1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020-2024 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 #include <linux/highmem.h>
8 
9 #include "ivpu_drv.h"
10 #include "ivpu_hw.h"
11 #include "ivpu_hw_reg_io.h"
12 #include "ivpu_mmu.h"
13 #include "ivpu_mmu_context.h"
14 #include "ivpu_pm.h"
15 
16 #define IVPU_MMU_REG_IDR0		      0x00200000u
17 #define IVPU_MMU_REG_IDR1		      0x00200004u
18 #define IVPU_MMU_REG_IDR3		      0x0020000cu
19 #define IVPU_MMU_REG_IDR5		      0x00200014u
20 #define IVPU_MMU_REG_CR0		      0x00200020u
21 #define IVPU_MMU_REG_CR0ACK		      0x00200024u
22 #define IVPU_MMU_REG_CR0ACK_VAL_MASK	      GENMASK(31, 0)
23 #define IVPU_MMU_REG_CR1		      0x00200028u
24 #define IVPU_MMU_REG_CR2		      0x0020002cu
25 #define IVPU_MMU_REG_IRQ_CTRL		      0x00200050u
26 #define IVPU_MMU_REG_IRQ_CTRLACK	      0x00200054u
27 #define IVPU_MMU_REG_IRQ_CTRLACK_VAL_MASK     GENMASK(31, 0)
28 
29 #define IVPU_MMU_REG_GERROR		      0x00200060u
30 #define IVPU_MMU_REG_GERROR_CMDQ_MASK	      BIT_MASK(0)
31 #define IVPU_MMU_REG_GERROR_EVTQ_ABT_MASK     BIT_MASK(2)
32 #define IVPU_MMU_REG_GERROR_PRIQ_ABT_MASK     BIT_MASK(3)
33 #define IVPU_MMU_REG_GERROR_MSI_CMDQ_ABT_MASK BIT_MASK(4)
34 #define IVPU_MMU_REG_GERROR_MSI_EVTQ_ABT_MASK BIT_MASK(5)
35 #define IVPU_MMU_REG_GERROR_MSI_PRIQ_ABT_MASK BIT_MASK(6)
36 #define IVPU_MMU_REG_GERROR_MSI_ABT_MASK      BIT_MASK(7)
37 
38 #define IVPU_MMU_REG_GERRORN		      0x00200064u
39 
40 #define IVPU_MMU_REG_STRTAB_BASE	      0x00200080u
41 #define IVPU_MMU_REG_STRTAB_BASE_CFG	      0x00200088u
42 #define IVPU_MMU_REG_CMDQ_BASE		      0x00200090u
43 #define IVPU_MMU_REG_CMDQ_PROD		      0x00200098u
44 #define IVPU_MMU_REG_CMDQ_CONS		      0x0020009cu
45 #define IVPU_MMU_REG_CMDQ_CONS_VAL_MASK	      GENMASK(23, 0)
46 #define IVPU_MMU_REG_CMDQ_CONS_ERR_MASK	      GENMASK(30, 24)
47 #define IVPU_MMU_REG_EVTQ_BASE		      0x002000a0u
48 #define IVPU_MMU_REG_EVTQ_PROD		      0x002000a8u
49 #define IVPU_MMU_REG_EVTQ_CONS		      0x002000acu
50 #define IVPU_MMU_REG_EVTQ_PROD_SEC	      (0x002000a8u + SZ_64K)
51 #define IVPU_MMU_REG_EVTQ_CONS_SEC	      (0x002000acu + SZ_64K)
52 
53 #define IVPU_MMU_IDR0_REF		0x080f3e0f
54 #define IVPU_MMU_IDR0_REF_SIMICS	0x080f3e1f
55 #define IVPU_MMU_IDR1_REF		0x0e739d18
56 #define IVPU_MMU_IDR3_REF		0x0000003c
57 #define IVPU_MMU_IDR5_REF		0x00040070
58 #define IVPU_MMU_IDR5_REF_SIMICS	0x00000075
59 #define IVPU_MMU_IDR5_REF_FPGA		0x00800075
60 
61 #define IVPU_MMU_CDTAB_ENT_SIZE		64
62 #define IVPU_MMU_CDTAB_ENT_COUNT_LOG2	8 /* 256 entries */
63 #define IVPU_MMU_CDTAB_ENT_COUNT	((u32)1 << IVPU_MMU_CDTAB_ENT_COUNT_LOG2)
64 
65 #define IVPU_MMU_STREAM_ID0		0
66 #define IVPU_MMU_STREAM_ID3		3
67 
68 #define IVPU_MMU_STRTAB_ENT_SIZE	64
69 #define IVPU_MMU_STRTAB_ENT_COUNT	4
70 #define IVPU_MMU_STRTAB_CFG_LOG2SIZE	2
71 #define IVPU_MMU_STRTAB_CFG		IVPU_MMU_STRTAB_CFG_LOG2SIZE
72 
73 #define IVPU_MMU_Q_COUNT_LOG2		4 /* 16 entries */
74 #define IVPU_MMU_Q_COUNT		((u32)1 << IVPU_MMU_Q_COUNT_LOG2)
75 #define IVPU_MMU_Q_WRAP_MASK            GENMASK(IVPU_MMU_Q_COUNT_LOG2, 0)
76 #define IVPU_MMU_Q_IDX_MASK             (IVPU_MMU_Q_COUNT - 1)
77 #define IVPU_MMU_Q_IDX(val)		((val) & IVPU_MMU_Q_IDX_MASK)
78 #define IVPU_MMU_Q_WRP(val)             ((val) & IVPU_MMU_Q_COUNT)
79 
80 #define IVPU_MMU_CMDQ_CMD_SIZE		16
81 #define IVPU_MMU_CMDQ_SIZE		(IVPU_MMU_Q_COUNT * IVPU_MMU_CMDQ_CMD_SIZE)
82 
83 #define IVPU_MMU_EVTQ_CMD_SIZE		32
84 #define IVPU_MMU_EVTQ_SIZE		(IVPU_MMU_Q_COUNT * IVPU_MMU_EVTQ_CMD_SIZE)
85 
86 #define IVPU_MMU_CMD_OPCODE		GENMASK(7, 0)
87 
88 #define IVPU_MMU_CMD_SYNC_0_CS		GENMASK(13, 12)
89 #define IVPU_MMU_CMD_SYNC_0_MSH		GENMASK(23, 22)
90 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR	GENMASK(27, 24)
91 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR	GENMASK(27, 24)
92 #define IVPU_MMU_CMD_SYNC_0_MSI_DATA	GENMASK(63, 32)
93 
94 #define IVPU_MMU_CMD_CFGI_0_SSEC	BIT(10)
95 #define IVPU_MMU_CMD_CFGI_0_SSV		BIT(11)
96 #define IVPU_MMU_CMD_CFGI_0_SSID	GENMASK(31, 12)
97 #define IVPU_MMU_CMD_CFGI_0_SID		GENMASK(63, 32)
98 #define IVPU_MMU_CMD_CFGI_1_RANGE	GENMASK(4, 0)
99 
100 #define IVPU_MMU_CMD_TLBI_0_ASID	GENMASK(63, 48)
101 #define IVPU_MMU_CMD_TLBI_0_VMID	GENMASK(47, 32)
102 
103 #define CMD_PREFETCH_CFG		0x1
104 #define CMD_CFGI_STE			0x3
105 #define CMD_CFGI_ALL			0x4
