1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4  *
5  * Copyright (C) 2008-2012 ST-Ericsson AB
6  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7  *
8  * Author: Linus Walleij <linus.walleij@stericsson.com>
9  *
10  * Initial version inspired by:
11  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12  * Initial adoption to PL022 by:
13  *      Sachin Verma <sachin.verma@st.com>
14  */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/spi/spi.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/amba/bus.h>
27 #include <linux/amba/pl022.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/dmaengine.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/scatterlist.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/pinctrl/consumer.h>
36 
37 /*
38  * This macro is used to define some register default values.
39  * reg is masked with mask, the OR:ed with an (again masked)
40  * val shifted sb steps to the left.
41  */
42 #define SSP_WRITE_BITS(reg, val, mask, sb) \
43  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
44 
45 /*
46  * This macro is also used to define some default values.
47  * It will just shift val by sb steps to the left and mask
48  * the result with mask.
49  */
50 #define GEN_MASK_BITS(val, mask, sb) \
51  (((val)<<(sb)) & (mask))
52 
53 #define DRIVE_TX		0
54 #define DO_NOT_DRIVE_TX		1
55 
56 #define DO_NOT_QUEUE_DMA	0
57 #define QUEUE_DMA		1
58 
59 #define RX_TRANSFER		1
60 #define TX_TRANSFER		2
61 
62 /*
63  * Macros to access SSP Registers with their offsets
64  */
65 #define SSP_CR0(r)	(r + 0x000)
66 #define SSP_CR1(r)	(r + 0x004)
67 #define SSP_DR(r)	(r + 0x008)
68 #define SSP_SR(r)	(r + 0x00C)
69 #define SSP_CPSR(r)	(r + 0x010)
70 #define SSP_IMSC(r)	(r + 0x014)
71 #define SSP_RIS(r)	(r + 0x018)
72 #define SSP_MIS(r)	(r + 0x01C)
73 #define SSP_ICR(r)	(r + 0x020)
74 #define SSP_DMACR(r)	(r + 0x024)
75 #define SSP_CSR(r)	(r + 0x030) /* vendor extension */
76 #define SSP_ITCR(r)	(r + 0x080)
77 #define SSP_ITIP(r)	(r + 0x084)
78 #define SSP_ITOP(r)	(r + 0x088)
79 #define SSP_TDR(r)	(r + 0x08C)
80 
81 #define SSP_PID0(r)	(r + 0xFE0)
82 #define SSP_PID1(r)	(r + 0xFE4)
83 #define SSP_PID2(r)	(r + 0xFE8)
84 #define SSP_PID3(r)	(r + 0xFEC)
85 
86 #define SSP_CID0(r)	(r + 0xFF0)
87 #define SSP_CID1(r)	(r + 0xFF4)
88 #define SSP_CID2(r)	(r + 0xFF8)
89 #define SSP_CID3(r)	(r + 0xFFC)
90 
91 /*
92  * SSP Control Register 0  - SSP_CR0
93  */
94 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
95 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
96 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
97 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
98 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
99 
100 /*
101  * The ST version of this block moves som bits
102  * in SSP_CR0 and extends it to 32 bits
103  */
104 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
105 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
106 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
107 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
108 
109 /*
110  * SSP Control Register 0  - SSP_CR1
111  */
112 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
113 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
114 #define SSP_CR1_MASK_MS		(0x1UL << 2)
115 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
116 
117 /*
118  * The ST version of this block adds some bits
119  * in SSP_CR1
120  */
121 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
122 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
123 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
124 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126 /* This one is only in the PL023 variant */
127 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
128 
129 /*
130  * SSP Status Register - SSP_SR
131  */
132 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
133 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
134 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
135 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
136 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
137 
138 /*
139  * SSP Clock Prescale Register  - SSP_CPSR
140  */
141 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
142 
143 /*
144  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
145  */
146 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
148 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
149 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
150 
151 /*
152  * SSP Raw Interrupt Status Register - SSP_RIS
153  */
154 /* Receive Overrun Raw Interrupt status */
155 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
156 /* Receive Timeout Raw Interrupt status */
157 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
158 /* Receive FIFO Raw Interrupt status */
159 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
160 /* Transmit FIFO Raw Interrupt status */
161 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
162 
163 /*
164  * SSP Masked Interrupt Status Register - SSP_MIS
165  */
166 /* Receive Overrun Masked Interrupt status */
167 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
168 /* Receive Timeout Masked Interrupt status */
169 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
170 /* Receive FIFO Masked Interrupt status */
171 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
172 /* Transmit FIFO Masked Interrupt status */
173 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
174 
175 /*
176  * SSP Interrupt Clear Register - SSP_ICR
177  */
178 /* Receive Overrun Raw Clear Interrupt bit */
179 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
180 /* Receive Timeout Clear Interrupt bit */
181 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
182 
183 /*
184  * SSP DMA Control Register - SSP_DMACR
185  */
186 /* Receive DMA Enable bit */
187 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
188 /* Transmit DMA Enable bit */
189 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
190 
191 /*
192  * SSP Chip Select Control Register - SSP_CSR
193  * (vendor extension)
194  */
195 #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
196 
197 /*
198  * SSP Integration Test control Register - SSP_ITCR
199  */
200 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
201 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
202 
203 /*
204  * SSP Integration Test Input Register - SSP_ITIP
205  */
206 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
207 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
208 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
209 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
210 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
211 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
212 
213 /*
214  * SSP Integration Test output Register - SSP_ITOP
215  */
216 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
217 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
218 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
219 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
220 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
221 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
222 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
223 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
224 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
225 #define ITOP_MASK_INTR			 (0x1UL << 9)
226 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
227 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
228 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
229 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
230 
231 /*
232  * SSP Test Data Register - SSP_TDR
233  */
234 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
235 
236 /*
237  * Message State
238  * we use the spi_message.state (void *) pointer to
239  * hold a single state value, that's why all this
240  * (void *) casting is done here.
