1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
4   * licensing and copyright details
5   */
6  
7  #include <linux/reiserfs_fs.h>
8  
9  #include <linux/slab.h>
10  #include <linux/interrupt.h>
11  #include <linux/sched.h>
12  #include <linux/bug.h>
13  #include <linux/workqueue.h>
14  #include <linux/unaligned.h>
15  #include <linux/bitops.h>
16  #include <linux/proc_fs.h>
17  #include <linux/buffer_head.h>
18  
19  /* the 32 bit compat definitions with int argument */
20  #define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
21  #define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
22  #define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
23  
24  struct reiserfs_journal_list;
25  
26  /* bitmasks for i_flags field in reiserfs-specific part of inode */
27  typedef enum {
28  	/*
29  	 * this says what format of key do all items (but stat data) of
30  	 * an object have.  If this is set, that format is 3.6 otherwise - 3.5
31  	 */
32  	i_item_key_version_mask = 0x0001,
33  
34  	/*
35  	 * If this is unset, object has 3.5 stat data, otherwise,
36  	 * it has 3.6 stat data with 64bit size, 32bit nlink etc.
37  	 */
38  	i_stat_data_version_mask = 0x0002,
39  
40  	/* file might need tail packing on close */
41  	i_pack_on_close_mask = 0x0004,
42  
43  	/* don't pack tail of file */
44  	i_nopack_mask = 0x0008,
45  
46  	/*
47  	 * If either of these are set, "safe link" was created for this
48  	 * file during truncate or unlink. Safe link is used to avoid
49  	 * leakage of disk space on crash with some files open, but unlinked.
50  	 */
51  	i_link_saved_unlink_mask = 0x0010,
52  	i_link_saved_truncate_mask = 0x0020,
53  
54  	i_has_xattr_dir = 0x0040,
55  	i_data_log = 0x0080,
56  } reiserfs_inode_flags;
57  
58  struct reiserfs_inode_info {
59  	__u32 i_key[4];		/* key is still 4 32 bit integers */
60  
61  	/*
62  	 * transient inode flags that are never stored on disk. Bitmasks
63  	 * for this field are defined above.
64  	 */
65  	__u32 i_flags;
66  
67  	/* offset of first byte stored in direct item. */
68  	__u32 i_first_direct_byte;
69  
70  	/* copy of persistent inode flags read from sd_attrs. */
71  	__u32 i_attrs;
72  
73  	/* first unused block of a sequence of unused blocks */
74  	int i_prealloc_block;
75  	int i_prealloc_count;	/* length of that sequence */
76  
77  	/* per-transaction list of inodes which  have preallocated blocks */
78  	struct list_head i_prealloc_list;
79  
80  	/*
81  	 * new_packing_locality is created; new blocks for the contents
82  	 * of this directory should be displaced
83  	 */
84  	unsigned new_packing_locality:1;
85  
86  	/*
87  	 * we use these for fsync or O_SYNC to decide which transaction
88  	 * needs to be committed in order for this inode to be properly
89  	 * flushed
90  	 */
91  	unsigned int i_trans_id;
92  
93  	struct reiserfs_journal_list *i_jl;
94  	atomic_t openers;
95  	struct mutex tailpack;
96  #ifdef CONFIG_REISERFS_FS_XATTR
97  	struct rw_semaphore i_xattr_sem;
98  #endif
99  #ifdef CONFIG_QUOTA
100  	struct dquot __rcu *i_dquot[MAXQUOTAS];
101  #endif
102  
103  	struct inode vfs_inode;
104  };
105  
106  typedef enum {
107  	reiserfs_attrs_cleared = 0x00000001,
108  } reiserfs_super_block_flags;
109  
110  /*
111   * struct reiserfs_super_block accessors/mutators since this is a disk
112   * structure, it will always be in little endian format.
113   */
114  #define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
115  #define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
116  #define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
117  #define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
118  #define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
119  #define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
120  
121  #define sb_jp_journal_1st_block(sbp)  \
122                (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
123  #define set_sb_jp_journal_1st_block(sbp,v) \
124                ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
125  #define sb_jp_journal_dev(sbp) \
126                (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
127  #define set_sb_jp_journal_dev(sbp,v) \
128                ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
129  #define sb_jp_journal_size(sbp) \
130                (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
131  #define set_sb_jp_journal_size(sbp,v) \
132                ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
133  #define sb_jp_journal_trans_max(sbp) \
134                (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
135  #define set_sb_jp_journal_trans_max(sbp,v) \
136                ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
137  #define sb_jp_journal_magic(sbp) \
138                (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
139  #define set_sb_jp_journal_magic(sbp,v) \
140                ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
141  #define sb_jp_journal_max_batch(sbp) \
142                (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
143  #define set_sb_jp_journal_max_batch(sbp,v) \
144                ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
145  #define sb_jp_jourmal_max_commit_age(sbp) \
146                (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
147  #define set_sb_jp_journal_max_commit_age(sbp,v) \
148                ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
149  
150  #define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
151  #define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
152  #define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
153  #define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
154  #define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
155  #define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
156  #define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
157  #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
158  #define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
159  #define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
160  #define sb_hash_function_code(sbp) \
161                (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
162  #define set_sb_hash_function_code(sbp,v) \
163                ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
164  #define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
165  #define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
166  #define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
167  #define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
168  #define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
169  #define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
170  
171  #define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count))
172  #define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
173  
174  #define sb_reserved_for_journal(sbp) \
175                (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
176  #define set_sb_reserved_for_journal(sbp,v) \
177                ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
178  
179  /* LOGGING -- */
180  
181  /*
182   * These all interelate for performance.
183   *
184   * If the journal block count is smaller than n transactions, you lose speed.
185   * I don't know what n is yet, I'm guessing 8-16.
186   *
187   * typical transaction size depends on the application, how often fsync is
188   * called, and how many metadata blocks you dirty in a 30 second period.
189   * The more small files (<16k) you use, the larger your transactions will
190   * be.
191   *
192   * If your journal fills faster than dirty buffers get flushed to disk, it
193   * must flush them before allowing the journal to wrap, which slows things
194   * down.  If you need high speed meta data updates, the journal should be
195   * big enough to prevent wrapping before dirty meta blocks get to disk.
196   *
197   * If the batch max is smaller than the transaction max, you'll waste space
198   * at the end of the journal because journal_end sets the next transaction
199   * to start at 0 if the next transaction has any chance of wrapping.
200   *
201   * The large the batch max age, the better the speed, and the more meta
202   * data changes you'll lose after a crash.
203   */
204  
205  /* don't mess with these for a while */
206  /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
207  #define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */
208  #define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */
209  #define JOURNAL_HASH_SIZE 8192
210  
211  /* number of copies of the bitmaps to have floating.  Must be >= 2 */
212  #define JOURNAL_NUM_BITMAPS 5
213  
214  /*
215   * One of these for every block in every transaction
216   * Each one is in two hash tables.  First, a hash of the current transaction,
217   * and after journal_end, a hash of all the in memory transactions.
218   * next and prev are used by the current transaction (journal_hash).
219   * hnext and hprev are used by journal_list_hash.  If a block is in more
220   * than one transaction, the journal_list_hash links it in multiple times.
221   * This allows flush_journal_list to remove just the cnode belonging to a
222   * given transaction.
223   */
224  struct reiserfs_journal_cnode {
225  	struct buffer_head *bh;	/* real buffer head */
226  	struct super_block *sb;	/* dev of real buffer head */
227  
228  	/* block number of real buffer head, == 0 when buffer on disk */
229  	__u32 blocknr;
230  
231  	unsigned long state;
232  
233  	/* journal list this cnode lives in */
234  	struct reiserfs_journal_list *jlist;
235  
236  	struct reiserfs_journal_cnode *next;	/* next in transaction list */
237  	struct reiserfs_journal_cnode *prev;	/* prev in transaction list */
238  	struct reiserfs_journal_cnode *hprev;	/* prev in hash list */
239  	struct reiserfs_journal_cnode *hnext;	/* next in hash list */
240  };
241  
242  struct reiserfs_bitmap_node {
243  	int id;
244  	char *data;
245  	struct list_head list;
246  };
247  
248  struct reiserfs_list_bitmap {
249  	struct reiserfs_journal_list *journal_list;
250  	struct reiserfs_bitmap_node **bitmaps;
251  };
252  
253  /*
254   * one of these for each transaction.  The most important part here is the
255   * j_realblock.  this list of cnodes is used to hash all the blocks in all
256   * the commits, to mark all the real buffer heads dirty once all the commits
257   * hit the disk, and to make sure every real block in a transaction is on
258   * disk before allowing the log area to be overwritten
259   */
260  struct reiserfs_journal_list {
261  	unsigned long j_start;
262  	unsigned long j_state;
263  	unsigned long j_len;
264  	atomic_t j_nonzerolen;
265  	atomic_t j_commit_left;
266  
267  	/* all commits older than this on disk */
268  	atomic_t j_older_commits_done;
269  
270  	struct mutex j_commit_mutex;
271  	unsigned int j_trans_id;
272  	time64_t j_timestamp; /* write-only but useful for crash dump analysis */
273  	struct reiserfs_list_bitmap *j_list_bitmap;
274  	struct buffer_head *j_commit_bh;	/* commit buffer head */
275  	struct reiserfs_journal_cnode *j_realblock;
276  	struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */
277  	/* time ordered list of all active transactions */
278  	struct list_head j_list;
279  
280  	/*
281  	 * time ordered list of all transactions we haven't tried
282  	 * to flush yet
283  	 */
284  	struct list_head j_working_list;
285  
286  	/* list of tail conversion targets in need of flush before commit */
287  	struct list_head j_tail_bh_list;
288  
289  	/* list of data=ordered buffers in need of flush before commit */
290  	struct list_head j_bh_list;
291  	int j_refcount;
292  };
293  
294  struct reiserfs_journal {
295  	struct buffer_head **j_ap_blocks;	/* journal blocks on disk */
296  	/* newest journal block */
297  	struct reiserfs_journal_cnode *j_last;
298  
299  	/* oldest journal block.  start here for traverse */
300  	struct reiserfs_journal_cnode *j_first;
301  
302  	struct file *j_bdev_file;
303  
304  	/* first block on s_dev of reserved area journal */
305  	int j_1st_reserved_block;
306  
307  	unsigned long j_state;
308  	unsigned int j_trans_id;
309  	unsigned long j_mount_id;
310  
311  	/* start of current waiting commit (index into j_ap_blocks) */
312  	unsigned long j_start;
313  	unsigned long j_len;	/* length of current waiting commit */
314  
315  	/* number of buffers requested by journal_begin() */
316  	unsigned long j_len_alloc;
317  
318  	atomic_t j_wcount;	/* count of writers for current commit */
319  
320  	/* batch count. allows turning X transactions into 1 */
321  	unsigned long j_bcount;
322  
323  	/* first unflushed transactions offset */
324  	unsigned long j_first_unflushed_offset;
325  
326  	/* last fully flushed journal timestamp */
327  	unsigned j_last_flush_trans_id;
328  
329  	struct buffer_head *j_header_bh;
330  
331  	time64_t j_trans_start_time;	/* time this transaction started */
332  	struct mutex j_mutex;
333  	struct mutex j_flush_mutex;
334  
335  	/* wait for current transaction to finish before starting new one */
336  	wait_queue_head_t j_join_wait;
337  
338  	atomic_t j_jlock;		/* lock for j_join_wait */
339  	int j_list_bitmap_index;	/* number of next list bitmap to use */
340  
341  	/* no more journal begins allowed. MUST sleep on j_join_wait */
342  	int j_must_wait;
343  
344  	/* next journal_end will flush all journal list */
345  	int j_next_full_flush;
346  
347  	/* next journal_end will flush all async commits */
348  	int j_next_async_flush;
349  
350  	int j_cnode_used;	/* number of cnodes on the used list */
351  	int j_cnode_free;	/* number of cnodes on the free list */
352  
353  	/* max number of blocks in a transaction.  */
354  	unsigned int j_trans_max;
355  
356  	/* max number of blocks to batch into a trans */
357  	unsigned int j_max_batch;
358  
359  	/* in seconds, how old can an async commit be */
360  	unsigned int j_max_commit_age;
361  
362  	/* in seconds, how old can a transaction be */
363  	unsigned int j_max_trans_age;
364  
365  	/* the default for the max commit age */
366  	unsigned int j_default_max_commit_age;
367  
368  	struct reiserfs_journal_cnode *j_cnode_free_list;
369  
370  	/* orig pointer returned from vmalloc */
371  	struct reiserfs_journal_cnode *j_cnode_free_orig;
372  
373  	struct reiserfs_journal_list *j_current_jl;
374  	int j_free_bitmap_nodes;
375  	int j_used_bitmap_nodes;
376  
377  	int j_num_lists;	/* total number of active transactions */
378  	int j_num_work_lists;	/* number that need attention from kreiserfsd */
379  
380  	/* debugging to make sure things are flushed in order */
381  	unsigned int j_last_flush_id;
382  
383  	/* debugging to make sure things are committed in order */
384  	unsigned int j_last_commit_id;
385  
386  	struct list_head j_bitmap_nodes;
387  	struct list_head j_dirty_buffers;
388  	spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */
389  
390  	/* list of all active transactions */
391  	struct list_head j_journal_list;
392  
393  	/* lists that haven't been touched by writeback attempts */
394  	struct list_head j_working_list;
395  
396  	/* hash table for real buffer heads in current trans */
397  	struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
398  
399  	/* hash table for all the real buffer heads in all the transactions */
400  	struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
401  
402  	/* array of bitmaps to record the deleted blocks */
403  	struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
404  
405  	/* list of inodes which have preallocated blocks */
406  	struct list_head j_prealloc_list;
407  	int j_persistent_trans;
408  	unsigned long j_max_trans_size;
409  	unsigned long j_max_batch_size;
410  
411  	int j_errno;
412  
413  	/* when flushing ordered buffers, throttle new ordered writers */
414  	struct delayed_work j_work;
415  	struct super_block *j_work_sb;
416  	atomic_t j_async_throttle;
417  };
418  
419  enum journal_state_bits {
420  	J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */
421  	J_WRITERS_QUEUED,    /* set when log is full due to too many writers */
422  	J_ABORTED,           /* set when log is aborted */
423  };
424  
425  /* ick.  magic string to find desc blocks in the journal */
426  #define JOURNAL_DESC_MAGIC "ReIsErLB"
427  
428  typedef __u32(*hashf_t) (const signed char *, int);
429  
430  struct reiserfs_bitmap_info {
431  	__u32 free_count;
432  };
433  
434  struct proc_dir_entry;
435  
436  #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
437  typedef unsigned long int stat_cnt_t;
438  typedef struct reiserfs_proc_info_data {
439  	spinlock_t lock;
440  	int exiting;
441  	int max_hash_collisions;
442  
443  	stat_cnt_t breads;
444  	stat_cnt_t bread_miss;
445  	stat_cnt_t search_by_key;
446  	stat_cnt_t search_by_key_fs_changed;
447  	stat_cnt_t search_by_key_restarted;
448  
449  	stat_cnt_t insert_item_restarted;
450  	stat_cnt_t paste_into_item_restarted;
451  	stat_cnt_t cut_from_item_restarted;
452  	stat_cnt_t delete_solid_item_restarted;
453  	stat_cnt_t delete_item_restarted;
454  
455  	stat_cnt_t leaked_oid;
456  	stat_cnt_t leaves_removable;
457  
458  	/*
459  	 * balances per level.
