1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * page_fault_test.c - Test stage 2 faults.
4  *
5  * This test tries different combinations of guest accesses (e.g., write,
6  * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
7  * hugetlbfs with a hole). It checks that the expected handling method is
8  * called (e.g., uffd faults with the right address and write/read flag).
9  */
10 #include <linux/bitmap.h>
11 #include <fcntl.h>
12 #include <test_util.h>
13 #include <kvm_util.h>
14 #include <processor.h>
15 #include <asm/sysreg.h>
16 #include <linux/bitfield.h>
17 #include "guest_modes.h"
18 #include "userfaultfd_util.h"
19 
20 /* Guest virtual addresses that point to the test page and its PTE. */
21 #define TEST_GVA				0xc0000000
22 #define TEST_EXEC_GVA				(TEST_GVA + 0x8)
23 #define TEST_PTE_GVA				0xb0000000
24 #define TEST_DATA				0x0123456789ABCDEF
25 
26 static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
27 
28 #define CMD_NONE				(0)
29 #define CMD_SKIP_TEST				(1ULL << 1)
30 #define CMD_HOLE_PT				(1ULL << 2)
31 #define CMD_HOLE_DATA				(1ULL << 3)
32 #define CMD_CHECK_WRITE_IN_DIRTY_LOG		(1ULL << 4)
33 #define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG		(1ULL << 5)
34 #define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG		(1ULL << 6)
35 #define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG	(1ULL << 7)
36 #define CMD_SET_PTE_AF				(1ULL << 8)
37 
38 #define PREPARE_FN_NR				10
39 #define CHECK_FN_NR				10
40 
41 static struct event_cnt {
42 	int mmio_exits;
43 	int fail_vcpu_runs;
44 	int uffd_faults;
45 	/* uffd_faults is incremented from multiple threads. */
46 	pthread_mutex_t uffd_faults_mutex;
47 } events;
48 
49 struct test_desc {
50 	const char *name;
51 	uint64_t mem_mark_cmd;
52 	/* Skip the test if any prepare function returns false */
53 	bool (*guest_prepare[PREPARE_FN_NR])(void);
54 	void (*guest_test)(void);
55 	void (*guest_test_check[CHECK_FN_NR])(void);
56 	uffd_handler_t uffd_pt_handler;
57 	uffd_handler_t uffd_data_handler;
58 	void (*dabt_handler)(struct ex_regs *regs);
59 	void (*iabt_handler)(struct ex_regs *regs);
60 	void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
61 	void (*fail_vcpu_run_handler)(int ret);
62 	uint32_t pt_memslot_flags;
63 	uint32_t data_memslot_flags;
64 	bool skip;
65 	struct event_cnt expected_events;
66 };
67 
68 struct test_params {
69 	enum vm_mem_backing_src_type src_type;
70 	struct test_desc *test_desc;
71 };
72 
flush_tlb_page(uint64_t vaddr)73 static inline void flush_tlb_page(uint64_t vaddr)
74 {
75 	uint64_t page = vaddr >> 12;
76 
77 	dsb(ishst);
78 	asm volatile("tlbi vaae1is, %0" :: "r" (page));
79 	dsb(ish);
80 	isb();
81 }
82 
guest_write64(void)83 static void guest_write64(void)
84 {
85 	uint64_t val;
86 
87 	WRITE_ONCE(*guest_test_memory, TEST_DATA);
88 	val = READ_ONCE(*guest_test_memory);
89 	GUEST_ASSERT_EQ(val, TEST_DATA);
90 }
91 
92 /* Check the system for atomic instructions. */
guest_check_lse(void)93 static bool guest_check_lse(void)
94 {
95 	uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
96 	uint64_t atomic;
97 
98 	atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC), isar0);
99 	return atomic >= 2;
100 }
101 
guest_check_dc_zva(void)102 static bool guest_check_dc_zva(void)
103 {
104 	uint64_t dczid = read_sysreg(dczid_el0);
105 	uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_EL0_DZP), dczid);
106 
107 	return dzp == 0;
108 }
109 
110 /* Compare and swap instruction. */
guest_cas(void)111 static void guest_cas(void)
112 {
113 	uint64_t val;
114 
115 	GUEST_ASSERT(guest_check_lse());
116 	asm volatile(".arch_extension lse\n"
117 		     "casal %0, %1, [%2]\n"
118 		     :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
119 	val = READ_ONCE(*guest_test_memory);
120 	GUEST_ASSERT_EQ(val, TEST_DATA);
121 }
122 
guest_read64(void)123 static void guest_read64(void)
124 {
125 	uint64_t val;
126 
127 	val = READ_ONCE(*guest_test_memory);
128 	GUEST_ASSERT_EQ(val, 0);
129 }
130 
131 /* Address translation instruction */
guest_at(void)132 static void guest_at(void)
133 {
134 	uint64_t par;
135 
136 	asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
137 	isb();
138 	par = read_sysreg(par_el1);
139 
140 	/* Bit 1 indicates whether the AT was successful */
141 	GUEST_ASSERT_EQ(par & 1, 0);
142 }
143 
144 /*
145  * The size of the block written by "dc zva" is guaranteed to be between (2 <<
146  * 0) and (2 << 9), which is safe in our case as we need the write to happen
147  * for at least a word, and not more than a page.
