2350  	spin_lock(&pd->cdrw.active_list_lock);
2351  	blocked_bio = 0;
2352  	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2353  		if (pkt->sector == zone) {
2354  			spin_lock(&pkt->lock);
2355  			if ((pkt->state == PACKET_WAITING_STATE) ||
2356  			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2357  				bio_list_add(&pkt->orig_bios, bio);
2358  				pkt->write_size +=
2359  					bio->bi_iter.bi_size / CD_FRAMESIZE;
2360  				if ((pkt->write_size >= pkt->frames) &&
2361  				    (pkt->state == PACKET_WAITING_STATE)) {
2362  					atomic_inc(&pkt->run_sm);
2363  					wake_up(&pd->wqueue);
2364  				}
2365  				spin_unlock(&pkt->lock);
2366  				spin_unlock(&pd->cdrw.active_list_lock);
2367  				return;
2368  			} else {
2369  				blocked_bio = 1;
2370  			}
2371  			spin_unlock(&pkt->lock);
2372  		}
2373  	}
2374  	spin_unlock(&pd->cdrw.active_list_lock);
2375  
2376  	/*
2377  	 * Test if there is enough room left in the bio work queue
2378  	 * (queue size >= congestion on mark).
2379  	 * If not, wait till the work queue size is below the congestion off mark.
2380  	 */
2381  	spin_lock(&pd->lock);
2382  	if (pd->write_congestion_on > 0
2383  	    && pd->bio_queue_size >= pd->write_congestion_on) {
2384  		struct wait_bit_queue_entry wqe;
2385  
2386  		init_wait_var_entry(&wqe, &pd->congested, 0);
2387  		for (;;) {
2388  			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2389  					      &wqe.wq_entry,
2390  					      TASK_UNINTERRUPTIBLE);
2391  			if (pd->bio_queue_size <= pd->write_congestion_off)
2392  				break;
2393  			pd->congested = true;
2394  			spin_unlock(&pd->lock);
2395  			schedule();
2396  			spin_lock(&pd->lock);
2397  		}
2398  	}
2399  	spin_unlock(&pd->lock);
2400  
2401  	/*
2402  	 * No matching packet found. Store the bio in the work queue.
2403  	 */
2404  	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2405  	node->bio = bio;
2406  	spin_lock(&pd->lock);
2407  	BUG_ON(pd->bio_queue_size < 0);
2408  	was_empty = (pd->bio_queue_size == 0);
2409  	pkt_rbtree_insert(pd, node);
2410  	spin_unlock(&pd->lock);
2411  
2412  	/*
2413  	 * Wake up the worker thread.
2414  	 */
2415  	atomic_set(&pd->scan_queue, 1);
2416  	if (was_empty) {
2417  		/* This wake_up is required for correct operation */
2418  		wake_up(&pd->wqueue);
2419  	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2420  		/*
2421  		 * This wake up is not required for correct operation,
2422  		 * but improves performance in some cases.
2423  		 */
2424  		wake_up(&pd->wqueue);
2425  	}
2426  }
2427  
pkt_submit_bio(struct bio * bio)2428  static void pkt_submit_bio(struct bio *bio)
2429  {
2430  	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2431  	struct device *ddev = disk_to_dev(pd->disk);
2432  	struct bio *split;
2433  
2434  	bio = bio_split_to_limits(bio);
2435  	if (!bio)
2436  		return;
2437  
2438  	dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2439  		bio->bi_iter.bi_sector, bio_end_sector(bio));
2440  
2441  	/*
2442  	 * Clone READ bios so we can have our own bi_end_io callback.