460  	 * Use explicit 5 as MAX_HEIGHT is not visible yet.
461  	 */
462  	stat_cnt_t balance_at[5];	/* XXX */
463  	/* sbk == search_by_key */
464  	stat_cnt_t sbk_read_at[5];	/* XXX */
465  	stat_cnt_t sbk_fs_changed[5];
466  	stat_cnt_t sbk_restarted[5];
467  	stat_cnt_t items_at[5];	/* XXX */
468  	stat_cnt_t free_at[5];	/* XXX */
469  	stat_cnt_t can_node_be_removed[5];	/* XXX */
470  	long int lnum[5];	/* XXX */
471  	long int rnum[5];	/* XXX */
472  	long int lbytes[5];	/* XXX */
473  	long int rbytes[5];	/* XXX */
474  	stat_cnt_t get_neighbors[5];
475  	stat_cnt_t get_neighbors_restart[5];
476  	stat_cnt_t need_l_neighbor[5];
477  	stat_cnt_t need_r_neighbor[5];
478  
479  	stat_cnt_t free_block;
480  	struct __scan_bitmap_stats {
481  		stat_cnt_t call;
482  		stat_cnt_t wait;
483  		stat_cnt_t bmap;
484  		stat_cnt_t retry;
485  		stat_cnt_t in_journal_hint;
486  		stat_cnt_t in_journal_nohint;
487  		stat_cnt_t stolen;
488  	} scan_bitmap;
489  	struct __journal_stats {
490  		stat_cnt_t in_journal;
491  		stat_cnt_t in_journal_bitmap;
492  		stat_cnt_t in_journal_reusable;
493  		stat_cnt_t lock_journal;
494  		stat_cnt_t lock_journal_wait;
495  		stat_cnt_t journal_being;
496  		stat_cnt_t journal_relock_writers;
497  		stat_cnt_t journal_relock_wcount;
498  		stat_cnt_t mark_dirty;
499  		stat_cnt_t mark_dirty_already;
500  		stat_cnt_t mark_dirty_notjournal;
501  		stat_cnt_t restore_prepared;
502  		stat_cnt_t prepare;
503  		stat_cnt_t prepare_retry;
504  	} journal;
505  } reiserfs_proc_info_data_t;
506  #else
507  typedef struct reiserfs_proc_info_data {
508  } reiserfs_proc_info_data_t;
509  #endif
510  
511  /* Number of quota types we support */
512  #define REISERFS_MAXQUOTAS 2
513  
514  /* reiserfs union of in-core super block data */
515  struct reiserfs_sb_info {
516  	/* Buffer containing the super block */
517  	struct buffer_head *s_sbh;
518  
519  	/* Pointer to the on-disk super block in the buffer */
520  	struct reiserfs_super_block *s_rs;
521  	struct reiserfs_bitmap_info *s_ap_bitmap;
522  
523  	/* pointer to journal information */
524  	struct reiserfs_journal *s_journal;
525  
526  	unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */
527  
528  	/* Serialize writers access, replace the old bkl */
529  	struct mutex lock;
530  
531  	/* Owner of the lock (can be recursive) */
532  	struct task_struct *lock_owner;
533  
534  	/* Depth of the lock, start from -1 like the bkl */
535  	int lock_depth;
536  
537  	struct workqueue_struct *commit_wq;
538  
539  	/* Comment? -Hans */
540  	void (*end_io_handler) (struct buffer_head *, int);
541  
542  	/*
543  	 * pointer to function which is used to sort names in directory.
544  	 * Set on mount
545  	 */
546  	hashf_t s_hash_function;
547  
548  	/* reiserfs's mount options are set here */
549  	unsigned long s_mount_opt;
550  
551  	/* This is a structure that describes block allocator options */
552  	struct {
553  		/* Bitfield for enable/disable kind of options */
554  		unsigned long bits;
555  
556  		/*
557  		 * size started from which we consider file
558  		 * to be a large one (in blocks)
559  		 */
560  		unsigned long large_file_size;
561  
562  		int border;	/* percentage of disk, border takes */
563  
564  		/*
565  		 * Minimal file size (in blocks) starting
566  		 * from which we do preallocations
567  		 */
568  		int preallocmin;
569  
570  		/*
571  		 * Number of blocks we try to prealloc when file
572  		 * reaches preallocmin size (in blocks) or prealloc_list
573  		 is empty.
574  		 */
575  		int preallocsize;
576  	} s_alloc_options;
577  
578  	/* Comment? -Hans */
579  	wait_queue_head_t s_wait;
580  	/* increased by one every time the  tree gets re-balanced */
581  	atomic_t s_generation_counter;
582  
583  	/* File system properties. Currently holds on-disk FS format */
584  	unsigned long s_properties;
585  
586  	/* session statistics */
587  	int s_disk_reads;
588  	int s_disk_writes;
589  	int s_fix_nodes;
590  	int s_do_balance;
591  	int s_unneeded_left_neighbor;
592  	int s_good_search_by_key_reada;
593  	int s_bmaps;
594  	int s_bmaps_without_search;
595  	int s_direct2indirect;
596  	int s_indirect2direct;
597  
598  	/*
599  	 * set up when it's ok for reiserfs_read_inode2() to read from
600  	 * disk inode with nlink==0. Currently this is only used during
601  	 * finish_unfinished() processing at mount time
602  	 */
603  	int s_is_unlinked_ok;
604  
605  	reiserfs_proc_info_data_t s_proc_info_data;
606  	struct proc_dir_entry *procdir;
607  
608  	/* amount of blocks reserved for further allocations */
609  	int reserved_blocks;
610  
611  
612  	/* this lock on now only used to protect reserved_blocks variable */
613  	spinlock_t bitmap_lock;
614  	struct dentry *priv_root;	/* root of /.reiserfs_priv */
615  	struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */
616  	int j_errno;
617  
618  	int work_queued;              /* non-zero delayed work is queued */
619  	struct delayed_work old_work; /* old transactions flush delayed work */
620  	spinlock_t old_work_lock;     /* protects old_work and work_queued */
621  
622  #ifdef CONFIG_QUOTA
623  	char *s_qf_names[REISERFS_MAXQUOTAS];
624  	int s_jquota_fmt;
625  #endif
626  	char *s_jdev;		/* Stored jdev for mount option showing */
627  #ifdef CONFIG_REISERFS_CHECK
628  
629  	/*
630  	 * Detects whether more than one copy of tb exists per superblock
631  	 * as a means of checking whether do_balance is executing
632  	 * concurrently against another tree reader/writer on a same
633  	 * mount point.
634  	 */
635  	struct tree_balance *cur_tb;
636  #endif
637  };
638  
639  /* Definitions of reiserfs on-disk properties: */
640  #define REISERFS_3_5 0
641  #define REISERFS_3_6 1
642  #define REISERFS_OLD_FORMAT 2
643  
644  /* Mount options */
645  enum reiserfs_mount_options {
646  	/* large tails will be created in a session */
647  	REISERFS_LARGETAIL,
648  	/*
649  	 * small (for files less than block size) tails will
650  	 * be created in a session
651  	 */
652  	REISERFS_SMALLTAIL,
653  
654  	/* replay journal and return 0. Use by fsck */
655  	REPLAYONLY,
656  
657  	/*
658  	 * -o conv: causes conversion of old format super block to the
659  	 * new format. If not specified - old partition will be dealt
660  	 * with in a manner of 3.5.x
661  	 */
662  	REISERFS_CONVERT,
663  
664  	/*
665  	 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
666  	 * reiserfs disks from 3.5.19 or earlier.  99% of the time, this
667  	 * option is not required.  If the normal autodection code can't
668  	 * determine which hash to use (because both hashes had the same
669  	 * value for a file) use this option to force a specific hash.
670  	 * It won't allow you to override the existing hash on the FS, so
671  	 * if you have a tea hash disk, and mount with -o hash=rupasov,
672  	 * the mount will fail.
673  	 */
674  	FORCE_TEA_HASH,		/* try to force tea hash on mount */
675  	FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */
676  	FORCE_R5_HASH,		/* try to force rupasov hash on mount */
677  	FORCE_HASH_DETECT,	/* try to detect hash function on mount */
678  
679  	REISERFS_DATA_LOG,
680  	REISERFS_DATA_ORDERED,
681  	REISERFS_DATA_WRITEBACK,
682  
683  	/*
684  	 * used for testing experimental features, makes benchmarking new
685  	 * features with and without more convenient, should never be used by
686  	 * users in any code shipped to users (ideally)
687  	 */
688  
689  	REISERFS_NO_BORDER,
690  	REISERFS_NO_UNHASHED_RELOCATION,
691  	REISERFS_HASHED_RELOCATION,
692  	REISERFS_ATTRS,
693  	REISERFS_XATTRS_USER,
694  	REISERFS_POSIXACL,
695  	REISERFS_EXPOSE_PRIVROOT,
696  	REISERFS_BARRIER_NONE,
697  	REISERFS_BARRIER_FLUSH,
698  
699  	/* Actions on error */
700  	REISERFS_ERROR_PANIC,
701  	REISERFS_ERROR_RO,
702  	REISERFS_ERROR_CONTINUE,
703  
704  	REISERFS_USRQUOTA,	/* User quota option specified */
705  	REISERFS_GRPQUOTA,	/* Group quota option specified */
706  
707  	REISERFS_TEST1,
708  	REISERFS_TEST2,
709  	REISERFS_TEST3,
710  	REISERFS_TEST4,
711  	REISERFS_UNSUPPORTED_OPT,
712  };
713  
714  #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
715  #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
716  #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
717  #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
718  #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
719  #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
720  #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
721  #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
722  
723  #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
724  #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
725  #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
726  #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
727  #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
728  #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
729  #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
730  #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
731  #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
732  #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
733  #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
734  #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
735  #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
736  #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
737  #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
738  
739  #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
740  #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
741  
742  void reiserfs_file_buffer(struct buffer_head *bh, int list);
743  extern struct file_system_type reiserfs_fs_type;
744  int reiserfs_resize(struct super_block *, unsigned long);
745  
746  #define CARRY_ON                0
747  #define SCHEDULE_OCCURRED       1
748  
749  #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
750  #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
751  #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
752  #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
753  #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
754  
755  #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
756  
757  #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
__reiserfs_is_journal_aborted(struct reiserfs_journal * journal)758  static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
759  						*journal)
760  {
761  	return test_bit(J_ABORTED, &journal->j_state);
762  }
763  
764  /*
765   * Locking primitives. The write lock is a per superblock
766   * special mutex that has properties close to the Big Kernel Lock
767   * which was used in the previous locking scheme.
768   */
769  void reiserfs_write_lock(struct super_block *s);
770  void reiserfs_write_unlock(struct super_block *s);
771  int __must_check reiserfs_write_unlock_nested(struct super_block *s);
772  void reiserfs_write_lock_nested(struct super_block *s, int depth);
773  
774  #ifdef CONFIG_REISERFS_CHECK
775  void reiserfs_lock_check_recursive(struct super_block *s);
776  #else
reiserfs_lock_check_recursive(struct super_block * s)777  static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
778  #endif
779  
780  /*
781   * Several mutexes depend on the write lock.
782   * However sometimes we want to relax the write lock while we hold
783   * these mutexes, according to the release/reacquire on schedule()
784   * properties of the Bkl that were used.
785   * Reiserfs performances and locking were based on this scheme.
786   * Now that the write lock is a mutex and not the bkl anymore, doing so
787   * may result in a deadlock:
788   *
789   * A acquire write_lock
790   * A acquire j_commit_mutex
791   * A release write_lock and wait for something
792   * B acquire write_lock
793   * B can't acquire j_commit_mutex and sleep
794   * A can't acquire write lock anymore
795   * deadlock
796   *
797   * What we do here is avoiding such deadlock by playing the same game
798   * than the Bkl: if we can't acquire a mutex that depends on the write lock,
799   * we release the write lock, wait a bit and then retry.
800   *
801   * The mutexes concerned by this hack are:
802   * - The commit mutex of a journal list
803   * - The flush mutex
804   * - The journal lock
805   * - The inode mutex
806   */
reiserfs_mutex_lock_safe(struct mutex * m,struct super_block * s)807  static inline void reiserfs_mutex_lock_safe(struct mutex *m,
808  					    struct super_block *s)
809  {
810  	int depth;
811  
812  	depth = reiserfs_write_unlock_nested(s);
813  	mutex_lock(m);
814  	reiserfs_write_lock_nested(s, depth);
815  }
816  
817  static inline void
reiserfs_mutex_lock_nested_safe(struct mutex * m,unsigned int subclass,struct super_block * s)818  reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
819  				struct super_block *s)
820  {
821  	int depth;
822  
823  	depth = reiserfs_write_unlock_nested(s);
824  	mutex_lock_nested(m, subclass);
825  	reiserfs_write_lock_nested(s, depth);
826  }
827  
828  static inline void
reiserfs_down_read_safe(struct rw_semaphore * sem,struct super_block * s)829  reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
830  {
831         int depth;
832         depth = reiserfs_write_unlock_nested(s);
833         down_read(sem);
834         reiserfs_write_lock_nested(s, depth);
835  }
836  
837  /*
838   * When we schedule, we usually want to also release the write lock,
839   * according to the previous bkl based locking scheme of reiserfs.
840   */
reiserfs_cond_resched(struct super_block * s)841  static inline void reiserfs_cond_resched(struct super_block *s)
842  {
843  	if (need_resched()) {
844  		int depth;
845  
846  		depth = reiserfs_write_unlock_nested(s);
847  		schedule();
848  		reiserfs_write_lock_nested(s, depth);
849  	}
850  }
851  
852  struct fid;
853  
854  /*
855   * in reading the #defines, it may help to understand that they employ
856   *  the following abbreviations:
857   *
858   *  B = Buffer
859   *  I = Item header
860   *  H = Height within the tree (should be changed to LEV)
861   *  N = Number of the item in the node
862   *  STAT = stat data
863   *  DEH = Directory Entry Header
864   *  EC = Entry Count
865   *  E = Entry number
866   *  UL = Unsigned Long
867   *  BLKH = BLocK Header
868   *  UNFM = UNForMatted node
869   *  DC = Disk Child
870   *  P = Path
871   *
872   *  These #defines are named by concatenating these abbreviations,
873   *  where first comes the arguments, and last comes the return value,
874   *  of the macro.