106 #define CMD_CFGI_CD			0x5
107 #define CMD_CFGI_CD_ALL			0x6
108 #define CMD_TLBI_NH_ASID		0x11
109 #define CMD_TLBI_EL2_ALL		0x20
110 #define CMD_TLBI_NSNH_ALL		0x30
111 #define CMD_SYNC			0x46
112 
113 #define IVPU_MMU_EVT_F_UUT		0x01
114 #define IVPU_MMU_EVT_C_BAD_STREAMID	0x02
115 #define IVPU_MMU_EVT_F_STE_FETCH	0x03
116 #define IVPU_MMU_EVT_C_BAD_STE		0x04
117 #define IVPU_MMU_EVT_F_BAD_ATS_TREQ	0x05
118 #define IVPU_MMU_EVT_F_STREAM_DISABLED	0x06
119 #define IVPU_MMU_EVT_F_TRANSL_FORBIDDEN	0x07
120 #define IVPU_MMU_EVT_C_BAD_SUBSTREAMID	0x08
121 #define IVPU_MMU_EVT_F_CD_FETCH		0x09
122 #define IVPU_MMU_EVT_C_BAD_CD		0x0a
123 #define IVPU_MMU_EVT_F_WALK_EABT	0x0b
124 #define IVPU_MMU_EVT_F_TRANSLATION	0x10
125 #define IVPU_MMU_EVT_F_ADDR_SIZE	0x11
126 #define IVPU_MMU_EVT_F_ACCESS		0x12
127 #define IVPU_MMU_EVT_F_PERMISSION	0x13
128 #define IVPU_MMU_EVT_F_TLB_CONFLICT	0x20
129 #define IVPU_MMU_EVT_F_CFG_CONFLICT	0x21
130 #define IVPU_MMU_EVT_E_PAGE_REQUEST	0x24
131 #define IVPU_MMU_EVT_F_VMS_FETCH	0x25
132 
133 #define IVPU_MMU_EVT_OP_MASK		GENMASK_ULL(7, 0)
134 #define IVPU_MMU_EVT_SSID_MASK		GENMASK_ULL(31, 12)
135 
136 #define IVPU_MMU_Q_BASE_RWA		BIT(62)
137 #define IVPU_MMU_Q_BASE_ADDR_MASK	GENMASK_ULL(51, 5)
138 #define IVPU_MMU_STRTAB_BASE_RA		BIT(62)
139 #define IVPU_MMU_STRTAB_BASE_ADDR_MASK	GENMASK_ULL(51, 6)
140 
141 #define IVPU_MMU_IRQ_EVTQ_EN		BIT(2)
142 #define IVPU_MMU_IRQ_GERROR_EN		BIT(0)
143 
144 #define IVPU_MMU_CR0_ATSCHK		BIT(4)
145 #define IVPU_MMU_CR0_CMDQEN		BIT(3)
146 #define IVPU_MMU_CR0_EVTQEN		BIT(2)
147 #define IVPU_MMU_CR0_PRIQEN		BIT(1)
148 #define IVPU_MMU_CR0_SMMUEN		BIT(0)
149 
150 #define IVPU_MMU_CR1_TABLE_SH		GENMASK(11, 10)
151 #define IVPU_MMU_CR1_TABLE_OC		GENMASK(9, 8)
152 #define IVPU_MMU_CR1_TABLE_IC		GENMASK(7, 6)
153 #define IVPU_MMU_CR1_QUEUE_SH		GENMASK(5, 4)
154 #define IVPU_MMU_CR1_QUEUE_OC		GENMASK(3, 2)
155 #define IVPU_MMU_CR1_QUEUE_IC		GENMASK(1, 0)
156 #define IVPU_MMU_CACHE_NC		0
157 #define IVPU_MMU_CACHE_WB		1
158 #define IVPU_MMU_CACHE_WT		2
159 #define IVPU_MMU_SH_NSH			0
160 #define IVPU_MMU_SH_OSH			2
161 #define IVPU_MMU_SH_ISH			3
162 
163 #define IVPU_MMU_CMDQ_OP		GENMASK_ULL(7, 0)
164 
165 #define IVPU_MMU_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
166 #define IVPU_MMU_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
167 #define IVPU_MMU_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
168 #define IVPU_MMU_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
169 #define IVPU_MMU_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
170 #define IVPU_MMU_CD_0_TCR_EPD0		BIT_ULL(14)
171 #define IVPU_MMU_CD_0_TCR_EPD1		BIT_ULL(30)
172 #define IVPU_MMU_CD_0_ENDI		BIT(15)
173 #define IVPU_MMU_CD_0_V			BIT(31)
174 #define IVPU_MMU_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
175 #define IVPU_MMU_CD_0_TCR_TBI0		BIT_ULL(38)
176 #define IVPU_MMU_CD_0_AA64		BIT(41)
177 #define IVPU_MMU_CD_0_S			BIT(44)
178 #define IVPU_MMU_CD_0_R			BIT(45)
179 #define IVPU_MMU_CD_0_A			BIT(46)
180 #define IVPU_MMU_CD_0_ASET		BIT(47)
181 #define IVPU_MMU_CD_0_ASID		GENMASK_ULL(63, 48)
182 
183 #define IVPU_MMU_T0SZ_48BIT             16
184 #define IVPU_MMU_T0SZ_38BIT             26
185 
186 #define IVPU_MMU_IPS_48BIT		5
187 #define IVPU_MMU_IPS_44BIT		4
188 #define IVPU_MMU_IPS_42BIT		3
189 #define IVPU_MMU_IPS_40BIT		2
190 #define IVPU_MMU_IPS_36BIT		1
191 #define IVPU_MMU_IPS_32BIT		0
192 
193 #define IVPU_MMU_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
194 
195 #define IVPU_MMU_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
196 #define IVPU_MMU_STE_0_S1FMT		GENMASK_ULL(5, 4)
197 #define IVPU_MMU_STE_0_S1FMT_LINEAR	0
198 #define IVPU_MMU_STE_DWORDS		8
199 #define IVPU_MMU_STE_0_CFG_S1_TRANS	5
200 #define IVPU_MMU_STE_0_CFG		GENMASK_ULL(3, 1)
201 #define IVPU_MMU_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
202 #define IVPU_MMU_STE_0_V			BIT(0)
203 
204 #define IVPU_MMU_STE_1_STRW_NSEL1	0ul
205 #define IVPU_MMU_STE_1_CONT		GENMASK_ULL(16, 13)
206 #define IVPU_MMU_STE_1_STRW		GENMASK_ULL(31, 30)
207 #define IVPU_MMU_STE_1_PRIVCFG		GENMASK_ULL(49, 48)
208 #define IVPU_MMU_STE_1_PRIVCFG_UNPRIV	2ul
209 #define IVPU_MMU_STE_1_INSTCFG		GENMASK_ULL(51, 50)
210 #define IVPU_MMU_STE_1_INSTCFG_DATA	2ul
211 #define IVPU_MMU_STE_1_MEV		BIT(19)
212 #define IVPU_MMU_STE_1_S1STALLD		BIT(27)
