1  // SPDX-License-Identifier: GPL-2.0
2  //
3  // Cryptographic API.
4  //
5  // Support for Samsung S5PV210 and Exynos HW acceleration.
6  //
7  // Copyright (C) 2011 NetUP Inc. All rights reserved.
8  // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9  //
10  // Hash part based on omap-sham.c driver.
11  
12  #include <linux/clk.h>
13  #include <linux/crypto.h>
14  #include <linux/dma-mapping.h>
15  #include <linux/err.h>
16  #include <linux/errno.h>
17  #include <linux/init.h>
18  #include <linux/interrupt.h>
19  #include <linux/io.h>
20  #include <linux/kernel.h>
21  #include <linux/module.h>
22  #include <linux/of.h>
23  #include <linux/platform_device.h>
24  #include <linux/scatterlist.h>
25  
26  #include <crypto/ctr.h>
27  #include <crypto/aes.h>
28  #include <crypto/algapi.h>
29  #include <crypto/scatterwalk.h>
30  
31  #include <crypto/hash.h>
32  #include <crypto/md5.h>
33  #include <crypto/sha1.h>
34  #include <crypto/sha2.h>
35  #include <crypto/internal/hash.h>
36  
37  #define _SBF(s, v)			((v) << (s))
38  
39  /* Feed control registers */
40  #define SSS_REG_FCINTSTAT		0x0000
41  #define SSS_FCINTSTAT_HPARTINT		BIT(7)
42  #define SSS_FCINTSTAT_HDONEINT		BIT(5)
43  #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
44  #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
45  #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
46  #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
47  
48  #define SSS_REG_FCINTENSET		0x0004
49  #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
50  #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
51  #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
52  #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
53  #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
54  #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
55  
56  #define SSS_REG_FCINTENCLR		0x0008
57  #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
58  #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
59  #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
60  #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
61  #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
62  #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
63  
64  #define SSS_REG_FCINTPEND		0x000C
65  #define SSS_FCINTPEND_HPARTINTP		BIT(7)
66  #define SSS_FCINTPEND_HDONEINTP		BIT(5)
67  #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
68  #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
69  #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
70  #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
71  
72  #define SSS_REG_FCFIFOSTAT		0x0010
73  #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
74  #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
75  #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
76  #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
77  #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
78  #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
79  #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
80  #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
81  
82  #define SSS_REG_FCFIFOCTRL		0x0014
83  #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
84  #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
85  #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
86  #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
87  #define SSS_HASHIN_MASK			_SBF(0, 0x03)
88  
89  #define SSS_REG_FCBRDMAS		0x0020
90  #define SSS_REG_FCBRDMAL		0x0024
91  #define SSS_REG_FCBRDMAC		0x0028
92  #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
93  #define SSS_FCBRDMAC_FLUSH		BIT(0)
94  
95  #define SSS_REG_FCBTDMAS		0x0030
96  #define SSS_REG_FCBTDMAL		0x0034
97  #define SSS_REG_FCBTDMAC		0x0038
98  #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
99  #define SSS_FCBTDMAC_FLUSH		BIT(0)
100  
101  #define SSS_REG_FCHRDMAS		0x0040
102  #define SSS_REG_FCHRDMAL		0x0044
103  #define SSS_REG_FCHRDMAC		0x0048
104  #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
105  #define SSS_FCHRDMAC_FLUSH		BIT(0)
106  
107  #define SSS_REG_FCPKDMAS		0x0050
108  #define SSS_REG_FCPKDMAL		0x0054
109  #define SSS_REG_FCPKDMAC		0x0058
110  #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
111  #define SSS_FCPKDMAC_DESCEND		BIT(2)
112  #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
113  #define SSS_FCPKDMAC_FLUSH		BIT(0)
114  
115  #define SSS_REG_FCPKDMAO		0x005C
116  
117  /* AES registers */
118  #define SSS_REG_AES_CONTROL		0x00
119  #define SSS_AES_BYTESWAP_DI		BIT(11)
120  #define SSS_AES_BYTESWAP_DO		BIT(10)
121  #define SSS_AES_BYTESWAP_IV		BIT(9)
122  #define SSS_AES_BYTESWAP_CNT		BIT(8)
123  #define SSS_AES_BYTESWAP_KEY		BIT(7)
124  #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
125  #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
126  #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
127  #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
128  #define SSS_AES_FIFO_MODE		BIT(3)
129  #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
130  #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
131  #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
132  #define SSS_AES_MODE_DECRYPT		BIT(0)
133  
134  #define SSS_REG_AES_STATUS		0x04
135  #define SSS_AES_BUSY			BIT(2)
136  #define SSS_AES_INPUT_READY		BIT(1)
137  #define SSS_AES_OUTPUT_READY		BIT(0)
138  
139  #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
140  #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
141  #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
142  #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
143  #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
144  
145  #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
146  #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
147  #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
148  
149  #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
150  #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
151  						SSS_AES_REG(dev, reg))
152  
153  /* HW engine modes */
154  #define FLAGS_AES_DECRYPT		BIT(0)
155  #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
156  #define FLAGS_AES_CBC			_SBF(1, 0x01)
157  #define FLAGS_AES_CTR			_SBF(1, 0x02)
158  
159  #define AES_KEY_LEN			16
160  #define CRYPTO_QUEUE_LEN		1
161  
162  /* HASH registers */
163  #define SSS_REG_HASH_CTRL		0x00
164  
165  #define SSS_HASH_USER_IV_EN		BIT(5)
166  #define SSS_HASH_INIT_BIT		BIT(4)
167  #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
168  #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
169  #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
170  
171  #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
172  
173  #define SSS_REG_HASH_CTRL_PAUSE		0x04
174  
175  #define SSS_HASH_PAUSE			BIT(0)
176  
177  #define SSS_REG_HASH_CTRL_FIFO		0x08
178  
179  #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
180  #define SSS_HASH_FIFO_MODE_CPU          0
181  
182  #define SSS_REG_HASH_CTRL_SWAP		0x0C
183  
184  #define SSS_HASH_BYTESWAP_DI		BIT(3)
185  #define SSS_HASH_BYTESWAP_DO		BIT(2)
186  #define SSS_HASH_BYTESWAP_IV		BIT(1)
187  #define SSS_HASH_BYTESWAP_KEY		BIT(0)
188  
189  #define SSS_REG_HASH_STATUS		0x10
190  
191  #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
192  #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
193  #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
194  
195  #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
196  #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
197  
198  #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
199  #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
200  
201  #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
202  #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
203  
204  #define HASH_BLOCK_SIZE			64
205  #define HASH_REG_SIZEOF			4
206  #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207  #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208  #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209  
210  /*
211   * HASH bit numbers, used by device, setting in dev->hash_flags with
212   * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213   * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214   * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215   */
216  #define HASH_FLAGS_BUSY		0
217  #define HASH_FLAGS_FINAL	1
218  #define HASH_FLAGS_DMA_ACTIVE	2
219  #define HASH_FLAGS_OUTPUT_READY	3
220  #define HASH_FLAGS_DMA_READY	4
221  #define HASH_FLAGS_SGS_COPIED	5
222  #define HASH_FLAGS_SGS_ALLOCED	6
223  
224  /* HASH HW constants */
225  #define BUFLEN			HASH_BLOCK_SIZE
226  
227  #define SSS_HASH_QUEUE_LENGTH	10
228  
229  /**
230   * struct samsung_aes_variant - platform specific SSS driver data
231   * @aes_offset: AES register offset from SSS module's base.
232   * @hash_offset: HASH register offset from SSS module's base.
233   * @clk_names: names of clocks needed to run SSS IP
234   *
235   * Specifies platform specific configuration of SSS module.
236   * Note: A structure for driver specific platform data is used for future
237   * expansion of its usage.
238   */
239  struct samsung_aes_variant {
240  	unsigned int			aes_offset;
241  	unsigned int			hash_offset;
242  	const char			*clk_names[2];
243  };
244  
245  struct s5p_aes_reqctx {
246  	unsigned long			mode;
247  };
248  
249  struct s5p_aes_ctx {
250  	struct s5p_aes_dev		*dev;
251  
252  	u8				aes_key[AES_MAX_KEY_SIZE];
253  	u8				nonce[CTR_RFC3686_NONCE_SIZE];
254  	int				keylen;
255  };
256  
257  /**
258   * struct s5p_aes_dev - Crypto device state container
259   * @dev:	Associated device
260   * @clk:	Clock for accessing hardware
261   * @pclk:	APB bus clock necessary to access the hardware
262   * @ioaddr:	Mapped IO memory region
263   * @aes_ioaddr:	Per-varian offset for AES block IO memory
264   * @irq_fc:	Feed control interrupt line
265   * @req:	Crypto request currently handled by the device
266   * @ctx:	Configuration for currently handled crypto request
267   * @sg_src:	Scatter list with source data for currently handled block
268   *		in device.  This is DMA-mapped into device.
269   * @sg_dst:	Scatter list with destination data for currently handled block
270   *		in device. This is DMA-mapped into device.
271   * @sg_src_cpy:	In case of unaligned access, copied scatter list
272   *		with source data.
273   * @sg_dst_cpy:	In case of unaligned access, copied scatter list
274   *		with destination data.
275   * @tasklet:	New request scheduling jib
276   * @queue:	Crypto queue
277   * @busy:	Indicates whether the device is currently handling some request
278   *		thus it uses some of the fields from this state, like:
279   *		req, ctx, sg_src/dst (and copies).  This essentially
280   *		protects against concurrent access to these fields.