875   */
876  
877  #define USE_INODE_GENERATION_COUNTER
878  
879  #define REISERFS_PREALLOCATE
880  #define DISPLACE_NEW_PACKING_LOCALITIES
881  #define PREALLOCATION_SIZE 9
882  
883  /* n must be power of 2 */
884  #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
885  
886  /*
887   * to be ok for alpha and others we have to align structures to 8 byte
888   * boundary.
889   * FIXME: do not change 4 by anything else: there is code which relies on that
890   */
891  #define ROUND_UP(x) _ROUND_UP(x,8LL)
892  
893  /*
894   * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
895   * messages.
896   */
897  #define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
898  
899  void __reiserfs_warning(struct super_block *s, const char *id,
900  			 const char *func, const char *fmt, ...);
901  #define reiserfs_warning(s, id, fmt, args...) \
902  	 __reiserfs_warning(s, id, __func__, fmt, ##args)
903  /* assertions handling */
904  
905  /* always check a condition and panic if it's false. */
906  #define __RASSERT(cond, scond, format, args...)			\
907  do {									\
908  	if (!(cond))							\
909  		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
910  			       __FILE__ ":%i:%s: " format "\n",		\
911  			       __LINE__, __func__ , ##args);		\
912  } while (0)
913  
914  #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
915  
916  #if defined( CONFIG_REISERFS_CHECK )
917  #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
918  #else
919  #define RFALSE( cond, format, args... ) do {;} while( 0 )
920  #endif
921  
922  #define CONSTF __attribute_const__
923  /*
924   * Disk Data Structures
925   */
926  
927  /***************************************************************************
928   *                             SUPER BLOCK                                 *
929   ***************************************************************************/
930  
931  /*
932   * Structure of super block on disk, a version of which in RAM is often
933   * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
934   * structure containing fields never written to disk.
935   */
936  #define UNSET_HASH 0	/* Detect hash on disk */
937  #define TEA_HASH  1
938  #define YURA_HASH 2
939  #define R5_HASH   3
940  #define DEFAULT_HASH R5_HASH
941  
942  struct journal_params {
943  	/* where does journal start from on its * device */
944  	__le32 jp_journal_1st_block;
945  
946  	/* journal device st_rdev */
947  	__le32 jp_journal_dev;
948  
949  	/* size of the journal */
950  	__le32 jp_journal_size;
951  
952  	/* max number of blocks in a transaction. */
953  	__le32 jp_journal_trans_max;
954  
955  	/*
956  	 * random value made on fs creation
957  	 * (this was sb_journal_block_count)
958  	 */
959  	__le32 jp_journal_magic;
960  
961  	/* max number of blocks to batch into a trans */
962  	__le32 jp_journal_max_batch;
963  
964  	/* in seconds, how old can an async  commit be */
965  	__le32 jp_journal_max_commit_age;
966  
967  	/* in seconds, how old can a transaction be */
968  	__le32 jp_journal_max_trans_age;
969  };
970  
971  /* this is the super from 3.5.X, where X >= 10 */
972  struct reiserfs_super_block_v1 {
973  	__le32 s_block_count;	/* blocks count         */
974  	__le32 s_free_blocks;	/* free blocks count    */
975  	__le32 s_root_block;	/* root block number    */
976  	struct journal_params s_journal;
977  	__le16 s_blocksize;	/* block size */
978  
979  	/* max size of object id array, see get_objectid() commentary  */
980  	__le16 s_oid_maxsize;
981  	__le16 s_oid_cursize;	/* current size of object id array */
982  
983  	/* this is set to 1 when filesystem was umounted, to 2 - when not */
984  	__le16 s_umount_state;
985  
986  	/*
987  	 * reiserfs magic string indicates that file system is reiserfs:
988  	 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
989  	 */
990  	char s_magic[10];
991  
992  	/*
993  	 * it is set to used by fsck to mark which
994  	 * phase of rebuilding is done
995  	 */
996  	__le16 s_fs_state;
997  	/*
998  	 * indicate, what hash function is being use
999  	 * to sort names in a directory
1000  	 */
1001  	__le32 s_hash_function_code;
1002  	__le16 s_tree_height;	/* height of disk tree */
1003  
1004  	/*
1005  	 * amount of bitmap blocks needed to address
1006  	 * each block of file system
1007  	 */
1008  	__le16 s_bmap_nr;
1009  
1010  	/*
1011  	 * this field is only reliable on filesystem with non-standard journal
1012  	 */
1013  	__le16 s_version;
1014  
1015  	/*
1016  	 * size in blocks of journal area on main device, we need to
1017  	 * keep after making fs with non-standard journal
1018  	 */
1019  	__le16 s_reserved_for_journal;
1020  } __attribute__ ((__packed__));
1021  
1022  #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
1023  
1024  /* this is the on disk super block */
1025  struct reiserfs_super_block {
1026  	struct reiserfs_super_block_v1 s_v1;
1027  	__le32 s_inode_generation;
1028  
1029  	/* Right now used only by inode-attributes, if enabled */
1030  	__le32 s_flags;
1031  
1032  	unsigned char s_uuid[16];	/* filesystem unique identifier */
1033  	unsigned char s_label[16];	/* filesystem volume label */
1034  	__le16 s_mnt_count;		/* Count of mounts since last fsck */
1035  	__le16 s_max_mnt_count;		/* Maximum mounts before check */
1036  	__le32 s_lastcheck;		/* Timestamp of last fsck */
1037  	__le32 s_check_interval;	/* Interval between checks */
1038  
1039  	/*
1040  	 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
1041  	 * so any additions must be updated there as well. */
1042  	char s_unused[76];
1043  } __attribute__ ((__packed__));
1044  
1045  #define SB_SIZE (sizeof(struct reiserfs_super_block))
1046  
1047  #define REISERFS_VERSION_1 0
1048  #define REISERFS_VERSION_2 2
1049  
1050  /* on-disk super block fields converted to cpu form */
1051  #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
1052  #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
1053  #define SB_BLOCKSIZE(s) \
1054          le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
1055  #define SB_BLOCK_COUNT(s) \
1056          le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
1057  #define SB_FREE_BLOCKS(s) \
1058          le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
1059  #define SB_REISERFS_MAGIC(s) \
1060          (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
1061  #define SB_ROOT_BLOCK(s) \
1062          le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
1063  #define SB_TREE_HEIGHT(s) \
1064          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
1065  #define SB_REISERFS_STATE(s) \
1066          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
1067  #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
1068  #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
1069  
1070  #define PUT_SB_BLOCK_COUNT(s, val) \
1071     do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
1072  #define PUT_SB_FREE_BLOCKS(s, val) \
1073     do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
1074  #define PUT_SB_ROOT_BLOCK(s, val) \
1075     do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
1076  #define PUT_SB_TREE_HEIGHT(s, val) \
1077     do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
1078  #define PUT_SB_REISERFS_STATE(s, val) \
1079     do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1080  #define PUT_SB_VERSION(s, val) \
1081     do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
1082  #define PUT_SB_BMAP_NR(s, val) \
1083     do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
1084  
1085  #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
1086  #define SB_ONDISK_JOURNAL_SIZE(s) \
1087           le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
1088  #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
1089           le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
1090  #define SB_ONDISK_JOURNAL_DEVICE(s) \
1091           le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
1092  #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
1093           le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1094  
1095  #define is_block_in_log_or_reserved_area(s, block) \
1096           block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
1097           && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
1098           ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
1099           SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1100  
1101  int is_reiserfs_3_5(struct reiserfs_super_block *rs);
1102  int is_reiserfs_3_6(struct reiserfs_super_block *rs);
1103  int is_reiserfs_jr(struct reiserfs_super_block *rs);
1104  
1105  /*
1106   * ReiserFS leaves the first 64k unused, so that partition labels have
1107   * enough space.  If someone wants to write a fancy bootloader that
1108   * needs more than 64k, let us know, and this will be increased in size.
1109   * This number must be larger than the largest block size on any
1110   * platform, or code will break.  -Hans
1111   */
1112  #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
1113  #define REISERFS_FIRST_BLOCK unused_define
1114  #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
1115  
1116  /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
1117  #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
1118  
1119  /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1120  #define CARRY_ON      0
1121  #define REPEAT_SEARCH -1
1122  #define IO_ERROR      -2
1123  #define NO_DISK_SPACE -3
1124  #define NO_BALANCING_NEEDED  (-4)
1125  #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
1126  #define QUOTA_EXCEEDED -6
1127  
1128  typedef __u32 b_blocknr_t;
1129  typedef __le32 unp_t;
1130  
1131  struct unfm_nodeinfo {
1132  	unp_t unfm_nodenum;
1133  	unsigned short unfm_freespace;
1134  };
1135  
1136  /* there are two formats of keys: 3.5 and 3.6 */
1137  #define KEY_FORMAT_3_5 0
1138  #define KEY_FORMAT_3_6 1
1139  
1140  /* there are two stat datas */
1141  #define STAT_DATA_V1 0
1142  #define STAT_DATA_V2 1
1143  
REISERFS_I(const struct inode * inode)1144  static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
1145  {
1146  	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
1147  }
1148  
REISERFS_SB(const struct super_block * sb)1149  static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
1150  {
1151  	return sb->s_fs_info;
1152  }
1153  
1154  /*
1155   * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
1156   * which overflows on large file systems.
1157   */
reiserfs_bmap_count(struct super_block * sb)1158  static inline __u32 reiserfs_bmap_count(struct super_block *sb)
1159  {
1160  	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
1161  }
1162  
bmap_would_wrap(unsigned bmap_nr)1163  static inline int bmap_would_wrap(unsigned bmap_nr)
1164  {
1165  	return bmap_nr > ((1LL << 16) - 1);
1166  }
1167  
1168  extern const struct xattr_handler * const reiserfs_xattr_handlers[];
1169  
1170  /*
1171   * this says about version of key of all items (but stat data) the
1172   * object consists of
1173   */
1174  #define get_inode_item_key_version( inode )                                    \
1175      ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
1176  
1177  #define set_inode_item_key_version( inode, version )                           \
1178           ({ if((version)==KEY_FORMAT_3_6)                                      \
1179                  REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
1180              else                                                               \
1181                  REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
1182  
1183  #define get_inode_sd_version(inode)                                            \
1184      ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
1185  
1186  #define set_inode_sd_version(inode, version)                                   \
1187           ({ if((version)==STAT_DATA_V2)                                        \
1188                  REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
1189              else                                                               \
1190                  REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1191  
1192  /*
1193   * This is an aggressive tail suppression policy, I am hoping it
1194   * improves our benchmarks. The principle behind it is that percentage
1195   * space saving is what matters, not absolute space saving.  This is
1196   * non-intuitive, but it helps to understand it if you consider that the
1197   * cost to access 4 blocks is not much more than the cost to access 1
1198   * block, if you have to do a seek and rotate.  A tail risks a
1199   * non-linear disk access that is significant as a percentage of total
1200   * time cost for a 4 block file and saves an amount of space that is
1201   * less significant as a percentage of space, or so goes the hypothesis.
1202   * -Hans
1203   */
1204  #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1205  (\
1206    (!(n_tail_size)) || \
1207    (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1208     ( (n_file_size) >= (n_block_size) * 4 ) || \
1209     ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1210       ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1211     ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1212       ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1213     ( ( (n_file_size) >= (n_block_size) ) && \
1214       ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1215  )
1216  
1217  /*
1218   * Another strategy for tails, this one means only create a tail if all the
1219   * file would fit into one DIRECT item.
1220   * Primary intention for this one is to increase performance by decreasing
1221   * seeking.
1222  */
1223  #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1224  (\
1225    (!(n_tail_size)) || \
1226    (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1227  )
1228  
1229  /*
1230   * values for s_umount_state field
1231   */
1232  #define REISERFS_VALID_FS    1
1233  #define REISERFS_ERROR_FS    2
1234  
1235  /*
1236   * there are 5 item types currently
1237   */
1238  #define TYPE_STAT_DATA 0
1239  #define TYPE_INDIRECT 1
1240  #define TYPE_DIRECT 2
1241  #define TYPE_DIRENTRY 3
1242  #define TYPE_MAXTYPE 3
1243  #define TYPE_ANY 15		/* FIXME: comment is required */
1244  
1245  /***************************************************************************
1246   *                       KEY & ITEM HEAD                                   *
1247   ***************************************************************************/
1248  
1249  /* * directories use this key as well as old files */
1250  struct offset_v1 {
1251  	__le32 k_offset;
1252  	__le32 k_uniqueness;
1253  } __attribute__ ((__packed__));
1254  
1255  struct offset_v2 {
1256  	__le64 v;
1257  } __attribute__ ((__packed__));
1258  
offset_v2_k_type(const struct offset_v2 * v2)1259  static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1260  {
1261  	__u8 type = le64_to_cpu(v2->v) >> 60;
1262  	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1263  }
1264  
set_offset_v2_k_type(struct offset_v2 * v2,int type)1265  static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1266  {
1267  	v2->v =
1268  	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1269  }
1270  
offset_v2_k_offset(const struct offset_v2 * v2)1271  static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1272  {
1273  	return le64_to_cpu(v2->v) & (~0ULL >> 4);
1274  }
1275  
set_offset_v2_k_offset(struct offset_v2 * v2,loff_t offset)1276  static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1277  {
1278  	offset &= (~0ULL >> 4);
1279  	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1280  }
1281  
1282  /*
1283   * Key of an item determines its location in the S+tree, and
1284   * is composed of 4 components
1285   */
1286  struct reiserfs_key {
1287  	/* packing locality: by default parent directory object id */
1288  	__le32 k_dir_id;
1289  
1290  	__le32 k_objectid;	/* object identifier */
1291  	union {
1292  		struct offset_v1 k_offset_v1;
1293  		struct offset_v2 k_offset_v2;
1294  	} __attribute__ ((__packed__)) u;
1295  } __attribute__ ((__packed__));
1296  
1297  struct in_core_key {
1298  	/* packing locality: by default parent directory object id */
1299  	__u32 k_dir_id;
1300  	__u32 k_objectid;	/* object identifier */
1301  	__u64 k_offset;
1302  	__u8 k_type;
1303  };
1304  
1305  struct cpu_key {
1306  	struct in_core_key on_disk_key;
1307  	int version;
1308  	/* 3 in all cases but direct2indirect and indirect2direct conversion */
1309  	int key_length;
1310  };
1311  
1312  /*
1313   * Our function for comparing keys can compare keys of different
1314   * lengths.  It takes as a parameter the length of the keys it is to
1315   * compare.  These defines are used in determining what is to be passed
1316   * to it as that parameter.