2443  	 */
2444  	if (bio_data_dir(bio) == READ) {
2445  		pkt_make_request_read(pd, bio);
2446  		return;
2447  	}
2448  
2449  	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2450  		dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector);
2451  		goto end_io;
2452  	}
2453  
2454  	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2455  		dev_err(ddev, "wrong bio size\n");
2456  		goto end_io;
2457  	}
2458  
2459  	do {
2460  		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2461  		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2462  
2463  		if (last_zone != zone) {
2464  			BUG_ON(last_zone != zone + pd->settings.size);
2465  
2466  			split = bio_split(bio, last_zone -
2467  					  bio->bi_iter.bi_sector,
2468  					  GFP_NOIO, &pkt_bio_set);
2469  			bio_chain(split, bio);
2470  		} else {
2471  			split = bio;
2472  		}
2473  
2474  		pkt_make_request_write(split);
2475  	} while (split != bio);
2476  
2477  	return;
2478  end_io:
2479  	bio_io_error(bio);
2480  }
2481  
pkt_new_dev(struct pktcdvd_device * pd,dev_t dev)2482  static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2483  {
2484  	struct device *ddev = disk_to_dev(pd->disk);
2485  	int i;
2486  	struct file *bdev_file;
2487  	struct scsi_device *sdev;
2488  
2489  	if (pd->pkt_dev == dev) {
2490  		dev_err(ddev, "recursive setup not allowed\n");
2491  		return -EBUSY;
2492  	}
2493  	for (i = 0; i < MAX_WRITERS; i++) {
2494  		struct pktcdvd_device *pd2 = pkt_devs[i];
2495  		if (!pd2)
2496  			continue;
2497  		if (file_bdev(pd2->bdev_file)->bd_dev == dev) {
2498  			dev_err(ddev, "%pg already setup\n",
2499  				file_bdev(pd2->bdev_file));
2500  			return -EBUSY;
2501  		}
2502  		if (pd2->pkt_dev == dev) {
2503  			dev_err(ddev, "can't chain pktcdvd devices\n");
2504  			return -EBUSY;
2505  		}
2506  	}
2507  
2508  	bdev_file = bdev_file_open_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY,
2509  				       NULL, NULL);
2510  	if (IS_ERR(bdev_file))
2511  		return PTR_ERR(bdev_file);
2512  	sdev = scsi_device_from_queue(file_bdev(bdev_file)->bd_disk->queue);
2513  	if (!sdev) {
2514  		fput(bdev_file);
2515  		return -EINVAL;
2516  	}
2517  	put_device(&sdev->sdev_gendev);
2518  
2519  	/* This is safe, since we have a reference from open(). */
2520  	__module_get(THIS_MODULE);
2521  
2522  	pd->bdev_file = bdev_file;
2523  
2524  	atomic_set(&pd->cdrw.pending_bios, 0);
2525  	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2526  	if (IS_ERR(pd->cdrw.thread)) {
2527  		dev_err(ddev, "can't start kernel thread\n");
2528  		goto out_mem;
2529  	}
2530  
2531  	proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2532  	dev_notice(ddev, "writer mapped to %pg\n", file_bdev(bdev_file));
2533  	return 0;
2534  
2535  out_mem:
2536  	fput(bdev_file);
2537  	/* This is safe: open() is still holding a reference. */
2538  	module_put(THIS_MODULE);
2539  	return -ENOMEM;
2540  }
2541  
pkt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)2542  static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode,
2543  		unsigned int cmd, unsigned long arg)
2544  {
2545  	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2546  	struct device *ddev = disk_to_dev(pd->disk);
2547  	int ret;
2548  
2549  	dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2550  
2551  	mutex_lock(&pktcdvd_mutex);
2552  	switch (cmd) {
2553  	case CDROMEJECT:
2554  		/*
2555  		 * The door gets locked when the device is opened, so we
2556  		 * have to unlock it or else the eject command fails.