281   * @lock:	Lock for protecting both access to device hardware registers
282   *		and fields related to current request (including the busy field).
283   * @res:	Resources for hash.
284   * @io_hash_base: Per-variant offset for HASH block IO memory.
285   * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
286   *		variable.
287   * @hash_flags:	Flags for current HASH op.
288   * @hash_queue:	Async hash queue.
289   * @hash_tasklet: New HASH request scheduling job.
290   * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
291   * @hash_req:	Current request sending to SSS HASH block.
292   * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
293   * @hash_sg_cnt: Counter for hash_sg_iter.
294   *
295   * @use_hash:	true if HASH algs enabled
296   */
297  struct s5p_aes_dev {
298  	struct device			*dev;
299  	struct clk			*clk;
300  	struct clk			*pclk;
301  	void __iomem			*ioaddr;
302  	void __iomem			*aes_ioaddr;
303  	int				irq_fc;
304  
305  	struct skcipher_request		*req;
306  	struct s5p_aes_ctx		*ctx;
307  	struct scatterlist		*sg_src;
308  	struct scatterlist		*sg_dst;
309  
310  	struct scatterlist		*sg_src_cpy;
311  	struct scatterlist		*sg_dst_cpy;
312  
313  	struct tasklet_struct		tasklet;
314  	struct crypto_queue		queue;
315  	bool				busy;
316  	spinlock_t			lock;
317  
318  	struct resource			*res;
319  	void __iomem			*io_hash_base;
320  
321  	spinlock_t			hash_lock; /* protect hash_ vars */
322  	unsigned long			hash_flags;
323  	struct crypto_queue		hash_queue;
324  	struct tasklet_struct		hash_tasklet;
325  
326  	u8				xmit_buf[BUFLEN];
327  	struct ahash_request		*hash_req;
328  	struct scatterlist		*hash_sg_iter;
329  	unsigned int			hash_sg_cnt;
330  
331  	bool				use_hash;
332  };
333  
334  /**
335   * struct s5p_hash_reqctx - HASH request context
336   * @dd:		Associated device
337   * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
338   * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
339   * @digest:	Digest message or IV for partial result
340   * @nregs:	Number of HW registers for digest or IV read/write
341   * @engine:	Bits for selecting type of HASH in SSS block
342   * @sg:		sg for DMA transfer
343   * @sg_len:	Length of sg for DMA transfer
344   * @sgl:	sg for joining buffer and req->src scatterlist
345   * @skip:	Skip offset in req->src for current op
346   * @total:	Total number of bytes for current request
347   * @finup:	Keep state for finup or final.
348   * @error:	Keep track of error.
349   * @bufcnt:	Number of bytes holded in buffer[]
350   * @buffer:	For byte(s) from end of req->src in UPDATE op
351   */
352  struct s5p_hash_reqctx {
353  	struct s5p_aes_dev	*dd;
354  	bool			op_update;
355  
356  	u64			digcnt;
357  	u8			digest[SHA256_DIGEST_SIZE];
358  
359  	unsigned int		nregs; /* digest_size / sizeof(reg) */
360  	u32			engine;
361  
362  	struct scatterlist	*sg;
363  	unsigned int		sg_len;
364  	struct scatterlist	sgl[2];
365  	unsigned int		skip;
366  	unsigned int		total;
367  	bool			finup;
368  	bool			error;
369  
370  	u32			bufcnt;
371  	u8			buffer[];
372  };
373  
374  /**
375   * struct s5p_hash_ctx - HASH transformation context
376   * @dd:		Associated device
377   * @flags:	Bits for algorithm HASH.
378   * @fallback:	Software transformation for zero message or size < BUFLEN.
379   */
380  struct s5p_hash_ctx {
381  	struct s5p_aes_dev	*dd;
382  	unsigned long		flags;
383  	struct crypto_shash	*fallback;
384  };
385  
386  static const struct samsung_aes_variant s5p_aes_data = {
387  	.aes_offset	= 0x4000,
388  	.hash_offset	= 0x6000,
389  	.clk_names	= { "secss", },
390  };
391  
392  static const struct samsung_aes_variant exynos_aes_data = {
393  	.aes_offset	= 0x200,
394  	.hash_offset	= 0x400,
395  	.clk_names	= { "secss", },
396  };
397  
398  static const struct samsung_aes_variant exynos5433_slim_aes_data = {
399  	.aes_offset	= 0x400,
400  	.hash_offset	= 0x800,
401  	.clk_names	= { "aclk", "pclk", },
402  };
403  
404  static const struct of_device_id s5p_sss_dt_match[] = {
405  	{
406  		.compatible = "samsung,s5pv210-secss",
407  		.data = &s5p_aes_data,
408  	},
409  	{
410  		.compatible = "samsung,exynos4210-secss",
411  		.data = &exynos_aes_data,
412  	},
413  	{
414  		.compatible = "samsung,exynos5433-slim-sss",
415  		.data = &exynos5433_slim_aes_data,
416  	},
417  	{ },
418  };
419  MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
420  
find_s5p_sss_version(const struct platform_device * pdev)421  static inline const struct samsung_aes_variant *find_s5p_sss_version
422  				   (const struct platform_device *pdev)
423  {
424  	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
425  		return of_device_get_match_data(&pdev->dev);
426  
427  	return (const struct samsung_aes_variant *)
428  			platform_get_device_id(pdev)->driver_data;
429  }
430  
431  static struct s5p_aes_dev *s5p_dev;
432  
s5p_set_dma_indata(struct s5p_aes_dev * dev,const struct scatterlist * sg)433  static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
434  			       const struct scatterlist *sg)
435  {
436  	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
437  	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
438  }
439  
s5p_set_dma_outdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)440  static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
441  				const struct scatterlist *sg)
442  {
443  	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
444  	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
445  }
446  
s5p_free_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist ** sg)447  static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
448  {
449  	int len;
450  
451  	if (!*sg)
452  		return;
453  
454  	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
455  	free_pages((unsigned long)sg_virt(*sg), get_order(len));
456  
457  	kfree(*sg);
458  	*sg = NULL;
459  }
460  
s5p_sg_copy_buf(void * buf,struct scatterlist * sg,unsigned int nbytes,int out)461  static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
462  			    unsigned int nbytes, int out)
463  {
464  	struct scatter_walk walk;
465  
466  	if (!nbytes)
467  		return;
468  
469  	scatterwalk_start(&walk, sg);
470  	scatterwalk_copychunks(buf, &walk, nbytes, out);
471  	scatterwalk_done(&walk, out, 0);
472  }
473  
s5p_sg_done(struct s5p_aes_dev * dev)474  static void s5p_sg_done(struct s5p_aes_dev *dev)
475  {
476  	struct skcipher_request *req = dev->req;
477  	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
478  
479  	if (dev->sg_dst_cpy) {
480  		dev_dbg(dev->dev,
481  			"Copying %d bytes of output data back to original place\n",
482  			dev->req->cryptlen);
483  		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
484  				dev->req->cryptlen, 1);
485  	}
486  	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
487  	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
488  	if (reqctx->mode & FLAGS_AES_CBC)
489  		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
490  
491  	else if (reqctx->mode & FLAGS_AES_CTR)
492  		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
493  }
494  
495  /* Calls the completion. Cannot be called with dev->lock hold. */
s5p_aes_complete(struct skcipher_request * req,int err)496  static void s5p_aes_complete(struct skcipher_request *req, int err)
497  {
498  	skcipher_request_complete(req, err);
499  }
500  
s5p_unset_outdata(struct s5p_aes_dev * dev)501  static void s5p_unset_outdata(struct s5p_aes_dev *dev)
502  {
503  	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
504  }
505  
s5p_unset_indata(struct s5p_aes_dev * dev)506  static void s5p_unset_indata(struct s5p_aes_dev *dev)
507  {
508  	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
509  }
510  
s5p_make_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist * src,struct scatterlist ** dst)511  static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
512  			   struct scatterlist **dst)
513  {
514  	void *pages;
515  	int len;
516  
517  	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
518  	if (!*dst)
519  		return -ENOMEM;
520  
521  	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
522  	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
523  	if (!pages) {
524  		kfree(*dst);
525  		*dst = NULL;
526  		return -ENOMEM;
527  	}
528  
529  	s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
530  
531  	sg_init_table(*dst, 1);
532  	sg_set_buf(*dst, pages, len);
533  
534  	return 0;
535  }
536  
s5p_set_outdata(struct s5p_aes_dev * dev,struct scatterlist * sg)537  static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
538  {
539  	if (!sg->length)
540  		return -EINVAL;
541  
542  	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
543  		return -ENOMEM;
544  
545  	dev->sg_dst = sg;
546  
547  	return 0;
548  }
549  
s5p_set_indata(struct s5p_aes_dev * dev,struct scatterlist * sg)550  static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
551  {
552  	if (!sg->length)
553  		return -EINVAL;
554  
555  	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
556  		return -ENOMEM;
557  
558  	dev->sg_src = sg;
559  
560  	return 0;
561  }
562  
563  /*
564   * Returns -ERRNO on error (mapping of new data failed).
565   * On success returns:
566   *  - 0 if there is no more data,
567   *  - 1 if new transmitting (output) data is ready and its address+length
568   *     have to be written to device (by calling s5p_set_dma_outdata()).