213 #define IVPU_MMU_STE_1_S1C_CACHE_NC	0ul
214 #define IVPU_MMU_STE_1_S1C_CACHE_WBRA	1ul
215 #define IVPU_MMU_STE_1_S1C_CACHE_WT	2ul
216 #define IVPU_MMU_STE_1_S1C_CACHE_WB	3ul
217 #define IVPU_MMU_STE_1_S1CIR		GENMASK_ULL(3, 2)
218 #define IVPU_MMU_STE_1_S1COR		GENMASK_ULL(5, 4)
219 #define IVPU_MMU_STE_1_S1CSH		GENMASK_ULL(7, 6)
220 #define IVPU_MMU_STE_1_S1DSS		GENMASK_ULL(1, 0)
221 #define IVPU_MMU_STE_1_S1DSS_TERMINATE	0x0
222 
223 #define IVPU_MMU_REG_TIMEOUT_US		(10 * USEC_PER_MSEC)
224 #define IVPU_MMU_QUEUE_TIMEOUT_US	(100 * USEC_PER_MSEC)
225 
226 #define IVPU_MMU_GERROR_ERR_MASK ((REG_FLD(IVPU_MMU_REG_GERROR, CMDQ)) | \
227 				  (REG_FLD(IVPU_MMU_REG_GERROR, EVTQ_ABT)) | \
228 				  (REG_FLD(IVPU_MMU_REG_GERROR, PRIQ_ABT)) | \
229 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_CMDQ_ABT)) | \
230 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_EVTQ_ABT)) | \
231 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_PRIQ_ABT)) | \
232 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_ABT)))
233 
234 #define IVPU_MMU_CERROR_NONE         0x0
235 #define IVPU_MMU_CERROR_ILL          0x1
236 #define IVPU_MMU_CERROR_ABT          0x2
237 #define IVPU_MMU_CERROR_ATC_INV_SYNC 0x3
238 
ivpu_mmu_event_to_str(u32 cmd)239 static const char *ivpu_mmu_event_to_str(u32 cmd)
240 {
241 	switch (cmd) {
242 	case IVPU_MMU_EVT_F_UUT:
243 		return "Unsupported Upstream Transaction";
244 	case IVPU_MMU_EVT_C_BAD_STREAMID:
245 		return "Transaction StreamID out of range";
246 	case IVPU_MMU_EVT_F_STE_FETCH:
247 		return "Fetch of STE caused external abort";
248 	case IVPU_MMU_EVT_C_BAD_STE:
249 		return "Used STE invalid";
250 	case IVPU_MMU_EVT_F_BAD_ATS_TREQ:
251 		return "Address Request disallowed for a StreamID";
252 	case IVPU_MMU_EVT_F_STREAM_DISABLED:
253 		return "Transaction marks non-substream disabled";
254 	case IVPU_MMU_EVT_F_TRANSL_FORBIDDEN:
255 		return "MMU bypass is disallowed for this StreamID";
256 	case IVPU_MMU_EVT_C_BAD_SUBSTREAMID:
257 		return "Invalid StreamID";
258 	case IVPU_MMU_EVT_F_CD_FETCH:
259 		return "Fetch of CD caused external abort";
260 	case IVPU_MMU_EVT_C_BAD_CD:
261 		return "Fetched CD invalid";
262 	case IVPU_MMU_EVT_F_WALK_EABT:
263 		return " An external abort occurred fetching a TLB";
264 	case IVPU_MMU_EVT_F_TRANSLATION:
265 		return "Translation fault";
266 	case IVPU_MMU_EVT_F_ADDR_SIZE:
267 		return " Output address caused address size fault";
268 	case IVPU_MMU_EVT_F_ACCESS:
269 		return "Access flag fault";
270 	case IVPU_MMU_EVT_F_PERMISSION:
271 		return "Permission fault occurred on page access";
272 	case IVPU_MMU_EVT_F_TLB_CONFLICT:
273 		return "A TLB conflict";
274 	case IVPU_MMU_EVT_F_CFG_CONFLICT:
275 		return "A configuration cache conflict";
276 	case IVPU_MMU_EVT_E_PAGE_REQUEST:
277 		return "Page request hint from a client device";
278 	case IVPU_MMU_EVT_F_VMS_FETCH:
279 		return "Fetch of VMS caused external abort";
280 	default:
281 		return "Unknown event";
282 	}
283 }
284 
ivpu_mmu_cmdq_err_to_str(u32 err)285 static const char *ivpu_mmu_cmdq_err_to_str(u32 err)
286 {
287 	switch (err) {
288 	case IVPU_MMU_CERROR_NONE:
289 		return "No error";
290 	case IVPU_MMU_CERROR_ILL:
291 		return "Illegal command";
292 	case IVPU_MMU_CERROR_ABT:
293 		return "External abort on command queue read";
294 	case IVPU_MMU_CERROR_ATC_INV_SYNC:
295 		return "Sync failed to complete ATS invalidation";
296 	default:
297 		return "Unknown error";
298 	}
299 }
300 
ivpu_mmu_config_check(struct ivpu_device * vdev)301 static void ivpu_mmu_config_check(struct ivpu_device *vdev)
302 {
303 	u32 val_ref;
304 	u32 val;
305 
306 	if (ivpu_is_simics(vdev))
307 		val_ref = IVPU_MMU_IDR0_REF_SIMICS;
308 	else
309 		val_ref = IVPU_MMU_IDR0_REF;
310 
311 	val = REGV_RD32(IVPU_MMU_REG_IDR0);
312 	if (val != val_ref)
313 		ivpu_dbg(vdev, MMU, "IDR0 0x%x != IDR0_REF 0x%x\n", val, val_ref);
314 
315 	val = REGV_RD32(IVPU_MMU_REG_IDR1);
316 	if (val != IVPU_MMU_IDR1_REF)
317 		ivpu_dbg(vdev, MMU, "IDR1 0x%x != IDR1_REF 0x%x\n", val, IVPU_MMU_IDR1_REF);
318 
319 	val = REGV_RD32(IVPU_MMU_REG_IDR3);
320 	if (val != IVPU_MMU_IDR3_REF)
321 		ivpu_dbg(vdev, MMU, "IDR3 0x%x != IDR3_REF 0x%x\n", val, IVPU_MMU_IDR3_REF);
322 
323 	if (ivpu_is_simics(vdev))
324 		val_ref = IVPU_MMU_IDR5_REF_SIMICS;
325 	else if (ivpu_is_fpga(vdev))