1317   */
1318  #define REISERFS_FULL_KEY_LEN     4
1319  #define REISERFS_SHORT_KEY_LEN    2
1320  
1321  /* The result of the key compare */
1322  #define FIRST_GREATER 1
1323  #define SECOND_GREATER -1
1324  #define KEYS_IDENTICAL 0
1325  #define KEY_FOUND 1
1326  #define KEY_NOT_FOUND 0
1327  
1328  #define KEY_SIZE (sizeof(struct reiserfs_key))
1329  
1330  /* return values for search_by_key and clones */
1331  #define ITEM_FOUND 1
1332  #define ITEM_NOT_FOUND 0
1333  #define ENTRY_FOUND 1
1334  #define ENTRY_NOT_FOUND 0
1335  #define DIRECTORY_NOT_FOUND -1
1336  #define REGULAR_FILE_FOUND -2
1337  #define DIRECTORY_FOUND -3
1338  #define BYTE_FOUND 1
1339  #define BYTE_NOT_FOUND 0
1340  #define FILE_NOT_FOUND -1
1341  
1342  #define POSITION_FOUND 1
1343  #define POSITION_NOT_FOUND 0
1344  
1345  /* return values for reiserfs_find_entry and search_by_entry_key */
1346  #define NAME_FOUND 1
1347  #define NAME_NOT_FOUND 0
1348  #define GOTO_PREVIOUS_ITEM 2
1349  #define NAME_FOUND_INVISIBLE 3
1350  
1351  /*
1352   * Everything in the filesystem is stored as a set of items.  The
1353   * item head contains the key of the item, its free space (for
1354   * indirect items) and specifies the location of the item itself
1355   * within the block.
1356   */
1357  
1358  struct item_head {
1359  	/*
1360  	 * Everything in the tree is found by searching for it based on
1361  	 * its key.
1362  	 */
1363  	struct reiserfs_key ih_key;
1364  	union {
1365  		/*
1366  		 * The free space in the last unformatted node of an
1367  		 * indirect item if this is an indirect item.  This
1368  		 * equals 0xFFFF iff this is a direct item or stat data
1369  		 * item. Note that the key, not this field, is used to
1370  		 * determine the item type, and thus which field this
1371  		 * union contains.
1372  		 */
1373  		__le16 ih_free_space_reserved;
1374  
1375  		/*
1376  		 * Iff this is a directory item, this field equals the
1377  		 * number of directory entries in the directory item.
1378  		 */
1379  		__le16 ih_entry_count;
1380  	} __attribute__ ((__packed__)) u;
1381  	__le16 ih_item_len;	/* total size of the item body */
1382  
1383  	/* an offset to the item body within the block */
1384  	__le16 ih_item_location;
1385  
1386  	/*
1387  	 * 0 for all old items, 2 for new ones. Highest bit is set by fsck
1388  	 * temporary, cleaned after all done
1389  	 */
1390  	__le16 ih_version;
1391  } __attribute__ ((__packed__));
1392  /* size of item header     */
1393  #define IH_SIZE (sizeof(struct item_head))
1394  
1395  #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
1396  #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
1397  #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
1398  #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
1399  #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
1400  
1401  #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1402  #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1403  #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1404  #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1405  #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1406  
1407  #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1408  
1409  #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1410  #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1411  
1412  /*
1413   * these operate on indirect items, where you've got an array of ints
1414   * at a possibly unaligned location.  These are a noop on ia32
1415   *
1416   * p is the array of __u32, i is the index into the array, v is the value
1417   * to store there.
1418   */
1419  #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1420  #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1421  
1422  /* * in old version uniqueness field shows key type */
1423  #define V1_SD_UNIQUENESS 0
1424  #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1425  #define V1_DIRECT_UNIQUENESS 0xffffffff
1426  #define V1_DIRENTRY_UNIQUENESS 500
1427  #define V1_ANY_UNIQUENESS 555	/* FIXME: comment is required */
1428  
1429  /* here are conversion routines */
1430  static inline int uniqueness2type(__u32 uniqueness) CONSTF;
uniqueness2type(__u32 uniqueness)1431  static inline int uniqueness2type(__u32 uniqueness)
1432  {
1433  	switch ((int)uniqueness) {
1434  	case V1_SD_UNIQUENESS:
1435  		return TYPE_STAT_DATA;
1436  	case V1_INDIRECT_UNIQUENESS:
1437  		return TYPE_INDIRECT;
1438  	case V1_DIRECT_UNIQUENESS:
1439  		return TYPE_DIRECT;
1440  	case V1_DIRENTRY_UNIQUENESS:
1441  		return TYPE_DIRENTRY;
1442  	case V1_ANY_UNIQUENESS:
1443  	default:
1444  		return TYPE_ANY;
1445  	}
1446  }
1447  
1448  static inline __u32 type2uniqueness(int type) CONSTF;
type2uniqueness(int type)1449  static inline __u32 type2uniqueness(int type)
1450  {
1451  	switch (type) {
1452  	case TYPE_STAT_DATA:
1453  		return V1_SD_UNIQUENESS;
1454  	case TYPE_INDIRECT:
1455  		return V1_INDIRECT_UNIQUENESS;
1456  	case TYPE_DIRECT:
1457  		return V1_DIRECT_UNIQUENESS;
1458  	case TYPE_DIRENTRY:
1459  		return V1_DIRENTRY_UNIQUENESS;
1460  	case TYPE_ANY:
1461  	default:
1462  		return V1_ANY_UNIQUENESS;
1463  	}
1464  }
1465  
1466  /*
1467   * key is pointer to on disk key which is stored in le, result is cpu,
1468   * there is no way to get version of object from key, so, provide
1469   * version to these defines
1470   */
le_key_k_offset(int version,const struct reiserfs_key * key)1471  static inline loff_t le_key_k_offset(int version,
1472  				     const struct reiserfs_key *key)
1473  {
1474  	return (version == KEY_FORMAT_3_5) ?
1475  	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
1476  	    offset_v2_k_offset(&(key->u.k_offset_v2));
1477  }
1478  
le_ih_k_offset(const struct item_head * ih)1479  static inline loff_t le_ih_k_offset(const struct item_head *ih)
1480  {
1481  	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1482  }
1483  
le_key_k_type(int version,const struct reiserfs_key * key)1484  static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1485  {
1486  	if (version == KEY_FORMAT_3_5) {
1487  		loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
1488  		return uniqueness2type(val);
1489  	} else
1490  		return offset_v2_k_type(&(key->u.k_offset_v2));
1491  }
1492  
le_ih_k_type(const struct item_head * ih)1493  static inline loff_t le_ih_k_type(const struct item_head *ih)
1494  {
1495  	return le_key_k_type(ih_version(ih), &(ih->ih_key));
1496  }
1497  
set_le_key_k_offset(int version,struct reiserfs_key * key,loff_t offset)1498  static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1499  				       loff_t offset)
1500  {
1501  	if (version == KEY_FORMAT_3_5)
1502  		key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
1503  	else
1504  		set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
1505  }
1506  
add_le_key_k_offset(int version,struct reiserfs_key * key,loff_t offset)1507  static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
1508  				       loff_t offset)
1509  {
1510  	set_le_key_k_offset(version, key,
1511  			    le_key_k_offset(version, key) + offset);
1512  }
1513  
add_le_ih_k_offset(struct item_head * ih,loff_t offset)1514  static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
1515  {
1516  	add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1517  }
1518  
set_le_ih_k_offset(struct item_head * ih,loff_t offset)1519  static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1520  {
1521  	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1522  }
1523  
set_le_key_k_type(int version,struct reiserfs_key * key,int type)1524  static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1525  				     int type)
1526  {
1527  	if (version == KEY_FORMAT_3_5) {
1528  		type = type2uniqueness(type);
1529  		key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
1530  	} else
1531  	       set_offset_v2_k_type(&key->u.k_offset_v2, type);
1532  }
1533  
set_le_ih_k_type(struct item_head * ih,int type)1534  static inline void set_le_ih_k_type(struct item_head *ih, int type)
1535  {
1536  	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1537  }
1538  
is_direntry_le_key(int version,struct reiserfs_key * key)1539  static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1540  {
1541  	return le_key_k_type(version, key) == TYPE_DIRENTRY;
1542  }
1543  
is_direct_le_key(int version,struct reiserfs_key * key)1544  static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1545  {
1546  	return le_key_k_type(version, key) == TYPE_DIRECT;
1547  }
1548  
is_indirect_le_key(int version,struct reiserfs_key * key)1549  static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1550  {
1551  	return le_key_k_type(version, key) == TYPE_INDIRECT;
1552  }
1553  
is_statdata_le_key(int version,struct reiserfs_key * key)1554  static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1555  {
1556  	return le_key_k_type(version, key) == TYPE_STAT_DATA;
1557  }
1558  
1559  /* item header has version.  */
is_direntry_le_ih(struct item_head * ih)1560  static inline int is_direntry_le_ih(struct item_head *ih)
1561  {
1562  	return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1563  }
1564  
is_direct_le_ih(struct item_head * ih)1565  static inline int is_direct_le_ih(struct item_head *ih)
1566  {
1567  	return is_direct_le_key(ih_version(ih), &ih->ih_key);
1568  }
1569  
is_indirect_le_ih(struct item_head * ih)1570  static inline int is_indirect_le_ih(struct item_head *ih)
1571  {
1572  	return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1573  }
1574  
is_statdata_le_ih(struct item_head * ih)1575  static inline int is_statdata_le_ih(struct item_head *ih)
1576  {
1577  	return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1578  }
1579  
1580  /* key is pointer to cpu key, result is cpu */
cpu_key_k_offset(const struct cpu_key * key)1581  static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1582  {
1583  	return key->on_disk_key.k_offset;
1584  }
1585  
cpu_key_k_type(const struct cpu_key * key)1586  static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1587  {
1588  	return key->on_disk_key.k_type;
1589  }
1590  
set_cpu_key_k_offset(struct cpu_key * key,loff_t offset)1591  static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1592  {
1593  	key->on_disk_key.k_offset = offset;
1594  }
1595  
set_cpu_key_k_type(struct cpu_key * key,int type)1596  static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1597  {
1598  	key->on_disk_key.k_type = type;
1599  }
1600  
cpu_key_k_offset_dec(struct cpu_key * key)1601  static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1602  {
1603  	key->on_disk_key.k_offset--;
1604  }
1605  
1606  #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1607  #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1608  #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1609  #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1610  
1611  /* are these used ? */
1612  #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1613  #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1614  #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1615  #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1616  
1617  #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1618      (!COMP_SHORT_KEYS(ih, key) && \
1619  	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1620  
1621  /* maximal length of item */
1622  #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1623  #define MIN_ITEM_LEN 1
1624  
1625  /* object identifier for root dir */
1626  #define REISERFS_ROOT_OBJECTID 2
1627  #define REISERFS_ROOT_PARENT_OBJECTID 1
1628  
1629  extern struct reiserfs_key root_key;
1630  
1631  /*
1632   * Picture represents a leaf of the S+tree
1633   *  ______________________________________________________
1634   * |      |  Array of     |                   |           |
1635   * |Block |  Object-Item  |      F r e e      |  Objects- |
1636   * | head |  Headers      |     S p a c e     |   Items   |
1637   * |______|_______________|___________________|___________|
1638   */
1639  
1640  /*
1641   * Header of a disk block.  More precisely, header of a formatted leaf
1642   * or internal node, and not the header of an unformatted node.
1643   */
1644  struct block_head {
1645  	__le16 blk_level;	/* Level of a block in the tree. */
1646  	__le16 blk_nr_item;	/* Number of keys/items in a block. */
1647  	__le16 blk_free_space;	/* Block free space in bytes. */
1648  	__le16 blk_reserved;
1649  	/* dump this in v4/planA */
1650  
1651  	/* kept only for compatibility */
1652  	struct reiserfs_key blk_right_delim_key;
1653  };
1654  
1655  #define BLKH_SIZE                     (sizeof(struct block_head))
1656  #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
1657  #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
1658  #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
1659  #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
1660  #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
1661  #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1662  #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1663  #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1664  #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
1665  #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
1666  
1667  /* values for blk_level field of the struct block_head */
1668  
1669  /*
1670   * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
1671   * It is then  used to see whether the node is still in the tree
1672   */
1673  #define FREE_LEVEL 0
1674  
1675  #define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
1676  
1677  /*
1678   * Given the buffer head of a formatted node, resolve to the
1679   * block head of that node.
1680   */
1681  #define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data))
1682  /* Number of items that are in buffer. */
1683  #define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh)))
1684  #define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh)))
1685  #define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh)))
1686  
1687  #define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1688  #define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1689  #define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1690  
1691  /* Get right delimiting key. -- little endian */
1692  #define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh))))
1693  
1694  /* Does the buffer contain a disk leaf. */
1695  #define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1696  
1697  /* Does the buffer contain a disk internal node */
1698  #define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1699  					    && B_LEVEL(bh) <= MAX_HEIGHT)
1700  
1701  /***************************************************************************
1702   *                             STAT DATA                                   *
1703   ***************************************************************************/
1704  
1705  /*
1706   * old stat data is 32 bytes long. We are going to distinguish new one by
1707   * different size
1708  */
1709  struct stat_data_v1 {
1710  	__le16 sd_mode;		/* file type, permissions */
1711  	__le16 sd_nlink;	/* number of hard links */
1712  	__le16 sd_uid;		/* owner */
1713  	__le16 sd_gid;		/* group */
1714  	__le32 sd_size;		/* file size */
1715  	__le32 sd_atime;	/* time of last access */
1716  	__le32 sd_mtime;	/* time file was last modified  */
1717  
1718  	/*
1719  	 * time inode (stat data) was last changed
1720  	 * (except changes to sd_atime and sd_mtime)
1721  	 */
1722  	__le32 sd_ctime;
1723  	union {
1724  		__le32 sd_rdev;
1725  		__le32 sd_blocks;	/* number of blocks file uses */
1726  	} __attribute__ ((__packed__)) u;
1727  
1728  	/*
1729  	 * first byte of file which is stored in a direct item: except that if
1730  	 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
1731  	 * direct item.  The existence of this field really grates on me.