148  */
guest_dc_zva(void)149 static void guest_dc_zva(void)
150 {
151 	uint16_t val;
152 
153 	asm volatile("dc zva, %0" :: "r" (guest_test_memory));
154 	dsb(ish);
155 	val = READ_ONCE(*guest_test_memory);
156 	GUEST_ASSERT_EQ(val, 0);
157 }
158 
159 /*
160  * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
161  * And that's special because KVM must take special care with those: they
162  * should still count as accesses for dirty logging or user-faulting, but
163  * should be handled differently on mmio.
164  */
guest_ld_preidx(void)165 static void guest_ld_preidx(void)
166 {
167 	uint64_t val;
168 	uint64_t addr = TEST_GVA - 8;
169 
170 	/*
171 	 * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
172 	 * in a gap between memslots not backing by anything.
173 	 */
174 	asm volatile("ldr %0, [%1, #8]!"
175 		     : "=r" (val), "+r" (addr));
176 	GUEST_ASSERT_EQ(val, 0);
177 	GUEST_ASSERT_EQ(addr, TEST_GVA);
178 }
179 
guest_st_preidx(void)180 static void guest_st_preidx(void)
181 {
182 	uint64_t val = TEST_DATA;
183 	uint64_t addr = TEST_GVA - 8;
184 
185 	asm volatile("str %0, [%1, #8]!"
186 		     : "+r" (val), "+r" (addr));
187 
188 	GUEST_ASSERT_EQ(addr, TEST_GVA);
189 	val = READ_ONCE(*guest_test_memory);
190 }
191 
guest_set_ha(void)192 static bool guest_set_ha(void)
193 {
194 	uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
195 	uint64_t hadbs, tcr;
196 
197 	/* Skip if HA is not supported. */
198 	hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS), mmfr1);
199 	if (hadbs == 0)
200 		return false;
201 
202 	tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
203 	write_sysreg(tcr, tcr_el1);
204 	isb();
205 
206 	return true;
207 }
208 
guest_clear_pte_af(void)209 static bool guest_clear_pte_af(void)
210 {
211 	*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
212 	flush_tlb_page(TEST_GVA);
213 
214 	return true;
215 }
216 
guest_check_pte_af(void)217 static void guest_check_pte_af(void)
218 {
219 	dsb(ish);
220 	GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
221 }
222 
guest_check_write_in_dirty_log(void)223 static void guest_check_write_in_dirty_log(void)
224 {
225 	GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
226 }
227 
guest_check_no_write_in_dirty_log(void)228 static void guest_check_no_write_in_dirty_log(void)
229 {
230 	GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
231 }
232 
guest_check_s1ptw_wr_in_dirty_log(void)233 static void guest_check_s1ptw_wr_in_dirty_log(void)
234 {
235 	GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
236 }
237 
guest_check_no_s1ptw_wr_in_dirty_log(void)238 static void guest_check_no_s1ptw_wr_in_dirty_log(void)
239 {
240 	GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
241 }
242 
guest_exec(void)243 static void guest_exec(void)
244 {
245 	int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
246 	int ret;
247 
248 	ret = code();
249 	GUEST_ASSERT_EQ(ret, 0x77);
250 }
251 
guest_prepare(struct test_desc * test)252 static bool guest_prepare(struct test_desc *test)
253 {
254 	bool (*prepare_fn)(void);
255 	int i;
256 
257 	for (i = 0; i < PREPARE_FN_NR; i++) {
258 		prepare_fn = test->guest_prepare[i];
259 		if (prepare_fn && !prepare_fn())
260 			return false;
261 	}
262 
263 	return true;
264 }
265 
guest_test_check(struct test_desc * test)266 static void guest_test_check(struct test_desc *test)
267 {
268 	void (*check_fn)(void);
269 	int i;
270 
271 	for (i = 0; i < CHECK_FN_NR; i++) {
272 		check_fn = test->guest_test_check[i];
273 		if (check_fn)
274 			check_fn();
275 	}
276 }
277 
guest_code(struct test_desc * test)278 static void guest_code(struct test_desc *test)
279 {
280 	if (!guest_prepare(test))
281 		GUEST_SYNC(CMD_SKIP_TEST);
282 
283 	GUEST_SYNC(test->mem_mark_cmd);
284 
285 	if (test->guest_test)
286 		test->guest_test();
287 
288 	guest_test_check(test);
289 	GUEST_DONE();
290 }
291 
no_dabt_handler(struct ex_regs * regs)292 static void no_dabt_handler(struct ex_regs *regs)
293 {
294 	GUEST_FAIL("Unexpected dabt, far_el1 = 0x%lx", read_sysreg(far_el1));
295 }
296 
no_iabt_handler(struct ex_regs * regs)297 static void no_iabt_handler(struct ex_regs *regs)
298 {
299 	GUEST_FAIL("Unexpected iabt, pc = 0x%lx", regs->pc);
300 }
301 
302 static struct uffd_args {
303 	char *copy;
304 	void *hva;
305 	uint64_t paging_size;
306 } pt_args, data_args;
307 
308 /* Returns true to continue the test, and false if it should be skipped. */
uffd_generic_handler(int uffd_mode,int uffd,struct uffd_msg * msg,struct uffd_args * args)309 static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
310 				struct uffd_args *args)
311 {
312 	uint64_t addr = msg->arg.pagefault.address;
313 	uint64_t flags = msg->arg.pagefault.flags;
314 	struct uffdio_copy copy;
315 	int ret;
316 
317 	TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
318 		    "The only expected UFFD mode is MISSING");
319 	TEST_ASSERT_EQ(addr, (uint64_t)args->hva);
320 
