1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) KEBA Industrial Automation Gmbh 2024
4  *
5  * Driver for KEBA I2C controller FPGA IP core
6  */
7 
8 #include <linux/i2c.h>
9 #include <linux/io.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/misc/keba.h>
13 
14 #define KI2C "i2c-keba"
15 
16 #define KI2C_CAPABILITY_REG		0x02
17 #define   KI2C_CAPABILITY_CRYPTO	0x01
18 #define   KI2C_CAPABILITY_DC		0x02
19 
20 #define KI2C_CONTROL_REG	0x04
21 #define   KI2C_CONTROL_MEN	0x01
22 #define   KI2C_CONTROL_MSTA	0x02
23 #define   KI2C_CONTROL_RSTA	0x04
24 #define   KI2C_CONTROL_MTX	0x08
25 #define   KI2C_CONTROL_TXAK	0x10
26 #define   KI2C_CONTROL_DISABLE	0x00
27 
28 #define KI2C_CONTROL_DC_REG	0x05
29 #define   KI2C_CONTROL_DC_SDA	0x01
30 #define   KI2C_CONTROL_DC_SCL	0x02
31 
32 #define KI2C_STATUS_REG		0x08
33 #define   KI2C_STATUS_IN_USE	0x01
34 #define   KI2C_STATUS_ACK_CYC	0x02
35 #define   KI2C_STATUS_RXAK	0x04
36 #define   KI2C_STATUS_MCF	0x08
37 
38 #define KI2C_STATUS_DC_REG	0x09
39 #define   KI2C_STATUS_DC_SDA	0x01
40 #define   KI2C_STATUS_DC_SCL	0x02
41 
42 #define KI2C_DATA_REG		0x0c
43 
44 #define KI2C_INUSE_SLEEP_US	(2 * USEC_PER_MSEC)
45 #define KI2C_INUSE_TIMEOUT_US	(10 * USEC_PER_SEC)
46 
47 #define KI2C_POLL_DELAY_US	5
48 
49 struct ki2c {
50 	struct keba_i2c_auxdev *auxdev;
51 	void __iomem *base;
52 	struct i2c_adapter adapter;
53 
54 	struct i2c_client **client;
55 	int client_size;
56 };
57 
ki2c_inuse_lock(struct ki2c * ki2c)58 static int ki2c_inuse_lock(struct ki2c *ki2c)
59 {
60 	u8 sts;
61 	int ret;
62 
63 	/*
64 	 * The I2C controller has an IN_USE bit for locking access to the
65 	 * controller. This enables the use of I2C controller by other none
66 	 * Linux processors.
67 	 *
68 	 * If the I2C controller is free, then the first read returns
69 	 * IN_USE == 0. After that the I2C controller is locked and further
70 	 * reads of IN_USE return 1.
71 	 *
72 	 * The I2C controller is unlocked by writing 1 into IN_USE.
73 	 *
74 	 * The IN_USE bit acts as a hardware semaphore for the I2C controller.
75 	 * Poll for semaphore, but sleep while polling to free the CPU.
76 	 */
77 	ret = readb_poll_timeout(ki2c->base + KI2C_STATUS_REG,
78 				 sts, (sts & KI2C_STATUS_IN_USE) == 0,
79 				 KI2C_INUSE_SLEEP_US, KI2C_INUSE_TIMEOUT_US);
80 	if (ret)
81 		dev_err(&ki2c->auxdev->auxdev.dev, "%s err!\n", __func__);
82 
83 	return ret;
84 }
85 
ki2c_inuse_unlock(struct ki2c * ki2c)86 static void ki2c_inuse_unlock(struct ki2c *ki2c)
87 {
88 	/* unlock the controller by writing 1 into IN_USE */
89 	iowrite8(KI2C_STATUS_IN_USE, ki2c->base + KI2C_STATUS_REG);
90 }
91 
ki2c_wait_for_bit(void __iomem * addr,u8 mask,unsigned long timeout)92 static int ki2c_wait_for_bit(void __iomem *addr, u8 mask, unsigned long timeout)
93 {
94 	u8 val;
95 
96 	return readb_poll_timeout(addr, val, (val & mask), KI2C_POLL_DELAY_US,
97 				  jiffies_to_usecs(timeout));
98 }
99 
ki2c_wait_for_mcf(struct ki2c * ki2c)100 static int ki2c_wait_for_mcf(struct ki2c *ki2c)
101 {
102 	return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG, KI2C_STATUS_MCF,
103 				 ki2c->adapter.timeout);
104 }
105 
ki2c_wait_for_data(struct ki2c * ki2c)106 static int ki2c_wait_for_data(struct ki2c *ki2c)
107 {
108 	int ret;
109 
110 	ret = ki2c_wait_for_mcf(ki2c);
111 	if (ret < 0)
112 		return ret;
113 