1732  	 * Let's replace it with a macro based on sd_size and our tail
1733  	 * suppression policy.  Someday.  -Hans
1734  	 */
1735  	__le32 sd_first_direct_byte;
1736  } __attribute__ ((__packed__));
1737  
1738  #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
1739  #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
1740  #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1741  #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1742  #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
1743  #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
1744  #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
1745  #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
1746  #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
1747  #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
1748  #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
1749  #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
1750  #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1751  #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1752  #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1753  #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1754  #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1755  #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1756  #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1757  #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1758  #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
1759  #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1760  #define sd_v1_first_direct_byte(sdp) \
1761                                  (le32_to_cpu((sdp)->sd_first_direct_byte))
1762  #define set_sd_v1_first_direct_byte(sdp,v) \
1763                                  ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1764  
1765  /* inode flags stored in sd_attrs (nee sd_reserved) */
1766  
1767  /*
1768   * we want common flags to have the same values as in ext2,
1769   * so chattr(1) will work without problems
1770   */
1771  #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1772  #define REISERFS_APPEND_FL    FS_APPEND_FL
1773  #define REISERFS_SYNC_FL      FS_SYNC_FL
1774  #define REISERFS_NOATIME_FL   FS_NOATIME_FL
1775  #define REISERFS_NODUMP_FL    FS_NODUMP_FL
1776  #define REISERFS_SECRM_FL     FS_SECRM_FL
1777  #define REISERFS_UNRM_FL      FS_UNRM_FL
1778  #define REISERFS_COMPR_FL     FS_COMPR_FL
1779  #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
1780  
1781  /* persistent flags that file inherits from the parent directory */
1782  #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
1783  				REISERFS_SYNC_FL |	\
1784  				REISERFS_NOATIME_FL |	\
1785  				REISERFS_NODUMP_FL |	\
1786  				REISERFS_SECRM_FL |	\
1787  				REISERFS_COMPR_FL |	\
1788  				REISERFS_NOTAIL_FL )
1789  
1790  /*
1791   * Stat Data on disk (reiserfs version of UFS disk inode minus the
1792   * address blocks)
1793   */
1794  struct stat_data {
1795  	__le16 sd_mode;		/* file type, permissions */
1796  	__le16 sd_attrs;	/* persistent inode flags */
1797  	__le32 sd_nlink;	/* number of hard links */
1798  	__le64 sd_size;		/* file size */
1799  	__le32 sd_uid;		/* owner */
1800  	__le32 sd_gid;		/* group */
1801  	__le32 sd_atime;	/* time of last access */
1802  	__le32 sd_mtime;	/* time file was last modified  */
1803  
1804  	/*
1805  	 * time inode (stat data) was last changed
1806  	 * (except changes to sd_atime and sd_mtime)
1807  	 */
1808  	__le32 sd_ctime;
1809  	__le32 sd_blocks;
1810  	union {
1811  		__le32 sd_rdev;
1812  		__le32 sd_generation;
1813  	} __attribute__ ((__packed__)) u;
1814  } __attribute__ ((__packed__));
1815  
1816  /* this is 44 bytes long */
1817  #define SD_SIZE (sizeof(struct stat_data))
1818  #define SD_V2_SIZE              SD_SIZE
1819  #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
1820  #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1821  #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1822  /* sd_reserved */
1823  /* set_sd_reserved */
1824  #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
1825  #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
1826  #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
1827  #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
1828  #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
1829  #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
1830  #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
1831  #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
1832  #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1833  #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1834  #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1835  #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1836  #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1837  #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1838  #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
1839  #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1840  #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1841  #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1842  #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
1843  #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1844  #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
1845  #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
1846  
1847  /***************************************************************************
1848   *                      DIRECTORY STRUCTURE                                *
1849   ***************************************************************************/
1850  /*
1851   * Picture represents the structure of directory items
1852   * ________________________________________________
1853   * |  Array of     |   |     |        |       |   |
1854   * | directory     |N-1| N-2 | ....   |   1st |0th|
1855   * | entry headers |   |     |        |       |   |
1856   * |_______________|___|_____|________|_______|___|
1857   *                  <----   directory entries         ------>
1858   *
1859   * First directory item has k_offset component 1. We store "." and ".."
1860   * in one item, always, we never split "." and ".." into differing
1861   * items.  This makes, among other things, the code for removing
1862   * directories simpler.
1863   */
1864  #define SD_OFFSET  0
1865  #define SD_UNIQUENESS 0
1866  #define DOT_OFFSET 1
1867  #define DOT_DOT_OFFSET 2
1868  #define DIRENTRY_UNIQUENESS 500
1869  
1870  #define FIRST_ITEM_OFFSET 1
1871  
1872  /*
1873   * Q: How to get key of object pointed to by entry from entry?
1874   *
1875   * A: Each directory entry has its header. This header has deh_dir_id
1876   *    and deh_objectid fields, those are key of object, entry points to
1877   */
1878  
1879  /*
1880   * NOT IMPLEMENTED:
1881   * Directory will someday contain stat data of object
1882   */
1883  
1884  struct reiserfs_de_head {
1885  	__le32 deh_offset;	/* third component of the directory entry key */
1886  
1887  	/*
1888  	 * objectid of the parent directory of the object, that is referenced
1889  	 * by directory entry
1890  	 */
1891  	__le32 deh_dir_id;
1892  
1893  	/* objectid of the object, that is referenced by directory entry */
1894  	__le32 deh_objectid;
1895  	__le16 deh_location;	/* offset of name in the whole item */
1896  
1897  	/*
1898  	 * whether 1) entry contains stat data (for future), and
1899  	 * 2) whether entry is hidden (unlinked)
1900  	 */
1901  	__le16 deh_state;
1902  } __attribute__ ((__packed__));
1903  #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1904  #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1905  #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1906  #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1907  #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1908  #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1909  
1910  #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1911  #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1912  #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1913  #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1914  #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1915  
1916  /* empty directory contains two entries "." and ".." and their headers */
1917  #define EMPTY_DIR_SIZE \
1918  (DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1))
1919  
1920  /* old format directories have this size when empty */
1921  #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1922  
1923  #define DEH_Statdata 0		/* not used now */
1924  #define DEH_Visible 2
1925  
1926  /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1927  #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1928  #   define ADDR_UNALIGNED_BITS  (3)
1929  #endif
1930  
1931  /*
1932   * These are only used to manipulate deh_state.
1933   * Because of this, we'll use the ext2_ bit routines,
1934   * since they are little endian
1935   */
1936  #ifdef ADDR_UNALIGNED_BITS
1937  
1938  #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1939  #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1940  
1941  #   define set_bit_unaligned(nr, addr)	\
1942  	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1943  #   define clear_bit_unaligned(nr, addr)	\
1944  	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1945  #   define test_bit_unaligned(nr, addr)	\
1946  	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1947  
1948  #else
1949  
1950  #   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr)
1951  #   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr)
1952  #   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr)
1953  
1954  #endif
1955  
1956  #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1957  #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1958  #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1959  #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1960  
1961  #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1962  #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1963  #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1964  
1965  extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1966  				   __le32 par_dirid, __le32 par_objid);
1967  extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1968  				__le32 par_dirid, __le32 par_objid);
1969  
1970  /* two entries per block (at least) */
1971  #define REISERFS_MAX_NAME(block_size) 255
1972  
1973  /*
1974   * this structure is used for operations on directory entries. It is
1975   * not a disk structure.
1976   *
1977   * When reiserfs_find_entry or search_by_entry_key find directory
1978   * entry, they return filled reiserfs_dir_entry structure
1979   */
1980  struct reiserfs_dir_entry {
1981  	struct buffer_head *de_bh;
1982  	int de_item_num;
1983  	struct item_head *de_ih;
1984  	int de_entry_num;
1985  	struct reiserfs_de_head *de_deh;
1986  	int de_entrylen;
1987  	int de_namelen;
1988  	char *de_name;
1989  	unsigned long *de_gen_number_bit_string;
1990  
1991  	__u32 de_dir_id;
1992  	__u32 de_objectid;
1993  
1994  	struct cpu_key de_entry_key;
1995  };
1996  
1997  /*
1998   * these defines are useful when a particular member of
1999   * a reiserfs_dir_entry is needed
2000   */
2001  
2002  /* pointer to file name, stored in entry */
2003  #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
2004  				(ih_item_body(bh, ih) + deh_location(deh))
2005  
2006  /* length of name */
2007  #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
2008  (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
2009  
2010  /* hash value occupies bits from 7 up to 30 */
2011  #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
2012  /* generation number occupies 7 bits starting from 0 up to 6 */
2013  #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
2014  #define MAX_GENERATION_NUMBER  127
2015  
2016  #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
2017  
2018  /*
2019   * Picture represents an internal node of the reiserfs tree
2020   *  ______________________________________________________
2021   * |      |  Array of     |  Array of         |  Free     |
2022   * |block |    keys       |  pointers         | space     |
2023   * | head |      N        |      N+1          |           |
2024   * |______|_______________|___________________|___________|
2025   */
2026  
2027  /***************************************************************************
2028   *                      DISK CHILD                                         *
2029   ***************************************************************************/
2030  /*
2031   * Disk child pointer:
2032   * The pointer from an internal node of the tree to a node that is on disk.
2033   */
2034  struct disk_child {
2035  	__le32 dc_block_number;	/* Disk child's block number. */
2036  	__le16 dc_size;		/* Disk child's used space.   */
2037  	__le16 dc_reserved;
2038  };
2039  
2040  #define DC_SIZE (sizeof(struct disk_child))
2041  #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
2042  #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
2043  #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
2044  #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
2045  
2046  /* Get disk child by buffer header and position in the tree node. */
2047  #define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
2048  ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
2049  
2050  /* Get disk child number by buffer header and position in the tree node. */
2051  #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
2052  #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
2053  				(put_dc_block_number(B_N_CHILD(bh, n_pos), val))
2054  
2055   /* maximal value of field child_size in structure disk_child */
2056   /* child size is the combined size of all items and their headers */
2057  #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
2058  
2059  /* amount of used space in buffer (not including block head) */
2060  #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
2061  
2062  /* max and min number of keys in internal node */
2063  #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
2064  #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
2065  
2066  /***************************************************************************
2067   *                      PATH STRUCTURES AND DEFINES                        *
2068   ***************************************************************************/
2069  
2070  /*
2071   * search_by_key fills up the path from the root to the leaf as it descends
2072   * the tree looking for the key.  It uses reiserfs_bread to try to find
2073   * buffers in the cache given their block number.  If it does not find
2074   * them in the cache it reads them from disk.  For each node search_by_key
2075   * finds using reiserfs_bread it then uses bin_search to look through that
2076   * node.  bin_search will find the position of the block_number of the next
2077   * node if it is looking through an internal node.  If it is looking through
2078   * a leaf node bin_search will find the position of the item which has key
2079   * either equal to given key, or which is the maximal key less than the
2080   * given key.
2081   */
2082  
2083  struct path_element {
2084  	/* Pointer to the buffer at the path in the tree. */
2085  	struct buffer_head *pe_buffer;
2086  	/* Position in the tree node which is placed in the buffer above. */
2087  	int pe_position;
2088  };
2089  
2090  /*
2091   * maximal height of a tree. don't change this without
2092   * changing JOURNAL_PER_BALANCE_CNT
2093   */
2094  #define MAX_HEIGHT 5
2095  
2096  /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
2097  #define EXTENDED_MAX_HEIGHT         7
2098  
2099  /* Must be equal to at least 2. */
2100  #define FIRST_PATH_ELEMENT_OFFSET   2
2101  
2102  /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
2103  #define ILLEGAL_PATH_ELEMENT_OFFSET 1
2104  
2105  /* this MUST be MAX_HEIGHT + 1. See about FEB below */
2106  #define MAX_FEB_SIZE 6
2107  
2108  /*
2109   * We need to keep track of who the ancestors of nodes are.  When we
2110   * perform a search we record which nodes were visited while
2111   * descending the tree looking for the node we searched for. This list
2112   * of nodes is called the path.  This information is used while
2113   * performing balancing.  Note that this path information may become
2114   * invalid, and this means we must check it when using it to see if it
2115   * is still valid. You'll need to read search_by_key and the comments
2116   * in it, especially about decrement_counters_in_path(), to understand
2117   * this structure.
2118   *
2119   * Paths make the code so much harder to work with and debug.... An
2120   * enormous number of bugs are due to them, and trying to write or modify
2121   * code that uses them just makes my head hurt.  They are based on an
2122   * excessive effort to avoid disturbing the precious VFS code.:-( The
2123   * gods only know how we are going to SMP the code that uses them.
2124   * znodes are the way!
2125   */
2126  
2127  #define PATH_READA	0x1	/* do read ahead */
2128  #define PATH_READA_BACK 0x2	/* read backwards */
2129  
2130  struct treepath {
2131  	int path_length;	/* Length of the array above.   */
2132  	int reada;
2133  	/* Array of the path elements.  */
2134  	struct path_element path_elements[EXTENDED_MAX_HEIGHT];
2135  	int pos_in_item;
2136  };
2137  
2138  #define pos_in_item(path) ((path)->pos_in_item)
2139  
2140  #define INITIALIZE_PATH(var) \
2141  struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
2142  
2143  /* Get path element by path and path position. */
2144  #define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
2145  
2146  /* Get buffer header at the path by path and path position. */
2147  #define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
2148  
2149  /* Get position in the element at the path by path and path position. */
2150  #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
2151  
2152  #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
2153  
2154  /*
2155   * you know, to the person who didn't write this the macro name does not
2156   * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or
2157   * maybe we should just focus on dumping paths... -Hans
2158   */
2159  #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
2160  
2161  /*
2162   * in do_balance leaf has h == 0 in contrast with path structure,
2163   * where root has level == 0. That is why we need these defines
2164   */
2165  
2166  /* tb->S[h] */
2167  #define PATH_H_PBUFFER(path, h) \
2168  			PATH_OFFSET_PBUFFER(path, path->path_length - (h))
2169  
2170  /* tb->F[h] or tb->S[0]->b_parent */
2171  #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
2172  
2173  #define PATH_H_POSITION(path, h) \
2174  			PATH_OFFSET_POSITION(path, path->path_length - (h))
2175  
2176  /* tb->S[h]->b_item_order */
2177  #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
2178  
2179  #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
2180  
reiserfs_node_data(const struct buffer_head * bh)2181  static inline void *reiserfs_node_data(const struct buffer_head *bh)
2182  {
2183  	return bh->b_data + sizeof(struct block_head);
2184  }
2185  
2186  /* get key from internal node */
internal_key(struct buffer_head * bh,int item_num)2187  static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
2188  						int item_num)
2189  {
2190  	struct reiserfs_key *key = reiserfs_node_data(bh);
2191  
2192  	return &key[item_num];
2193  }
2194  
2195  /* get the item header from leaf node */
item_head(const struct buffer_head * bh,int item_num)2196  static inline struct item_head *item_head(const struct buffer_head *bh,
2197  					  int item_num)
2198  {
2199  	struct item_head *ih = reiserfs_node_data(bh);
2200  
2201  	return &ih[item_num];
2202  }
2203  
2204  /* get the key from leaf node */
leaf_key(const struct buffer_head * bh,int item_num)2205  static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
2206  					    int item_num)
2207  {
2208  	return &item_head(bh, item_num)->ih_key;
2209  }
2210  
ih_item_body(const struct buffer_head * bh,const struct item_head * ih)2211  static inline void *ih_item_body(const struct buffer_head *bh,
2212  				 const struct item_head *ih)
2213  {
2214  	return bh->b_data + ih_location(ih);
2215  }
2216  
2217  /* get item body from leaf node */
item_body(const struct buffer_head * bh,int item_num)2218  static inline void *item_body(const struct buffer_head *bh, int item_num)
2219  {
2220  	return ih_item_body(bh, item_head(bh, item_num));
2221  }
2222  
tp_item_head(const struct treepath * path)2223  static inline struct item_head *tp_item_head(const struct treepath *path)
2224  {
2225  	return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2226  }
2227  
tp_item_body(const struct treepath * path)2228  static inline void *tp_item_body(const struct treepath *path)
2229  {
2230  	return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2231  }
2232  
2233  #define get_last_bh(path) PATH_PLAST_BUFFER(path)
2234  #define get_item_pos(path) PATH_LAST_POSITION(path)
2235  #define item_moved(ih,path) comp_items(ih, path)
2236  #define path_changed(ih,path) comp_items (ih, path)
2237  
2238  /* array of the entry headers */
2239   /* get item body */
2240  #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
2241  
2242  /*
2243   * length of the directory entry in directory item. This define
2244   * calculates length of i-th directory entry using directory entry
2245   * locations from dir entry head. When it calculates length of 0-th
2246   * directory entry, it uses length of whole item in place of entry
2247   * location of the non-existent following entry in the calculation.