321 	pr_debug("uffd fault: addr=%p write=%d\n",
322 		 (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
323 
324 	copy.src = (uint64_t)args->copy;
325 	copy.dst = addr;
326 	copy.len = args->paging_size;
327 	copy.mode = 0;
328 
329 	ret = ioctl(uffd, UFFDIO_COPY, &copy);
330 	if (ret == -1) {
331 		pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
332 			addr, errno);
333 		return ret;
334 	}
335 
336 	pthread_mutex_lock(&events.uffd_faults_mutex);
337 	events.uffd_faults += 1;
338 	pthread_mutex_unlock(&events.uffd_faults_mutex);
339 	return 0;
340 }
341 
uffd_pt_handler(int mode,int uffd,struct uffd_msg * msg)342 static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
343 {
344 	return uffd_generic_handler(mode, uffd, msg, &pt_args);
345 }
346 
uffd_data_handler(int mode,int uffd,struct uffd_msg * msg)347 static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
348 {
349 	return uffd_generic_handler(mode, uffd, msg, &data_args);
350 }
351 
setup_uffd_args(struct userspace_mem_region * region,struct uffd_args * args)352 static void setup_uffd_args(struct userspace_mem_region *region,
353 			    struct uffd_args *args)
354 {
355 	args->hva = (void *)region->region.userspace_addr;
356 	args->paging_size = region->region.memory_size;
357 
358 	args->copy = malloc(args->paging_size);
359 	TEST_ASSERT(args->copy, "Failed to allocate data copy.");
360 	memcpy(args->copy, args->hva, args->paging_size);
361 }
362 
setup_uffd(struct kvm_vm * vm,struct test_params * p,struct uffd_desc ** pt_uffd,struct uffd_desc ** data_uffd)363 static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
364 		       struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
365 {
366 	struct test_desc *test = p->test_desc;
367 	int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
368 
369 	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
370 	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
371 
372 	*pt_uffd = NULL;
373 	if (test->uffd_pt_handler)
374 		*pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
375 						    pt_args.hva,
376 						    pt_args.paging_size,
377 						    1, test->uffd_pt_handler);
378 
379 	*data_uffd = NULL;
380 	if (test->uffd_data_handler)
381 		*data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
382 						      data_args.hva,
383 						      data_args.paging_size,
384 						      1, test->uffd_data_handler);
385 }
386 
free_uffd(struct test_desc * test,struct uffd_desc * pt_uffd,struct uffd_desc * data_uffd)387 static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
388 		      struct uffd_desc *data_uffd)
389 {
390 	if (test->uffd_pt_handler)
391 		uffd_stop_demand_paging(pt_uffd);
392 	if (test->uffd_data_handler)
393 		uffd_stop_demand_paging(data_uffd);
394 
395 	free(pt_args.copy);
396 	free(data_args.copy);
397 }
398 
uffd_no_handler(int mode,int uffd,struct uffd_msg * msg)399 static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
400 {
401 	TEST_FAIL("There was no UFFD fault expected.");
402 	return -1;
403 }
404 
405 /* Returns false if the test should be skipped. */
punch_hole_in_backing_store(struct kvm_vm * vm,struct userspace_mem_region * region)406 static bool punch_hole_in_backing_store(struct kvm_vm *vm,
407 					struct userspace_mem_region *region)
408 {
409 	void *hva = (void *)region->region.userspace_addr;
410 	uint64_t paging_size = region->region.memory_size;
411 	int ret, fd = region->fd;
412 
413 	if (fd != -1) {
414 		ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
415 				0, paging_size);
416 		TEST_ASSERT(ret == 0, "fallocate failed");
417 	} else {
418 		ret = madvise(hva, paging_size, MADV_DONTNEED);
419 		TEST_ASSERT(ret == 0, "madvise failed");
420 	}
421 
422 	return true;
423 }
424 
mmio_on_test_gpa_handler(struct kvm_vm * vm,struct kvm_run * run)425 static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
426 {
427 	struct userspace_mem_region *region;
428 	void *hva;
429 
430 	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
431 	hva = (void *)region->region.userspace_addr;
432 
433 	TEST_ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
434 
435 	memcpy(hva, run->mmio.data, run->mmio.len);
436 	events.mmio_exits += 1;
437 }
438 
mmio_no_handler(struct kvm_vm * vm,struct kvm_run * run)439 static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
440 {
441 	uint64_t data;
442 
443 	memcpy(&data, run->mmio.data, sizeof(data));
444 	pr_debug("addr=%lld len=%d w=%d data=%lx\n",
445 		 run->mmio.phys_addr, run->mmio.len,
446 		 run->mmio.is_write, data);
447 	TEST_FAIL("There was no MMIO exit expected.");
448 }
449 
check_write_in_dirty_log(struct kvm_vm * vm,struct userspace_mem_region * region,uint64_t host_pg_nr)450 static bool check_write_in_dirty_log(struct kvm_vm *vm,
451 				     struct userspace_mem_region *region,
452 				     uint64_t host_pg_nr)
453 {
454 	unsigned long *bmap;
455 	bool first_page_dirty;
456 	uint64_t size = region->region.memory_size;