569   */
s5p_aes_tx(struct s5p_aes_dev * dev)570  static int s5p_aes_tx(struct s5p_aes_dev *dev)
571  {
572  	int ret = 0;
573  
574  	s5p_unset_outdata(dev);
575  
576  	if (!sg_is_last(dev->sg_dst)) {
577  		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
578  		if (!ret)
579  			ret = 1;
580  	}
581  
582  	return ret;
583  }
584  
585  /*
586   * Returns -ERRNO on error (mapping of new data failed).
587   * On success returns:
588   *  - 0 if there is no more data,
589   *  - 1 if new receiving (input) data is ready and its address+length
590   *     have to be written to device (by calling s5p_set_dma_indata()).
591   */
s5p_aes_rx(struct s5p_aes_dev * dev)592  static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
593  {
594  	int ret = 0;
595  
596  	s5p_unset_indata(dev);
597  
598  	if (!sg_is_last(dev->sg_src)) {
599  		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
600  		if (!ret)
601  			ret = 1;
602  	}
603  
604  	return ret;
605  }
606  
s5p_hash_read(struct s5p_aes_dev * dd,u32 offset)607  static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
608  {
609  	return __raw_readl(dd->io_hash_base + offset);
610  }
611  
s5p_hash_write(struct s5p_aes_dev * dd,u32 offset,u32 value)612  static inline void s5p_hash_write(struct s5p_aes_dev *dd,
613  				  u32 offset, u32 value)
614  {
615  	__raw_writel(value, dd->io_hash_base + offset);
616  }
617  
618  /**
619   * s5p_set_dma_hashdata() - start DMA with sg
620   * @dev:	device
621   * @sg:		scatterlist ready to DMA transmit
622   */
s5p_set_dma_hashdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)623  static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
624  				 const struct scatterlist *sg)
625  {
626  	dev->hash_sg_cnt--;
627  	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
628  	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
629  }
630  
631  /**
632   * s5p_hash_rx() - get next hash_sg_iter
633   * @dev:	device
634   *
635   * Return:
636   * 2	if there is no more data and it is UPDATE op
637   * 1	if new receiving (input) data is ready and can be written to device
638   * 0	if there is no more data and it is FINAL op
639   */
s5p_hash_rx(struct s5p_aes_dev * dev)640  static int s5p_hash_rx(struct s5p_aes_dev *dev)
641  {
642  	if (dev->hash_sg_cnt > 0) {
643  		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
644  		return 1;
645  	}
646  
647  	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
648  	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
649  		return 0;
650  
651  	return 2;
652  }
653  
s5p_aes_interrupt(int irq,void * dev_id)654  static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
655  {
656  	struct platform_device *pdev = dev_id;
657  	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
658  	struct skcipher_request *req;
659  	int err_dma_tx = 0;
660  	int err_dma_rx = 0;
661  	int err_dma_hx = 0;
662  	bool tx_end = false;
663  	bool hx_end = false;
664  	unsigned long flags;
665  	u32 status, st_bits;
666  	int err;
667  
668  	spin_lock_irqsave(&dev->lock, flags);
669  
670  	/*
671  	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
672  	 * reach end), then map next scatterlist entry.
673  	 * In case of such mapping error, s5p_aes_complete() should be called.
674  	 *
675  	 * If there is no more data in tx scatter list, call s5p_aes_complete()
676  	 * and schedule new tasklet.
677  	 *
678  	 * Handle hx interrupt. If there is still data map next entry.
679  	 */
680  	status = SSS_READ(dev, FCINTSTAT);
681  	if (status & SSS_FCINTSTAT_BRDMAINT)
682  		err_dma_rx = s5p_aes_rx(dev);
683  
684  	if (status & SSS_FCINTSTAT_BTDMAINT) {
685  		if (sg_is_last(dev->sg_dst))
686  			tx_end = true;
687  		err_dma_tx = s5p_aes_tx(dev);
688  	}
689  
690  	if (status & SSS_FCINTSTAT_HRDMAINT)
691  		err_dma_hx = s5p_hash_rx(dev);
692  
693  	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
694  				SSS_FCINTSTAT_HRDMAINT);
695  	/* clear DMA bits */
696  	SSS_WRITE(dev, FCINTPEND, st_bits);
697  
698  	/* clear HASH irq bits */
699  	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
700  		/* cannot have both HPART and HDONE */
701  		if (status & SSS_FCINTSTAT_HPARTINT)
702  			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
703  
704  		if (status & SSS_FCINTSTAT_HDONEINT)
705  			st_bits = SSS_HASH_STATUS_MSG_DONE;
706  
707  		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
708  		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
709  		hx_end = true;
710  		/* when DONE or PART, do not handle HASH DMA */
711  		err_dma_hx = 0;
712  	}
713  
714  	if (err_dma_rx < 0) {
715  		err = err_dma_rx;
716  		goto error;
717  	}
718  	if (err_dma_tx < 0) {
719  		err = err_dma_tx;
720  		goto error;
721  	}
722  
723  	if (tx_end) {
724  		s5p_sg_done(dev);
725  		if (err_dma_hx == 1)
726  			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
727  
728  		spin_unlock_irqrestore(&dev->lock, flags);
729  
730  		s5p_aes_complete(dev->req, 0);
731  		/* Device is still busy */
732  		tasklet_schedule(&dev->tasklet);
733  	} else {
734  		/*
735  		 * Writing length of DMA block (either receiving or
736  		 * transmitting) will start the operation immediately, so this
737  		 * should be done at the end (even after clearing pending
738  		 * interrupts to not miss the interrupt).
739  		 */
740  		if (err_dma_tx == 1)
741  			s5p_set_dma_outdata(dev, dev->sg_dst);
742  		if (err_dma_rx == 1)
743  			s5p_set_dma_indata(dev, dev->sg_src);
744  		if (err_dma_hx == 1)
745  			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
746  
747  		spin_unlock_irqrestore(&dev->lock, flags);
748  	}
749  
750  	goto hash_irq_end;
751  
752  error:
753  	s5p_sg_done(dev);
754  	dev->busy = false;
755  	req = dev->req;
756  	if (err_dma_hx == 1)
757  		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
758  
759  	spin_unlock_irqrestore(&dev->lock, flags);
760  	s5p_aes_complete(req, err);
761  
762  hash_irq_end:
763  	/*
764  	 * Note about else if:
765  	 *   when hash_sg_iter reaches end and its UPDATE op,
766  	 *   issue SSS_HASH_PAUSE and wait for HPART irq
767  	 */
768  	if (hx_end)
769  		tasklet_schedule(&dev->hash_tasklet);
770  	else if (err_dma_hx == 2)
771  		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
772  			       SSS_HASH_PAUSE);
773  
774  	return IRQ_HANDLED;
775  }
776  
777  /**
778   * s5p_hash_read_msg() - read message or IV from HW
779   * @req:	AHASH request
780   */
s5p_hash_read_msg(struct ahash_request * req)781  static void s5p_hash_read_msg(struct ahash_request *req)
782  {
783  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
784  	struct s5p_aes_dev *dd = ctx->dd;
785  	u32 *hash = (u32 *)ctx->digest;
786  	unsigned int i;
787  
788  	for (i = 0; i < ctx->nregs; i++)
789  		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
790  }
791  
792  /**
793   * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
794   * @dd:		device
795   * @ctx:	request context
796   */
s5p_hash_write_ctx_iv(struct s5p_aes_dev * dd,const struct s5p_hash_reqctx * ctx)797  static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
798  				  const struct s5p_hash_reqctx *ctx)
799  {
800  	const u32 *hash = (const u32 *)ctx->digest;
801  	unsigned int i;
802  
803  	for (i = 0; i < ctx->nregs; i++)
804  		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
805  }
806  
807  /**
808   * s5p_hash_write_iv() - write IV for next partial/finup op.
809   * @req:	AHASH request
810   */
s5p_hash_write_iv(struct ahash_request * req)811  static void s5p_hash_write_iv(struct ahash_request *req)
812  {
813  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
814  
815  	s5p_hash_write_ctx_iv(ctx->dd, ctx);
816  }
817  
818  /**
819   * s5p_hash_copy_result() - copy digest into req->result
820   * @req:	AHASH request
821   */
s5p_hash_copy_result(struct ahash_request * req)822  static void s5p_hash_copy_result(struct ahash_request *req)
823  {
824  	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
825  
826  	if (!req->result)
827  		return;
828  
829  	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
830  }
831  
832  /**
833   * s5p_hash_dma_flush() - flush HASH DMA
834   * @dev:	secss device
835   */
s5p_hash_dma_flush(struct s5p_aes_dev * dev)836  static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
837  {
838  	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
839  }
840  
841  /**
842   * s5p_hash_dma_enable() - enable DMA mode for HASH
843   * @dev:	secss device
844   *
845   * enable DMA mode for HASH
846   */
s5p_hash_dma_enable(struct s5p_aes_dev * dev)847  static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
848  {
849  	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
850  }
851  
852  /**
853   * s5p_hash_irq_disable() - disable irq HASH signals
854   * @dev:	secss device
855   * @flags:	bitfield with irq's to be disabled
856   */
s5p_hash_irq_disable(struct s5p_aes_dev * dev,u32 flags)857  static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
858  {
859  	SSS_WRITE(dev, FCINTENCLR, flags);
860  }
861  
862  /**
863   * s5p_hash_irq_enable() - enable irq signals
864   * @dev:	secss device
865   * @flags:	bitfield with irq's to be enabled
866   */
s5p_hash_irq_enable(struct s5p_aes_dev * dev,int flags)867  static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
868  {
869  	SSS_WRITE(dev, FCINTENSET, flags);
870  }
871  
872  /**
873   * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
874   * @dev:	secss device
875   * @hashflow:	HASH stream flow with/without crypto AES/DES
876   */
s5p_hash_set_flow(struct s5p_aes_dev * dev,u32 hashflow)877  static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
878  {
879  	unsigned long flags;
880  	u32 flow;
881  
882  	spin_lock_irqsave(&dev->lock, flags);
883  
884  	flow = SSS_READ(dev, FCFIFOCTRL);
885  	flow &= ~SSS_HASHIN_MASK;
886  	flow |= hashflow;
887  	SSS_WRITE(dev, FCFIFOCTRL, flow);
888  
889  	spin_unlock_irqrestore(&dev->lock, flags);
890  }
891  
892  /**
893   * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
894   * @dev:	secss device
895   * @hashflow:	HASH stream flow with/without AES/DES
896   *
897   * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
898   * enable HASH irq's HRDMA, HDONE, HPART
899   */
s5p_ahash_dma_init(struct s5p_aes_dev * dev,u32 hashflow)900  static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
901  {
902  	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
903  			     SSS_FCINTENCLR_HDONEINTENCLR |
904  			     SSS_FCINTENCLR_HPARTINTENCLR);
905  	s5p_hash_dma_flush(dev);
906  
907  	s5p_hash_dma_enable(dev);
908  	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
909  	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
910  			    SSS_FCINTENSET_HDONEINTENSET |
911  			    SSS_FCINTENSET_HPARTINTENSET);
912  }
913  
914  /**
915   * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
916   * @dd:		secss device
917   * @length:	length for request
918   * @final:	true if final op
919   *
920   * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
921   * after previous updates, fill up IV words. For final, calculate and set
922   * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
923   * length as 2^63 so it will be never reached and set to zero prelow and
924   * prehigh.