2248   * See picture above.
2249   */
entry_length(const struct buffer_head * bh,const struct item_head * ih,int pos_in_item)2250  static inline int entry_length(const struct buffer_head *bh,
2251  			       const struct item_head *ih, int pos_in_item)
2252  {
2253  	struct reiserfs_de_head *deh;
2254  
2255  	deh = B_I_DEH(bh, ih) + pos_in_item;
2256  	if (pos_in_item)
2257  		return deh_location(deh - 1) - deh_location(deh);
2258  
2259  	return ih_item_len(ih) - deh_location(deh);
2260  }
2261  
2262  /***************************************************************************
2263   *                       MISC                                              *
2264   ***************************************************************************/
2265  
2266  /* Size of pointer to the unformatted node. */
2267  #define UNFM_P_SIZE (sizeof(unp_t))
2268  #define UNFM_P_SHIFT 2
2269  
2270  /* in in-core inode key is stored on le form */
2271  #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
2272  
2273  #define MAX_UL_INT 0xffffffff
2274  #define MAX_INT    0x7ffffff
2275  #define MAX_US_INT 0xffff
2276  
2277  // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
max_reiserfs_offset(struct inode * inode)2278  static inline loff_t max_reiserfs_offset(struct inode *inode)
2279  {
2280  	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
2281  		return (loff_t) U32_MAX;
2282  
2283  	return (loff_t) ((~(__u64) 0) >> 4);
2284  }
2285  
2286  #define MAX_KEY_OBJECTID	MAX_UL_INT
2287  
2288  #define MAX_B_NUM  MAX_UL_INT
2289  #define MAX_FC_NUM MAX_US_INT
2290  
2291  /* the purpose is to detect overflow of an unsigned short */
2292  #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
2293  
2294  /*
2295   * The following defines are used in reiserfs_insert_item
2296   * and reiserfs_append_item
2297   */
2298  #define REISERFS_KERNEL_MEM		0	/* kernel memory mode */
2299  #define REISERFS_USER_MEM		1	/* user memory mode */
2300  
2301  #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
2302  #define get_generation(s) atomic_read (&fs_generation(s))
2303  #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
2304  #define __fs_changed(gen,s) (gen != get_generation (s))
2305  #define fs_changed(gen,s)		\
2306  ({					\
2307  	reiserfs_cond_resched(s);	\
2308  	__fs_changed(gen, s);		\
2309  })
2310  
2311  /***************************************************************************
2312   *                  FIXATE NODES                                           *
2313   ***************************************************************************/
2314  
2315  #define VI_TYPE_LEFT_MERGEABLE 1
2316  #define VI_TYPE_RIGHT_MERGEABLE 2
2317  
2318  /*
2319   * To make any changes in the tree we always first find node, that
2320   * contains item to be changed/deleted or place to insert a new
2321   * item. We call this node S. To do balancing we need to decide what
2322   * we will shift to left/right neighbor, or to a new node, where new
2323   * item will be etc. To make this analysis simpler we build virtual
2324   * node. Virtual node is an array of items, that will replace items of
2325   * node S. (For instance if we are going to delete an item, virtual
2326   * node does not contain it). Virtual node keeps information about
2327   * item sizes and types, mergeability of first and last items, sizes
2328   * of all entries in directory item. We use this array of items when
2329   * calculating what we can shift to neighbors and how many nodes we
2330   * have to have if we do not any shiftings, if we shift to left/right
2331   * neighbor or to both.
2332   */
2333  struct virtual_item {
2334  	int vi_index;		/* index in the array of item operations */
2335  	unsigned short vi_type;	/* left/right mergeability */
2336  
2337  	/* length of item that it will have after balancing */
2338  	unsigned short vi_item_len;
2339  
2340  	struct item_head *vi_ih;
2341  	const char *vi_item;	/* body of item (old or new) */
2342  	const void *vi_new_data;	/* 0 always but paste mode */
2343  	void *vi_uarea;		/* item specific area */
2344  };
2345  
2346  struct virtual_node {
2347  	/* this is a pointer to the free space in the buffer */
2348  	char *vn_free_ptr;
2349  
2350  	unsigned short vn_nr_item;	/* number of items in virtual node */
2351  
2352  	/*
2353  	 * size of node , that node would have if it has
2354  	 * unlimited size and no balancing is performed
2355  	 */
2356  	short vn_size;
2357  
2358  	/* mode of balancing (paste, insert, delete, cut) */
2359  	short vn_mode;
2360  
2361  	short vn_affected_item_num;
2362  	short vn_pos_in_item;
2363  
2364  	/* item header of inserted item, 0 for other modes */
2365  	struct item_head *vn_ins_ih;
2366  	const void *vn_data;
2367  
2368  	/* array of items (including a new one, excluding item to be deleted) */
2369  	struct virtual_item *vn_vi;
2370  };
2371  
2372  /* used by directory items when creating virtual nodes */
2373  struct direntry_uarea {
2374  	int flags;
2375  	__u16 entry_count;
2376  	__u16 entry_sizes[];
2377  } __attribute__ ((__packed__));
2378  
2379  /***************************************************************************
2380   *                  TREE BALANCE                                           *
2381   ***************************************************************************/
2382  
2383  /*
2384   * This temporary structure is used in tree balance algorithms, and
2385   * constructed as we go to the extent that its various parts are
2386   * needed.  It contains arrays of nodes that can potentially be
2387   * involved in the balancing of node S, and parameters that define how
2388   * each of the nodes must be balanced.  Note that in these algorithms
2389   * for balancing the worst case is to need to balance the current node
2390   * S and the left and right neighbors and all of their parents plus
2391   * create a new node.  We implement S1 balancing for the leaf nodes
2392   * and S0 balancing for the internal nodes (S1 and S0 are defined in
2393   * our papers.)
2394   */
2395  
2396  /* size of the array of buffers to free at end of do_balance */
2397  #define MAX_FREE_BLOCK 7
2398  
2399  /* maximum number of FEB blocknrs on a single level */
2400  #define MAX_AMOUNT_NEEDED 2
2401  
2402  /* someday somebody will prefix every field in this struct with tb_ */
2403  struct tree_balance {
2404  	int tb_mode;
2405  	int need_balance_dirty;
2406  	struct super_block *tb_sb;
2407  	struct reiserfs_transaction_handle *transaction_handle;
2408  	struct treepath *tb_path;
2409  
2410  	/* array of left neighbors of nodes in the path */
2411  	struct buffer_head *L[MAX_HEIGHT];
2412  
2413  	/* array of right neighbors of nodes in the path */
2414  	struct buffer_head *R[MAX_HEIGHT];
2415  
2416  	/* array of fathers of the left neighbors */
2417  	struct buffer_head *FL[MAX_HEIGHT];
2418  
2419  	/* array of fathers of the right neighbors */
2420  	struct buffer_head *FR[MAX_HEIGHT];
2421  	/* array of common parents of center node and its left neighbor */
2422  	struct buffer_head *CFL[MAX_HEIGHT];
2423  
2424  	/* array of common parents of center node and its right neighbor */
2425  	struct buffer_head *CFR[MAX_HEIGHT];
2426  
2427  	/*
2428  	 * array of empty buffers. Number of buffers in array equals
2429  	 * cur_blknum.
2430  	 */
2431  	struct buffer_head *FEB[MAX_FEB_SIZE];
2432  	struct buffer_head *used[MAX_FEB_SIZE];
2433  	struct buffer_head *thrown[MAX_FEB_SIZE];
2434  
2435  	/*
2436  	 * array of number of items which must be shifted to the left in
2437  	 * order to balance the current node; for leaves includes item that
2438  	 * will be partially shifted; for internal nodes, it is the number
2439  	 * of child pointers rather than items. It includes the new item
2440  	 * being created. The code sometimes subtracts one to get the
2441  	 * number of wholly shifted items for other purposes.
2442  	 */
2443  	int lnum[MAX_HEIGHT];
2444  
2445  	/* substitute right for left in comment above */
2446  	int rnum[MAX_HEIGHT];
2447  
2448  	/*
2449  	 * array indexed by height h mapping the key delimiting L[h] and
2450  	 * S[h] to its item number within the node CFL[h]
2451  	 */
2452  	int lkey[MAX_HEIGHT];
2453  
2454  	/* substitute r for l in comment above */
2455  	int rkey[MAX_HEIGHT];
2456  
2457  	/*
2458  	 * the number of bytes by we are trying to add or remove from
2459  	 * S[h]. A negative value means removing.
2460  	 */
2461  	int insert_size[MAX_HEIGHT];
2462  
2463  	/*
2464  	 * number of nodes that will replace node S[h] after balancing
2465  	 * on the level h of the tree.  If 0 then S is being deleted,
2466  	 * if 1 then S is remaining and no new nodes are being created,
2467  	 * if 2 or 3 then 1 or 2 new nodes is being created
2468  	 */
2469  	int blknum[MAX_HEIGHT];
2470  
2471  	/* fields that are used only for balancing leaves of the tree */
2472  
2473  	/* number of empty blocks having been already allocated */
2474  	int cur_blknum;
2475  
2476  	/* number of items that fall into left most node when S[0] splits */
2477  	int s0num;
2478  
2479  	/*
2480  	 * number of bytes which can flow to the left neighbor from the left
2481  	 * most liquid item that cannot be shifted from S[0] entirely
2482  	 * if -1 then nothing will be partially shifted
2483  	 */
2484  	int lbytes;
2485  
2486  	/*
2487  	 * number of bytes which will flow to the right neighbor from the right
2488  	 * most liquid item that cannot be shifted from S[0] entirely
2489  	 * if -1 then nothing will be partially shifted
2490  	 */
2491  	int rbytes;
2492  
2493  
2494  	/*
2495  	 * index into the array of item headers in
2496  	 * S[0] of the affected item
2497  	 */
2498  	int item_pos;
2499  
2500  	/* new nodes allocated to hold what could not fit into S */
2501  	struct buffer_head *S_new[2];
2502  
2503  	/*
2504  	 * number of items that will be placed into nodes in S_new
2505  	 * when S[0] splits
2506  	 */
2507  	int snum[2];
2508  
2509  	/*
2510  	 * number of bytes which flow to nodes in S_new when S[0] splits
2511  	 * note: if S[0] splits into 3 nodes, then items do not need to be cut
2512  	 */
2513  	int sbytes[2];
2514  
2515  	int pos_in_item;
2516  	int zeroes_num;
2517  
2518  	/*
2519  	 * buffers which are to be freed after do_balance finishes
2520  	 * by unfix_nodes
2521  	 */
2522  	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
2523  
2524  	/*
2525  	 * kmalloced memory. Used to create virtual node and keep
2526  	 * map of dirtied bitmap blocks
2527  	 */
2528  	char *vn_buf;
2529  
2530  	int vn_buf_size;	/* size of the vn_buf */
2531  
2532  	/* VN starts after bitmap of bitmap blocks */
2533  	struct virtual_node *tb_vn;
2534  
2535  	/*
2536  	 * saved value of `reiserfs_generation' counter see
2537  	 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
2538  	 */
2539  	int fs_gen;
2540  
2541  #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2542  	/*
2543  	 * key pointer, to pass to block allocator or
2544  	 * another low-level subsystem
2545  	 */
2546  	struct in_core_key key;
2547  #endif
2548  };
2549  
2550  /* These are modes of balancing */
2551  
2552  /* When inserting an item. */
2553  #define M_INSERT	'i'
2554  /*
2555   * When inserting into (directories only) or appending onto an already
2556   * existent item.
2557   */
2558  #define M_PASTE		'p'
2559  /* When deleting an item. */
2560  #define M_DELETE	'd'
2561  /* When truncating an item or removing an entry from a (directory) item. */
2562  #define M_CUT		'c'
2563  
2564  /* used when balancing on leaf level skipped (in reiserfsck) */
2565  #define M_INTERNAL	'n'
2566  
2567  /*
2568   * When further balancing is not needed, then do_balance does not need
2569   * to be called.
2570   */
2571  #define M_SKIP_BALANCING		's'
2572  #define M_CONVERT	'v'
2573  
2574  /* modes of leaf_move_items */
2575  #define LEAF_FROM_S_TO_L 0
2576  #define LEAF_FROM_S_TO_R 1
2577  #define LEAF_FROM_R_TO_L 2
2578  #define LEAF_FROM_L_TO_R 3
2579  #define LEAF_FROM_S_TO_SNEW 4
2580  
2581  #define FIRST_TO_LAST 0
2582  #define LAST_TO_FIRST 1
2583  
2584  /*
2585   * used in do_balance for passing parent of node information that has
2586   * been gotten from tb struct
2587   */
2588  struct buffer_info {
2589  	struct tree_balance *tb;
2590  	struct buffer_head *bi_bh;
2591  	struct buffer_head *bi_parent;
2592  	int bi_position;
2593  };
2594  
sb_from_tb(struct tree_balance * tb)2595  static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2596  {
2597  	return tb ? tb->tb_sb : NULL;
2598  }
2599  
sb_from_bi(struct buffer_info * bi)2600  static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2601  {
2602  	return bi ? sb_from_tb(bi->tb) : NULL;
2603  }
2604  
2605  /*
2606   * there are 4 types of items: stat data, directory item, indirect, direct.