457 
458 	/* getpage_size() is not always equal to vm->page_size */
459 	bmap = bitmap_zalloc(size / getpagesize());
460 	kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
461 	first_page_dirty = test_bit(host_pg_nr, bmap);
462 	free(bmap);
463 	return first_page_dirty;
464 }
465 
466 /* Returns true to continue the test, and false if it should be skipped. */
handle_cmd(struct kvm_vm * vm,int cmd)467 static bool handle_cmd(struct kvm_vm *vm, int cmd)
468 {
469 	struct userspace_mem_region *data_region, *pt_region;
470 	bool continue_test = true;
471 	uint64_t pte_gpa, pte_pg;
472 
473 	data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
474 	pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
475 	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
476 	pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();
477 
478 	if (cmd == CMD_SKIP_TEST)
479 		continue_test = false;
480 
481 	if (cmd & CMD_HOLE_PT)
482 		continue_test = punch_hole_in_backing_store(vm, pt_region);
483 	if (cmd & CMD_HOLE_DATA)
484 		continue_test = punch_hole_in_backing_store(vm, data_region);
485 	if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
486 		TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
487 			    "Missing write in dirty log");
488 	if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
489 		TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
490 			    "Missing s1ptw write in dirty log");
491 	if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
492 		TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
493 			    "Unexpected write in dirty log");
494 	if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
495 		TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
496 			    "Unexpected s1ptw write in dirty log");
497 
498 	return continue_test;
499 }
500 
fail_vcpu_run_no_handler(int ret)501 void fail_vcpu_run_no_handler(int ret)
502 {
503 	TEST_FAIL("Unexpected vcpu run failure");
504 }
505 
fail_vcpu_run_mmio_no_syndrome_handler(int ret)506 void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
507 {
508 	TEST_ASSERT(errno == ENOSYS,
509 		    "The mmio handler should have returned not implemented.");
510 	events.fail_vcpu_runs += 1;
511 }
512 
513 typedef uint32_t aarch64_insn_t;
514 extern aarch64_insn_t __exec_test[2];
515 
__return_0x77(void)516 noinline void __return_0x77(void)
517 {
518 	asm volatile("__exec_test: mov x0, #0x77\n"
519 		     "ret\n");
520 }
521 
522 /*
523  * Note that this function runs on the host before the test VM starts: there's
524  * no need to sync the D$ and I$ caches.
525  */
load_exec_code_for_test(struct kvm_vm * vm)526 static void load_exec_code_for_test(struct kvm_vm *vm)
527 {
528 	uint64_t *code;
529 	struct userspace_mem_region *region;
530 	void *hva;
531 
532 	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
533 	hva = (void *)region->region.userspace_addr;
534 
535 	assert(TEST_EXEC_GVA > TEST_GVA);
536 	code = hva + TEST_EXEC_GVA - TEST_GVA;
537 	memcpy(code, __exec_test, sizeof(__exec_test));
538 }
539 
setup_abort_handlers(struct kvm_vm * vm,struct kvm_vcpu * vcpu,struct test_desc * test)540 static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
541 				 struct test_desc *test)
542 {
543 	vm_init_descriptor_tables(vm);
544 	vcpu_init_descriptor_tables(vcpu);
545 
546 	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
547 				ESR_EC_DABT, no_dabt_handler);
548 	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
549 				ESR_EC_IABT, no_iabt_handler);
550 }
551 
setup_gva_maps(struct kvm_vm * vm)552 static void setup_gva_maps(struct kvm_vm *vm)
553 {
554 	struct userspace_mem_region *region;
555 	uint64_t pte_gpa;
556 
557 	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
558 	/* Map TEST_GVA first. This will install a new PTE. */
559 	virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
560 	/* Then map TEST_PTE_GVA to the above PTE. */
561 	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
562 	virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
563 }
564 
565 enum pf_test_memslots {
566 	CODE_AND_DATA_MEMSLOT,
567 	PAGE_TABLE_MEMSLOT,
568 	TEST_DATA_MEMSLOT,
569 };
570 
571 /*
572  * Create a memslot for code and data at pfn=0, and test-data and PT ones
573  * at max_gfn.
574  */
setup_memslots(struct kvm_vm * vm,struct test_params * p)575 static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
576 {
577 	uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
578 	uint64_t guest_page_size = vm->page_size;
579 	uint64_t max_gfn = vm_compute_max_gfn(vm);
580 	/* Enough for 2M of code when using 4K guest pages. */
581 	uint64_t code_npages = 512;
582 	uint64_t pt_size, data_size, data_gpa;
583 
584 	/*
585 	 * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
586 	 * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs.  That's 13
587 	 * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
588 	 * twice that just in case.