114 	return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG,
115 				 KI2C_STATUS_ACK_CYC,
116 				 ki2c->adapter.timeout);
117 }
118 
ki2c_wait_for_data_ack(struct ki2c * ki2c)119 static int ki2c_wait_for_data_ack(struct ki2c *ki2c)
120 {
121 	unsigned int reg;
122 	int ret;
123 
124 	ret = ki2c_wait_for_data(ki2c);
125 	if (ret < 0)
126 		return ret;
127 
128 	/* RXAK == 0 means ACK reveived */
129 	reg = ioread8(ki2c->base + KI2C_STATUS_REG);
130 	if (reg & KI2C_STATUS_RXAK)
131 		return -EIO;
132 
133 	return 0;
134 }
135 
ki2c_has_capability(struct ki2c * ki2c,unsigned int cap)136 static int ki2c_has_capability(struct ki2c *ki2c, unsigned int cap)
137 {
138 	unsigned int reg = ioread8(ki2c->base + KI2C_CAPABILITY_REG);
139 
140 	return (reg & cap) != 0;
141 }
142 
ki2c_get_scl(struct ki2c * ki2c)143 static int ki2c_get_scl(struct ki2c *ki2c)
144 {
145 	unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
146 
147 	/* capability KI2C_CAPABILITY_DC required */
148 	return (reg & KI2C_STATUS_DC_SCL) != 0;
149 }
150 
ki2c_get_sda(struct ki2c * ki2c)151 static int ki2c_get_sda(struct ki2c *ki2c)
152 {
153 	unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
154 
155 	/* capability KI2C_CAPABILITY_DC required */
156 	return (reg & KI2C_STATUS_DC_SDA) != 0;
157 }
158 
ki2c_set_scl(struct ki2c * ki2c,int val)159 static void ki2c_set_scl(struct ki2c *ki2c, int val)
160 {
161 	u8 control_dc;
162 
163 	/* capability KI2C_CAPABILITY_DC and KI2C_CONTROL_MEN = 0 reqired */
164 	control_dc = ioread8(ki2c->base + KI2C_CONTROL_DC_REG);
165 	if (val)
166 		control_dc |= KI2C_CONTROL_DC_SCL;
167 	else
168 		control_dc &= ~KI2C_CONTROL_DC_SCL;
169 	iowrite8(control_dc, ki2c->base + KI2C_CONTROL_DC_REG);
170 }
171 
172 /*
173  * Resetting bus bitwise is done by checking SDA and applying clock cycles as
174  * long as SDA is low. 9 clock cycles are applied at most.
175  *
176  * Clock cycles are generated and udelay() determines the duration of clock
177  * cycles. Generated clock rate is 100 KHz and so duration of both clock levels
178  * is: delay in ns = (10^6 / 100) / 2
179  */
180 #define KI2C_RECOVERY_CLK_CNT	(9 * 2)
181 #define KI2C_RECOVERY_UDELAY	5
ki2c_reset_bus_bitwise(struct ki2c * ki2c)182 static int ki2c_reset_bus_bitwise(struct ki2c *ki2c)
183 {
184 	int val = 1;
185 	int ret = 0;
186 	int i;
187 
188 	/* disable I2C controller (MEN = 0) to get direct access to SCL/SDA */
189 	iowrite8(0, ki2c->base + KI2C_CONTROL_REG);
190 
191 	/* generate clock cycles */
192 	ki2c_set_scl(ki2c, val);
193 	udelay(KI2C_RECOVERY_UDELAY);
194 	for (i = 0; i < KI2C_RECOVERY_CLK_CNT; i++) {
195 		if (val) {
196 			/* SCL shouldn't be low here */
197 			if (!ki2c_get_scl(ki2c)) {
198 				dev_err(&ki2c->auxdev->auxdev.dev,
199 					"SCL is stuck low!\n");
200 				ret = -EBUSY;
201 				break;
202 			}
203 
204 			/* break if SDA is high */
205 			if (ki2c_get_sda(ki2c))
206 				break;
207 		}
208 
209 		val = !val;
210 		ki2c_set_scl(ki2c, val);
211 		udelay(KI2C_RECOVERY_UDELAY);
212 	}
213 
214 	if (!ki2c_get_sda(ki2c)) {
215 		dev_err(&ki2c->auxdev->auxdev.dev, "SDA is still low!\n");
216 		ret = -EBUSY;
217 	}
218 
219 	/* reenable controller */
220 	iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
221 
222 	return ret;
223 }
224 
225 /*
226  * Resetting bus bytewise is done by writing start bit, 9 data bits and stop
227  * bit.