241  */
242 #define STATE_START			((void *) 0)
243 #define STATE_RUNNING			((void *) 1)
244 #define STATE_DONE			((void *) 2)
245 #define STATE_ERROR			((void *) -1)
246 #define STATE_TIMEOUT			((void *) -2)
247 
248 /*
249  * SSP State - Whether Enabled or Disabled
250  */
251 #define SSP_DISABLED			(0)
252 #define SSP_ENABLED			(1)
253 
254 /*
255  * SSP DMA State - Whether DMA Enabled or Disabled
256  */
257 #define SSP_DMA_DISABLED		(0)
258 #define SSP_DMA_ENABLED			(1)
259 
260 /*
261  * SSP Clock Defaults
262  */
263 #define SSP_DEFAULT_CLKRATE 0x2
264 #define SSP_DEFAULT_PRESCALE 0x40
265 
266 /*
267  * SSP Clock Parameter ranges
268  */
269 #define CPSDVR_MIN 0x02
270 #define CPSDVR_MAX 0xFE
271 #define SCR_MIN 0x00
272 #define SCR_MAX 0xFF
273 
274 /*
275  * SSP Interrupt related Macros
276  */
277 #define DEFAULT_SSP_REG_IMSC  0x0UL
278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279 #define ENABLE_ALL_INTERRUPTS ( \
280 	SSP_IMSC_MASK_RORIM | \
281 	SSP_IMSC_MASK_RTIM | \
282 	SSP_IMSC_MASK_RXIM | \
283 	SSP_IMSC_MASK_TXIM \
284 )
285 
286 #define CLEAR_ALL_INTERRUPTS  0x3
287 
288 #define SPI_POLLING_TIMEOUT 1000
289 
290 /*
291  * The type of reading going on this chip
292  */
293 enum ssp_reading {
294 	READING_NULL,
295 	READING_U8,
296 	READING_U16,
297 	READING_U32
298 };
299 
300 /*
301  * The type of writing going on this chip
302  */
303 enum ssp_writing {
304 	WRITING_NULL,
305 	WRITING_U8,
306 	WRITING_U16,
307 	WRITING_U32
308 };
309 
310 /**
311  * struct vendor_data - vendor-specific config parameters
312  * for PL022 derivates
313  * @fifodepth: depth of FIFOs (both)
314  * @max_bpw: maximum number of bits per word
315  * @unidir: supports unidirection transfers
316  * @extended_cr: 32 bit wide control register 0 with extra
317  * features and extra features in CR1 as found in the ST variants
318  * @pl023: supports a subset of the ST extensions called "PL023"
319  * @loopback: supports loopback mode
320  * @internal_cs_ctrl: supports chip select control register
321  */
322 struct vendor_data {
323 	int fifodepth;
324 	int max_bpw;
325 	bool unidir;
326 	bool extended_cr;
327 	bool pl023;
328 	bool loopback;
329 	bool internal_cs_ctrl;
330 };
331 
332 /**
333  * struct pl022 - This is the private SSP driver data structure
334  * @adev: AMBA device model hookup
335  * @vendor: vendor data for the IP block
336  * @phybase: the physical memory where the SSP device resides
337  * @virtbase: the virtual memory where the SSP is mapped
338  * @clk: outgoing clock "SPICLK" for the SPI bus
339  * @host: SPI framework hookup
340  * @host_info: controller-specific data from machine setup
341  * @cur_transfer: Pointer to current spi_transfer
342  * @cur_chip: pointer to current clients chip(assigned from controller_state)
343  * @tx: current position in TX buffer to be read
344  * @tx_end: end position in TX buffer to be read
345  * @rx: current position in RX buffer to be written
346  * @rx_end: end position in RX buffer to be written
347  * @read: the type of read currently going on
348  * @write: the type of write currently going on
349  * @exp_fifo_level: expected FIFO level
350  * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
351  * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
352  * @dma_rx_channel: optional channel for RX DMA
353  * @dma_tx_channel: optional channel for TX DMA
354  * @sgt_rx: scattertable for the RX transfer
355  * @sgt_tx: scattertable for the TX transfer
356  * @dummypage: a dummy page used for driving data on the bus with DMA
357  * @dma_running: indicates whether DMA is in operation
358  * @cur_cs: current chip select index
359  */
360 struct pl022 {
361 	struct amba_device		*adev;
362 	struct vendor_data		*vendor;
363 	resource_size_t			phybase;
364 	void __iomem			*virtbase;
365 	struct clk			*clk;
366 	struct spi_controller		*host;
367 	struct pl022_ssp_controller	*host_info;
368 	struct spi_transfer		*cur_transfer;
369 	struct chip_data		*cur_chip;
370 	void				*tx;
371 	void				*tx_end;
372 	void				*rx;
373 	void				*rx_end;
374 	enum ssp_reading		read;
375 	enum ssp_writing		write;
376 	u32				exp_fifo_level;
377 	enum ssp_rx_level_trig		rx_lev_trig;
378 	enum ssp_tx_level_trig		tx_lev_trig;
379 	/* DMA settings */
380 #ifdef CONFIG_DMA_ENGINE
381 	struct dma_chan			*dma_rx_channel;
382 	struct dma_chan			*dma_tx_channel;
383 	struct sg_table			sgt_rx;
384 	struct sg_table			sgt_tx;
385 	char				*dummypage;
386 	bool				dma_running;
387 #endif
388 	int cur_cs;
389 };
390 
391 /**
392  * struct chip_data - To maintain runtime state of SSP for each client chip
393  * @cr0: Value of control register CR0 of SSP - on later ST variants this
394  *       register is 32 bits wide rather than just 16
395  * @cr1: Value of control register CR1 of SSP
396  * @dmacr: Value of DMA control Register of SSP
397  * @cpsr: Value of Clock prescale register
398  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
399  * @enable_dma: Whether to enable DMA or not
400  * @read: function ptr to be used to read when doing xfer for this chip
401  * @write: function ptr to be used to write when doing xfer for this chip
402  * @xfer_type: polling/interrupt/DMA
403  *
404  * Runtime state of the SSP controller, maintained per chip,
405  * This would be set according to the current message that would be served
406  */
407 struct chip_data {
408 	u32 cr0;
409 	u16 cr1;
410 	u16 dmacr;
411 	u16 cpsr;
412 	u8 n_bytes;
413 	bool enable_dma;
414 	enum ssp_reading read;
415 	enum ssp_writing write;
416 	int xfer_type;
417 };
418 
419 /**
420  * internal_cs_control - Control chip select signals via SSP_CSR.
421  * @pl022: SSP driver private data structure
422  * @enable: select/delect the chip
423  *
424  * Used on controller with internal chip select control via SSP_CSR register
425  * (vendor extension). Each of the 5 LSB in the register controls one chip
426  * select signal.
427  */
internal_cs_control(struct pl022 * pl022,bool enable)428 static void internal_cs_control(struct pl022 *pl022, bool enable)
429 {
430 	u32 tmp;
431 
432 	tmp = readw(SSP_CSR(pl022->virtbase));
433 	if (enable)
434 		tmp &= ~BIT(pl022->cur_cs);
435 	else
436 		tmp |= BIT(pl022->cur_cs);
437 	writew(tmp, SSP_CSR(pl022->virtbase));
438 }
439 
pl022_cs_control(struct spi_device * spi,bool enable)440 static void pl022_cs_control(struct spi_device *spi, bool enable)
441 {
442 	struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
443 	if (pl022->vendor->internal_cs_ctrl)
444 		internal_cs_control(pl022, enable);
445 }
446 
447 /**
448  * flush - flush the FIFO to reach a clean state
449  * @pl022: SSP driver private data structure
450  */
flush(struct pl022 * pl022)451 static int flush(struct pl022 *pl022)
452 {
453 	unsigned long limit = loops_per_jiffy << 1;
454 
455 	dev_dbg(&pl022->adev->dev, "flush\n");
456 	do {
457 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
458 			readw(SSP_DR(pl022->virtbase));
459 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
460 
461 	pl022->exp_fifo_level = 0;
462 
463 	return limit;
464 }
465 
466 /**
467  * restore_state - Load configuration of current chip
468  * @pl022: SSP driver private data structure
469  */
restore_state(struct pl022 * pl022)470 static void restore_state(struct pl022 *pl022)
471 {
472 	struct chip_data *chip = pl022->cur_chip;
473 
474 	if (pl022->vendor->extended_cr)
475 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
476 	else
477 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
478 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
479 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
480 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
481 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
482 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
483 }
484 
485 /*
486  * Default SSP Register Values
487  */
488 #define DEFAULT_SSP_REG_CR0 ( \
489 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
490 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
491 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
492 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
493 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
494 )
495 
496 /* ST versions have slightly different bit layout */
497 #define DEFAULT_SSP_REG_CR0_ST ( \
498 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
499 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
500 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
501 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
502 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
503 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
504 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
505 )
506 
507 /* The PL023 version is slightly different again */
508 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
509 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
510 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
511 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
512 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
513 )
514 
515 #define DEFAULT_SSP_REG_CR1 ( \
516 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
517 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
518 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
519 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
520 )
521 
522 /* ST versions extend this register to use all 16 bits */
523 #define DEFAULT_SSP_REG_CR1_ST ( \
524 	DEFAULT_SSP_REG_CR1 | \
525 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
526 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
527 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
528 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
529 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
530 )
531 
532 /*
533  * The PL023 variant has further differences: no loopback mode, no microwire
534  * support, and a new clock feedback delay setting.
535  */
536 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
537 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
538 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
539 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
540 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
541 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
542 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
543 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
544 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
545 )
546 
547 #define DEFAULT_SSP_REG_CPSR ( \
548 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
549 )
550 
551 #define DEFAULT_SSP_REG_DMACR (\
552 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
553 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
554 )
555 
556 /**
557  * load_ssp_default_config - Load default configuration for SSP
558  * @pl022: SSP driver private data structure
559  */
load_ssp_default_config(struct pl022 * pl022)560 static void load_ssp_default_config(struct pl022 *pl022)
561 {
562 	if (pl022->vendor->pl023) {
563 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
564 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
565 	} else if (pl022->vendor->extended_cr) {
566 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
567 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
568 	} else {
569 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
570 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
571 	}
572 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
573 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
574 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
575 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
576 }
577 
578 /*
579  * This will write to TX and read from RX according to the parameters
580  * set in pl022.