2557  		 */
2558  		if (pd->refcnt == 1)
2559  			pkt_lock_door(pd, 0);
2560  		fallthrough;
2561  	/*
2562  	 * forward selected CDROM ioctls to CD-ROM, for UDF
2563  	 */
2564  	case CDROMMULTISESSION:
2565  	case CDROMREADTOCENTRY:
2566  	case CDROM_LAST_WRITTEN:
2567  	case CDROM_SEND_PACKET:
2568  	case SCSI_IOCTL_SEND_COMMAND:
2569  		if (!bdev->bd_disk->fops->ioctl)
2570  			ret = -ENOTTY;
2571  		else
2572  			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2573  		break;
2574  	default:
2575  		dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2576  		ret = -ENOTTY;
2577  	}
2578  	mutex_unlock(&pktcdvd_mutex);
2579  
2580  	return ret;
2581  }
2582  
pkt_check_events(struct gendisk * disk,unsigned int clearing)2583  static unsigned int pkt_check_events(struct gendisk *disk,
2584  				     unsigned int clearing)
2585  {
2586  	struct pktcdvd_device *pd = disk->private_data;
2587  	struct gendisk *attached_disk;
2588  
2589  	if (!pd)
2590  		return 0;
2591  	if (!pd->bdev_file)
2592  		return 0;
2593  	attached_disk = file_bdev(pd->bdev_file)->bd_disk;
2594  	if (!attached_disk || !attached_disk->fops->check_events)
2595  		return 0;
2596  	return attached_disk->fops->check_events(attached_disk, clearing);
2597  }
2598  
pkt_devnode(struct gendisk * disk,umode_t * mode)2599  static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2600  {
2601  	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2602  }
2603  
2604  static const struct block_device_operations pktcdvd_ops = {
2605  	.owner =		THIS_MODULE,
2606  	.submit_bio =		pkt_submit_bio,
2607  	.open =			pkt_open,
2608  	.release =		pkt_release,
2609  	.ioctl =		pkt_ioctl,
2610  	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2611  	.check_events =		pkt_check_events,
2612  	.devnode =		pkt_devnode,
2613  };
2614  
2615  /*
2616   * Set up mapping from pktcdvd device to CD-ROM device.
2617   */
pkt_setup_dev(dev_t dev,dev_t * pkt_dev)2618  static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2619  {
2620  	struct queue_limits lim = {
2621  		.max_hw_sectors		= PACKET_MAX_SECTORS,
2622  		.logical_block_size	= CD_FRAMESIZE,
2623  		.features		= BLK_FEAT_ROTATIONAL,
2624  	};
2625  	int idx;
2626  	int ret = -ENOMEM;
2627  	struct pktcdvd_device *pd;
2628  	struct gendisk *disk;
2629  
2630  	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2631  
2632  	for (idx = 0; idx < MAX_WRITERS; idx++)
2633  		if (!pkt_devs[idx])
2634  			break;
2635  	if (idx == MAX_WRITERS) {
2636  		pr_err("max %d writers supported\n", MAX_WRITERS);
2637  		ret = -EBUSY;
2638  		goto out_mutex;
2639  	}
2640  
2641  	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2642  	if (!pd)
2643  		goto out_mutex;
2644  
2645  	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2646  					sizeof(struct pkt_rb_node));
2647  	if (ret)
2648  		goto out_mem;
2649  
2650  	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2651  	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2652  	spin_lock_init(&pd->cdrw.active_list_lock);
2653  
2654  	spin_lock_init(&pd->lock);
2655  	spin_lock_init(&pd->iosched.lock);
2656  	bio_list_init(&pd->iosched.read_queue);
2657  	bio_list_init(&pd->iosched.write_queue);
2658  	init_waitqueue_head(&pd->wqueue);
2659  	pd->bio_queue = RB_ROOT;
2660  
2661  	pd->write_congestion_on  = write_congestion_on;
2662  	pd->write_congestion_off = write_congestion_off;
2663  