326 		val_ref = IVPU_MMU_IDR5_REF_FPGA;
327 	else
328 		val_ref = IVPU_MMU_IDR5_REF;
329 
330 	val = REGV_RD32(IVPU_MMU_REG_IDR5);
331 	if (val != val_ref)
332 		ivpu_dbg(vdev, MMU, "IDR5 0x%x != IDR5_REF 0x%x\n", val, val_ref);
333 }
334 
ivpu_mmu_cdtab_alloc(struct ivpu_device * vdev)335 static int ivpu_mmu_cdtab_alloc(struct ivpu_device *vdev)
336 {
337 	struct ivpu_mmu_info *mmu = vdev->mmu;
338 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
339 	size_t size = IVPU_MMU_CDTAB_ENT_COUNT * IVPU_MMU_CDTAB_ENT_SIZE;
340 
341 	cdtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &cdtab->dma, GFP_KERNEL);
342 	if (!cdtab->base)
343 		return -ENOMEM;
344 
345 	ivpu_dbg(vdev, MMU, "CDTAB alloc: dma=%pad size=%zu\n", &cdtab->dma, size);
346 
347 	return 0;
348 }
349 
ivpu_mmu_strtab_alloc(struct ivpu_device * vdev)350 static int ivpu_mmu_strtab_alloc(struct ivpu_device *vdev)
351 {
352 	struct ivpu_mmu_info *mmu = vdev->mmu;
353 	struct ivpu_mmu_strtab *strtab = &mmu->strtab;
354 	size_t size = IVPU_MMU_STRTAB_ENT_COUNT * IVPU_MMU_STRTAB_ENT_SIZE;
355 
356 	strtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &strtab->dma, GFP_KERNEL);
357 	if (!strtab->base)
358 		return -ENOMEM;
359 
360 	strtab->base_cfg = IVPU_MMU_STRTAB_CFG;
361 	strtab->dma_q = IVPU_MMU_STRTAB_BASE_RA;
362 	strtab->dma_q |= strtab->dma & IVPU_MMU_STRTAB_BASE_ADDR_MASK;
363 
364 	ivpu_dbg(vdev, MMU, "STRTAB alloc: dma=%pad dma_q=%pad size=%zu\n",
365 		 &strtab->dma, &strtab->dma_q, size);
366 
367 	return 0;
368 }
369 
ivpu_mmu_cmdq_alloc(struct ivpu_device * vdev)370 static int ivpu_mmu_cmdq_alloc(struct ivpu_device *vdev)
371 {
372 	struct ivpu_mmu_info *mmu = vdev->mmu;
373 	struct ivpu_mmu_queue *q = &mmu->cmdq;
374 
375 	q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_CMDQ_SIZE, &q->dma, GFP_KERNEL);
376 	if (!q->base)
377 		return -ENOMEM;
378 
379 	q->dma_q = IVPU_MMU_Q_BASE_RWA;
380 	q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
381 	q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
382 
383 	ivpu_dbg(vdev, MMU, "CMDQ alloc: dma=%pad dma_q=%pad size=%u\n",
384 		 &q->dma, &q->dma_q, IVPU_MMU_CMDQ_SIZE);
385 
386 	return 0;
387 }
388 
ivpu_mmu_evtq_alloc(struct ivpu_device * vdev)389 static int ivpu_mmu_evtq_alloc(struct ivpu_device *vdev)
390 {
391 	struct ivpu_mmu_info *mmu = vdev->mmu;
392 	struct ivpu_mmu_queue *q = &mmu->evtq;
393 
394 	q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_EVTQ_SIZE, &q->dma, GFP_KERNEL);
395 	if (!q->base)
396 		return -ENOMEM;
397 
398 	q->dma_q = IVPU_MMU_Q_BASE_RWA;
399 	q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
400 	q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
401 
402 	ivpu_dbg(vdev, MMU, "EVTQ alloc: dma=%pad dma_q=%pad size=%u\n",
403 		 &q->dma, &q->dma_q, IVPU_MMU_EVTQ_SIZE);
404 
405 	return 0;
406 }
407 
ivpu_mmu_structs_alloc(struct ivpu_device * vdev)408 static int ivpu_mmu_structs_alloc(struct ivpu_device *vdev)
409 {
410 	int ret;
411 
412 	ret = ivpu_mmu_cdtab_alloc(vdev);
413 	if (ret) {
414 		ivpu_err(vdev, "Failed to allocate cdtab: %d\n", ret);
415 		return ret;
416 	}
417 
418 	ret = ivpu_mmu_strtab_alloc(vdev);
419 	if (ret) {
420 		ivpu_err(vdev, "Failed to allocate strtab: %d\n", ret);
421 		return ret;
422 	}
423 
424 	ret = ivpu_mmu_cmdq_alloc(vdev);
425 	if (ret) {
426 		ivpu_err(vdev, "Failed to allocate cmdq: %d\n", ret);
427 		return ret;
428 	}
429 
430 	ret = ivpu_mmu_evtq_alloc(vdev);
431 	if (ret)
432 		ivpu_err(vdev, "Failed to allocate evtq: %d\n", ret);
433 
434 	return ret;
435 }
436 
ivpu_mmu_reg_write_cr0(struct ivpu_device * vdev,u32 val)437 static int ivpu_mmu_reg_write_cr0(struct ivpu_device *vdev, u32 val)
438 {
439 	REGV_WR32(IVPU_MMU_REG_CR0, val);
440 
441 	return REGV_POLL_FLD(IVPU_MMU_REG_CR0ACK, VAL, val, IVPU_MMU_REG_TIMEOUT_US);
442 }
443 
ivpu_mmu_reg_write_irq_ctrl(struct ivpu_device * vdev,u32 val)444 static int ivpu_mmu_reg_write_irq_ctrl(struct ivpu_device *vdev, u32 val)
445 {
446 	REGV_WR32(IVPU_MMU_REG_IRQ_CTRL, val);
447 
448 	return REGV_POLL_FLD(IVPU_MMU_REG_IRQ_CTRLACK, VAL, val, IVPU_MMU_REG_TIMEOUT_US);
449 }
450 
ivpu_mmu_irqs_setup(struct ivpu_device * vdev)451 static int ivpu_mmu_irqs_setup(struct ivpu_device *vdev)
452 {
453 	u32 irq_ctrl = IVPU_MMU_IRQ_EVTQ_EN | IVPU_MMU_IRQ_GERROR_EN;
454 	int ret;
455 
456 	ret = ivpu_mmu_reg_write_irq_ctrl(vdev, 0);