2607   * +-------------------+------------+--------------+------------+
2608   * |                   |  k_offset  | k_uniqueness | mergeable? |
2609   * +-------------------+------------+--------------+------------+
2610   * |     stat data     |     0      |      0       |   no       |
2611   * +-------------------+------------+--------------+------------+
2612   * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       |
2613   * | non 1st directory | hash value | UNIQUENESS   |   yes      |
2614   * |     item          |            |              |            |
2615   * +-------------------+------------+--------------+------------+
2616   * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]	|
2617   * +-------------------+------------+--------------+------------+
2618   * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     |
2619   * +-------------------+------------+--------------+------------+
2620   *
2621   * [1] if this is not the first indirect item of the object
2622   * [2] if this is not the first direct item of the object
2623  */
2624  
2625  struct item_operations {
2626  	int (*bytes_number) (struct item_head * ih, int block_size);
2627  	void (*decrement_key) (struct cpu_key *);
2628  	int (*is_left_mergeable) (struct reiserfs_key * ih,
2629  				  unsigned long bsize);
2630  	void (*print_item) (struct item_head *, char *item);
2631  	void (*check_item) (struct item_head *, char *item);
2632  
2633  	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2634  			  int is_affected, int insert_size);
2635  	int (*check_left) (struct virtual_item * vi, int free,
2636  			   int start_skip, int end_skip);
2637  	int (*check_right) (struct virtual_item * vi, int free);
2638  	int (*part_size) (struct virtual_item * vi, int from, int to);
2639  	int (*unit_num) (struct virtual_item * vi);
2640  	void (*print_vi) (struct virtual_item * vi);
2641  };
2642  
2643  extern struct item_operations *item_ops[TYPE_ANY + 1];
2644  
2645  #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2646  #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2647  #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2648  #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2649  #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2650  #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2651  #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
2652  #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
2653  #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
2654  #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
2655  
2656  #define COMP_SHORT_KEYS comp_short_keys
2657  
2658  /* number of blocks pointed to by the indirect item */
2659  #define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE)
2660  
2661  /*
2662   * the used space within the unformatted node corresponding
2663   * to pos within the item pointed to by ih
2664   */
2665  #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2666  
2667  /*
2668   * number of bytes contained by the direct item or the
2669   * unformatted nodes the indirect item points to
2670   */
2671  
2672  /* following defines use reiserfs buffer header and item header */
2673  
2674  /* get stat-data */
2675  #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2676  
2677  /* this is 3976 for size==4096 */
2678  #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2679  
2680  /*
2681   * indirect items consist of entries which contain blocknrs, pos
2682   * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2683   * blocknr contained by the entry pos points to
2684   */
2685  #define B_I_POS_UNFM_POINTER(bh, ih, pos)				\
2686  	le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
2687  #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)			\
2688  	(*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
2689  
2690  struct reiserfs_iget_args {
2691  	__u32 objectid;
2692  	__u32 dirid;
2693  };
2694  
2695  /***************************************************************************
2696   *                    FUNCTION DECLARATIONS                                *
2697   ***************************************************************************/
2698  
2699  #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2700  
2701  #define journal_trans_half(blocksize) \
2702  	((blocksize - sizeof(struct reiserfs_journal_desc) - 12) / sizeof(__u32))
2703  
2704  /* journal.c see journal.c for all the comments here */
2705  
2706  /* first block written in a commit.  */
2707  struct reiserfs_journal_desc {
2708  	__le32 j_trans_id;	/* id of commit */
2709  
2710  	/* length of commit. len +1 is the commit block */
2711  	__le32 j_len;
2712  
2713  	__le32 j_mount_id;	/* mount id of this trans */
2714  	__le32 j_realblock[];	/* real locations for each block */
2715  };
2716  
2717  #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
2718  #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
2719  #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
2720  
2721  #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2722  #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
2723  #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2724  
2725  /* last block written in a commit */
2726  struct reiserfs_journal_commit {
2727  	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
2728  	__le32 j_len;		/* ditto */
2729  	__le32 j_realblock[];	/* real locations for each block */
2730  };
2731  
2732  #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2733  #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
2734  #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2735  
2736  #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2737  #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
2738  
2739  /*
2740   * this header block gets written whenever a transaction is considered
2741   * fully flushed, and is more recent than the last fully flushed transaction.
2742   * fully flushed means all the log blocks and all the real blocks are on
2743   * disk, and this transaction does not need to be replayed.
2744   */
2745  struct reiserfs_journal_header {
2746  	/* id of last fully flushed transaction */
2747  	__le32 j_last_flush_trans_id;
2748  
2749  	/* offset in the log of where to start replay after a crash */
2750  	__le32 j_first_unflushed_offset;
2751  
2752  	__le32 j_mount_id;
2753  	/* 12 */ struct journal_params jh_journal;
2754  };
2755  
2756  /* biggest tunable defines are right here */
2757  #define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
2758  
2759  /* biggest possible single transaction, don't change for now (8/3/99) */
2760  #define JOURNAL_TRANS_MAX_DEFAULT 1024
2761  #define JOURNAL_TRANS_MIN_DEFAULT 256
2762  
2763  /*
2764   * max blocks to batch into one transaction,
2765   * don't make this any bigger than 900
2766   */
2767  #define JOURNAL_MAX_BATCH_DEFAULT   900
2768  #define JOURNAL_MIN_RATIO 2
2769  #define JOURNAL_MAX_COMMIT_AGE 30
2770  #define JOURNAL_MAX_TRANS_AGE 30
2771  #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2772  #define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
2773  					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2774  					      REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2775  
2776  #ifdef CONFIG_QUOTA
2777  #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2778  /* We need to update data and inode (atime) */
2779  #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2780  /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2781  #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2782  (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2783  /* same as with INIT */
2784  #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2785  (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2786  #else
2787  #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2788  #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2789  #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2790  #endif
2791  
2792  /*
2793   * both of these can be as low as 1, or as high as you want.  The min is the
2794   * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2795   * as needed, and released when transactions are committed.  On release, if
2796   * the current number of nodes is > max, the node is freed, otherwise,
2797   * it is put on a free list for faster use later.
2798  */
2799  #define REISERFS_MIN_BITMAP_NODES 10
2800  #define REISERFS_MAX_BITMAP_NODES 100
2801  
2802  /* these are based on journal hash size of 8192 */
2803  #define JBH_HASH_SHIFT 13
2804  #define JBH_HASH_MASK 8191
2805  
2806  #define _jhashfn(sb,block)	\
2807  	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2808  	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2809  #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2810  
2811  /* We need these to make journal.c code more readable */
2812  #define journal_find_get_block(s, block) __find_get_block(\
2813  		file_bdev(SB_JOURNAL(s)->j_bdev_file), block, s->s_blocksize)
2814  #define journal_getblk(s, block) __getblk(file_bdev(SB_JOURNAL(s)->j_bdev_file),\
2815  		block, s->s_blocksize)
2816  #define journal_bread(s, block) __bread(file_bdev(SB_JOURNAL(s)->j_bdev_file),\
2817  		block, s->s_blocksize)
2818  
2819  enum reiserfs_bh_state_bits {
2820  	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
2821  	BH_JDirty_wait,
2822  	/*
2823  	 * disk block was taken off free list before being in a
2824  	 * finished transaction, or written to disk. Can be reused immed.
2825  	 */
2826  	BH_JNew,
2827  	BH_JPrepared,
2828  	BH_JRestore_dirty,
2829  	BH_JTest,		/* debugging only will go away */
2830  };
2831  
2832  BUFFER_FNS(JDirty, journaled);
2833  TAS_BUFFER_FNS(JDirty, journaled);
2834  BUFFER_FNS(JDirty_wait, journal_dirty);
2835  TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2836  BUFFER_FNS(JNew, journal_new);
2837  TAS_BUFFER_FNS(JNew, journal_new);
2838  BUFFER_FNS(JPrepared, journal_prepared);
2839  TAS_BUFFER_FNS(JPrepared, journal_prepared);
2840  BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2841  TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2842  BUFFER_FNS(JTest, journal_test);
2843  TAS_BUFFER_FNS(JTest, journal_test);
2844  
2845  /* transaction handle which is passed around for all journal calls */
2846  struct reiserfs_transaction_handle {
2847  	/*
2848  	 * super for this FS when journal_begin was called. saves calls to
2849  	 * reiserfs_get_super also used by nested transactions to make
2850  	 * sure they are nesting on the right FS _must_ be first
2851  	 * in the handle
2852  	 */
2853  	struct super_block *t_super;
2854  
2855  	int t_refcount;
2856  	int t_blocks_logged;	/* number of blocks this writer has logged */
2857  	int t_blocks_allocated;	/* number of blocks this writer allocated */
2858  
2859  	/* sanity check, equals the current trans id */
2860  	unsigned int t_trans_id;
2861  
2862  	void *t_handle_save;	/* save existing current->journal_info */
2863  
2864  	/*
2865  	 * if new block allocation occurres, that block
2866  	 * should be displaced from others
2867  	 */
2868  	unsigned displace_new_blocks:1;
2869  
2870  	struct list_head t_list;
2871  };
2872  
2873  /*
2874   * used to keep track of ordered and tail writes, attached to the buffer
2875   * head through b_journal_head.
2876   */
2877  struct reiserfs_jh {
2878  	struct reiserfs_journal_list *jl;
2879  	struct buffer_head *bh;
2880  	struct list_head list;
2881  };
2882  
2883  void reiserfs_free_jh(struct buffer_head *bh);
2884  int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2885  int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2886  int journal_mark_dirty(struct reiserfs_transaction_handle *,
2887  		       struct buffer_head *bh);
2888  
reiserfs_file_data_log(struct inode * inode)2889  static inline int reiserfs_file_data_log(struct inode *inode)
2890  {
2891  	if (reiserfs_data_log(inode->i_sb) ||
2892  	    (REISERFS_I(inode)->i_flags & i_data_log))
2893  		return 1;
2894  	return 0;
2895  }
2896  
reiserfs_transaction_running(struct super_block * s)2897  static inline int reiserfs_transaction_running(struct super_block *s)
2898  {
2899  	struct reiserfs_transaction_handle *th = current->journal_info;
2900  	if (th && th->t_super == s)
2901  		return 1;
2902  	if (th && th->t_super == NULL)
2903  		BUG();
2904  	return 0;
2905  }
2906  
reiserfs_transaction_free_space(struct reiserfs_transaction_handle * th)2907  static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2908  {
2909  	return th->t_blocks_allocated - th->t_blocks_logged;
2910  }
2911  
2912  struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2913  								    super_block
2914  								    *,
2915  								    int count);
2916  int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2917  void reiserfs_vfs_truncate_file(struct inode *inode);
2918  int reiserfs_commit_page(struct inode *inode, struct page *page,
2919  			 unsigned from, unsigned to);
2920  void reiserfs_flush_old_commits(struct super_block *);
2921  int reiserfs_commit_for_inode(struct inode *);
2922  int reiserfs_inode_needs_commit(struct inode *);
2923  void reiserfs_update_inode_transaction(struct inode *);
2924  void reiserfs_wait_on_write_block(struct super_block *s);
2925  void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2926  void reiserfs_allow_writes(struct super_block *s);
2927  void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2928  int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2929  				 int wait);
2930  void reiserfs_restore_prepared_buffer(struct super_block *,
2931  				      struct buffer_head *bh);
2932  int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2933  		 unsigned int);
2934  int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2935  int journal_release_error(struct reiserfs_transaction_handle *,
2936  			  struct super_block *);
2937  int journal_end(struct reiserfs_transaction_handle *);
2938  int journal_end_sync(struct reiserfs_transaction_handle *);
2939  int journal_mark_freed(struct reiserfs_transaction_handle *,
2940  		       struct super_block *, b_blocknr_t blocknr);
2941  int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2942  int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2943  			 int bit_nr, int searchall, b_blocknr_t *next);
2944  int journal_begin(struct reiserfs_transaction_handle *,
2945  		  struct super_block *sb, unsigned long);
2946  int journal_join_abort(struct reiserfs_transaction_handle *,
2947  		       struct super_block *sb);
2948  void reiserfs_abort_journal(struct super_block *sb, int errno);
2949  void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2950  int reiserfs_allocate_list_bitmaps(struct super_block *s,
2951  				   struct reiserfs_list_bitmap *, unsigned int);
2952  
2953  void reiserfs_schedule_old_flush(struct super_block *s);
2954  void reiserfs_cancel_old_flush(struct super_block *s);
2955  void add_save_link(struct reiserfs_transaction_handle *th,
2956  		   struct inode *inode, int truncate);
2957  int remove_save_link(struct inode *inode, int truncate);
2958  
2959  /* objectid.c */
2960  __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2961  void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2962  			       __u32 objectid_to_release);
2963  int reiserfs_convert_objectid_map_v1(struct super_block *);
2964  
2965  /* stree.c */
2966  int B_IS_IN_TREE(const struct buffer_head *);
2967  extern void copy_item_head(struct item_head *to,
2968  			   const struct item_head *from);
2969  
2970  /* first key is in cpu form, second - le */
2971  extern int comp_short_keys(const struct reiserfs_key *le_key,
2972  			   const struct cpu_key *cpu_key);
2973  extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2974  
2975  /* both are in le form */
2976  extern int comp_le_keys(const struct reiserfs_key *,
2977  			const struct reiserfs_key *);
2978  extern int comp_short_le_keys(const struct reiserfs_key *,
2979  			      const struct reiserfs_key *);
2980  
2981  /* * get key version from on disk key - kludge */
le_key_version(const struct reiserfs_key * key)2982  static inline int le_key_version(const struct reiserfs_key *key)
2983  {
2984  	int type;
2985  
2986  	type = offset_v2_k_type(&(key->u.k_offset_v2));
2987  	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2988  	    && type != TYPE_DIRENTRY)
2989  		return KEY_FORMAT_3_5;
2990  
2991  	return KEY_FORMAT_3_6;
2992  
2993  }
2994  
copy_key(struct reiserfs_key * to,const struct reiserfs_key * from)2995  static inline void copy_key(struct reiserfs_key *to,
2996  			    const struct reiserfs_key *from)
2997  {
2998  	memcpy(to, from, KEY_SIZE);
2999  }
3000  
3001  int comp_items(const struct item_head *stored_ih, const struct treepath *path);
3002  const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
3003  				    const struct super_block *sb);
3004  int search_by_key(struct super_block *, const struct cpu_key *,
3005  		  struct treepath *, int);
3006  #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
3007  int search_for_position_by_key(struct super_block *sb,
3008  			       const struct cpu_key *cpu_key,
3009  			       struct treepath *search_path);
3010  extern void decrement_bcount(struct buffer_head *bh);
3011  void decrement_counters_in_path(struct treepath *search_path);
3012  void pathrelse(struct treepath *search_path);
3013  int reiserfs_check_path(struct treepath *p);