589 	 */
590 	pt_size = 26 * guest_page_size;
591 
592 	/* memslot sizes and gpa's must be aligned to the backing page size */
593 	pt_size = align_up(pt_size, backing_src_pagesz);
594 	data_size = align_up(guest_page_size, backing_src_pagesz);
595 	data_gpa = (max_gfn * guest_page_size) - data_size;
596 	data_gpa = align_down(data_gpa, backing_src_pagesz);
597 
598 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
599 				    CODE_AND_DATA_MEMSLOT, code_npages, 0);
600 	vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
601 	vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
602 
603 	vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
604 				    PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
605 				    p->test_desc->pt_memslot_flags);
606 	vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
607 
608 	vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
609 				    data_size / guest_page_size,
610 				    p->test_desc->data_memslot_flags);
611 	vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
612 }
613 
setup_ucall(struct kvm_vm * vm)614 static void setup_ucall(struct kvm_vm *vm)
615 {
616 	struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
617 
618 	ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
619 }
620 
setup_default_handlers(struct test_desc * test)621 static void setup_default_handlers(struct test_desc *test)
622 {
623 	if (!test->mmio_handler)
624 		test->mmio_handler = mmio_no_handler;
625 
626 	if (!test->fail_vcpu_run_handler)
627 		test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
628 }
629 
check_event_counts(struct test_desc * test)630 static void check_event_counts(struct test_desc *test)
631 {
632 	TEST_ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
633 	TEST_ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
634 	TEST_ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
635 }
636 
print_test_banner(enum vm_guest_mode mode,struct test_params * p)637 static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
638 {
639 	struct test_desc *test = p->test_desc;
640 
641 	pr_debug("Test: %s\n", test->name);
642 	pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
643 	pr_debug("Testing memory backing src type: %s\n",
644 		 vm_mem_backing_src_alias(p->src_type)->name);
645 }
646 
reset_event_counts(void)647 static void reset_event_counts(void)
648 {
649 	memset(&events, 0, sizeof(events));
650 }
651 
652 /*
653  * This function either succeeds, skips the test (after setting test->skip), or
654  * fails with a TEST_FAIL that aborts all tests.
655  */
vcpu_run_loop(struct kvm_vm * vm,struct kvm_vcpu * vcpu,struct test_desc * test)656 static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
657 			  struct test_desc *test)
658 {
659 	struct kvm_run *run;
660 	struct ucall uc;
661 	int ret;
662 
663 	run = vcpu->run;
664 
665 	for (;;) {
666 		ret = _vcpu_run(vcpu);
667 		if (ret) {
668 			test->fail_vcpu_run_handler(ret);
669 			goto done;
670 		}
671 
672 		switch (get_ucall(vcpu, &uc)) {
673 		case UCALL_SYNC:
674 			if (!handle_cmd(vm, uc.args[1])) {
675 				test->skip = true;
676 				goto done;
677 			}
678 			break;
679 		case UCALL_ABORT:
680 			REPORT_GUEST_ASSERT(uc);
681 			break;
682 		case UCALL_DONE:
683 			goto done;
684 		case UCALL_NONE:
685 			if (run->exit_reason == KVM_EXIT_MMIO)
686 				test->mmio_handler(vm, run);
687 			break;
688 		default:
689 			TEST_FAIL("Unknown ucall %lu", uc.cmd);
690 		}
691 	}
692 
693 done:
694 	pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
695 }
696 
run_test(enum vm_guest_mode mode,void * arg)697 static void run_test(enum vm_guest_mode mode, void *arg)
698 {
699 	struct test_params *p = (struct test_params *)arg;
700 	struct test_desc *test = p->test_desc;
701 	struct kvm_vm *vm;
702 	struct kvm_vcpu *vcpu;
703 	struct uffd_desc *pt_uffd, *data_uffd;
704 
705 	print_test_banner(mode, p);
706 
707 	vm = ____vm_create(VM_SHAPE(mode));
708 	setup_memslots(vm, p);
709 	kvm_vm_elf_load(vm, program_invocation_name);
710 	setup_ucall(vm);
711 	vcpu = vm_vcpu_add(vm, 0, guest_code);
712 
713 	setup_gva_maps(vm);
714 
715 	reset_event_counts();
716 
717 	/*
718 	 * Set some code in the data memslot for the guest to execute (only
719 	 * applicable to the EXEC tests). This has to be done before
720 	 * setup_uffd() as that function copies the memslot data for the uffd
721 	 * handler.
722 	 */
723 	load_exec_code_for_test(vm);
724 	setup_uffd(vm, p, &pt_uffd, &data_uffd);
725 	setup_abort_handlers(vm, vcpu, test);
726 	setup_default_handlers(test);
727 	vcpu_args_set(vcpu, 1, test);
728 
729 	vcpu_run_loop(vm, vcpu, test);
730 
731 	kvm_vm_free(vm);
732 	free_uffd(test, pt_uffd, data_uffd);
733 
734 	/*
735 	 * Make sure we check the events after the uffd threads have exited,
736 	 * which means they updated their respective event counters.