925   *
926   * This function does not start DMA transfer.
927   */
s5p_hash_write_ctrl(struct s5p_aes_dev * dd,size_t length,bool final)928  static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
929  				bool final)
930  {
931  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
932  	u32 prelow, prehigh, low, high;
933  	u32 configflags, swapflags;
934  	u64 tmplen;
935  
936  	configflags = ctx->engine | SSS_HASH_INIT_BIT;
937  
938  	if (likely(ctx->digcnt)) {
939  		s5p_hash_write_ctx_iv(dd, ctx);
940  		configflags |= SSS_HASH_USER_IV_EN;
941  	}
942  
943  	if (final) {
944  		/* number of bytes for last part */
945  		low = length;
946  		high = 0;
947  		/* total number of bits prev hashed */
948  		tmplen = ctx->digcnt * 8;
949  		prelow = (u32)tmplen;
950  		prehigh = (u32)(tmplen >> 32);
951  	} else {
952  		prelow = 0;
953  		prehigh = 0;
954  		low = 0;
955  		high = BIT(31);
956  	}
957  
958  	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
959  		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
960  
961  	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
962  	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
963  	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
964  	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
965  
966  	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
967  	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
968  }
969  
970  /**
971   * s5p_hash_xmit_dma() - start DMA hash processing
972   * @dd:		secss device
973   * @length:	length for request
974   * @final:	true if final op
975   *
976   * Update digcnt here, as it is needed for finup/final op.
977   */
s5p_hash_xmit_dma(struct s5p_aes_dev * dd,size_t length,bool final)978  static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
979  			     bool final)
980  {
981  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
982  	unsigned int cnt;
983  
984  	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
985  	if (!cnt) {
986  		dev_err(dd->dev, "dma_map_sg error\n");
987  		ctx->error = true;
988  		return -EINVAL;
989  	}
990  
991  	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
992  	dd->hash_sg_iter = ctx->sg;
993  	dd->hash_sg_cnt = cnt;
994  	s5p_hash_write_ctrl(dd, length, final);
995  	ctx->digcnt += length;
996  	ctx->total -= length;
997  
998  	/* catch last interrupt */
999  	if (final)
1000  		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1001  
1002  	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1003  
1004  	return -EINPROGRESS;
1005  }
1006  
1007  /**
1008   * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1009   * @ctx:	request context
1010   * @sg:		source scatterlist request
1011   * @new_len:	number of bytes to process from sg
1012   *
1013   * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1014   * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1015   * with allocated buffer.
1016   *
1017   * Set bit in dd->hash_flag so we can free it after irq ends processing.
1018   */
s5p_hash_copy_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1019  static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1020  			     struct scatterlist *sg, unsigned int new_len)
1021  {
1022  	unsigned int pages, len;
1023  	void *buf;
1024  
1025  	len = new_len + ctx->bufcnt;
1026  	pages = get_order(len);
1027  
1028  	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1029  	if (!buf) {
1030  		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1031  		ctx->error = true;
1032  		return -ENOMEM;
1033  	}
1034  
1035  	if (ctx->bufcnt)
1036  		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1037  
1038  	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1039  				 new_len, 0);
1040  	sg_init_table(ctx->sgl, 1);
1041  	sg_set_buf(ctx->sgl, buf, len);
1042  	ctx->sg = ctx->sgl;
1043  	ctx->sg_len = 1;
1044  	ctx->bufcnt = 0;
1045  	ctx->skip = 0;
1046  	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1047  
1048  	return 0;
1049  }
1050  
1051  /**
1052   * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1053   * @ctx:	request context
1054   * @sg:		source scatterlist request
1055   * @new_len:	number of bytes to process from sg
1056   *
1057   * Allocate new scatterlist table, copy data for HASH into it. If there was
1058   * xmit_buf filled, prepare it first, then copy page, length and offset from
1059   * source sg into it, adjusting begin and/or end for skip offset and
1060   * hash_later value.
1061   *
1062   * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1063   * it after irq ends processing.
1064   */
s5p_hash_copy_sg_lists(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1065  static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1066  				  struct scatterlist *sg, unsigned int new_len)
1067  {
1068  	unsigned int skip = ctx->skip, n = sg_nents(sg);
1069  	struct scatterlist *tmp;
1070  	unsigned int len;
1071  
1072  	if (ctx->bufcnt)
1073  		n++;
1074  
1075  	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1076  	if (!ctx->sg) {
1077  		ctx->error = true;
1078  		return -ENOMEM;
1079  	}
1080  
1081  	sg_init_table(ctx->sg, n);
1082  
1083  	tmp = ctx->sg;
1084  
1085  	ctx->sg_len = 0;
1086  
1087  	if (ctx->bufcnt) {
1088  		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1089  		tmp = sg_next(tmp);
1090  		ctx->sg_len++;
1091  	}
1092  
1093  	while (sg && skip >= sg->length) {
1094  		skip -= sg->length;
1095  		sg = sg_next(sg);
1096  	}
1097  
1098  	while (sg && new_len) {
1099  		len = sg->length - skip;
1100  		if (new_len < len)
1101  			len = new_len;
1102  
1103  		new_len -= len;
1104  		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1105  		skip = 0;
1106  		if (new_len <= 0)
1107  			sg_mark_end(tmp);
1108  
1109  		tmp = sg_next(tmp);
1110  		ctx->sg_len++;
1111  		sg = sg_next(sg);
1112  	}
1113  
1114  	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1115  
1116  	return 0;
1117  }
1118  
1119  /**
1120   * s5p_hash_prepare_sgs() - prepare sg for processing
1121   * @ctx:	request context
1122   * @sg:		source scatterlist request
1123   * @new_len:	number of bytes to process from sg
1124   * @final:	final flag
1125   *
1126   * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1127   * sg table have good aligned elements (list_ok). If one of this checks fails,
1128   * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1129   * data into this buffer and prepare request in sgl, or (2) allocates new sg
1130   * table and prepare sg elements.
1131   *
1132   * For digest or finup all conditions can be good, and we may not need any
1133   * fixes.
1134   */
s5p_hash_prepare_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len,bool final)1135  static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1136  				struct scatterlist *sg,
1137  				unsigned int new_len, bool final)
1138  {
1139  	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1140  	bool aligned = true, list_ok = true;
1141  	struct scatterlist *sg_tmp = sg;
1142  
1143  	if (!sg || !sg->length || !new_len)
1144  		return 0;
1145  
1146  	if (skip || !final)
1147  		list_ok = false;
1148  
1149  	while (nbytes > 0 && sg_tmp) {
1150  		n++;
1151  		if (skip >= sg_tmp->length) {
1152  			skip -= sg_tmp->length;
1153  			if (!sg_tmp->length) {
1154  				aligned = false;
1155  				break;
1156  			}
1157  		} else {
1158  			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1159  				aligned = false;
1160  				break;
1161  			}
1162  
1163  			if (nbytes < sg_tmp->length - skip) {
1164  				list_ok = false;
1165  				break;
1166  			}
1167  
1168  			nbytes -= sg_tmp->length - skip;
1169  			skip = 0;
1170  		}
1171  
1172  		sg_tmp = sg_next(sg_tmp);
1173  	}
1174  
1175  	if (!aligned)
1176  		return s5p_hash_copy_sgs(ctx, sg, new_len);
1177  	else if (!list_ok)
1178  		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1179  
1180  	/*
1181  	 * Have aligned data from previous operation and/or current
1182  	 * Note: will enter here only if (digest or finup) and aligned
1183  	 */
1184  	if (ctx->bufcnt) {
1185  		ctx->sg_len = n;
1186  		sg_init_table(ctx->sgl, 2);
1187  		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1188  		sg_chain(ctx->sgl, 2, sg);
1189  		ctx->sg = ctx->sgl;
1190  		ctx->sg_len++;
1191  	} else {
1192  		ctx->sg = sg;
1193  		ctx->sg_len = n;
1194  	}
1195  
1196  	return 0;
1197  }
1198  
1199  /**
1200   * s5p_hash_prepare_request() - prepare request for processing
1201   * @req:	AHASH request
1202   * @update:	true if UPDATE op
1203   *
1204   * Note 1: we can have update flag _and_ final flag at the same time.