457 	if (ret)
458 		return ret;
459 
460 	return ivpu_mmu_reg_write_irq_ctrl(vdev, irq_ctrl);
461 }
462 
ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device * vdev)463 static int ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device *vdev)
464 {
465 	struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq;
466 	int ret;
467 
468 	ret = REGV_POLL_FLD(IVPU_MMU_REG_CMDQ_CONS, VAL, cmdq->prod,
469 			    IVPU_MMU_QUEUE_TIMEOUT_US);
470 	if (ret)
471 		return ret;
472 
473 	cmdq->cons = cmdq->prod;
474 
475 	return 0;
476 }
477 
ivpu_mmu_queue_is_full(struct ivpu_mmu_queue * q)478 static bool ivpu_mmu_queue_is_full(struct ivpu_mmu_queue *q)
479 {
480 	return ((IVPU_MMU_Q_IDX(q->prod) == IVPU_MMU_Q_IDX(q->cons)) &&
481 		(IVPU_MMU_Q_WRP(q->prod) != IVPU_MMU_Q_WRP(q->cons)));
482 }
483 
ivpu_mmu_queue_is_empty(struct ivpu_mmu_queue * q)484 static bool ivpu_mmu_queue_is_empty(struct ivpu_mmu_queue *q)
485 {
486 	return ((IVPU_MMU_Q_IDX(q->prod) == IVPU_MMU_Q_IDX(q->cons)) &&
487 		(IVPU_MMU_Q_WRP(q->prod) == IVPU_MMU_Q_WRP(q->cons)));
488 }
489 
ivpu_mmu_cmdq_cmd_write(struct ivpu_device * vdev,const char * name,u64 data0,u64 data1)490 static int ivpu_mmu_cmdq_cmd_write(struct ivpu_device *vdev, const char *name, u64 data0, u64 data1)
491 {
492 	struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq;
493 	u64 *queue_buffer = cmdq->base;
494 	int idx = IVPU_MMU_Q_IDX(cmdq->prod) * (IVPU_MMU_CMDQ_CMD_SIZE / sizeof(*queue_buffer));
495 
496 	if (ivpu_mmu_queue_is_full(cmdq)) {
497 		ivpu_err(vdev, "Failed to write MMU CMD %s\n", name);
498 		return -EBUSY;
499 	}
500 
501 	queue_buffer[idx] = data0;
502 	queue_buffer[idx + 1] = data1;
503 	cmdq->prod = (cmdq->prod + 1) & IVPU_MMU_Q_WRAP_MASK;
504 
505 	ivpu_dbg(vdev, MMU, "CMD write: %s data: 0x%llx 0x%llx\n", name, data0, data1);
506 
507 	return 0;
508 }
509 
ivpu_mmu_cmdq_sync(struct ivpu_device * vdev)510 static int ivpu_mmu_cmdq_sync(struct ivpu_device *vdev)
511 {
512 	struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
513 	u64 val;
514 	int ret;
515 
516 	val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_SYNC);
517 
518 	ret = ivpu_mmu_cmdq_cmd_write(vdev, "SYNC", val, 0);
519 	if (ret)
520 		return ret;
521 
522 	if (!ivpu_is_force_snoop_enabled(vdev))
523 		clflush_cache_range(q->base, IVPU_MMU_CMDQ_SIZE);
524 	REGV_WR32(IVPU_MMU_REG_CMDQ_PROD, q->prod);
525 
526 	ret = ivpu_mmu_cmdq_wait_for_cons(vdev);
527 	if (ret) {
528 		u32 err;
529 
530 		val = REGV_RD32(IVPU_MMU_REG_CMDQ_CONS);
531 		err = REG_GET_FLD(IVPU_MMU_REG_CMDQ_CONS, ERR, val);
532 
533 		ivpu_err(vdev, "Timed out waiting for MMU consumer: %d, error: %s\n", ret,
534 			 ivpu_mmu_cmdq_err_to_str(err));
535 		ivpu_hw_diagnose_failure(vdev);
536 	}
537 
538 	return ret;
539 }
540 
ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device * vdev)541 static int ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device *vdev)
542 {
543 	u64 data0 = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_CFGI_ALL);
544 	u64 data1 = FIELD_PREP(IVPU_MMU_CMD_CFGI_1_RANGE, 0x1f);
545 
546 	return ivpu_mmu_cmdq_cmd_write(vdev, "CFGI_ALL", data0, data1);
547 }
548 
ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device * vdev,u16 ssid)549 static int ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device *vdev, u16 ssid)
550 {
551 	u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NH_ASID) |
552 		  FIELD_PREP(IVPU_MMU_CMD_TLBI_0_ASID, ssid);
553 
554 	return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NH_ASID", val, 0);
555 }
556 
ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device * vdev)557 static int ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device *vdev)
558 {
559 	u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NSNH_ALL);
560 
561 	return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NSNH_ALL", val, 0);
562 }
563 
ivpu_mmu_reset(struct ivpu_device * vdev)564 static int ivpu_mmu_reset(struct ivpu_device *vdev)
565 {
566 	struct ivpu_mmu_info *mmu = vdev->mmu;
567 	u32 val;
568 	int ret;
569 
570 	memset(mmu->cmdq.base, 0, IVPU_MMU_CMDQ_SIZE);
571 	if (!ivpu_is_force_snoop_enabled(vdev))
572 		clflush_cache_range(mmu->cmdq.base, IVPU_MMU_CMDQ_SIZE);
573 	mmu->cmdq.prod = 0;
574 	mmu->cmdq.cons = 0;
575 
576 	memset(mmu->evtq.base, 0, IVPU_MMU_EVTQ_SIZE);