228  *
229  * This is not 100% safe. If target is an EEPROM and a write access was
230  * interrupted during the ACK cycle, this approach might not be able to recover
231  * the bus. The reason is, that after the 9 clock cycles the EEPROM will be in
232  * ACK cycle again and will hold SDA low like it did before the start of the
233  * routine. Furthermore the EEPROM might get written one additional byte with
234  * 0xff into it. Thus, use bitwise approach whenever possible, especially when
235  * EEPROMs are on the bus.
236  */
ki2c_reset_bus_bytewise(struct ki2c * ki2c)237 static int ki2c_reset_bus_bytewise(struct ki2c *ki2c)
238 {
239 	int ret;
240 
241 	/* hold data line high for 9 clock cycles */
242 	iowrite8(0xFF, ki2c->base + KI2C_DATA_REG);
243 
244 	/* create start condition */
245 	iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
246 		 ki2c->base + KI2C_CONTROL_REG);
247 	ret = ki2c_wait_for_mcf(ki2c);
248 	if (ret < 0) {
249 		dev_err(&ki2c->auxdev->auxdev.dev, "Start condition failed\n");
250 
251 		return ret;
252 	}
253 
254 	/* create stop condition */
255 	iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_TXAK,
256 		 ki2c->base + KI2C_CONTROL_REG);
257 	ret = ki2c_wait_for_mcf(ki2c);
258 	if (ret < 0)
259 		dev_err(&ki2c->auxdev->auxdev.dev, "Stop condition failed\n");
260 
261 	return ret;
262 }
263 
ki2c_reset_bus(struct ki2c * ki2c)264 static int ki2c_reset_bus(struct ki2c *ki2c)
265 {
266 	int ret;
267 
268 	ret = ki2c_inuse_lock(ki2c);
269 	if (ret < 0)
270 		return ret;
271 
272 	/*
273 	 * If the I2C controller is capable of direct control of SCL/SDA, then a
274 	 * bitwise reset is used. Otherwise fall back to bytewise reset.
275 	 */
276 	if (ki2c_has_capability(ki2c, KI2C_CAPABILITY_DC))
277 		ret = ki2c_reset_bus_bitwise(ki2c);
278 	else
279 		ret = ki2c_reset_bus_bytewise(ki2c);
280 
281 	ki2c_inuse_unlock(ki2c);
282 
283 	return ret;
284 }
285 
ki2c_write_target_addr(struct ki2c * ki2c,struct i2c_msg * m)286 static void ki2c_write_target_addr(struct ki2c *ki2c, struct i2c_msg *m)
287 {
288 	u8 addr;
289 
290 	addr = m->addr << 1;
291 	/* Bit 0 signals RD/WR */
292 	if (m->flags & I2C_M_RD)
293 		addr |= 0x01;
294 
295 	iowrite8(addr, ki2c->base + KI2C_DATA_REG);
296 }
297 
ki2c_start_addr(struct ki2c * ki2c,struct i2c_msg * m)298 static int ki2c_start_addr(struct ki2c *ki2c, struct i2c_msg *m)
299 {
300 	int ret;
301 
302 	/*
303 	 * Store target address byte in the controller. This has to be done
304 	 * before sending START condition.
305 	 */
306 	ki2c_write_target_addr(ki2c, m);
307 
308 	/* enable controller for TX */
309 	iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX,
310 		 ki2c->base + KI2C_CONTROL_REG);
311 
312 	/* send START condition and target address byte */
313 	iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA,
314 		 ki2c->base + KI2C_CONTROL_REG);
315 
316 	ret = ki2c_wait_for_data_ack(ki2c);
317 	if (ret < 0)
318 		/*
319 		 * For EEPROMs this is normal behavior during internal write
320 		 * operation.