1205   * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1206   *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1207   *	   we have final op
1208   */
s5p_hash_prepare_request(struct ahash_request * req,bool update)1209  static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1210  {
1211  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1212  	bool final = ctx->finup;
1213  	int xmit_len, hash_later, nbytes;
1214  	int ret;
1215  
1216  	if (update)
1217  		nbytes = req->nbytes;
1218  	else
1219  		nbytes = 0;
1220  
1221  	ctx->total = nbytes + ctx->bufcnt;
1222  	if (!ctx->total)
1223  		return 0;
1224  
1225  	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1226  		/* bytes left from previous request, so fill up to BUFLEN */
1227  		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1228  
1229  		if (len > nbytes)
1230  			len = nbytes;
1231  
1232  		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1233  					 0, len, 0);
1234  		ctx->bufcnt += len;
1235  		nbytes -= len;
1236  		ctx->skip = len;
1237  	} else {
1238  		ctx->skip = 0;
1239  	}
1240  
1241  	if (ctx->bufcnt)
1242  		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1243  
1244  	xmit_len = ctx->total;
1245  	if (final) {
1246  		hash_later = 0;
1247  	} else {
1248  		if (IS_ALIGNED(xmit_len, BUFLEN))
1249  			xmit_len -= BUFLEN;
1250  		else
1251  			xmit_len -= xmit_len & (BUFLEN - 1);
1252  
1253  		hash_later = ctx->total - xmit_len;
1254  		/* copy hash_later bytes from end of req->src */
1255  		/* previous bytes are in xmit_buf, so no overwrite */
1256  		scatterwalk_map_and_copy(ctx->buffer, req->src,
1257  					 req->nbytes - hash_later,
1258  					 hash_later, 0);
1259  	}
1260  
1261  	if (xmit_len > BUFLEN) {
1262  		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1263  					   final);
1264  		if (ret)
1265  			return ret;
1266  	} else {
1267  		/* have buffered data only */
1268  		if (unlikely(!ctx->bufcnt)) {
1269  			/* first update didn't fill up buffer */
1270  			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1271  						 0, xmit_len, 0);
1272  		}
1273  
1274  		sg_init_table(ctx->sgl, 1);
1275  		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1276  
1277  		ctx->sg = ctx->sgl;
1278  		ctx->sg_len = 1;
1279  	}
1280  
1281  	ctx->bufcnt = hash_later;
1282  	if (!final)
1283  		ctx->total = xmit_len;
1284  
1285  	return 0;
1286  }
1287  
1288  /**
1289   * s5p_hash_update_dma_stop() - unmap DMA
1290   * @dd:		secss device
1291   *
1292   * Unmap scatterlist ctx->sg.
1293   */
s5p_hash_update_dma_stop(struct s5p_aes_dev * dd)1294  static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1295  {
1296  	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1297  
1298  	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1299  	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1300  }
1301  
1302  /**
1303   * s5p_hash_finish() - copy calculated digest to crypto layer
1304   * @req:	AHASH request
1305   */
s5p_hash_finish(struct ahash_request * req)1306  static void s5p_hash_finish(struct ahash_request *req)
1307  {
1308  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1309  	struct s5p_aes_dev *dd = ctx->dd;
1310  
1311  	if (ctx->digcnt)
1312  		s5p_hash_copy_result(req);
1313  
1314  	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1315  }
1316  
1317  /**
1318   * s5p_hash_finish_req() - finish request
1319   * @req:	AHASH request
1320   * @err:	error
1321   */
s5p_hash_finish_req(struct ahash_request * req,int err)1322  static void s5p_hash_finish_req(struct ahash_request *req, int err)
1323  {
1324  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1325  	struct s5p_aes_dev *dd = ctx->dd;
1326  	unsigned long flags;
1327  
1328  	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1329  		free_pages((unsigned long)sg_virt(ctx->sg),
1330  			   get_order(ctx->sg->length));
1331  
1332  	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1333  		kfree(ctx->sg);
1334  
1335  	ctx->sg = NULL;
1336  	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1337  			    BIT(HASH_FLAGS_SGS_COPIED));
1338  
1339  	if (!err && !ctx->error) {
1340  		s5p_hash_read_msg(req);
1341  		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1342  			s5p_hash_finish(req);
1343  	} else {
1344  		ctx->error = true;
1345  	}
1346  
1347  	spin_lock_irqsave(&dd->hash_lock, flags);
1348  	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1349  			    BIT(HASH_FLAGS_DMA_READY) |
1350  			    BIT(HASH_FLAGS_OUTPUT_READY));
1351  	spin_unlock_irqrestore(&dd->hash_lock, flags);
1352  
1353  	if (req->base.complete)
1354  		ahash_request_complete(req, err);
1355  }
1356  
1357  /**
1358   * s5p_hash_handle_queue() - handle hash queue
1359   * @dd:		device s5p_aes_dev
1360   * @req:	AHASH request
1361   *
1362   * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1363   * device then processes the first request from the dd->queue
1364   *
1365   * Returns: see s5p_hash_final below.
1366   */
s5p_hash_handle_queue(struct s5p_aes_dev * dd,struct ahash_request * req)1367  static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1368  				 struct ahash_request *req)
1369  {
1370  	struct crypto_async_request *async_req, *backlog;
1371  	struct s5p_hash_reqctx *ctx;
1372  	unsigned long flags;
1373  	int err = 0, ret = 0;
1374  
1375  retry:
1376  	spin_lock_irqsave(&dd->hash_lock, flags);
1377  	if (req)
1378  		ret = ahash_enqueue_request(&dd->hash_queue, req);
1379  
1380  	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1381  		spin_unlock_irqrestore(&dd->hash_lock, flags);
1382  		return ret;
1383  	}
1384  
1385  	backlog = crypto_get_backlog(&dd->hash_queue);
1386  	async_req = crypto_dequeue_request(&dd->hash_queue);
1387  	if (async_req)
1388  		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1389  
1390  	spin_unlock_irqrestore(&dd->hash_lock, flags);
1391  
1392  	if (!async_req)
1393  		return ret;
1394  
1395  	if (backlog)
1396  		crypto_request_complete(backlog, -EINPROGRESS);
1397  
1398  	req = ahash_request_cast(async_req);
1399  	dd->hash_req = req;
1400  	ctx = ahash_request_ctx(req);
1401  
1402  	err = s5p_hash_prepare_request(req, ctx->op_update);
1403  	if (err || !ctx->total)
1404  		goto out;
1405  
1406  	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1407  		ctx->op_update, req->nbytes);
1408  
1409  	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1410  	if (ctx->digcnt)
1411  		s5p_hash_write_iv(req); /* restore hash IV */
1412  
1413  	if (ctx->op_update) { /* HASH_OP_UPDATE */
1414  		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1415  		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1416  			/* no final() after finup() */
1417  			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1418  	} else { /* HASH_OP_FINAL */
1419  		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1420  	}
1421  out:
1422  	if (err != -EINPROGRESS) {
1423  		/* hash_tasklet_cb will not finish it, so do it here */
1424  		s5p_hash_finish_req(req, err);
1425  		req = NULL;
1426  
1427  		/*
1428  		 * Execute next request immediately if there is anything
1429  		 * in queue.
1430  		 */
1431  		goto retry;
1432  	}
1433  
1434  	return ret;
1435  }
1436  
1437  /**
1438   * s5p_hash_tasklet_cb() - hash tasklet
1439   * @data:	ptr to s5p_aes_dev
1440   */
s5p_hash_tasklet_cb(unsigned long data)1441  static void s5p_hash_tasklet_cb(unsigned long data)
1442  {
1443  	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1444  
1445  	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1446  		s5p_hash_handle_queue(dd, NULL);
1447  		return;
1448  	}
1449  
1450  	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1451  		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1452  				       &dd->hash_flags)) {
1453  			s5p_hash_update_dma_stop(dd);
1454  		}
1455  
1456  		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1457  				       &dd->hash_flags)) {
1458  			/* hash or semi-hash ready */
1459  			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1460  			goto finish;
1461  		}
1462  	}
1463  
1464  	return;
1465  
1466  finish:
1467  	/* finish curent request */
1468  	s5p_hash_finish_req(dd->hash_req, 0);
1469  
1470  	/* If we are not busy, process next req */
1471  	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1472  		s5p_hash_handle_queue(dd, NULL);
1473  }
1474  
1475  /**
1476   * s5p_hash_enqueue() - enqueue request
1477   * @req:	AHASH request
1478   * @op:		operation UPDATE (true) or FINAL (false)
1479   *
1480   * Returns: see s5p_hash_final below.
1481   */
s5p_hash_enqueue(struct ahash_request * req,bool op)1482  static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1483  {
1484  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1485  	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1486  
1487  	ctx->op_update = op;
1488  
1489  	return s5p_hash_handle_queue(tctx->dd, req);
1490  }
1491  
1492  /**
1493   * s5p_hash_update() - process the hash input data
1494   * @req:	AHASH request
1495   *
1496   * If request will fit in buffer, copy it and return immediately
1497   * else enqueue it with OP_UPDATE.
1498   *
1499   * Returns: see s5p_hash_final below.