581  */
readwriter(struct pl022 * pl022)582 static void readwriter(struct pl022 *pl022)
583 {
584 
585 	/*
586 	 * The FIFO depth is different between primecell variants.
587 	 * I believe filling in too much in the FIFO might cause
588 	 * errons in 8bit wide transfers on ARM variants (just 8 words
589 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
590 	 *
591 	 * To prevent this issue, the TX FIFO is only filled to the
592 	 * unused RX FIFO fill length, regardless of what the TX
593 	 * FIFO status flag indicates.
594 	 */
595 	dev_dbg(&pl022->adev->dev,
596 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
597 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
598 
599 	/* Read as much as you can */
600 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
601 	       && (pl022->rx < pl022->rx_end)) {
602 		switch (pl022->read) {
603 		case READING_NULL:
604 			readw(SSP_DR(pl022->virtbase));
605 			break;
606 		case READING_U8:
607 			*(u8 *) (pl022->rx) =
608 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
609 			break;
610 		case READING_U16:
611 			*(u16 *) (pl022->rx) =
612 				(u16) readw(SSP_DR(pl022->virtbase));
613 			break;
614 		case READING_U32:
615 			*(u32 *) (pl022->rx) =
616 				readl(SSP_DR(pl022->virtbase));
617 			break;
618 		}
619 		pl022->rx += (pl022->cur_chip->n_bytes);
620 		pl022->exp_fifo_level--;
621 	}
622 	/*
623 	 * Write as much as possible up to the RX FIFO size
624 	 */
625 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
626 	       && (pl022->tx < pl022->tx_end)) {
627 		switch (pl022->write) {
628 		case WRITING_NULL:
629 			writew(0x0, SSP_DR(pl022->virtbase));
630 			break;
631 		case WRITING_U8:
632 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
633 			break;
634 		case WRITING_U16:
635 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
636 			break;
637 		case WRITING_U32:
638 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
639 			break;
640 		}
641 		pl022->tx += (pl022->cur_chip->n_bytes);
642 		pl022->exp_fifo_level++;
643 		/*
644 		 * This inner reader takes care of things appearing in the RX
645 		 * FIFO as we're transmitting. This will happen a lot since the
646 		 * clock starts running when you put things into the TX FIFO,
647 		 * and then things are continuously clocked into the RX FIFO.
648 		 */
649 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
650 		       && (pl022->rx < pl022->rx_end)) {
651 			switch (pl022->read) {
652 			case READING_NULL:
653 				readw(SSP_DR(pl022->virtbase));
654 				break;
655 			case READING_U8:
656 				*(u8 *) (pl022->rx) =
657 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
658 				break;
659 			case READING_U16:
660 				*(u16 *) (pl022->rx) =
661 					(u16) readw(SSP_DR(pl022->virtbase));
662 				break;
663 			case READING_U32:
664 				*(u32 *) (pl022->rx) =
665 					readl(SSP_DR(pl022->virtbase));
666 				break;
667 			}
668 			pl022->rx += (pl022->cur_chip->n_bytes);
669 			pl022->exp_fifo_level--;
670 		}
671 	}
672 	/*
673 	 * When we exit here the TX FIFO should be full and the RX FIFO
674 	 * should be empty
675 	 */
676 }
677 
678 /*
679  * This DMA functionality is only compiled in if we have
680  * access to the generic DMA devices/DMA engine.
681  */
682 #ifdef CONFIG_DMA_ENGINE
unmap_free_dma_scatter(struct pl022 * pl022)683 static void unmap_free_dma_scatter(struct pl022 *pl022)
684 {
685 	/* Unmap and free the SG tables */
686 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
687 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
688 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
689 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
690 	sg_free_table(&pl022->sgt_rx);
691 	sg_free_table(&pl022->sgt_tx);
692 }
693 
dma_callback(void * data)694 static void dma_callback(void *data)
695 {
696 	struct pl022 *pl022 = data;
697 
698 	BUG_ON(!pl022->sgt_rx.sgl);
699 
700 #ifdef VERBOSE_DEBUG
701 	/*
702 	 * Optionally dump out buffers to inspect contents, this is
703 	 * good if you want to convince yourself that the loopback
704 	 * read/write contents are the same, when adopting to a new
705 	 * DMA engine.
706 	 */
707 	{
708 		struct scatterlist *sg;
709 		unsigned int i;
710 
711 		dma_sync_sg_for_cpu(&pl022->adev->dev,
712 				    pl022->sgt_rx.sgl,
713 				    pl022->sgt_rx.nents,
714 				    DMA_FROM_DEVICE);
715 
716 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
717 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
718 			print_hex_dump(KERN_ERR, "SPI RX: ",
719 				       DUMP_PREFIX_OFFSET,
720 				       16,
721 				       1,
722 				       sg_virt(sg),
723 				       sg_dma_len(sg),
724 				       1);
725 		}
726 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
727 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
728 			print_hex_dump(KERN_ERR, "SPI TX: ",
729 				       DUMP_PREFIX_OFFSET,
730 				       16,
731 				       1,
732 				       sg_virt(sg),
733 				       sg_dma_len(sg),
734 				       1);
735 		}
736 	}
737 #endif
738 
739 	unmap_free_dma_scatter(pl022);
740 
741 	spi_finalize_current_transfer(pl022->host);
742 }
743 
setup_dma_scatter(struct pl022 * pl022,void * buffer,unsigned int length,struct sg_table * sgtab)744 static void setup_dma_scatter(struct pl022 *pl022,
745 			      void *buffer,
746 			      unsigned int length,
747 			      struct sg_table *sgtab)
748 {
749 	struct scatterlist *sg;
750 	int bytesleft = length;
751 	void *bufp = buffer;
752 	int mapbytes;
753 	int i;
754 
755 	if (buffer) {
756 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
757 			/*
758 			 * If there are less bytes left than what fits
759 			 * in the current page (plus page alignment offset)
760 			 * we just feed in this, else we stuff in as much
761 			 * as we can.
762 			 */
763 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
764 				mapbytes = bytesleft;
765 			else
766 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
767 			sg_set_page(sg, virt_to_page(bufp),
768 				    mapbytes, offset_in_page(bufp));
769 			bufp += mapbytes;
770 			bytesleft -= mapbytes;
771 			dev_dbg(&pl022->adev->dev,
772 				"set RX/TX target page @ %p, %d bytes, %d left\n",
773 				bufp, mapbytes, bytesleft);
774 		}
775 	} else {
776 		/* Map the dummy buffer on every page */
777 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
778 			if (bytesleft < PAGE_SIZE)
779 				mapbytes = bytesleft;
780 			else
781 				mapbytes = PAGE_SIZE;
782 			sg_set_page(sg, virt_to_page(pl022->dummypage),
783 				    mapbytes, 0);
784 			bytesleft -= mapbytes;
785 			dev_dbg(&pl022->adev->dev,
786 				"set RX/TX to dummy page %d bytes, %d left\n",
787 				mapbytes, bytesleft);
788 
789 		}
790 	}
791 	BUG_ON(bytesleft);
792 }
793 
794 /**
795  * configure_dma - configures the channels for the next transfer
796  * @pl022: SSP driver's private data structure
797  */
configure_dma(struct pl022 * pl022)798 static int configure_dma(struct pl022 *pl022)
799 {
800 	struct dma_slave_config rx_conf = {
801 		.src_addr = SSP_DR(pl022->phybase),
802 		.direction = DMA_DEV_TO_MEM,
803 		.device_fc = false,
804 	};
805 	struct dma_slave_config tx_conf = {
806 		.dst_addr = SSP_DR(pl022->phybase),
807 		.direction = DMA_MEM_TO_DEV,
808 		.device_fc = false,
809 	};
810 	unsigned int pages;
811 	int ret;
812 	int rx_sglen, tx_sglen;
813 	struct dma_chan *rxchan = pl022->dma_rx_channel;
814 	struct dma_chan *txchan = pl022->dma_tx_channel;
815 	struct dma_async_tx_descriptor *rxdesc;
816 	struct dma_async_tx_descriptor *txdesc;
817 
818 	/* Check that the channels are available */
819 	if (!rxchan || !txchan)
820 		return -ENODEV;
821 
822 	/*
823 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
824 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
825 	 * not trigger on 2 elements this needs explicit mapping rather than
826 	 * calculation.