321 		 */
322 		dev_dbg(&ki2c->auxdev->auxdev.dev,
323 			"%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
324 
325 	return ret;
326 }
327 
ki2c_repstart_addr(struct ki2c * ki2c,struct i2c_msg * m)328 static int ki2c_repstart_addr(struct ki2c *ki2c, struct i2c_msg *m)
329 {
330 	int ret;
331 
332 	/* repeated start and write is not supported */
333 	if ((m->flags & I2C_M_RD) == 0) {
334 		dev_err(&ki2c->auxdev->auxdev.dev,
335 			"Repeated start not supported for writes\n");
336 		return -EINVAL;
337 	}
338 
339 	/* send repeated start */
340 	iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_RSTA,
341 		 ki2c->base + KI2C_CONTROL_REG);
342 
343 	ret = ki2c_wait_for_mcf(ki2c);
344 	if (ret < 0) {
345 		dev_err(&ki2c->auxdev->auxdev.dev,
346 			"%s wait for MCF err at 0x%02x!\n", __func__, m->addr);
347 		return ret;
348 	}
349 
350 	/* write target-address byte */
351 	ki2c_write_target_addr(ki2c, m);
352 
353 	ret = ki2c_wait_for_data_ack(ki2c);
354 	if (ret < 0)
355 		dev_err(&ki2c->auxdev->auxdev.dev,
356 			"%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
357 
358 	return ret;
359 }
360 
ki2c_stop(struct ki2c * ki2c)361 static void ki2c_stop(struct ki2c *ki2c)
362 {
363 	iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
364 	ki2c_wait_for_mcf(ki2c);
365 }
366 
ki2c_write(struct ki2c * ki2c,const u8 * data,int len)367 static int ki2c_write(struct ki2c *ki2c, const u8 *data, int len)
368 {
369 	int ret;
370 	int i;
371 
372 	for (i = 0; i < len; i++) {
373 		/* write data byte */
374 		iowrite8(data[i], ki2c->base + KI2C_DATA_REG);
375 
376 		ret = ki2c_wait_for_data_ack(ki2c);
377 		if (ret < 0)
378 			return ret;
379 	}
380 
381 	return 0;
382 }
383 
ki2c_read(struct ki2c * ki2c,u8 * data,int len)384 static int ki2c_read(struct ki2c *ki2c, u8 *data, int len)
385 {
386 	u8 control;
387 	int ret;
388 	int i;
389 
390 	if (len == 0)
391 		return 0;	/* nothing to do */
392 
393 	control = KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA;
394 
395 	/* if just one byte => send tx-nack after transfer */
396 	if (len == 1)
397 		control |= KI2C_CONTROL_TXAK;
398 
399 	iowrite8(control, ki2c->base + KI2C_CONTROL_REG);
400 
401 	/* dummy read to start transfer on bus */
402 	ioread8(ki2c->base + KI2C_DATA_REG);
403 
404 	for (i = 0; i < len; i++) {
405 		ret = ki2c_wait_for_data(ki2c);
406 		if (ret < 0)
407 			return ret;
408 
409 		if (i == len - 2)
410 			/* send tx-nack after transfer of last byte */
411 			iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
412 				 ki2c->base + KI2C_CONTROL_REG);
413 		else if (i == len - 1)
414 			/*
415 			 * switch to TX on last byte, so that reading DATA
416 			 * register does not trigger another read transfer
417 			 */
418 			iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_MTX,
419 				 ki2c->base + KI2C_CONTROL_REG);
420 
421 		/* read byte and start next transfer (if not last byte) */
422 		data[i] = ioread8(ki2c->base + KI2C_DATA_REG);
423 	}
424 
425 	return len;
426 }
427 
ki2c_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)428 static int ki2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
429 {
430 	struct ki2c *ki2c = i2c_get_adapdata(adap);
431 	int ret;
432 	int i;
433 
434 	ret = ki2c_inuse_lock(ki2c);
435 	if (ret < 0)
436 		return ret;
437 
438 	for (i = 0; i < num; i++) {
439 		struct i2c_msg *m = &msgs[i];
440 
441 		if (i == 0)
442 			ret = ki2c_start_addr(ki2c, m);
443 		else
444 			ret = ki2c_repstart_addr(ki2c, m);
445 		if (ret < 0)
446 			break;
447 
448 		if (m->flags & I2C_M_RD)
449 			ret = ki2c_read(ki2c, m->buf, m->len);
450 		else
451 			ret = ki2c_write(ki2c, m->buf, m->len);
452 		if (ret < 0)
453 			break;
454 	}
455 
456 	ki2c_stop(ki2c);
457 
458 	ki2c_inuse_unlock(ki2c);
459 
460 	return ret < 0 ? ret : num;
461 }
462 
ki2c_unregister_devices(struct ki2c * ki2c)463 static void ki2c_unregister_devices(struct ki2c *ki2c)