1500   */
s5p_hash_update(struct ahash_request * req)1501  static int s5p_hash_update(struct ahash_request *req)
1502  {
1503  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1504  
1505  	if (!req->nbytes)
1506  		return 0;
1507  
1508  	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1509  		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1510  					 0, req->nbytes, 0);
1511  		ctx->bufcnt += req->nbytes;
1512  		return 0;
1513  	}
1514  
1515  	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1516  }
1517  
1518  /**
1519   * s5p_hash_final() - close up hash and calculate digest
1520   * @req:	AHASH request
1521   *
1522   * Note: in final req->src do not have any data, and req->nbytes can be
1523   * non-zero.
1524   *
1525   * If there were no input data processed yet and the buffered hash data is
1526   * less than BUFLEN (64) then calculate the final hash immediately by using
1527   * SW algorithm fallback.
1528   *
1529   * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1530   * and finalize hash message in HW. Note that if digcnt!=0 then there were
1531   * previous update op, so there are always some buffered bytes in ctx->buffer,
1532   * which means that ctx->bufcnt!=0
1533   *
1534   * Returns:
1535   * 0 if the request has been processed immediately,
1536   * -EINPROGRESS if the operation has been queued for later execution or is set
1537   *		to processing by HW,
1538   * -EBUSY if queue is full and request should be resubmitted later,
1539   * other negative values denotes an error.
1540   */
s5p_hash_final(struct ahash_request * req)1541  static int s5p_hash_final(struct ahash_request *req)
1542  {
1543  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1544  
1545  	ctx->finup = true;
1546  	if (ctx->error)
1547  		return -EINVAL; /* uncompleted hash is not needed */
1548  
1549  	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1550  		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1551  
1552  		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1553  					       ctx->bufcnt, req->result);
1554  	}
1555  
1556  	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1557  }
1558  
1559  /**
1560   * s5p_hash_finup() - process last req->src and calculate digest
1561   * @req:	AHASH request containing the last update data
1562   *
1563   * Return values: see s5p_hash_final above.
1564   */
s5p_hash_finup(struct ahash_request * req)1565  static int s5p_hash_finup(struct ahash_request *req)
1566  {
1567  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1568  	int err1, err2;
1569  
1570  	ctx->finup = true;
1571  
1572  	err1 = s5p_hash_update(req);
1573  	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1574  		return err1;
1575  
1576  	/*
1577  	 * final() has to be always called to cleanup resources even if
1578  	 * update() failed, except EINPROGRESS or calculate digest for small
1579  	 * size
1580  	 */
1581  	err2 = s5p_hash_final(req);
1582  
1583  	return err1 ?: err2;
1584  }
1585  
1586  /**
1587   * s5p_hash_init() - initialize AHASH request contex
1588   * @req:	AHASH request
1589   *
1590   * Init async hash request context.
1591   */
s5p_hash_init(struct ahash_request * req)1592  static int s5p_hash_init(struct ahash_request *req)
1593  {
1594  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1595  	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1596  	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1597  
1598  	ctx->dd = tctx->dd;
1599  	ctx->error = false;
1600  	ctx->finup = false;
1601  	ctx->bufcnt = 0;
1602  	ctx->digcnt = 0;
1603  	ctx->total = 0;
1604  	ctx->skip = 0;
1605  
1606  	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1607  		crypto_ahash_digestsize(tfm));
1608  
1609  	switch (crypto_ahash_digestsize(tfm)) {
1610  	case MD5_DIGEST_SIZE:
1611  		ctx->engine = SSS_HASH_ENGINE_MD5;
1612  		ctx->nregs = HASH_MD5_MAX_REG;
1613  		break;
1614  	case SHA1_DIGEST_SIZE:
1615  		ctx->engine = SSS_HASH_ENGINE_SHA1;
1616  		ctx->nregs = HASH_SHA1_MAX_REG;
1617  		break;
1618  	case SHA256_DIGEST_SIZE:
1619  		ctx->engine = SSS_HASH_ENGINE_SHA256;
1620  		ctx->nregs = HASH_SHA256_MAX_REG;
1621  		break;
1622  	default:
1623  		ctx->error = true;
1624  		return -EINVAL;
1625  	}
1626  
1627  	return 0;
1628  }
1629  
1630  /**
1631   * s5p_hash_digest - calculate digest from req->src
1632   * @req:	AHASH request
1633   *
1634   * Return values: see s5p_hash_final above.
1635   */
s5p_hash_digest(struct ahash_request * req)1636  static int s5p_hash_digest(struct ahash_request *req)
1637  {
1638  	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1639  }
1640  
1641  /**
1642   * s5p_hash_cra_init_alg - init crypto alg transformation
1643   * @tfm:	crypto transformation
1644   */
s5p_hash_cra_init_alg(struct crypto_tfm * tfm)1645  static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1646  {
1647  	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1648  	const char *alg_name = crypto_tfm_alg_name(tfm);
1649  
1650  	tctx->dd = s5p_dev;
1651  	/* Allocate a fallback and abort if it failed. */
1652  	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1653  					    CRYPTO_ALG_NEED_FALLBACK);
1654  	if (IS_ERR(tctx->fallback)) {
1655  		pr_err("fallback alloc fails for '%s'\n", alg_name);
1656  		return PTR_ERR(tctx->fallback);
1657  	}
1658  
1659  	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1660  				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1661  
1662  	return 0;
1663  }
1664  
1665  /**
1666   * s5p_hash_cra_init - init crypto tfm
1667   * @tfm:	crypto transformation
1668   */
s5p_hash_cra_init(struct crypto_tfm * tfm)1669  static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1670  {
1671  	return s5p_hash_cra_init_alg(tfm);
1672  }
1673  
1674  /**
1675   * s5p_hash_cra_exit - exit crypto tfm
1676   * @tfm:	crypto transformation
1677   *
1678   * free allocated fallback
1679   */
s5p_hash_cra_exit(struct crypto_tfm * tfm)1680  static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1681  {
1682  	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1683  
1684  	crypto_free_shash(tctx->fallback);
1685  	tctx->fallback = NULL;
1686  }
1687  
1688  /**
1689   * s5p_hash_export - export hash state
1690   * @req:	AHASH request
1691   * @out:	buffer for exported state
1692   */
s5p_hash_export(struct ahash_request * req,void * out)1693  static int s5p_hash_export(struct ahash_request *req, void *out)
1694  {
1695  	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1696  
1697  	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1698  
1699  	return 0;
1700  }
1701  
1702  /**
1703   * s5p_hash_import - import hash state
1704   * @req:	AHASH request
1705   * @in:		buffer with state to be imported from
1706   */
s5p_hash_import(struct ahash_request * req,const void * in)1707  static int s5p_hash_import(struct ahash_request *req, const void *in)
1708  {
1709  	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1710  	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1711  	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1712  	const struct s5p_hash_reqctx *ctx_in = in;
1713  
1714  	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1715  	if (ctx_in->bufcnt > BUFLEN) {
1716  		ctx->error = true;
1717  		return -EINVAL;
1718  	}
1719  
1720  	ctx->dd = tctx->dd;
1721  	ctx->error = false;
1722  
1723  	return 0;
1724  }
1725  
1726  static struct ahash_alg algs_sha1_md5_sha256[] = {
1727  {
1728  	.init		= s5p_hash_init,
1729  	.update		= s5p_hash_update,
1730  	.final		= s5p_hash_final,
1731  	.finup		= s5p_hash_finup,
1732  	.digest		= s5p_hash_digest,
1733  	.export		= s5p_hash_export,
1734  	.import		= s5p_hash_import,
1735  	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1736  	.halg.digestsize	= SHA1_DIGEST_SIZE,
1737  	.halg.base	= {
1738  		.cra_name		= "sha1",
1739  		.cra_driver_name	= "exynos-sha1",
1740  		.cra_priority		= 100,
1741  		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1742  					  CRYPTO_ALG_ASYNC |
1743  					  CRYPTO_ALG_NEED_FALLBACK,
1744  		.cra_blocksize		= HASH_BLOCK_SIZE,
1745  		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1746  		.cra_module		= THIS_MODULE,
1747  		.cra_init		= s5p_hash_cra_init,
1748  		.cra_exit		= s5p_hash_cra_exit,
1749  	}
1750  },
1751  {
1752  	.init		= s5p_hash_init,
1753  	.update		= s5p_hash_update,
1754  	.final		= s5p_hash_final,
1755  	.finup		= s5p_hash_finup,
1756  	.digest		= s5p_hash_digest,
1757  	.export		= s5p_hash_export,
1758  	.import		= s5p_hash_import,
1759  	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1760  	.halg.digestsize	= MD5_DIGEST_SIZE,
1761  	.halg.base	= {
1762  		.cra_name		= "md5",
1763  		.cra_driver_name	= "exynos-md5",
1764  		.cra_priority		= 100,
1765  		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1766  					  CRYPTO_ALG_ASYNC |
1767  					  CRYPTO_ALG_NEED_FALLBACK,
1768  		.cra_blocksize		= HASH_BLOCK_SIZE,
1769  		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1770  		.cra_module		= THIS_MODULE,
1771  		.cra_init		= s5p_hash_cra_init,
1772  		.cra_exit		= s5p_hash_cra_exit,
1773  	}
1774  },
1775  {
1776  	.init		= s5p_hash_init,
1777  	.update		= s5p_hash_update,