827 	 */
828 	switch (pl022->rx_lev_trig) {
829 	case SSP_RX_1_OR_MORE_ELEM:
830 		rx_conf.src_maxburst = 1;
831 		break;
832 	case SSP_RX_4_OR_MORE_ELEM:
833 		rx_conf.src_maxburst = 4;
834 		break;
835 	case SSP_RX_8_OR_MORE_ELEM:
836 		rx_conf.src_maxburst = 8;
837 		break;
838 	case SSP_RX_16_OR_MORE_ELEM:
839 		rx_conf.src_maxburst = 16;
840 		break;
841 	case SSP_RX_32_OR_MORE_ELEM:
842 		rx_conf.src_maxburst = 32;
843 		break;
844 	default:
845 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
846 		break;
847 	}
848 
849 	switch (pl022->tx_lev_trig) {
850 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
851 		tx_conf.dst_maxburst = 1;
852 		break;
853 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
854 		tx_conf.dst_maxburst = 4;
855 		break;
856 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
857 		tx_conf.dst_maxburst = 8;
858 		break;
859 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
860 		tx_conf.dst_maxburst = 16;
861 		break;
862 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
863 		tx_conf.dst_maxburst = 32;
864 		break;
865 	default:
866 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
867 		break;
868 	}
869 
870 	switch (pl022->read) {
871 	case READING_NULL:
872 		/* Use the same as for writing */
873 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
874 		break;
875 	case READING_U8:
876 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
877 		break;
878 	case READING_U16:
879 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
880 		break;
881 	case READING_U32:
882 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
883 		break;
884 	}
885 
886 	switch (pl022->write) {
887 	case WRITING_NULL:
888 		/* Use the same as for reading */
889 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
890 		break;
891 	case WRITING_U8:
892 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
893 		break;
894 	case WRITING_U16:
895 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
896 		break;
897 	case WRITING_U32:
898 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
899 		break;
900 	}
901 
902 	/* SPI pecularity: we need to read and write the same width */
903 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
904 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
905 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
906 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
907 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
908 
909 	dmaengine_slave_config(rxchan, &rx_conf);
910 	dmaengine_slave_config(txchan, &tx_conf);
911 
912 	/* Create sglists for the transfers */
913 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
914 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
915 
916 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
917 	if (ret)
918 		goto err_alloc_rx_sg;
919 
920 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
921 	if (ret)
922 		goto err_alloc_tx_sg;
923 
924 	/* Fill in the scatterlists for the RX+TX buffers */
925 	setup_dma_scatter(pl022, pl022->rx,
926 			  pl022->cur_transfer->len, &pl022->sgt_rx);
927 	setup_dma_scatter(pl022, pl022->tx,
928 			  pl022->cur_transfer->len, &pl022->sgt_tx);
929 
930 	/* Map DMA buffers */
931 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
932 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
933 	if (!rx_sglen)
934 		goto err_rx_sgmap;
935 
936 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
937 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
938 	if (!tx_sglen)
939 		goto err_tx_sgmap;
940 
941 	/* Send both scatterlists */
942 	rxdesc = dmaengine_prep_slave_sg(rxchan,
943 				      pl022->sgt_rx.sgl,
944 				      rx_sglen,
945 				      DMA_DEV_TO_MEM,
946 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
947 	if (!rxdesc)
948 		goto err_rxdesc;
949 
950 	txdesc = dmaengine_prep_slave_sg(txchan,
951 				      pl022->sgt_tx.sgl,
952 				      tx_sglen,
953 				      DMA_MEM_TO_DEV,
954 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
955 	if (!txdesc)
956 		goto err_txdesc;
957 
958 	/* Put the callback on the RX transfer only, that should finish last */
959 	rxdesc->callback = dma_callback;
960 	rxdesc->callback_param = pl022;
961 
962 	/* Submit and fire RX and TX with TX last so we're ready to read! */
963 	dmaengine_submit(rxdesc);
964 	dmaengine_submit(txdesc);
965 	dma_async_issue_pending(rxchan);
966 	dma_async_issue_pending(txchan);
967 	pl022->dma_running = true;
968 
969 	return 0;
970 
971 err_txdesc:
972 	dmaengine_terminate_all(txchan);
973 err_rxdesc:
974 	dmaengine_terminate_all(rxchan);
975 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
976 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
977 err_tx_sgmap:
978 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
979 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
980 err_rx_sgmap:
981 	sg_free_table(&pl022->sgt_tx);
982 err_alloc_tx_sg:
983 	sg_free_table(&pl022->sgt_rx);
984 err_alloc_rx_sg:
985 	return -ENOMEM;
986 }
987 
pl022_dma_probe(struct pl022 * pl022)988 static int pl022_dma_probe(struct pl022 *pl022)
989 {
990 	dma_cap_mask_t mask;
991 
992 	/* Try to acquire a generic DMA engine slave channel */
993 	dma_cap_zero(mask);
994 	dma_cap_set(DMA_SLAVE, mask);
995 	/*
996 	 * We need both RX and TX channels to do DMA, else do none
997 	 * of them.
998 	 */
999 	pl022->dma_rx_channel = dma_request_channel(mask,
1000 					    pl022->host_info->dma_filter,
1001 					    pl022->host_info->dma_rx_param);
1002 	if (!pl022->dma_rx_channel) {
1003 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1004 		goto err_no_rxchan;
1005 	}
1006 
1007 	pl022->dma_tx_channel = dma_request_channel(mask,
1008 					    pl022->host_info->dma_filter,
1009 					    pl022->host_info->dma_tx_param);
1010 	if (!pl022->dma_tx_channel) {
1011 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1012 		goto err_no_txchan;
1013 	}
1014 
1015 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1016 	if (!pl022->dummypage)
1017 		goto err_no_dummypage;
1018 
1019 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1020 		 dma_chan_name(pl022->dma_rx_channel),
1021 		 dma_chan_name(pl022->dma_tx_channel));
1022 
1023 	return 0;
1024 
1025 err_no_dummypage:
1026 	dma_release_channel(pl022->dma_tx_channel);
1027 err_no_txchan:
1028 	dma_release_channel(pl022->dma_rx_channel);
1029 	pl022->dma_rx_channel = NULL;
1030 err_no_rxchan:
1031 	dev_err(&pl022->adev->dev,
1032 			"Failed to work in dma mode, work without dma!\n");
1033 	return -ENODEV;
1034 }
1035 
pl022_dma_autoprobe(struct pl022 * pl022)1036 static int pl022_dma_autoprobe(struct pl022 *pl022)
1037 {
1038 	struct device *dev = &pl022->adev->dev;
1039 	struct dma_chan *chan;
1040 	int err;
1041 
1042 	/* automatically configure DMA channels from platform, normally using DT */
1043 	chan = dma_request_chan(dev, "rx");
1044 	if (IS_ERR(chan)) {
1045 		err = PTR_ERR(chan);
1046 		goto err_no_rxchan;
1047 	}
1048 
1049 	pl022->dma_rx_channel = chan;
1050 
1051 	chan = dma_request_chan(dev, "tx");
1052 	if (IS_ERR(chan)) {
1053 		err = PTR_ERR(chan);
1054 		goto err_no_txchan;
1055 	}
1056 
1057 	pl022->dma_tx_channel = chan;
1058 
1059 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1060 	if (!pl022->dummypage) {
1061 		err = -ENOMEM;
1062 		goto err_no_dummypage;
1063 	}
1064 
1065 	return 0;
1066 
1067 err_no_dummypage:
1068 	dma_release_channel(pl022->dma_tx_channel);
1069 	pl022->dma_tx_channel = NULL;
1070 err_no_txchan:
1071 	dma_release_channel(pl022->dma_rx_channel);
1072 	pl022->dma_rx_channel = NULL;
1073 err_no_rxchan:
1074 	return err;
1075 }
1076 
terminate_dma(struct pl022 * pl022)1077 static void terminate_dma(struct pl022 *pl022)
1078 {
1079 	if (!pl022->dma_running)
1080 		return;
1081 
1082 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1083 	struct dma_chan *txchan = pl022->dma_tx_channel;
1084 
1085 	dmaengine_terminate_all(rxchan);
1086 	dmaengine_terminate_all(txchan);
1087 	unmap_free_dma_scatter(pl022);
1088 	pl022->dma_running = false;
1089 }
1090 
pl022_dma_remove(struct pl022 * pl022)1091 static void pl022_dma_remove(struct pl022 *pl022)
1092 {
1093 	terminate_dma(pl022);
1094 	if (pl022->dma_tx_channel)
1095 		dma_release_channel(pl022->dma_tx_channel);
1096 	if (pl022->dma_rx_channel)
1097 		dma_release_channel(pl022->dma_rx_channel);
1098 	kfree(pl022->dummypage);
1099 }
1100 
1101 #else
configure_dma(struct pl022 * pl022)1102 static inline int configure_dma(struct pl022 *pl022)
1103 {
1104 	return -ENODEV;
1105 }
1106 
pl022_dma_autoprobe(struct pl022 * pl022)1107 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1108 {
1109 	return 0;
1110 }
1111 
pl022_dma_probe(struct pl022 * pl022)1112 static inline int pl022_dma_probe(struct pl022 *pl022)
1113 {
1114 	return 0;
1115 }
1116 
terminate_dma(struct pl022 * pl022)1117 static inline void terminate_dma(struct pl022 *pl022)
1118 {
1119 }
1120 
pl022_dma_remove(struct pl022 * pl022)1121 static inline void pl022_dma_remove(struct pl022 *pl022)
1122 {
1123 }
1124 #endif
1125 
1126 /**
1127  * pl022_interrupt_handler - Interrupt handler for SSP controller
1128  * @irq: IRQ number
1129  * @dev_id: Local device data
1130  *
1131  * This function handles interrupts generated for an interrupt based transfer.