577 	mmu->evtq.prod = 0;
578 	mmu->evtq.cons = 0;
579 
580 	ret = ivpu_mmu_reg_write_cr0(vdev, 0);
581 	if (ret)
582 		return ret;
583 
584 	val = FIELD_PREP(IVPU_MMU_CR1_TABLE_SH, IVPU_MMU_SH_ISH) |
585 	      FIELD_PREP(IVPU_MMU_CR1_TABLE_OC, IVPU_MMU_CACHE_WB) |
586 	      FIELD_PREP(IVPU_MMU_CR1_TABLE_IC, IVPU_MMU_CACHE_WB) |
587 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_SH, IVPU_MMU_SH_ISH) |
588 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_OC, IVPU_MMU_CACHE_WB) |
589 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_IC, IVPU_MMU_CACHE_WB);
590 	REGV_WR32(IVPU_MMU_REG_CR1, val);
591 
592 	REGV_WR64(IVPU_MMU_REG_STRTAB_BASE, mmu->strtab.dma_q);
593 	REGV_WR32(IVPU_MMU_REG_STRTAB_BASE_CFG, mmu->strtab.base_cfg);
594 
595 	REGV_WR64(IVPU_MMU_REG_CMDQ_BASE, mmu->cmdq.dma_q);
596 	REGV_WR32(IVPU_MMU_REG_CMDQ_PROD, 0);
597 	REGV_WR32(IVPU_MMU_REG_CMDQ_CONS, 0);
598 
599 	val = IVPU_MMU_CR0_CMDQEN;
600 	ret = ivpu_mmu_reg_write_cr0(vdev, val);
601 	if (ret)
602 		return ret;
603 
604 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
605 	if (ret)
606 		return ret;
607 
608 	ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
609 	if (ret)
610 		return ret;
611 
612 	ret = ivpu_mmu_cmdq_sync(vdev);
613 	if (ret)
614 		return ret;
615 
616 	REGV_WR64(IVPU_MMU_REG_EVTQ_BASE, mmu->evtq.dma_q);
617 	REGV_WR32(IVPU_MMU_REG_EVTQ_PROD_SEC, 0);
618 	REGV_WR32(IVPU_MMU_REG_EVTQ_CONS_SEC, 0);
619 
620 	val |= IVPU_MMU_CR0_EVTQEN;
621 	ret = ivpu_mmu_reg_write_cr0(vdev, val);
622 	if (ret)
623 		return ret;
624 
625 	val |= IVPU_MMU_CR0_ATSCHK;
626 	ret = ivpu_mmu_reg_write_cr0(vdev, val);
627 	if (ret)
628 		return ret;
629 
630 	ret = ivpu_mmu_irqs_setup(vdev);
631 	if (ret)
632 		return ret;
633 
634 	val |= IVPU_MMU_CR0_SMMUEN;
635 	return ivpu_mmu_reg_write_cr0(vdev, val);
636 }
637 
ivpu_mmu_strtab_link_cd(struct ivpu_device * vdev,u32 sid)638 static void ivpu_mmu_strtab_link_cd(struct ivpu_device *vdev, u32 sid)
639 {
640 	struct ivpu_mmu_info *mmu = vdev->mmu;
641 	struct ivpu_mmu_strtab *strtab = &mmu->strtab;
642 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
643 	u64 *entry = strtab->base + (sid * IVPU_MMU_STRTAB_ENT_SIZE);
644 	u64 str[2];
645 
646 	str[0] = FIELD_PREP(IVPU_MMU_STE_0_CFG, IVPU_MMU_STE_0_CFG_S1_TRANS) |
647 		 FIELD_PREP(IVPU_MMU_STE_0_S1CDMAX, IVPU_MMU_CDTAB_ENT_COUNT_LOG2) |
648 		 FIELD_PREP(IVPU_MMU_STE_0_S1FMT, IVPU_MMU_STE_0_S1FMT_LINEAR) |
649 		 IVPU_MMU_STE_0_V |
650 		 (cdtab->dma & IVPU_MMU_STE_0_S1CTXPTR_MASK);
651 
652 	str[1] = FIELD_PREP(IVPU_MMU_STE_1_S1DSS, IVPU_MMU_STE_1_S1DSS_TERMINATE) |
653 		 FIELD_PREP(IVPU_MMU_STE_1_S1CIR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
654 		 FIELD_PREP(IVPU_MMU_STE_1_S1COR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
655 		 FIELD_PREP(IVPU_MMU_STE_1_S1CSH, IVPU_MMU_SH_NSH) |
656 		 FIELD_PREP(IVPU_MMU_STE_1_PRIVCFG, IVPU_MMU_STE_1_PRIVCFG_UNPRIV) |
657 		 FIELD_PREP(IVPU_MMU_STE_1_INSTCFG, IVPU_MMU_STE_1_INSTCFG_DATA) |
658 		 FIELD_PREP(IVPU_MMU_STE_1_STRW, IVPU_MMU_STE_1_STRW_NSEL1) |
659 		 FIELD_PREP(IVPU_MMU_STE_1_CONT, IVPU_MMU_STRTAB_CFG_LOG2SIZE) |
660 		 IVPU_MMU_STE_1_MEV |
661 		 IVPU_MMU_STE_1_S1STALLD;
662 
663 	WRITE_ONCE(entry[1], str[1]);
664 	WRITE_ONCE(entry[0], str[0]);
665 
666 	if (!ivpu_is_force_snoop_enabled(vdev))
667 		clflush_cache_range(entry, IVPU_MMU_STRTAB_ENT_SIZE);
668 
669 	ivpu_dbg(vdev, MMU, "STRTAB write entry (SSID=%u): 0x%llx, 0x%llx\n", sid, str[0], str[1]);
670 }
671 
ivpu_mmu_strtab_init(struct ivpu_device * vdev)672 static int ivpu_mmu_strtab_init(struct ivpu_device *vdev)
673 {
674 	ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID0);
675 	ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID3);
676 
677 	return 0;
678 }
679 
ivpu_mmu_invalidate_tlb(struct ivpu_device * vdev,u16 ssid)680 int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid)
681 {
682 	struct ivpu_mmu_info *mmu = vdev->mmu;
683 	int ret = 0;
684 
685 	mutex_lock(&mmu->lock);
686 	if (!mmu->on)
687 		goto unlock;
688 
689 	ret = ivpu_mmu_cmdq_write_tlbi_nh_asid(vdev, ssid);
690 	if (ret)
691 		goto unlock;
692 
693 	ret = ivpu_mmu_cmdq_sync(vdev);
694 unlock:
695 	mutex_unlock(&mmu->lock);
696 	return ret;
697 }
698 
ivpu_mmu_cd_add(struct ivpu_device * vdev,u32 ssid,u64 cd_dma)699 static int ivpu_mmu_cd_add(struct ivpu_device *vdev, u32 ssid, u64 cd_dma)