1778  	.final		= s5p_hash_final,
1779  	.finup		= s5p_hash_finup,
1780  	.digest		= s5p_hash_digest,
1781  	.export		= s5p_hash_export,
1782  	.import		= s5p_hash_import,
1783  	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1784  	.halg.digestsize	= SHA256_DIGEST_SIZE,
1785  	.halg.base	= {
1786  		.cra_name		= "sha256",
1787  		.cra_driver_name	= "exynos-sha256",
1788  		.cra_priority		= 100,
1789  		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1790  					  CRYPTO_ALG_ASYNC |
1791  					  CRYPTO_ALG_NEED_FALLBACK,
1792  		.cra_blocksize		= HASH_BLOCK_SIZE,
1793  		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1794  		.cra_module		= THIS_MODULE,
1795  		.cra_init		= s5p_hash_cra_init,
1796  		.cra_exit		= s5p_hash_cra_exit,
1797  	}
1798  }
1799  
1800  };
1801  
s5p_set_aes(struct s5p_aes_dev * dev,const u8 * key,const u8 * iv,const u8 * ctr,unsigned int keylen)1802  static void s5p_set_aes(struct s5p_aes_dev *dev,
1803  			const u8 *key, const u8 *iv, const u8 *ctr,
1804  			unsigned int keylen)
1805  {
1806  	void __iomem *keystart;
1807  
1808  	if (iv)
1809  		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1810  			    AES_BLOCK_SIZE);
1811  
1812  	if (ctr)
1813  		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1814  			    AES_BLOCK_SIZE);
1815  
1816  	if (keylen == AES_KEYSIZE_256)
1817  		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1818  	else if (keylen == AES_KEYSIZE_192)
1819  		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1820  	else
1821  		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1822  
1823  	memcpy_toio(keystart, key, keylen);
1824  }
1825  
s5p_is_sg_aligned(struct scatterlist * sg)1826  static bool s5p_is_sg_aligned(struct scatterlist *sg)
1827  {
1828  	while (sg) {
1829  		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1830  			return false;
1831  		sg = sg_next(sg);
1832  	}
1833  
1834  	return true;
1835  }
1836  
s5p_set_indata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1837  static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1838  				struct skcipher_request *req)
1839  {
1840  	struct scatterlist *sg;
1841  	int err;
1842  
1843  	dev->sg_src_cpy = NULL;
1844  	sg = req->src;
1845  	if (!s5p_is_sg_aligned(sg)) {
1846  		dev_dbg(dev->dev,
1847  			"At least one unaligned source scatter list, making a copy\n");
1848  		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1849  		if (err)
1850  			return err;
1851  
1852  		sg = dev->sg_src_cpy;
1853  	}
1854  
1855  	err = s5p_set_indata(dev, sg);
1856  	if (err) {
1857  		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1858  		return err;
1859  	}
1860  
1861  	return 0;
1862  }
1863  
s5p_set_outdata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1864  static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1865  				 struct skcipher_request *req)
1866  {
1867  	struct scatterlist *sg;
1868  	int err;
1869  
1870  	dev->sg_dst_cpy = NULL;
1871  	sg = req->dst;
1872  	if (!s5p_is_sg_aligned(sg)) {
1873  		dev_dbg(dev->dev,
1874  			"At least one unaligned dest scatter list, making a copy\n");
1875  		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1876  		if (err)
1877  			return err;
1878  
1879  		sg = dev->sg_dst_cpy;
1880  	}
1881  
1882  	err = s5p_set_outdata(dev, sg);
1883  	if (err) {
1884  		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1885  		return err;
1886  	}
1887  
1888  	return 0;
1889  }
1890  
s5p_aes_crypt_start(struct s5p_aes_dev * dev,unsigned long mode)1891  static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1892  {
1893  	struct skcipher_request *req = dev->req;
1894  	u32 aes_control;
1895  	unsigned long flags;
1896  	int err;
1897  	u8 *iv, *ctr;
1898  
1899  	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1900  	aes_control = SSS_AES_KEY_CHANGE_MODE;
1901  	if (mode & FLAGS_AES_DECRYPT)
1902  		aes_control |= SSS_AES_MODE_DECRYPT;
1903  
1904  	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1905  		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1906  		iv = req->iv;
1907  		ctr = NULL;
1908  	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1909  		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1910  		iv = NULL;
1911  		ctr = req->iv;
1912  	} else {
1913  		iv = NULL; /* AES_ECB */
1914  		ctr = NULL;
1915  	}
1916  
1917  	if (dev->ctx->keylen == AES_KEYSIZE_192)
1918  		aes_control |= SSS_AES_KEY_SIZE_192;
1919  	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1920  		aes_control |= SSS_AES_KEY_SIZE_256;
1921  
1922  	aes_control |= SSS_AES_FIFO_MODE;
1923  
1924  	/* as a variant it is possible to use byte swapping on DMA side */
1925  	aes_control |= SSS_AES_BYTESWAP_DI
1926  		    |  SSS_AES_BYTESWAP_DO
1927  		    |  SSS_AES_BYTESWAP_IV
1928  		    |  SSS_AES_BYTESWAP_KEY
1929  		    |  SSS_AES_BYTESWAP_CNT;
1930  
1931  	spin_lock_irqsave(&dev->lock, flags);
1932  
1933  	SSS_WRITE(dev, FCINTENCLR,
1934  		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1935  	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1936  
1937  	err = s5p_set_indata_start(dev, req);
1938  	if (err)
1939  		goto indata_error;
1940  
1941  	err = s5p_set_outdata_start(dev, req);
1942  	if (err)
1943  		goto outdata_error;
1944  
1945  	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1946  	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1947  
1948  	s5p_set_dma_indata(dev,  dev->sg_src);
1949  	s5p_set_dma_outdata(dev, dev->sg_dst);
1950  
1951  	SSS_WRITE(dev, FCINTENSET,
1952  		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1953  
1954  	spin_unlock_irqrestore(&dev->lock, flags);
1955  
1956  	return;
1957  
1958  outdata_error:
1959  	s5p_unset_indata(dev);
1960  
1961  indata_error:
1962  	s5p_sg_done(dev);
1963  	dev->busy = false;
1964  	spin_unlock_irqrestore(&dev->lock, flags);
1965  	s5p_aes_complete(req, err);
1966  }
1967  
s5p_tasklet_cb(unsigned long data)1968  static void s5p_tasklet_cb(unsigned long data)
1969  {
1970  	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1971  	struct crypto_async_request *async_req, *backlog;
1972  	struct s5p_aes_reqctx *reqctx;
1973  	unsigned long flags;
1974  
1975  	spin_lock_irqsave(&dev->lock, flags);
1976  	backlog   = crypto_get_backlog(&dev->queue);
1977  	async_req = crypto_dequeue_request(&dev->queue);
1978  
1979  	if (!async_req) {
1980  		dev->busy = false;
1981  		spin_unlock_irqrestore(&dev->lock, flags);
1982  		return;
1983  	}
1984  	spin_unlock_irqrestore(&dev->lock, flags);
1985  
1986  	if (backlog)
1987  		crypto_request_complete(backlog, -EINPROGRESS);
1988  
1989  	dev->req = skcipher_request_cast(async_req);
1990  	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1991  	reqctx   = skcipher_request_ctx(dev->req);
1992  
1993  	s5p_aes_crypt_start(dev, reqctx->mode);
1994  }
1995  
s5p_aes_handle_req(struct s5p_aes_dev * dev,struct skcipher_request * req)1996  static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
1997  			      struct skcipher_request *req)
1998  {
1999  	unsigned long flags;
2000  	int err;
2001  
2002  	spin_lock_irqsave(&dev->lock, flags);
2003  	err = crypto_enqueue_request(&dev->queue, &req->base);
2004  	if (dev->busy) {
2005  		spin_unlock_irqrestore(&dev->lock, flags);
2006  		return err;
2007  	}
2008  	dev->busy = true;
2009  
2010  	spin_unlock_irqrestore(&dev->lock, flags);
2011  
2012  	tasklet_schedule(&dev->tasklet);
2013  
2014  	return err;
2015  }
2016  
s5p_aes_crypt(struct skcipher_request * req,unsigned long mode)2017  static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2018  {
2019  	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2020  	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2021  	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2022  	struct s5p_aes_dev *dev = ctx->dev;
2023  
2024  	if (!req->cryptlen)
2025  		return 0;
2026  
2027  	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2028  			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2029  		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2030  		return -EINVAL;
2031  	}
2032  
2033  	reqctx->mode = mode;
2034  
2035  	return s5p_aes_handle_req(dev, req);
2036  }
2037  
s5p_aes_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)2038  static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2039  			  const u8 *key, unsigned int keylen)
2040  {
2041  	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2042  	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2043  
2044  	if (keylen != AES_KEYSIZE_128 &&
2045  	    keylen != AES_KEYSIZE_192 &&
2046  	    keylen != AES_KEYSIZE_256)
2047  		return -EINVAL;
2048  
2049  	memcpy(ctx->aes_key, key, keylen);
2050  	ctx->keylen = keylen;
2051  
2052  	return 0;
2053  }
2054  
s5p_aes_ecb_encrypt(struct skcipher_request * req)2055  static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2056  {
2057  	return s5p_aes_crypt(req, 0);
2058  }
2059  
s5p_aes_ecb_decrypt(struct skcipher_request * req)2060  static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2061  {
2062  	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2063  }
2064  
s5p_aes_cbc_encrypt(struct skcipher_request * req)2065  static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2066  {