2664  	disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2665  	if (IS_ERR(disk)) {
2666  		ret = PTR_ERR(disk);
2667  		goto out_mem;
2668  	}
2669  	pd->disk = disk;
2670  	disk->major = pktdev_major;
2671  	disk->first_minor = idx;
2672  	disk->minors = 1;
2673  	disk->fops = &pktcdvd_ops;
2674  	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2675  	snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
2676  	disk->private_data = pd;
2677  
2678  	pd->pkt_dev = MKDEV(pktdev_major, idx);
2679  	ret = pkt_new_dev(pd, dev);
2680  	if (ret)
2681  		goto out_mem2;
2682  
2683  	/* inherit events of the host device */
2684  	disk->events = file_bdev(pd->bdev_file)->bd_disk->events;
2685  
2686  	ret = add_disk(disk);
2687  	if (ret)
2688  		goto out_mem2;
2689  
2690  	pkt_sysfs_dev_new(pd);
2691  	pkt_debugfs_dev_new(pd);
2692  
2693  	pkt_devs[idx] = pd;
2694  	if (pkt_dev)
2695  		*pkt_dev = pd->pkt_dev;
2696  
2697  	mutex_unlock(&ctl_mutex);
2698  	return 0;
2699  
2700  out_mem2:
2701  	put_disk(disk);
2702  out_mem:
2703  	mempool_exit(&pd->rb_pool);
2704  	kfree(pd);
2705  out_mutex:
2706  	mutex_unlock(&ctl_mutex);
2707  	pr_err("setup of pktcdvd device failed\n");
2708  	return ret;
2709  }
2710  
2711  /*
2712   * Tear down mapping from pktcdvd device to CD-ROM device.
2713   */
pkt_remove_dev(dev_t pkt_dev)2714  static int pkt_remove_dev(dev_t pkt_dev)
2715  {
2716  	struct pktcdvd_device *pd;
2717  	struct device *ddev;
2718  	int idx;
2719  	int ret = 0;
2720  
2721  	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2722  
2723  	for (idx = 0; idx < MAX_WRITERS; idx++) {
2724  		pd = pkt_devs[idx];
2725  		if (pd && (pd->pkt_dev == pkt_dev))
2726  			break;
2727  	}
2728  	if (idx == MAX_WRITERS) {
2729  		pr_debug("dev not setup\n");
2730  		ret = -ENXIO;
2731  		goto out;
2732  	}
2733  
2734  	if (pd->refcnt > 0) {
2735  		ret = -EBUSY;
2736  		goto out;
2737  	}
2738  
2739  	ddev = disk_to_dev(pd->disk);
2740  
2741  	if (!IS_ERR(pd->cdrw.thread))
2742  		kthread_stop(pd->cdrw.thread);
2743  
2744  	pkt_devs[idx] = NULL;
2745  
2746  	pkt_debugfs_dev_remove(pd);
2747  	pkt_sysfs_dev_remove(pd);
2748  
2749  	fput(pd->bdev_file);
2750  
2751  	remove_proc_entry(pd->disk->disk_name, pkt_proc);
2752  	dev_notice(ddev, "writer unmapped\n");
2753  
2754  	del_gendisk(pd->disk);
2755  	put_disk(pd->disk);
2756  
2757  	mempool_exit(&pd->rb_pool);
2758  	kfree(pd);
2759  
2760  	/* This is safe: open() is still holding a reference. */
2761  	module_put(THIS_MODULE);
2762  
2763  out:
2764  	mutex_unlock(&ctl_mutex);
2765  	return ret;
2766  }
2767  
pkt_get_status(struct pkt_ctrl_command * ctrl_cmd)2768  static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2769  {
2770  	struct pktcdvd_device *pd;
2771  
2772  	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2773  
2774  	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2775  	if (pd) {
2776  		ctrl_cmd->dev = new_encode_dev(file_bdev(pd->bdev_file)->bd_dev);
2777  		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2778  	} else {
2779  		ctrl_cmd->dev = 0;
2780  		ctrl_cmd->pkt_dev = 0;
2781  	}
2782  	ctrl_cmd->num_devices = MAX_WRITERS;
2783  
2784  	mutex_unlock(&ctl_mutex);
2785  }
2786  
pkt_ctl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2787  static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2788  {
2789  	void __user *argp = (void __user *)arg;
2790  	struct pkt_ctrl_command ctrl_cmd;