700 {
701 	struct ivpu_mmu_info *mmu = vdev->mmu;
702 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
703 	u64 *entry;
704 	u64 cd[4];
705 	int ret = 0;
706 
707 	if (ssid > IVPU_MMU_CDTAB_ENT_COUNT)
708 		return -EINVAL;
709 
710 	entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE);
711 
712 	if (cd_dma != 0) {
713 		cd[0] = FIELD_PREP(IVPU_MMU_CD_0_TCR_T0SZ, IVPU_MMU_T0SZ_48BIT) |
714 			FIELD_PREP(IVPU_MMU_CD_0_TCR_TG0, 0) |
715 			FIELD_PREP(IVPU_MMU_CD_0_TCR_IRGN0, 0) |
716 			FIELD_PREP(IVPU_MMU_CD_0_TCR_ORGN0, 0) |
717 			FIELD_PREP(IVPU_MMU_CD_0_TCR_SH0, 0) |
718 			FIELD_PREP(IVPU_MMU_CD_0_TCR_IPS, IVPU_MMU_IPS_48BIT) |
719 			FIELD_PREP(IVPU_MMU_CD_0_ASID, ssid) |
720 			IVPU_MMU_CD_0_TCR_EPD1 |
721 			IVPU_MMU_CD_0_AA64 |
722 			IVPU_MMU_CD_0_R |
723 			IVPU_MMU_CD_0_ASET |
724 			IVPU_MMU_CD_0_V;
725 		cd[1] = cd_dma & IVPU_MMU_CD_1_TTB0_MASK;
726 		cd[2] = 0;
727 		cd[3] = 0x0000000000007444;
728 
729 		/* For global context generate memory fault on VPU */
730 		if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID)
731 			cd[0] |= IVPU_MMU_CD_0_A;
732 	} else {
733 		memset(cd, 0, sizeof(cd));
734 	}
735 
736 	WRITE_ONCE(entry[1], cd[1]);
737 	WRITE_ONCE(entry[2], cd[2]);
738 	WRITE_ONCE(entry[3], cd[3]);
739 	WRITE_ONCE(entry[0], cd[0]);
740 
741 	if (!ivpu_is_force_snoop_enabled(vdev))
742 		clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE);
743 
744 	ivpu_dbg(vdev, MMU, "CDTAB %s entry (SSID=%u, dma=%pad): 0x%llx, 0x%llx, 0x%llx, 0x%llx\n",
745 		 cd_dma ? "write" : "clear", ssid, &cd_dma, cd[0], cd[1], cd[2], cd[3]);
746 
747 	mutex_lock(&mmu->lock);
748 	if (!mmu->on)
749 		goto unlock;
750 
751 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
752 	if (ret)
753 		goto unlock;
754 
755 	ret = ivpu_mmu_cmdq_sync(vdev);
756 unlock:
757 	mutex_unlock(&mmu->lock);
758 	return ret;
759 }
760 
ivpu_mmu_cd_add_gbl(struct ivpu_device * vdev)761 static int ivpu_mmu_cd_add_gbl(struct ivpu_device *vdev)
762 {
763 	int ret;
764 
765 	ret = ivpu_mmu_cd_add(vdev, 0, vdev->gctx.pgtable.pgd_dma);
766 	if (ret)
767 		ivpu_err(vdev, "Failed to add global CD entry: %d\n", ret);
768 
769 	return ret;
770 }
771 
ivpu_mmu_cd_add_user(struct ivpu_device * vdev,u32 ssid,dma_addr_t cd_dma)772 static int ivpu_mmu_cd_add_user(struct ivpu_device *vdev, u32 ssid, dma_addr_t cd_dma)
773 {
774 	int ret;
775 
776 	if (ssid == 0) {
777 		ivpu_err(vdev, "Invalid SSID: %u\n", ssid);
778 		return -EINVAL;
779 	}
780 
781 	ret = ivpu_mmu_cd_add(vdev, ssid, cd_dma);
782 	if (ret)
783 		ivpu_err(vdev, "Failed to add CD entry SSID=%u: %d\n", ssid, ret);
784 
785 	return ret;
786 }
787 
ivpu_mmu_init(struct ivpu_device * vdev)788 int ivpu_mmu_init(struct ivpu_device *vdev)
789 {
790 	struct ivpu_mmu_info *mmu = vdev->mmu;
791 	int ret;
792 
793 	ivpu_dbg(vdev, MMU, "Init..\n");
794 
795 	ivpu_mmu_config_check(vdev);
796 
797 	ret = drmm_mutex_init(&vdev->drm, &mmu->lock);
798 	if (ret)
799 		return ret;
800 
801 	ret = ivpu_mmu_structs_alloc(vdev);
802 	if (ret)
803 		return ret;
804 
805 	ret = ivpu_mmu_strtab_init(vdev);
806 	if (ret) {
807 		ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
808 		return ret;
809 	}
810 
811 	ret = ivpu_mmu_cd_add_gbl(vdev);
812 	if (ret) {
813 		ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
814 		return ret;
815 	}
816 
817 	ret = ivpu_mmu_enable(vdev);
818 	if (ret) {
819 		ivpu_err(vdev, "Failed to resume MMU: %d\n", ret);
820 		return ret;
821 	}
822 
823 	ivpu_dbg(vdev, MMU, "Init done\n");
824 
825 	return 0;
826 }
827 
ivpu_mmu_enable(struct ivpu_device * vdev)828 int ivpu_mmu_enable(struct ivpu_device *vdev)
829 {
830 	struct ivpu_mmu_info *mmu = vdev->mmu;
831 	int ret;
832 
833 	mutex_lock(&mmu->lock);
834 
835 	mmu->on = true;
836 
837 	ret = ivpu_mmu_reset(vdev);
838 	if (ret) {
839 		ivpu_err(vdev, "Failed to reset MMU: %d\n", ret);
840 		goto err;
841 	}
842 
843 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
844 	if (ret)
845 		goto err;
846 
847 	ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
848 	if (ret)
849 		goto err;
850 
851 	ret = ivpu_mmu_cmdq_sync(vdev);
852 	if (ret)
853 		goto err;
854 
855 	mutex_unlock(&mmu->lock);
856 
857 	return 0;
858 err:
859 	mmu->on = false;
860 	mutex_unlock(&mmu->lock);
861 	return ret;
862 }
863 