2067  	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2068  }
2069  
s5p_aes_cbc_decrypt(struct skcipher_request * req)2070  static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2071  {
2072  	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2073  }
2074  
s5p_aes_ctr_crypt(struct skcipher_request * req)2075  static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2076  {
2077  	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2078  }
2079  
s5p_aes_init_tfm(struct crypto_skcipher * tfm)2080  static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2081  {
2082  	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2083  
2084  	ctx->dev = s5p_dev;
2085  	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2086  
2087  	return 0;
2088  }
2089  
2090  static struct skcipher_alg algs[] = {
2091  	{
2092  		.base.cra_name		= "ecb(aes)",
2093  		.base.cra_driver_name	= "ecb-aes-s5p",
2094  		.base.cra_priority	= 100,
2095  		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2096  					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2097  		.base.cra_blocksize	= AES_BLOCK_SIZE,
2098  		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2099  		.base.cra_alignmask	= 0x0f,
2100  		.base.cra_module	= THIS_MODULE,
2101  
2102  		.min_keysize		= AES_MIN_KEY_SIZE,
2103  		.max_keysize		= AES_MAX_KEY_SIZE,
2104  		.setkey			= s5p_aes_setkey,
2105  		.encrypt		= s5p_aes_ecb_encrypt,
2106  		.decrypt		= s5p_aes_ecb_decrypt,
2107  		.init			= s5p_aes_init_tfm,
2108  	},
2109  	{
2110  		.base.cra_name		= "cbc(aes)",
2111  		.base.cra_driver_name	= "cbc-aes-s5p",
2112  		.base.cra_priority	= 100,
2113  		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2114  					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2115  		.base.cra_blocksize	= AES_BLOCK_SIZE,
2116  		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2117  		.base.cra_alignmask	= 0x0f,
2118  		.base.cra_module	= THIS_MODULE,
2119  
2120  		.min_keysize		= AES_MIN_KEY_SIZE,
2121  		.max_keysize		= AES_MAX_KEY_SIZE,
2122  		.ivsize			= AES_BLOCK_SIZE,
2123  		.setkey			= s5p_aes_setkey,
2124  		.encrypt		= s5p_aes_cbc_encrypt,
2125  		.decrypt		= s5p_aes_cbc_decrypt,
2126  		.init			= s5p_aes_init_tfm,
2127  	},
2128  	{
2129  		.base.cra_name		= "ctr(aes)",
2130  		.base.cra_driver_name	= "ctr-aes-s5p",
2131  		.base.cra_priority	= 100,
2132  		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2133  					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2134  		.base.cra_blocksize	= 1,
2135  		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2136  		.base.cra_alignmask	= 0x0f,
2137  		.base.cra_module	= THIS_MODULE,
2138  
2139  		.min_keysize		= AES_MIN_KEY_SIZE,
2140  		.max_keysize		= AES_MAX_KEY_SIZE,
2141  		.ivsize			= AES_BLOCK_SIZE,
2142  		.setkey			= s5p_aes_setkey,
2143  		.encrypt		= s5p_aes_ctr_crypt,
2144  		.decrypt		= s5p_aes_ctr_crypt,
2145  		.init			= s5p_aes_init_tfm,
2146  	},
2147  };
2148  
s5p_aes_probe(struct platform_device * pdev)2149  static int s5p_aes_probe(struct platform_device *pdev)
2150  {
2151  	struct device *dev = &pdev->dev;
2152  	int i, j, err;
2153  	const struct samsung_aes_variant *variant;
2154  	struct s5p_aes_dev *pdata;
2155  	struct resource *res;
2156  	unsigned int hash_i;
2157  
2158  	if (s5p_dev)
2159  		return -EEXIST;
2160  
2161  	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2162  	if (!pdata)
2163  		return -ENOMEM;
2164  
2165  	variant = find_s5p_sss_version(pdev);
2166  	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2167  	if (!res)
2168  		return -EINVAL;
2169  
2170  	/*
2171  	 * Note: HASH and PRNG uses the same registers in secss, avoid
2172  	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2173  	 * is enabled in config. We need larger size for HASH registers in
2174  	 * secss, current describe only AES/DES
2175  	 */
2176  	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2177  		if (variant == &exynos_aes_data) {
2178  			res->end += 0x300;
2179  			pdata->use_hash = true;
2180  		}
2181  	}
2182  
2183  	pdata->res = res;
2184  	pdata->ioaddr = devm_ioremap_resource(dev, res);
2185  	if (IS_ERR(pdata->ioaddr)) {
2186  		if (!pdata->use_hash)
2187  			return PTR_ERR(pdata->ioaddr);
2188  		/* try AES without HASH */
2189  		res->end -= 0x300;
2190  		pdata->use_hash = false;
2191  		pdata->ioaddr = devm_ioremap_resource(dev, res);
2192  		if (IS_ERR(pdata->ioaddr))
2193  			return PTR_ERR(pdata->ioaddr);
2194  	}
2195  
2196  	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2197  	if (IS_ERR(pdata->clk))
2198  		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2199  				     "failed to find secss clock %s\n",
2200  				     variant->clk_names[0]);
2201  
2202  	err = clk_prepare_enable(pdata->clk);
2203  	if (err < 0) {
2204  		dev_err(dev, "Enabling clock %s failed, err %d\n",
2205  			variant->clk_names[0], err);
2206  		return err;
2207  	}
2208  
2209  	if (variant->clk_names[1]) {
2210  		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2211  		if (IS_ERR(pdata->pclk)) {
2212  			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2213  					    "failed to find clock %s\n",
2214  					    variant->clk_names[1]);
2215  			goto err_clk;
2216  		}
2217  
2218  		err = clk_prepare_enable(pdata->pclk);
2219  		if (err < 0) {
2220  			dev_err(dev, "Enabling clock %s failed, err %d\n",
2221  				variant->clk_names[0], err);
2222  			goto err_clk;
2223  		}
2224  	} else {
2225  		pdata->pclk = NULL;
2226  	}
2227  
2228  	spin_lock_init(&pdata->lock);
2229  	spin_lock_init(&pdata->hash_lock);
2230  
2231  	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2232  	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2233  
2234  	pdata->irq_fc = platform_get_irq(pdev, 0);
2235  	if (pdata->irq_fc < 0) {
2236  		err = pdata->irq_fc;
2237  		dev_warn(dev, "feed control interrupt is not available.\n");
2238  		goto err_irq;
2239  	}
2240  	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2241  					s5p_aes_interrupt, IRQF_ONESHOT,
2242  					pdev->name, pdev);
2243  	if (err < 0) {
2244  		dev_warn(dev, "feed control interrupt is not available.\n");
2245  		goto err_irq;
2246  	}
2247  
2248  	pdata->busy = false;
2249  	pdata->dev = dev;
2250  	platform_set_drvdata(pdev, pdata);
2251  	s5p_dev = pdata;
2252  
2253  	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2254  	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2255  
2256  	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2257  		err = crypto_register_skcipher(&algs[i]);
2258  		if (err)
2259  			goto err_algs;
2260  	}
2261  
2262  	if (pdata->use_hash) {
2263  		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2264  			     (unsigned long)pdata);
2265  		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2266  
2267  		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2268  		     hash_i++) {
2269  			struct ahash_alg *alg;
2270  
2271  			alg = &algs_sha1_md5_sha256[hash_i];
2272  			err = crypto_register_ahash(alg);
2273  			if (err) {
2274  				dev_err(dev, "can't register '%s': %d\n",
2275  					alg->halg.base.cra_driver_name, err);
2276  				goto err_hash;
2277  			}
2278  		}
2279  	}
2280  
2281  	dev_info(dev, "s5p-sss driver registered\n");
2282  
2283  	return 0;
2284  
2285  err_hash:
2286  	for (j = hash_i - 1; j >= 0; j--)
2287  		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2288  
2289  	tasklet_kill(&pdata->hash_tasklet);
2290  	res->end -= 0x300;
2291  
2292  err_algs:
2293  	if (i < ARRAY_SIZE(algs))
2294  		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2295  			err);
2296  
2297  	for (j = 0; j < i; j++)
2298  		crypto_unregister_skcipher(&algs[j]);
2299  
2300  	tasklet_kill(&pdata->tasklet);
2301  
2302  err_irq:
2303  	clk_disable_unprepare(pdata->pclk);
2304  
2305  err_clk:
2306  	clk_disable_unprepare(pdata->clk);
2307  	s5p_dev = NULL;
2308  
2309  	return err;
2310  }
2311  
s5p_aes_remove(struct platform_device * pdev)2312  static void s5p_aes_remove(struct platform_device *pdev)
2313  {
2314  	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2315  	int i;
2316  
2317  	for (i = 0; i < ARRAY_SIZE(algs); i++)
2318  		crypto_unregister_skcipher(&algs[i]);
2319  
2320  	tasklet_kill(&pdata->tasklet);
2321  	if (pdata->use_hash) {
2322  		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2323  			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2324  
2325  		pdata->res->end -= 0x300;
2326  		tasklet_kill(&pdata->hash_tasklet);
2327  		pdata->use_hash = false;
2328  	}
2329  
2330  	clk_disable_unprepare(pdata->pclk);
2331  
2332  	clk_disable_unprepare(pdata->clk);
2333  	s5p_dev = NULL;
2334  }
2335  
2336  static struct platform_driver s5p_aes_crypto = {
2337  	.probe	= s5p_aes_probe,
2338  	.remove_new = s5p_aes_remove,
2339  	.driver	= {
2340  		.name	= "s5p-secss",
2341  		.of_match_table = s5p_sss_dt_match,
2342  	},
2343  };
2344  
2345  module_platform_driver(s5p_aes_crypto);
2346  
2347  MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2348  MODULE_LICENSE("GPL v2");
2349  MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2350  MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2351