3014  void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
3015  
3016  int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
3017  			 struct treepath *path,
3018  			 const struct cpu_key *key,
3019  			 struct item_head *ih,
3020  			 struct inode *inode, const char *body);
3021  
3022  int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
3023  			     struct treepath *path,
3024  			     const struct cpu_key *key,
3025  			     struct inode *inode,
3026  			     const char *body, int paste_size);
3027  
3028  int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
3029  			   struct treepath *path,
3030  			   struct cpu_key *key,
3031  			   struct inode *inode,
3032  			   struct page *page, loff_t new_file_size);
3033  
3034  int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
3035  			 struct treepath *path,
3036  			 const struct cpu_key *key,
3037  			 struct inode *inode, struct buffer_head *un_bh);
3038  
3039  void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
3040  				struct inode *inode, struct reiserfs_key *key);
3041  int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
3042  			   struct inode *inode);
3043  int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
3044  			 struct inode *inode, struct page *,
3045  			 int update_timestamps);
3046  
3047  #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
3048  #define file_size(inode) ((inode)->i_size)
3049  #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
3050  
3051  #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
3052  !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
3053  
3054  void padd_item(char *item, int total_length, int length);
3055  
3056  /* inode.c */
3057  /* args for the create parameter of reiserfs_get_block */
3058  #define GET_BLOCK_NO_CREATE 0	 /* don't create new blocks or convert tails */
3059  #define GET_BLOCK_CREATE 1	 /* add anything you need to find block */
3060  #define GET_BLOCK_NO_HOLE 2	 /* return -ENOENT for file holes */
3061  #define GET_BLOCK_READ_DIRECT 4	 /* read the tail if indirect item not found */
3062  #define GET_BLOCK_NO_IMUX     8	 /* i_mutex is not held, don't preallocate */
3063  #define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */
3064  
3065  void reiserfs_read_locked_inode(struct inode *inode,
3066  				struct reiserfs_iget_args *args);
3067  int reiserfs_find_actor(struct inode *inode, void *p);
3068  int reiserfs_init_locked_inode(struct inode *inode, void *p);
3069  void reiserfs_evict_inode(struct inode *inode);
3070  int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3071  int reiserfs_get_block(struct inode *inode, sector_t block,
3072  		       struct buffer_head *bh_result, int create);
3073  struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3074  				     int fh_len, int fh_type);
3075  struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
3076  				     int fh_len, int fh_type);
3077  int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
3078  		       struct inode *parent);
3079  
3080  int reiserfs_truncate_file(struct inode *, int update_timestamps);
3081  void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
3082  		  int type, int key_length);
3083  void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
3084  		       int version,
3085  		       loff_t offset, int type, int length, int entry_count);
3086  struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
3087  
3088  struct reiserfs_security_handle;
3089  int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
3090  		       struct inode *dir, umode_t mode,
3091  		       const char *symname, loff_t i_size,
3092  		       struct dentry *dentry, struct inode *inode,
3093  		       struct reiserfs_security_handle *security);
3094  
3095  void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
3096  			     struct inode *inode, loff_t size);
3097  
reiserfs_update_sd(struct reiserfs_transaction_handle * th,struct inode * inode)3098  static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
3099  				      struct inode *inode)
3100  {
3101  	reiserfs_update_sd_size(th, inode, inode->i_size);
3102  }
3103  
3104  void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
3105  int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3106  		     struct iattr *attr);
3107  
3108  int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
3109  
3110  /* namei.c */
3111  void reiserfs_init_priv_inode(struct inode *inode);
3112  void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
3113  int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
3114  			struct treepath *path, struct reiserfs_dir_entry *de);
3115  struct dentry *reiserfs_get_parent(struct dentry *);
3116  
3117  #ifdef CONFIG_REISERFS_PROC_INFO
3118  int reiserfs_proc_info_init(struct super_block *sb);
3119  int reiserfs_proc_info_done(struct super_block *sb);
3120  int reiserfs_proc_info_global_init(void);
3121  int reiserfs_proc_info_global_done(void);
3122  
3123  #define PROC_EXP( e )   e
3124  
3125  #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
3126  #define PROC_INFO_MAX( sb, field, value )								\
3127      __PINFO( sb ).field =												\
3128          max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
3129  #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
3130  #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
3131  #define PROC_INFO_BH_STAT( sb, bh, level )							\
3132      PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
3133      PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
3134      PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
3135  #else
reiserfs_proc_info_init(struct super_block * sb)3136  static inline int reiserfs_proc_info_init(struct super_block *sb)
3137  {
3138  	return 0;
3139  }
3140  
reiserfs_proc_info_done(struct super_block * sb)3141  static inline int reiserfs_proc_info_done(struct super_block *sb)
3142  {
3143  	return 0;
3144  }
3145  
reiserfs_proc_info_global_init(void)3146  static inline int reiserfs_proc_info_global_init(void)
3147  {
3148  	return 0;
3149  }
3150  
reiserfs_proc_info_global_done(void)3151  static inline int reiserfs_proc_info_global_done(void)
3152  {
3153  	return 0;
3154  }
3155  
3156  #define PROC_EXP( e )
3157  #define VOID_V ( ( void ) 0 )
3158  #define PROC_INFO_MAX( sb, field, value ) VOID_V
3159  #define PROC_INFO_INC( sb, field ) VOID_V
3160  #define PROC_INFO_ADD( sb, field, val ) VOID_V
3161  #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
3162  #endif
3163  
3164  /* dir.c */
3165  extern const struct inode_operations reiserfs_dir_inode_operations;
3166  extern const struct inode_operations reiserfs_symlink_inode_operations;
3167  extern const struct inode_operations reiserfs_special_inode_operations;
3168  extern const struct file_operations reiserfs_dir_operations;
3169  int reiserfs_readdir_inode(struct inode *, struct dir_context *);
3170  
3171  /* tail_conversion.c */
3172  int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
3173  		    struct treepath *, struct buffer_head *, loff_t);
3174  int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
3175  		    struct page *, struct treepath *, const struct cpu_key *,
3176  		    loff_t, char *);
3177  void reiserfs_unmap_buffer(struct buffer_head *);
3178  
3179  /* file.c */
3180  extern const struct inode_operations reiserfs_file_inode_operations;
3181  extern const struct inode_operations reiserfs_priv_file_inode_operations;
3182  extern const struct file_operations reiserfs_file_operations;
3183  extern const struct address_space_operations reiserfs_address_space_operations;
3184  
3185  /* fix_nodes.c */
3186  
3187  int fix_nodes(int n_op_mode, struct tree_balance *tb,
3188  	      struct item_head *ins_ih, const void *);
3189  void unfix_nodes(struct tree_balance *);
3190  
3191  /* prints.c */
3192  void __reiserfs_panic(struct super_block *s, const char *id,
3193  		      const char *function, const char *fmt, ...)
3194      __attribute__ ((noreturn));
3195  #define reiserfs_panic(s, id, fmt, args...) \
3196  	__reiserfs_panic(s, id, __func__, fmt, ##args)
3197  void __reiserfs_error(struct super_block *s, const char *id,
3198  		      const char *function, const char *fmt, ...);
3199  #define reiserfs_error(s, id, fmt, args...) \
3200  	 __reiserfs_error(s, id, __func__, fmt, ##args)
3201  void reiserfs_info(struct super_block *s, const char *fmt, ...);
3202  void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
3203  void print_indirect_item(struct buffer_head *bh, int item_num);
3204  void store_print_tb(struct tree_balance *tb);
3205  void print_cur_tb(char *mes);
3206  void print_de(struct reiserfs_dir_entry *de);
3207  void print_bi(struct buffer_info *bi, char *mes);
3208  #define PRINT_LEAF_ITEMS 1	/* print all items */
3209  #define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
3210  #define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
3211  void print_block(struct buffer_head *bh, ...);
3212  void print_bmap(struct super_block *s, int silent);
3213  void print_bmap_block(int i, char *data, int size, int silent);
3214  /*void print_super_block (struct super_block * s, char * mes);*/
3215  void print_objectid_map(struct super_block *s);
3216  void print_block_head(struct buffer_head *bh, char *mes);
3217  void check_leaf(struct buffer_head *bh);
3218  void check_internal(struct buffer_head *bh);
3219  void print_statistics(struct super_block *s);
3220  char *reiserfs_hashname(int code);
3221  
3222  /* lbalance.c */
3223  int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
3224  		    int mov_bytes, struct buffer_head *Snew);
3225  int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
3226  int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
3227  void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
3228  		       int del_num, int del_bytes);
3229  void leaf_insert_into_buf(struct buffer_info *bi, int before,
3230  			  struct item_head * const inserted_item_ih,
3231  			  const char * const inserted_item_body,
3232  			  int zeros_number);
3233  void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
3234  			  int pos_in_item, int paste_size,
3235  			  const char * const body, int zeros_number);
3236  void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
3237  			  int pos_in_item, int cut_size);
3238  void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
3239  			int new_entry_count, struct reiserfs_de_head *new_dehs,
3240  			const char *records, int paste_size);
3241  /* ibalance.c */
3242  int balance_internal(struct tree_balance *, int, int, struct item_head *,
3243  		     struct buffer_head **);
3244  
3245  /* do_balance.c */
3246  void do_balance_mark_leaf_dirty(struct tree_balance *tb,
3247  				struct buffer_head *bh, int flag);
3248  #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
3249  #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
3250  
3251  void do_balance(struct tree_balance *tb, struct item_head *ih,
3252  		const char *body, int flag);
3253  void reiserfs_invalidate_buffer(struct tree_balance *tb,
3254  				struct buffer_head *bh);
3255  
3256  int get_left_neighbor_position(struct tree_balance *tb, int h);
3257  int get_right_neighbor_position(struct tree_balance *tb, int h);
3258  void replace_key(struct tree_balance *tb, struct buffer_head *, int,
3259  		 struct buffer_head *, int);
3260  void make_empty_node(struct buffer_info *);
3261  struct buffer_head *get_FEB(struct tree_balance *);
3262  
3263  /* bitmap.c */
3264  
3265  /*
3266   * structure contains hints for block allocator, and it is a container for
3267   * arguments, such as node, search path, transaction_handle, etc.
3268   */
3269  struct __reiserfs_blocknr_hint {
3270  	/* inode passed to allocator, if we allocate unf. nodes */
3271  	struct inode *inode;
3272  
3273  	sector_t block;		/* file offset, in blocks */
3274  	struct in_core_key key;
3275  
3276  	/*
3277  	 * search path, used by allocator to deternine search_start by
3278  	 * various ways
3279  	 */
3280  	struct treepath *path;
3281  
3282  	/*
3283  	 * transaction handle is needed to log super blocks
3284  	 * and bitmap blocks changes
3285  	 */
3286  	struct reiserfs_transaction_handle *th;
3287  
3288  	b_blocknr_t beg, end;
3289  
3290  	/*
3291  	 * a field used to transfer search start value (block number)
3292  	 * between different block allocator procedures
3293  	 * (determine_search_start() and others)
3294  	 */
3295  	b_blocknr_t search_start;
3296  
3297  	/*
3298  	 * is set in determine_prealloc_size() function,
3299  	 * used by underlayed function that do actual allocation
3300  	 */
3301  	int prealloc_size;
3302  
3303  	/*
3304  	 * the allocator uses different polices for getting disk
3305  	 * space for formatted/unformatted blocks with/without preallocation
3306  	 */
3307  	unsigned formatted_node:1;
3308  	unsigned preallocate:1;
3309  };
3310  
3311  typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
3312  
3313  int reiserfs_parse_alloc_options(struct super_block *, char *);
3314  void reiserfs_init_alloc_options(struct super_block *s);
3315  
3316  /*
3317   * given a directory, this will tell you what packing locality
3318   * to use for a new object underneat it.  The locality is returned
3319   * in disk byte order (le).
3320   */
3321  __le32 reiserfs_choose_packing(struct inode *dir);
3322  
3323  void show_alloc_options(struct seq_file *seq, struct super_block *s);
3324  int reiserfs_init_bitmap_cache(struct super_block *sb);
3325  void reiserfs_free_bitmap_cache(struct super_block *sb);
3326  void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
3327  struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
3328  int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
3329  void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
3330  			 b_blocknr_t, int for_unformatted);
3331  int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
3332  			       int);
reiserfs_new_form_blocknrs(struct tree_balance * tb,b_blocknr_t * new_blocknrs,int amount_needed)3333  static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
3334  					     b_blocknr_t * new_blocknrs,
3335  					     int amount_needed)
3336  {
3337  	reiserfs_blocknr_hint_t hint = {
3338  		.th = tb->transaction_handle,
3339  		.path = tb->tb_path,
3340  		.inode = NULL,
3341  		.key = tb->key,
3342  		.block = 0,
3343  		.formatted_node = 1
3344  	};
3345  	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
3346  					  0);
3347  }
3348  
reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct treepath * path,sector_t block)3349  static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
3350  					    *th, struct inode *inode,
3351  					    b_blocknr_t * new_blocknrs,
3352  					    struct treepath *path,
3353  					    sector_t block)
3354  {
3355  	reiserfs_blocknr_hint_t hint = {
3356  		.th = th,
3357  		.path = path,
3358  		.inode = inode,
3359  		.block = block,
3360  		.formatted_node = 0,
3361  		.preallocate = 0
3362  	};
3363  	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3364  }
3365  
3366  #ifdef REISERFS_PREALLOCATE
reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct treepath * path,sector_t block)3367  static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
3368  					     *th, struct inode *inode,
3369  					     b_blocknr_t * new_blocknrs,
3370  					     struct treepath *path,
3371  					     sector_t block)
3372  {
3373  	reiserfs_blocknr_hint_t hint = {
3374  		.th = th,
3375  		.path = path,
3376  		.inode = inode,
3377  		.block = block,
3378  		.formatted_node = 0,
3379  		.preallocate = 1
3380  	};
3381  	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3382  }
3383  
3384  void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
3385  			       struct inode *inode);
3386  void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
3387  #endif
3388  
3389  /* hashes.c */
3390  __u32 keyed_hash(const signed char *msg, int len);
3391  __u32 yura_hash(const signed char *msg, int len);
3392  __u32 r5_hash(const signed char *msg, int len);
3393  
3394  #define reiserfs_set_le_bit		__set_bit_le
3395  #define reiserfs_test_and_set_le_bit	__test_and_set_bit_le
3396  #define reiserfs_clear_le_bit		__clear_bit_le
3397  #define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le
3398  #define reiserfs_test_le_bit		test_bit_le
3399  #define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le
3400  
3401  /*
3402   * sometimes reiserfs_truncate may require to allocate few new blocks
3403   * to perform indirect2direct conversion. People probably used to
3404   * think, that truncate should work without problems on a filesystem
3405   * without free disk space. They may complain that they can not
3406   * truncate due to lack of free disk space. This spare space allows us
3407   * to not worry about it. 500 is probably too much, but it should be
3408   * absolutely safe
3409   */
3410  #define SPARE_SPACE 500
3411  
3412  /* prototypes from ioctl.c */
3413  int reiserfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3414  int reiserfs_fileattr_set(struct mnt_idmap *idmap,
3415  			  struct dentry *dentry, struct fileattr *fa);
3416  long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3417  long reiserfs_compat_ioctl(struct file *filp,
3418  		   unsigned int cmd, unsigned long arg);
3419  int reiserfs_unpack(struct inode *inode);
3420