ivpu_mmu_disable(struct ivpu_device * vdev)864 void ivpu_mmu_disable(struct ivpu_device *vdev)
865 {
866 	struct ivpu_mmu_info *mmu = vdev->mmu;
867 
868 	mutex_lock(&mmu->lock);
869 	mmu->on = false;
870 	mutex_unlock(&mmu->lock);
871 }
872 
ivpu_mmu_dump_event(struct ivpu_device * vdev,u32 * event)873 static void ivpu_mmu_dump_event(struct ivpu_device *vdev, u32 *event)
874 {
875 	u32 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
876 	u32 op = FIELD_GET(IVPU_MMU_EVT_OP_MASK, event[0]);
877 	u64 fetch_addr = ((u64)event[7]) << 32 | event[6];
878 	u64 in_addr = ((u64)event[5]) << 32 | event[4];
879 	u32 sid = event[1];
880 
881 	ivpu_err_ratelimited(vdev, "MMU EVTQ: 0x%x (%s) SSID: %d SID: %d, e[2] %08x, e[3] %08x, in addr: 0x%llx, fetch addr: 0x%llx\n",
882 			     op, ivpu_mmu_event_to_str(op), ssid, sid,
883 			     event[2], event[3], in_addr, fetch_addr);
884 }
885 
ivpu_mmu_get_event(struct ivpu_device * vdev)886 static u32 *ivpu_mmu_get_event(struct ivpu_device *vdev)
887 {
888 	struct ivpu_mmu_queue *evtq = &vdev->mmu->evtq;
889 	u32 idx = IVPU_MMU_Q_IDX(evtq->cons);
890 	u32 *evt = evtq->base + (idx * IVPU_MMU_EVTQ_CMD_SIZE);
891 
892 	evtq->prod = REGV_RD32(IVPU_MMU_REG_EVTQ_PROD_SEC);
893 	if (ivpu_mmu_queue_is_empty(evtq))
894 		return NULL;
895 
896 	evtq->cons = (evtq->cons + 1) & IVPU_MMU_Q_WRAP_MASK;
897 	return evt;
898 }
899 
ivpu_mmu_irq_evtq_handler(struct ivpu_device * vdev)900 void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev)
901 {
902 	u32 *event;
903 	u32 ssid;
904 
905 	ivpu_dbg(vdev, IRQ, "MMU event queue\n");
906 
907 	while ((event = ivpu_mmu_get_event(vdev)) != NULL) {
908 		ivpu_mmu_dump_event(vdev, event);
909 
910 		ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
911 		if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID) {
912 			ivpu_pm_trigger_recovery(vdev, "MMU event");
913 			return;
914 		}
915 
916 		ivpu_mmu_user_context_mark_invalid(vdev, ssid);
917 		REGV_WR32(IVPU_MMU_REG_EVTQ_CONS_SEC, vdev->mmu->evtq.cons);
918 	}
919 
920 	if (!kfifo_put(&vdev->hw->irq.fifo, IVPU_HW_IRQ_SRC_MMU_EVTQ))
921 		ivpu_err_ratelimited(vdev, "IRQ FIFO full\n");
922 }
923 
ivpu_mmu_evtq_dump(struct ivpu_device * vdev)924 void ivpu_mmu_evtq_dump(struct ivpu_device *vdev)
925 {
926 	u32 *event;
927 
928 	while ((event = ivpu_mmu_get_event(vdev)) != NULL)
929 		ivpu_mmu_dump_event(vdev, event);
930 }
931 
ivpu_mmu_irq_gerr_handler(struct ivpu_device * vdev)932 void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev)
933 {
934 	u32 gerror_val, gerrorn_val, active;
935 
936 	ivpu_dbg(vdev, IRQ, "MMU error\n");
937 
938 	gerror_val = REGV_RD32(IVPU_MMU_REG_GERROR);
939 	gerrorn_val = REGV_RD32(IVPU_MMU_REG_GERRORN);
940 
941 	active = gerror_val ^ gerrorn_val;
942 	if (!(active & IVPU_MMU_GERROR_ERR_MASK))
943 		return;
944 
945 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_ABT, active))
946 		ivpu_warn_ratelimited(vdev, "MMU MSI ABT write aborted\n");
947 
948 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_PRIQ_ABT, active))
949 		ivpu_warn_ratelimited(vdev, "MMU PRIQ MSI ABT write aborted\n");
950 
951 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_EVTQ_ABT, active))
952 		ivpu_warn_ratelimited(vdev, "MMU EVTQ MSI ABT write aborted\n");
953 
954 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_CMDQ_ABT, active))
955 		ivpu_warn_ratelimited(vdev, "MMU CMDQ MSI ABT write aborted\n");
956 
957 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, PRIQ_ABT, active))
958 		ivpu_err_ratelimited(vdev, "MMU PRIQ write aborted\n");
959 
960 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, EVTQ_ABT, active))
961 		ivpu_err_ratelimited(vdev, "MMU EVTQ write aborted\n");
962 
963 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, CMDQ, active))
964 		ivpu_err_ratelimited(vdev, "MMU CMDQ write aborted\n");
965 
966 	REGV_WR32(IVPU_MMU_REG_GERRORN, gerror_val);
967 }
968 
ivpu_mmu_set_pgtable(struct ivpu_device * vdev,int ssid,struct ivpu_mmu_pgtable * pgtable)969 int ivpu_mmu_set_pgtable(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable)
970 {
971 	return ivpu_mmu_cd_add_user(vdev, ssid, pgtable->pgd_dma);
972 }
973 
ivpu_mmu_clear_pgtable(struct ivpu_device * vdev,int ssid)974 void ivpu_mmu_clear_pgtable(struct ivpu_device *vdev, int ssid)
975 {
976 	ivpu_mmu_cd_add_user(vdev, ssid, 0); /* 0 will clear CD entry */
977 }
978