1132  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1133  * current message's state as STATE_ERROR and schedule the tasklet
1134  * pump_transfers which will do the postprocessing of the current message by
1135  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1136  * more data, and writes data in TX FIFO till it is not full. If we complete
1137  * the transfer we move to the next transfer and schedule the tasklet.
1138  */
pl022_interrupt_handler(int irq,void * dev_id)1139 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1140 {
1141 	struct pl022 *pl022 = dev_id;
1142 	u16 irq_status = 0;
1143 	/* Read the Interrupt Status Register */
1144 	irq_status = readw(SSP_MIS(pl022->virtbase));
1145 
1146 	if (unlikely(!irq_status))
1147 		return IRQ_NONE;
1148 
1149 	/*
1150 	 * This handles the FIFO interrupts, the timeout
1151 	 * interrupts are flatly ignored, they cannot be
1152 	 * trusted.
1153 	 */
1154 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1155 		/*
1156 		 * Overrun interrupt - bail out since our Data has been
1157 		 * corrupted
1158 		 */
1159 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1160 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1161 			dev_err(&pl022->adev->dev,
1162 				"RXFIFO is full\n");
1163 
1164 		/*
1165 		 * Disable and clear interrupts, disable SSP,
1166 		 * mark message with bad status so it can be
1167 		 * retried.
1168 		 */
1169 		writew(DISABLE_ALL_INTERRUPTS,
1170 		       SSP_IMSC(pl022->virtbase));
1171 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1172 		writew((readw(SSP_CR1(pl022->virtbase)) &
1173 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1174 		pl022->cur_transfer->error |= SPI_TRANS_FAIL_IO;
1175 		spi_finalize_current_transfer(pl022->host);
1176 		return IRQ_HANDLED;
1177 	}
1178 
1179 	readwriter(pl022);
1180 
1181 	if (pl022->tx == pl022->tx_end) {
1182 		/* Disable Transmit interrupt, enable receive interrupt */
1183 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1184 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1185 		       SSP_IMSC(pl022->virtbase));
1186 	}
1187 
1188 	/*
1189 	 * Since all transactions must write as much as shall be read,
1190 	 * we can conclude the entire transaction once RX is complete.
1191 	 * At this point, all TX will always be finished.
1192 	 */
1193 	if (pl022->rx >= pl022->rx_end) {
1194 		writew(DISABLE_ALL_INTERRUPTS,
1195 		       SSP_IMSC(pl022->virtbase));
1196 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1197 		if (unlikely(pl022->rx > pl022->rx_end)) {
1198 			dev_warn(&pl022->adev->dev, "read %u surplus "
1199 				 "bytes (did you request an odd "
1200 				 "number of bytes on a 16bit bus?)\n",
1201 				 (u32) (pl022->rx - pl022->rx_end));
1202 		}
1203 		spi_finalize_current_transfer(pl022->host);
1204 		return IRQ_HANDLED;
1205 	}
1206 
1207 	return IRQ_HANDLED;
1208 }
1209 
1210 /*
1211  * This sets up the pointers to memory for the next message to
1212  * send out on the SPI bus.
1213  */
set_up_next_transfer(struct pl022 * pl022,struct spi_transfer * transfer)1214 static int set_up_next_transfer(struct pl022 *pl022,
1215 				struct spi_transfer *transfer)
1216 {
1217 	int residue;
1218 
1219 	/* Sanity check the message for this bus width */
1220 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1221 	if (unlikely(residue != 0)) {
1222 		dev_err(&pl022->adev->dev,
1223 			"message of %u bytes to transmit but the current "
1224 			"chip bus has a data width of %u bytes!\n",
1225 			pl022->cur_transfer->len,
1226 			pl022->cur_chip->n_bytes);
1227 		dev_err(&pl022->adev->dev, "skipping this message\n");
1228 		return -EIO;
1229 	}
1230 	pl022->tx = (void *)transfer->tx_buf;
1231 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1232 	pl022->rx = (void *)transfer->rx_buf;
1233 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1234 	pl022->write =
1235 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1236 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1237 	return 0;
1238 }
1239 
do_interrupt_dma_transfer(struct pl022 * pl022)1240 static int do_interrupt_dma_transfer(struct pl022 *pl022)
1241 {
1242 	int ret;
1243 
1244 	/*
1245 	 * Default is to enable all interrupts except RX -
1246 	 * this will be enabled once TX is complete
1247 	 */
1248 	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1249 
1250 	ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1251 	if (ret)
1252 		return ret;
1253 
1254 	/* If we're using DMA, set up DMA here */
1255 	if (pl022->cur_chip->enable_dma) {
1256 		/* Configure DMA transfer */
1257 		if (configure_dma(pl022)) {
1258 			dev_dbg(&pl022->adev->dev,
1259 				"configuration of DMA failed, fall back to interrupt mode\n");
1260 			goto err_config_dma;
1261 		}
1262 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1263 		irqflags = DISABLE_ALL_INTERRUPTS;
1264 	}
1265 err_config_dma:
1266 	/* Enable SSP, turn on interrupts */
1267 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1268 	       SSP_CR1(pl022->virtbase));
1269 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1270 	return 1;
1271 }
1272 
print_current_status(struct pl022 * pl022)1273 static void print_current_status(struct pl022 *pl022)
1274 {
1275 	u32 read_cr0;
1276 	u16 read_cr1, read_dmacr, read_sr;
1277 
1278 	if (pl022->vendor->extended_cr)
1279 		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1280 	else
1281 		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1282 	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1283 	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1284 	read_sr = readw(SSP_SR(pl022->virtbase));
1285 
1286 	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1287 	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1288 	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1289 	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1290 	dev_warn(&pl022->adev->dev,
1291 			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1292 			pl022->exp_fifo_level,
1293 			pl022->vendor->fifodepth);
1294 
1295 }
1296 
do_polling_transfer(struct pl022 * pl022)1297 static int do_polling_transfer(struct pl022 *pl022)
1298 {
1299 	int ret;
1300 	unsigned long time, timeout;
1301 
1302 	/* Configuration Changing Per Transfer */
1303 	ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1304 	if (ret)
1305 		return ret;
1306 	/* Flush FIFOs and enable SSP */
1307 	flush(pl022);
1308 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1309 		SSP_CR1(pl022->virtbase));
1310 
1311 	dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1312 
1313 	timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1314 	while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1315 		time = jiffies;
1316 		readwriter(pl022);
1317 		if (time_after(time, timeout)) {
1318 			dev_warn(&pl022->adev->dev,
1319 			"%s: timeout!\n", __func__);
1320 			print_current_status(pl022);
1321 			return -ETIMEDOUT;
1322 		}
1323 		cpu_relax();
1324 	}
1325 
1326 	return 0;
1327 }
1328 