737 	 */
738 	if (!test->skip)
739 		check_event_counts(test);
740 }
741 
help(char * name)742 static void help(char *name)
743 {
744 	puts("");
745 	printf("usage: %s [-h] [-s mem-type]\n", name);
746 	puts("");
747 	guest_modes_help();
748 	backing_src_help("-s");
749 	puts("");
750 }
751 
752 #define SNAME(s)			#s
753 #define SCAT2(a, b)			SNAME(a ## _ ## b)
754 #define SCAT3(a, b, c)			SCAT2(a, SCAT2(b, c))
755 #define SCAT4(a, b, c, d)		SCAT2(a, SCAT3(b, c, d))
756 
757 #define _CHECK(_test)			_CHECK_##_test
758 #define _PREPARE(_test)			_PREPARE_##_test
759 #define _PREPARE_guest_read64		NULL
760 #define _PREPARE_guest_ld_preidx	NULL
761 #define _PREPARE_guest_write64		NULL
762 #define _PREPARE_guest_st_preidx	NULL
763 #define _PREPARE_guest_exec		NULL
764 #define _PREPARE_guest_at		NULL
765 #define _PREPARE_guest_dc_zva		guest_check_dc_zva
766 #define _PREPARE_guest_cas		guest_check_lse
767 
768 /* With or without access flag checks */
769 #define _PREPARE_with_af		guest_set_ha, guest_clear_pte_af
770 #define _PREPARE_no_af			NULL
771 #define _CHECK_with_af			guest_check_pte_af
772 #define _CHECK_no_af			NULL
773 
774 /* Performs an access and checks that no faults were triggered. */
775 #define TEST_ACCESS(_access, _with_af, _mark_cmd)				\
776 {										\
777 	.name			= SCAT3(_access, _with_af, #_mark_cmd),		\
778 	.guest_prepare		= { _PREPARE(_with_af),				\
779 				    _PREPARE(_access) },			\
780 	.mem_mark_cmd		= _mark_cmd,					\
781 	.guest_test		= _access,					\
782 	.guest_test_check	= { _CHECK(_with_af) },				\
783 	.expected_events	= { 0 },					\
784 }
785 
786 #define TEST_UFFD(_access, _with_af, _mark_cmd,					\
787 		  _uffd_data_handler, _uffd_pt_handler, _uffd_faults)		\
788 {										\
789 	.name			= SCAT4(uffd, _access, _with_af, #_mark_cmd),	\
790 	.guest_prepare		= { _PREPARE(_with_af),				\
791 				    _PREPARE(_access) },			\
792 	.guest_test		= _access,					\
793 	.mem_mark_cmd		= _mark_cmd,					\
794 	.guest_test_check	= { _CHECK(_with_af) },				\
795 	.uffd_data_handler	= _uffd_data_handler,				\
796 	.uffd_pt_handler	= _uffd_pt_handler,				\
797 	.expected_events	= { .uffd_faults = _uffd_faults, },		\
798 }
799 
800 #define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check)		\
801 {										\
802 	.name			= SCAT3(dirty_log, _access, _with_af),		\
803 	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
804 	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
805 	.guest_prepare		= { _PREPARE(_with_af),				\
806 				    _PREPARE(_access) },			\
807 	.guest_test		= _access,					\
808 	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
809 	.expected_events	= { 0 },					\
810 }
811 
812 #define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler,		\
813 				_uffd_faults, _test_check, _pt_check)		\
814 {										\
815 	.name			= SCAT3(uffd_and_dirty_log, _access, _with_af),	\
816 	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
817 	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
818 	.guest_prepare		= { _PREPARE(_with_af),				\
819 				    _PREPARE(_access) },			\
820 	.guest_test		= _access,					\
821 	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
822 	.guest_test_check	= { _CHECK(_with_af), _test_check, _pt_check },	\
823 	.uffd_data_handler	= _uffd_data_handler,				\
824 	.uffd_pt_handler	= uffd_pt_handler,				\
825 	.expected_events	= { .uffd_faults = _uffd_faults, },		\
826 }
827 
828 #define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits)			\
829 {										\
830 	.name			= SCAT2(ro_memslot, _access),			\
831 	.data_memslot_flags	= KVM_MEM_READONLY,				\
832 	.pt_memslot_flags	= KVM_MEM_READONLY,				\
833 	.guest_prepare		= { _PREPARE(_access) },			\
834 	.guest_test		= _access,					\
835 	.mmio_handler		= _mmio_handler,				\
836 	.expected_events	= { .mmio_exits = _mmio_exits },		\
837 }
838 
839 #define TEST_RO_MEMSLOT_NO_SYNDROME(_access)					\
840 {										\
841 	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
842 	.data_memslot_flags	= KVM_MEM_READONLY,				\
843 	.pt_memslot_flags	= KVM_MEM_READONLY,				\
844 	.guest_prepare		= { _PREPARE(_access) },			\
845 	.guest_test		= _access,					\
846 	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
847 	.expected_events	= { .fail_vcpu_runs = 1 },			\
848 }
849 
850 #define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits,	\
851 				      _test_check)				\
852 {										\
853 	.name			= SCAT2(ro_memslot, _access),			\
854 	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
855 	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
856 	.guest_prepare		= { _PREPARE(_access) },			\
857 	.guest_test		= _access,					\
858 	.guest_test_check	= { _test_check },				\
859 	.mmio_handler		= _mmio_handler,				\
860 	.expected_events	= { .mmio_exits = _mmio_exits},			\
861 }
862 
863 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check)		\
864 {										\
865 	.name			= SCAT2(ro_memslot_no_syn_and_dlog, _access),	\
866 	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
867 	.pt_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
868 	.guest_prepare		= { _PREPARE(_access) },			\
869 	.guest_test		= _access,					\
870 	.guest_test_check	= { _test_check },				\
871 	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
872 	.expected_events	= { .fail_vcpu_runs = 1 },			\
873 }
874 
875 #define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits,		\
876 				 _uffd_data_handler, _uffd_faults)		\
877 {										\