464 {
465 	int i;
466 
467 	for (i = 0; i < ki2c->client_size; i++) {
468 		struct i2c_client *client = ki2c->client[i];
469 
470 		if (client)
471 			i2c_unregister_device(client);
472 	}
473 }
474 
ki2c_register_devices(struct ki2c * ki2c)475 static int ki2c_register_devices(struct ki2c *ki2c)
476 {
477 	struct i2c_board_info *info = ki2c->auxdev->info;
478 	int i;
479 
480 	/* register all known I2C devices */
481 	for (i = 0; i < ki2c->client_size; i++) {
482 		struct i2c_client *client;
483 		unsigned short const addr_list[2] = { info[i].addr,
484 						      I2C_CLIENT_END };
485 
486 		client = i2c_new_scanned_device(&ki2c->adapter, &info[i],
487 						addr_list, NULL);
488 		if (!IS_ERR(client)) {
489 			ki2c->client[i] = client;
490 		} else if (PTR_ERR(client) != -ENODEV) {
491 			ki2c->client_size = i;
492 			ki2c_unregister_devices(ki2c);
493 
494 			return PTR_ERR(client);
495 		}
496 	}
497 
498 	return 0;
499 }
500 
ki2c_func(struct i2c_adapter * adap)501 static u32 ki2c_func(struct i2c_adapter *adap)
502 {
503 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
504 }
505 
506 static const struct i2c_algorithm ki2c_algo = {
507 	.master_xfer   = ki2c_xfer,
508 	.functionality = ki2c_func,
509 };
510 
ki2c_probe(struct auxiliary_device * auxdev,const struct auxiliary_device_id * id)511 static int ki2c_probe(struct auxiliary_device *auxdev,
512 		      const struct auxiliary_device_id *id)
513 {
514 	struct device *dev = &auxdev->dev;
515 	struct i2c_adapter *adap;
516 	struct ki2c *ki2c;
517 	int ret;
518 
519 	ki2c = devm_kzalloc(dev, sizeof(*ki2c), GFP_KERNEL);
520 	if (!ki2c)
521 		return -ENOMEM;
522 	ki2c->auxdev = container_of(auxdev, struct keba_i2c_auxdev, auxdev);
523 	ki2c->client = devm_kcalloc(dev, ki2c->auxdev->info_size,
524 				    sizeof(*ki2c->client), GFP_KERNEL);
525 	if (!ki2c->client)
526 		return -ENOMEM;
527 	ki2c->client_size = ki2c->auxdev->info_size;
528 	auxiliary_set_drvdata(auxdev, ki2c);
529 
530 	ki2c->base = devm_ioremap_resource(dev, &ki2c->auxdev->io);
531 	if (IS_ERR(ki2c->base))
532 		return PTR_ERR(ki2c->base);
533 
534 	adap = &ki2c->adapter;
535 	strscpy(adap->name, "KEBA I2C adapter", sizeof(adap->name));
536 	adap->owner = THIS_MODULE;
537 	adap->class = I2C_CLASS_HWMON;
538 	adap->algo = &ki2c_algo;
539 	adap->dev.parent = dev;
540 
541 	i2c_set_adapdata(adap, ki2c);
542 
543 	/* enable controller */
544 	iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
545 
546 	/* reset bus before probing I2C devices */
547 	ret = ki2c_reset_bus(ki2c);
548 	if (ret)
549 		goto out;
550 
551 	ret = devm_i2c_add_adapter(dev, adap);
552 	if (ret) {
553 		dev_err(dev, "Failed to add adapter (%d)!\n", ret);
554 		goto out;
555 	}
556 
557 	ret = ki2c_register_devices(ki2c);
558 	if (ret) {
559 		dev_err(dev, "Failed to register devices (%d)!\n", ret);
560 		goto out;
561 	}
562 
563 	return 0;
564 
565 out:
566 	iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
567 	return ret;
568 }
569 
ki2c_remove(struct auxiliary_device * auxdev)570 static void ki2c_remove(struct auxiliary_device *auxdev)
571 {
572 	struct ki2c *ki2c = auxiliary_get_drvdata(auxdev);
573 
574 	ki2c_unregister_devices(ki2c);
575 
576 	/* disable controller */
577 	iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
578 
579 	auxiliary_set_drvdata(auxdev, NULL);
580 }
581 
582 static const struct auxiliary_device_id ki2c_devtype_aux[] = {
583 	{ .name = "keba.i2c" },
584 	{ }
585 };
586 MODULE_DEVICE_TABLE(auxiliary, ki2c_devtype_aux);
587 
588 static struct auxiliary_driver ki2c_driver_aux = {
589 	.name = KI2C,
590 	.id_table = ki2c_devtype_aux,
591 	.probe = ki2c_probe,
592 	.remove = ki2c_remove,
593 };
594 module_auxiliary_driver(ki2c_driver_aux);
595 
596 MODULE_AUTHOR("Gerhard Engleder <eg@keba.com>");
597 MODULE_DESCRIPTION("KEBA I2C bus controller driver");
598 MODULE_LICENSE("GPL");
599