pl022_transfer_one(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * transfer)1329 static int pl022_transfer_one(struct spi_controller *host, struct spi_device *spi,
1330 			      struct spi_transfer *transfer)
1331 {
1332 	struct pl022 *pl022 = spi_controller_get_devdata(host);
1333 
1334 	pl022->cur_transfer = transfer;
1335 
1336 	/* Setup the SPI using the per chip configuration */
1337 	pl022->cur_chip = spi_get_ctldata(spi);
1338 	pl022->cur_cs = spi_get_chipselect(spi, 0);
1339 
1340 	restore_state(pl022);
1341 	flush(pl022);
1342 
1343 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1344 		return do_polling_transfer(pl022);
1345 	else
1346 		return do_interrupt_dma_transfer(pl022);
1347 }
1348 
pl022_handle_err(struct spi_controller * ctlr,struct spi_message * message)1349 static void pl022_handle_err(struct spi_controller *ctlr, struct spi_message *message)
1350 {
1351 	struct pl022 *pl022 = spi_controller_get_devdata(ctlr);
1352 
1353 	terminate_dma(pl022);
1354 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1355 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1356 }
1357 
pl022_unprepare_transfer_hardware(struct spi_controller * host)1358 static int pl022_unprepare_transfer_hardware(struct spi_controller *host)
1359 {
1360 	struct pl022 *pl022 = spi_controller_get_devdata(host);
1361 
1362 	/* nothing more to do - disable spi/ssp and power off */
1363 	writew((readw(SSP_CR1(pl022->virtbase)) &
1364 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1365 
1366 	return 0;
1367 }
1368 
verify_controller_parameters(struct pl022 * pl022,struct pl022_config_chip const * chip_info)1369 static int verify_controller_parameters(struct pl022 *pl022,
1370 				struct pl022_config_chip const *chip_info)
1371 {
1372 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1373 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1374 		dev_err(&pl022->adev->dev,
1375 			"interface is configured incorrectly\n");
1376 		return -EINVAL;
1377 	}
1378 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1379 	    (!pl022->vendor->unidir)) {
1380 		dev_err(&pl022->adev->dev,
1381 			"unidirectional mode not supported in this "
1382 			"hardware version\n");
1383 		return -EINVAL;
1384 	}
1385 	if ((chip_info->hierarchy != SSP_MASTER)
1386 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1387 		dev_err(&pl022->adev->dev,
1388 			"hierarchy is configured incorrectly\n");
1389 		return -EINVAL;
1390 	}
1391 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1392 	    && (chip_info->com_mode != DMA_TRANSFER)
1393 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1394 		dev_err(&pl022->adev->dev,
1395 			"Communication mode is configured incorrectly\n");
1396 		return -EINVAL;
1397 	}
1398 	switch (chip_info->rx_lev_trig) {
1399 	case SSP_RX_1_OR_MORE_ELEM:
1400 	case SSP_RX_4_OR_MORE_ELEM:
1401 	case SSP_RX_8_OR_MORE_ELEM:
1402 		/* These are always OK, all variants can handle this */
1403 		break;
1404 	case SSP_RX_16_OR_MORE_ELEM:
1405 		if (pl022->vendor->fifodepth < 16) {
1406 			dev_err(&pl022->adev->dev,
1407 			"RX FIFO Trigger Level is configured incorrectly\n");
1408 			return -EINVAL;
1409 		}
1410 		break;
1411 	case SSP_RX_32_OR_MORE_ELEM:
1412 		if (pl022->vendor->fifodepth < 32) {
1413 			dev_err(&pl022->adev->dev,
1414 			"RX FIFO Trigger Level is configured incorrectly\n");
1415 			return -EINVAL;
1416 		}
1417 		break;
1418 	default:
1419 		dev_err(&pl022->adev->dev,
1420 			"RX FIFO Trigger Level is configured incorrectly\n");
1421 		return -EINVAL;
1422 	}
1423 	switch (chip_info->tx_lev_trig) {
1424 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1425 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1426 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1427 		/* These are always OK, all variants can handle this */
1428 		break;
1429 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1430 		if (pl022->vendor->fifodepth < 16) {
1431 			dev_err(&pl022->adev->dev,
1432 			"TX FIFO Trigger Level is configured incorrectly\n");
1433 			return -EINVAL;
1434 		}
1435 		break;
1436 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1437 		if (pl022->vendor->fifodepth < 32) {
1438 			dev_err(&pl022->adev->dev,
1439 			"TX FIFO Trigger Level is configured incorrectly\n");
1440 			return -EINVAL;
1441 		}
1442 		break;
1443 	default:
1444 		dev_err(&pl022->adev->dev,
1445 			"TX FIFO Trigger Level is configured incorrectly\n");
1446 		return -EINVAL;
1447 	}
1448 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1449 		if ((chip_info->ctrl_len < SSP_BITS_4)
1450 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1451 			dev_err(&pl022->adev->dev,
1452 				"CTRL LEN is configured incorrectly\n");
1453 			return -EINVAL;
1454 		}
1455 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1456 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1457 			dev_err(&pl022->adev->dev,
1458 				"Wait State is configured incorrectly\n");
1459 			return -EINVAL;
1460 		}
1461 		/* Half duplex is only available in the ST Micro version */
1462 		if (pl022->vendor->extended_cr) {
1463 			if ((chip_info->duplex !=
1464 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1465 			    && (chip_info->duplex !=
1466 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1467 				dev_err(&pl022->adev->dev,
1468 					"Microwire duplex mode is configured incorrectly\n");
1469 				return -EINVAL;
1470 			}
1471 		} else {
1472 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1473 				dev_err(&pl022->adev->dev,
1474 					"Microwire half duplex mode requested,"
1475 					" but this is only available in the"
1476 					" ST version of PL022\n");
1477 				return -EINVAL;
1478 			}
1479 		}
1480 	}
1481 	return 0;
1482 }
1483 
spi_rate(u32 rate,u16 cpsdvsr,u16 scr)1484 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1485 {
1486 	return rate / (cpsdvsr * (1 + scr));
1487 }
1488 
calculate_effective_freq(struct pl022 * pl022,int freq,struct ssp_clock_params * clk_freq)1489 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1490 				    ssp_clock_params * clk_freq)
1491 {
1492 	/* Lets calculate the frequency parameters */
1493 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1494 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1495 		best_scr = 0, tmp, found = 0;
1496 
1497 	rate = clk_get_rate(pl022->clk);
1498 	/* cpsdvscr = 2 & scr 0 */
1499 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1500 	/* cpsdvsr = 254 & scr = 255 */
1501 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1502 
1503 	if (freq > max_tclk)
1504 		dev_warn(&pl022->adev->dev,
1505 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1506 			max_tclk, freq);
1507 
1508 	if (freq < min_tclk) {
1509 		dev_err(&pl022->adev->dev,
1510 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1511 			freq, min_tclk);
1512 		return -EINVAL;
1513 	}
1514 
1515 	/*
1516 	 * best_freq will give closest possible available rate (<= requested
1517 	 * freq) for all values of scr & cpsdvsr.