878 	.name			= SCAT2(ro_memslot_uffd, _access),		\
879 	.data_memslot_flags	= KVM_MEM_READONLY,				\
880 	.pt_memslot_flags	= KVM_MEM_READONLY,				\
881 	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
882 	.guest_prepare		= { _PREPARE(_access) },			\
883 	.guest_test		= _access,					\
884 	.uffd_data_handler	= _uffd_data_handler,				\
885 	.uffd_pt_handler	= uffd_pt_handler,				\
886 	.mmio_handler		= _mmio_handler,				\
887 	.expected_events	= { .mmio_exits = _mmio_exits,			\
888 				    .uffd_faults = _uffd_faults },		\
889 }
890 
891 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler,	\
892 					     _uffd_faults)			\
893 {										\
894 	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
895 	.data_memslot_flags	= KVM_MEM_READONLY,				\
896 	.pt_memslot_flags	= KVM_MEM_READONLY,				\
897 	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
898 	.guest_prepare		= { _PREPARE(_access) },			\
899 	.guest_test		= _access,					\
900 	.uffd_data_handler	= _uffd_data_handler,				\
901 	.uffd_pt_handler	= uffd_pt_handler,			\
902 	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
903 	.expected_events	= { .fail_vcpu_runs = 1,			\
904 				    .uffd_faults = _uffd_faults },		\
905 }
906 
907 static struct test_desc tests[] = {
908 
909 	/* Check that HW is setting the Access Flag (AF) (sanity checks). */
910 	TEST_ACCESS(guest_read64, with_af, CMD_NONE),
911 	TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
912 	TEST_ACCESS(guest_cas, with_af, CMD_NONE),
913 	TEST_ACCESS(guest_write64, with_af, CMD_NONE),
914 	TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
915 	TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
916 	TEST_ACCESS(guest_exec, with_af, CMD_NONE),
917 
918 	/*
919 	 * Punch a hole in the data backing store, and then try multiple
920 	 * accesses: reads should rturn zeroes, and writes should
921 	 * re-populate the page. Moreover, the test also check that no
922 	 * exception was generated in the guest.  Note that this
923 	 * reading/writing behavior is the same as reading/writing a
924 	 * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
925 	 * userspace.
926 	 */
927 	TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
928 	TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
929 	TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
930 	TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
931 	TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
932 	TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
933 	TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
934 
935 	/*
936 	 * Punch holes in the data and PT backing stores and mark them for
937 	 * userfaultfd handling. This should result in 2 faults: the access
938 	 * on the data backing store, and its respective S1 page table walk
939 	 * (S1PTW).
940 	 */
941 	TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
942 		  uffd_data_handler, uffd_pt_handler, 2),
943 	TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
944 		  uffd_data_handler, uffd_pt_handler, 2),
945 	TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
946 		  uffd_data_handler, uffd_pt_handler, 2),
947 	/*
948 	 * Can't test guest_at with_af as it's IMPDEF whether the AF is set.
949 	 * The S1PTW fault should still be marked as a write.
950 	 */
951 	TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
952 		  uffd_no_handler, uffd_pt_handler, 1),
953 	TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
954 		  uffd_data_handler, uffd_pt_handler, 2),
955 	TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
956 		  uffd_data_handler, uffd_pt_handler, 2),
957 	TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
958 		  uffd_data_handler, uffd_pt_handler, 2),
959 	TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
960 		  uffd_data_handler, uffd_pt_handler, 2),
961 	TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
962 		  uffd_data_handler, uffd_pt_handler, 2),
963 
964 	/*
965 	 * Try accesses when the data and PT memory regions are both
966 	 * tracked for dirty logging.
967 	 */
968 	TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
969 		       guest_check_s1ptw_wr_in_dirty_log),
970 	TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
971 		       guest_check_no_s1ptw_wr_in_dirty_log),
972 	TEST_DIRTY_LOG(guest_ld_preidx, with_af,
973 		       guest_check_no_write_in_dirty_log,
974 		       guest_check_s1ptw_wr_in_dirty_log),
975 	TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
976 		       guest_check_no_s1ptw_wr_in_dirty_log),
977 	TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
978 		       guest_check_s1ptw_wr_in_dirty_log),
979 	TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
980 		       guest_check_s1ptw_wr_in_dirty_log),
981 	TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
982 		       guest_check_s1ptw_wr_in_dirty_log),
983 	TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
984 		       guest_check_s1ptw_wr_in_dirty_log),
985 	TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
986 		       guest_check_s1ptw_wr_in_dirty_log),
987 
988 	/*
989 	 * Access when the data and PT memory regions are both marked for
990 	 * dirty logging and UFFD at the same time. The expected result is
991 	 * that writes should mark the dirty log and trigger a userfaultfd
992 	 * write fault.  Reads/execs should result in a read userfaultfd
993 	 * fault, and nothing in the dirty log.  Any S1PTW should result in
994 	 * a write in the dirty log and a userfaultfd write.