2791  	int ret = 0;
2792  	dev_t pkt_dev = 0;
2793  
2794  	if (cmd != PACKET_CTRL_CMD)
2795  		return -ENOTTY;
2796  
2797  	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2798  		return -EFAULT;
2799  
2800  	switch (ctrl_cmd.command) {
2801  	case PKT_CTRL_CMD_SETUP:
2802  		if (!capable(CAP_SYS_ADMIN))
2803  			return -EPERM;
2804  		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2805  		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2806  		break;
2807  	case PKT_CTRL_CMD_TEARDOWN:
2808  		if (!capable(CAP_SYS_ADMIN))
2809  			return -EPERM;
2810  		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2811  		break;
2812  	case PKT_CTRL_CMD_STATUS:
2813  		pkt_get_status(&ctrl_cmd);
2814  		break;
2815  	default:
2816  		return -ENOTTY;
2817  	}
2818  
2819  	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2820  		return -EFAULT;
2821  	return ret;
2822  }
2823  
2824  #ifdef CONFIG_COMPAT
pkt_ctl_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2825  static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2826  {
2827  	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2828  }
2829  #endif
2830  
2831  static const struct file_operations pkt_ctl_fops = {
2832  	.open		= nonseekable_open,
2833  	.unlocked_ioctl	= pkt_ctl_ioctl,
2834  #ifdef CONFIG_COMPAT
2835  	.compat_ioctl	= pkt_ctl_compat_ioctl,
2836  #endif
2837  	.owner		= THIS_MODULE,
2838  };
2839  
2840  static struct miscdevice pkt_misc = {
2841  	.minor 		= MISC_DYNAMIC_MINOR,
2842  	.name  		= DRIVER_NAME,
2843  	.nodename	= "pktcdvd/control",
2844  	.fops  		= &pkt_ctl_fops
2845  };
2846  
pkt_init(void)2847  static int __init pkt_init(void)
2848  {
2849  	int ret;
2850  
2851  	mutex_init(&ctl_mutex);
2852  
2853  	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2854  				    sizeof(struct packet_stacked_data));
2855  	if (ret)
2856  		return ret;
2857  	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2858  	if (ret) {
2859  		mempool_exit(&psd_pool);
2860  		return ret;
2861  	}
2862  
2863  	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2864  	if (ret < 0) {
2865  		pr_err("unable to register block device\n");
2866  		goto out2;
2867  	}
2868  	if (!pktdev_major)
2869  		pktdev_major = ret;
2870  
2871  	ret = pkt_sysfs_init();
2872  	if (ret)
2873  		goto out;
2874  
2875  	pkt_debugfs_init();
2876  
2877  	ret = misc_register(&pkt_misc);
2878  	if (ret) {
2879  		pr_err("unable to register misc device\n");
2880  		goto out_misc;
2881  	}
2882  
2883  	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2884  
2885  	return 0;
2886  
2887  out_misc:
2888  	pkt_debugfs_cleanup();
2889  	pkt_sysfs_cleanup();
2890  out:
2891  	unregister_blkdev(pktdev_major, DRIVER_NAME);
2892  out2:
2893  	mempool_exit(&psd_pool);
2894  	bioset_exit(&pkt_bio_set);
2895  	return ret;
2896  }
2897  
pkt_exit(void)2898  static void __exit pkt_exit(void)
2899  {
2900  	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2901  	misc_deregister(&pkt_misc);
2902  
2903  	pkt_debugfs_cleanup();
2904  	pkt_sysfs_cleanup();
2905  
2906  	unregister_blkdev(pktdev_major, DRIVER_NAME);
2907  	mempool_exit(&psd_pool);
2908  	bioset_exit(&pkt_bio_set);
2909  }
2910  
2911  MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2912  MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2913  MODULE_LICENSE("GPL");
2914  
2915  module_init(pkt_init);
2916  module_exit(pkt_exit);
2917