1518 	 */
1519 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1520 		while (scr <= SCR_MAX) {
1521 			tmp = spi_rate(rate, cpsdvsr, scr);
1522 
1523 			if (tmp > freq) {
1524 				/* we need lower freq */
1525 				scr++;
1526 				continue;
1527 			}
1528 
1529 			/*
1530 			 * If found exact value, mark found and break.
1531 			 * If found more closer value, update and break.
1532 			 */
1533 			if (tmp > best_freq) {
1534 				best_freq = tmp;
1535 				best_cpsdvsr = cpsdvsr;
1536 				best_scr = scr;
1537 
1538 				if (tmp == freq)
1539 					found = 1;
1540 			}
1541 			/*
1542 			 * increased scr will give lower rates, which are not
1543 			 * required
1544 			 */
1545 			break;
1546 		}
1547 		cpsdvsr += 2;
1548 		scr = SCR_MIN;
1549 	}
1550 
1551 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1552 			freq);
1553 
1554 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1555 	clk_freq->scr = (u8) (best_scr & 0xFF);
1556 	dev_dbg(&pl022->adev->dev,
1557 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1558 		freq, best_freq);
1559 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1560 		clk_freq->cpsdvsr, clk_freq->scr);
1561 
1562 	return 0;
1563 }
1564 
1565 /*
1566  * A piece of default chip info unless the platform
1567  * supplies it.
1568  */
1569 static const struct pl022_config_chip pl022_default_chip_info = {
1570 	.com_mode = INTERRUPT_TRANSFER,
1571 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1572 	.hierarchy = SSP_MASTER,
1573 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1574 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1575 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1576 	.ctrl_len = SSP_BITS_8,
1577 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1578 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1579 };
1580 
1581 /**
1582  * pl022_setup - setup function registered to SPI host framework
1583  * @spi: spi device which is requesting setup
1584  *
1585  * This function is registered to the SPI framework for this SPI host
1586  * controller. If it is the first time when setup is called by this device,
1587  * this function will initialize the runtime state for this chip and save
1588  * the same in the device structure. Else it will update the runtime info
1589  * with the updated chip info. Nothing is really being written to the
1590  * controller hardware here, that is not done until the actual transfer
1591  * commence.
1592  */
pl022_setup(struct spi_device * spi)1593 static int pl022_setup(struct spi_device *spi)
1594 {
1595 	struct pl022_config_chip const *chip_info;
1596 	struct pl022_config_chip chip_info_dt;
1597 	struct chip_data *chip;
1598 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1599 	int status = 0;
1600 	struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
1601 	unsigned int bits = spi->bits_per_word;
1602 	u32 tmp;
1603 	struct device_node *np = spi->dev.of_node;
1604 
1605 	if (!spi->max_speed_hz)
1606 		return -EINVAL;
1607 
1608 	/* Get controller_state if one is supplied */
1609 	chip = spi_get_ctldata(spi);
1610 
1611 	if (chip == NULL) {
1612 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1613 		if (!chip)
1614 			return -ENOMEM;
1615 		dev_dbg(&spi->dev,
1616 			"allocated memory for controller's runtime state\n");
1617 	}
1618 
1619 	/* Get controller data if one is supplied */
1620 	chip_info = spi->controller_data;
1621 
1622 	if (chip_info == NULL) {
1623 		if (np) {
1624 			chip_info_dt = pl022_default_chip_info;
1625 
1626 			chip_info_dt.hierarchy = SSP_MASTER;
1627 			of_property_read_u32(np, "pl022,interface",
1628 				&chip_info_dt.iface);
1629 			of_property_read_u32(np, "pl022,com-mode",
1630 				&chip_info_dt.com_mode);
1631 			of_property_read_u32(np, "pl022,rx-level-trig",
1632 				&chip_info_dt.rx_lev_trig);
1633 			of_property_read_u32(np, "pl022,tx-level-trig",
1634 				&chip_info_dt.tx_lev_trig);
1635 			of_property_read_u32(np, "pl022,ctrl-len",
1636 				&chip_info_dt.ctrl_len);
1637 			of_property_read_u32(np, "pl022,wait-state",
1638 				&chip_info_dt.wait_state);
1639 			of_property_read_u32(np, "pl022,duplex",
1640 				&chip_info_dt.duplex);
1641 
1642 			chip_info = &chip_info_dt;
1643 		} else {
1644 			chip_info = &pl022_default_chip_info;
1645 			/* spi_board_info.controller_data not is supplied */
1646 			dev_dbg(&spi->dev,
1647 				"using default controller_data settings\n");
1648 		}
1649 	} else
1650 		dev_dbg(&spi->dev,
1651 			"using user supplied controller_data settings\n");
1652 
1653 	/*
1654 	 * We can override with custom divisors, else we use the board
1655 	 * frequency setting
1656 	 */
1657 	if ((0 == chip_info->clk_freq.cpsdvsr)
1658 	    && (0 == chip_info->clk_freq.scr)) {
1659 		status = calculate_effective_freq(pl022,
1660 						  spi->max_speed_hz,
1661 						  &clk_freq);
1662 		if (status < 0)
1663 			goto err_config_params;
1664 	} else {
1665 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1666 		if ((clk_freq.cpsdvsr % 2) != 0)
1667 			clk_freq.cpsdvsr =
1668 				clk_freq.cpsdvsr - 1;
1669 	}
1670 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1671 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1672 		status = -EINVAL;
1673 		dev_err(&spi->dev,
1674 			"cpsdvsr is configured incorrectly\n");
1675 		goto err_config_params;
1676 	}
1677 
1678 	status = verify_controller_parameters(pl022, chip_info);
1679 	if (status) {
1680 		dev_err(&spi->dev, "controller data is incorrect");
1681 		goto err_config_params;
1682 	}
1683 
1684 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1685 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1686 
1687 	/* Now set controller state based on controller data */
1688 	chip->xfer_type = chip_info->com_mode;
1689 
1690 	/* Check bits per word with vendor specific range */
1691 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1692 		status = -ENOTSUPP;
1693 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1694 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1695 				pl022->vendor->max_bpw);
1696 		goto err_config_params;
1697 	} else if (bits <= 8) {
1698 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1699 		chip->n_bytes = 1;
1700 		chip->read = READING_U8;
1701 		chip->write = WRITING_U8;
1702 	} else if (bits <= 16) {
1703 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1704 		chip->n_bytes = 2;
1705 		chip->read = READING_U16;
1706 		chip->write = WRITING_U16;
1707 	} else {
1708 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1709 		chip->n_bytes = 4;
1710 		chip->read = READING_U32;
1711 		chip->write = WRITING_U32;
1712 	}
1713 
1714 	/* Now Initialize all register settings required for this chip */
1715 	chip->cr0 = 0;
1716 	chip->cr1 = 0;
1717 	chip->dmacr = 0;
1718 	chip->cpsr = 0;
1719 	if ((chip_info->com_mode == DMA_TRANSFER)
1720 	    && ((pl022->host_info)->enable_dma)) {
1721 		chip->enable_dma = true;
1722 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1723 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1724 			       SSP_DMACR_MASK_RXDMAE, 0);
1725 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1726 			       SSP_DMACR_MASK_TXDMAE, 1);
1727 	} else {
1728 		chip->enable_dma = false;
1729 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1730 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1731 			       SSP_DMACR_MASK_RXDMAE, 0);
1732 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1733 			       SSP_DMACR_MASK_TXDMAE, 1);
1734 	}
1735 
1736 	chip->cpsr = clk_freq.cpsdvsr;
1737 
1738 	/* Special setup for the ST micro extended control registers */
1739 	if (pl022->vendor->extended_cr) {
1740 		u32 etx;
1741 
1742 		if (pl022->vendor->pl023) {
1743 			/* These bits are only in the PL023 */
1744 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1745 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1746 		} else {
1747 			/* These bits are in the PL022 but not PL023 */
1748 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1749 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1750 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1751 				       SSP_CR0_MASK_CSS_ST, 16);
1752 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1753 				       SSP_CR0_MASK_FRF_ST, 21);
1754 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1755 				       SSP_CR1_MASK_MWAIT_ST, 6);
1756 		}
1757 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1758 			       SSP_CR0_MASK_DSS_ST, 0);
1759 
1760 		if (spi->mode & SPI_LSB_FIRST) {
1761 			tmp = SSP_RX_LSB;
1762 			etx = SSP_TX_LSB;
1763 		} else {
1764 			tmp = SSP_RX_MSB;
1765 			etx = SSP_TX_MSB;
1766 		}
1767 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1768 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1769 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1770 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
1771 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1772 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
1773 	} else {
1774 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1775 			       SSP_CR0_MASK_DSS, 0);
1776 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1777 			       SSP_CR0_MASK_FRF, 4);
1778 	}
1779 
1780 	/* Stuff that is common for all versions */
1781 	if (spi->mode & SPI_CPOL)
1782 		tmp = SSP_CLK_POL_IDLE_HIGH;
1783 	else
1784 		tmp = SSP_CLK_POL_IDLE_LOW;
1785 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1786 
1787 	if (spi->mode & SPI_CPHA)
1788 		tmp = SSP_CLK_SECOND_EDGE;
1789 	else
1790 		tmp = SSP_CLK_FIRST_EDGE;
1791 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1792 
1793 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1794 	/* Loopback is available on all versions except PL023 */
1795 	if (pl022->vendor->loopback) {
1796 		if (spi->mode & SPI_LOOP)
1797 			tmp = LOOPBACK_ENABLED;
1798 		else
1799 			tmp = LOOPBACK_DISABLED;
1800 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1801 	}
1802 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1803 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1804 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1805 		3);
1806 
1807 	/* Save controller_state */
1808 	spi_set_ctldata(spi, chip);
1809 	return status;
1810  err_config_params:
1811 	spi_set_ctldata(spi, NULL);
1812 	kfree(chip);
1813 	return status;
1814 }
1815 
1816 /**
1817  * pl022_cleanup - cleanup function registered to SPI host framework
1818  * @spi: spi device which is requesting cleanup
1819  *
1820  * This function is registered to the SPI framework for this SPI host
1821  * controller. It will free the runtime state of chip.