995 	 */
996 	TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
997 				uffd_data_handler, 2,
998 				guest_check_no_write_in_dirty_log,
999 				guest_check_s1ptw_wr_in_dirty_log),
1000 	TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
1001 				uffd_data_handler, 2,
1002 				guest_check_no_write_in_dirty_log,
1003 				guest_check_no_s1ptw_wr_in_dirty_log),
1004 	TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
1005 				uffd_data_handler,
1006 				2, guest_check_no_write_in_dirty_log,
1007 				guest_check_s1ptw_wr_in_dirty_log),
1008 	TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
1009 				guest_check_no_write_in_dirty_log,
1010 				guest_check_s1ptw_wr_in_dirty_log),
1011 	TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
1012 				uffd_data_handler, 2,
1013 				guest_check_no_write_in_dirty_log,
1014 				guest_check_s1ptw_wr_in_dirty_log),
1015 	TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
1016 				uffd_data_handler,
1017 				2, guest_check_write_in_dirty_log,
1018 				guest_check_s1ptw_wr_in_dirty_log),
1019 	TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
1020 				uffd_data_handler, 2,
1021 				guest_check_write_in_dirty_log,
1022 				guest_check_s1ptw_wr_in_dirty_log),
1023 	TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
1024 				uffd_data_handler,
1025 				2, guest_check_write_in_dirty_log,
1026 				guest_check_s1ptw_wr_in_dirty_log),
1027 	TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
1028 				uffd_data_handler, 2,
1029 				guest_check_write_in_dirty_log,
1030 				guest_check_s1ptw_wr_in_dirty_log),
1031 	/*
1032 	 * Access when both the PT and data regions are marked read-only
1033 	 * (with KVM_MEM_READONLY). Writes with a syndrome result in an
1034 	 * MMIO exit, writes with no syndrome (e.g., CAS) result in a
1035 	 * failed vcpu run, and reads/execs with and without syndroms do
1036 	 * not fault.
1037 	 */
1038 	TEST_RO_MEMSLOT(guest_read64, 0, 0),
1039 	TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
1040 	TEST_RO_MEMSLOT(guest_at, 0, 0),
1041 	TEST_RO_MEMSLOT(guest_exec, 0, 0),
1042 	TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
1043 	TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
1044 	TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
1045 	TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
1046 
1047 	/*
1048 	 * The PT and data regions are both read-only and marked
1049 	 * for dirty logging at the same time. The expected result is that
1050 	 * for writes there should be no write in the dirty log. The
1051 	 * readonly handling is the same as if the memslot was not marked
1052 	 * for dirty logging: writes with a syndrome result in an MMIO
1053 	 * exit, and writes with no syndrome result in a failed vcpu run.
1054 	 */
1055 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
1056 				      guest_check_no_write_in_dirty_log),
1057 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
1058 				      guest_check_no_write_in_dirty_log),
1059 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
1060 				      guest_check_no_write_in_dirty_log),
1061 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
1062 				      guest_check_no_write_in_dirty_log),
1063 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
1064 				      1, guest_check_no_write_in_dirty_log),
1065 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
1066 						  guest_check_no_write_in_dirty_log),
1067 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
1068 						  guest_check_no_write_in_dirty_log),
1069 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
1070 						  guest_check_no_write_in_dirty_log),
1071 
1072 	/*
1073 	 * The PT and data regions are both read-only and punched with
1074 	 * holes tracked with userfaultfd.  The expected result is the
1075 	 * union of both userfaultfd and read-only behaviors. For example,
1076 	 * write accesses result in a userfaultfd write fault and an MMIO
1077 	 * exit.  Writes with no syndrome result in a failed vcpu run and
1078 	 * no userfaultfd write fault. Reads result in userfaultfd getting
1079 	 * triggered.
1080 	 */
1081 	TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
1082 	TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
1083 	TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
1084 	TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
1085 	TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
1086 				 uffd_data_handler, 2),
1087 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
1088 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
1089 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),
1090 
1091 	{ 0 }
1092 };
1093 
for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)1094 static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
1095 {
1096 	struct test_desc *t;
1097 
1098 	for (t = &tests[0]; t->name; t++) {
1099 		if (t->skip)
1100 			continue;
1101 
1102 		struct test_params p = {
1103 			.src_type = src_type,
1104 			.test_desc = t,
1105 		};
1106 
1107 		for_each_guest_mode(run_test, &p);
1108 	}
1109 }
1110 
main(int argc,char * argv[])1111 int main(int argc, char *argv[])
1112 {
1113 	enum vm_mem_backing_src_type src_type;
1114 	int opt;
1115 
1116 	src_type = DEFAULT_VM_MEM_SRC;
1117 
1118 	while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
1119 		switch (opt) {
1120 		case 'm':
1121 			guest_modes_cmdline(optarg);
1122 			break;
1123 		case 's':
1124 			src_type = parse_backing_src_type(optarg);
1125 			break;
1126 		case 'h':
1127 		default:
1128 			help(argv[0]);
1129 			exit(0);
1130 		}
1131 	}
1132 
1133 	for_each_test_and_guest_mode(src_type);
1134 	return 0;
1135 }
1136