1822  */
pl022_cleanup(struct spi_device * spi)1823 static void pl022_cleanup(struct spi_device *spi)
1824 {
1825 	struct chip_data *chip = spi_get_ctldata(spi);
1826 
1827 	spi_set_ctldata(spi, NULL);
1828 	kfree(chip);
1829 }
1830 
1831 static struct pl022_ssp_controller *
pl022_platform_data_dt_get(struct device * dev)1832 pl022_platform_data_dt_get(struct device *dev)
1833 {
1834 	struct device_node *np = dev->of_node;
1835 	struct pl022_ssp_controller *pd;
1836 
1837 	if (!np) {
1838 		dev_err(dev, "no dt node defined\n");
1839 		return NULL;
1840 	}
1841 
1842 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
1843 	if (!pd)
1844 		return NULL;
1845 
1846 	pd->bus_id = -1;
1847 	of_property_read_u32(np, "pl022,autosuspend-delay",
1848 			     &pd->autosuspend_delay);
1849 	pd->rt = of_property_read_bool(np, "pl022,rt");
1850 
1851 	return pd;
1852 }
1853 
pl022_probe(struct amba_device * adev,const struct amba_id * id)1854 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
1855 {
1856 	struct device *dev = &adev->dev;
1857 	struct pl022_ssp_controller *platform_info =
1858 			dev_get_platdata(&adev->dev);
1859 	struct spi_controller *host;
1860 	struct pl022 *pl022 = NULL;	/*Data for this driver */
1861 	int status = 0;
1862 
1863 	dev_info(&adev->dev,
1864 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
1865 	if (!platform_info && IS_ENABLED(CONFIG_OF))
1866 		platform_info = pl022_platform_data_dt_get(dev);
1867 
1868 	if (!platform_info) {
1869 		dev_err(dev, "probe: no platform data defined\n");
1870 		return -ENODEV;
1871 	}
1872 
1873 	/* Allocate host with space for data */
1874 	host = spi_alloc_host(dev, sizeof(struct pl022));
1875 	if (host == NULL) {
1876 		dev_err(&adev->dev, "probe - cannot alloc SPI host\n");
1877 		return -ENOMEM;
1878 	}
1879 
1880 	pl022 = spi_controller_get_devdata(host);
1881 	pl022->host = host;
1882 	pl022->host_info = platform_info;
1883 	pl022->adev = adev;
1884 	pl022->vendor = id->data;
1885 
1886 	/*
1887 	 * Bus Number Which has been Assigned to this SSP controller
1888 	 * on this board
1889 	 */
1890 	host->bus_num = platform_info->bus_id;
1891 	host->cleanup = pl022_cleanup;
1892 	host->setup = pl022_setup;
1893 	host->auto_runtime_pm = true;
1894 	host->transfer_one = pl022_transfer_one;
1895 	host->set_cs = pl022_cs_control;
1896 	host->handle_err = pl022_handle_err;
1897 	host->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
1898 	host->rt = platform_info->rt;
1899 	host->dev.of_node = dev->of_node;
1900 	host->use_gpio_descriptors = true;
1901 
1902 	/*
1903 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
1904 	 * always MS bit first on the original pl022.
1905 	 */
1906 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1907 	if (pl022->vendor->extended_cr)
1908 		host->mode_bits |= SPI_LSB_FIRST;
1909 
1910 	dev_dbg(&adev->dev, "BUSNO: %d\n", host->bus_num);
1911 
1912 	status = amba_request_regions(adev, NULL);
1913 	if (status)
1914 		goto err_no_ioregion;
1915 
1916 	pl022->phybase = adev->res.start;
1917 	pl022->virtbase = devm_ioremap(dev, adev->res.start,
1918 				       resource_size(&adev->res));
1919 	if (pl022->virtbase == NULL) {
1920 		status = -ENOMEM;
1921 		goto err_no_ioremap;
1922 	}
1923 	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
1924 		&adev->res.start, pl022->virtbase);
1925 
1926 	pl022->clk = devm_clk_get_enabled(&adev->dev, NULL);
1927 	if (IS_ERR(pl022->clk)) {
1928 		status = PTR_ERR(pl022->clk);
1929 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
1930 		goto err_no_clk;
1931 	}
1932 
1933 	/* Disable SSP */
1934 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
1935 	       SSP_CR1(pl022->virtbase));
1936 	load_ssp_default_config(pl022);
1937 
1938 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
1939 				  0, "pl022", pl022);
1940 	if (status < 0) {
1941 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
1942 		goto err_no_irq;
1943 	}
1944 
1945 	/* Get DMA channels, try autoconfiguration first */
1946 	status = pl022_dma_autoprobe(pl022);
1947 	if (status == -EPROBE_DEFER) {
1948 		dev_dbg(dev, "deferring probe to get DMA channel\n");
1949 		goto err_no_irq;
1950 	}
1951 
1952 	/* If that failed, use channels from platform_info */
1953 	if (status == 0)
1954 		platform_info->enable_dma = 1;
1955 	else if (platform_info->enable_dma) {
1956 		status = pl022_dma_probe(pl022);
1957 		if (status != 0)
1958 			platform_info->enable_dma = 0;
1959 	}
1960 
1961 	/* Register with the SPI framework */
1962 	amba_set_drvdata(adev, pl022);
1963 	status = devm_spi_register_controller(&adev->dev, host);
1964 	if (status != 0) {
1965 		dev_err_probe(&adev->dev, status,
1966 			      "problem registering spi host\n");
1967 		goto err_spi_register;
1968 	}
1969 	dev_dbg(dev, "probe succeeded\n");
1970 
1971 	/* let runtime pm put suspend */
1972 	if (platform_info->autosuspend_delay > 0) {
1973 		dev_info(&adev->dev,
1974 			"will use autosuspend for runtime pm, delay %dms\n",
1975 			platform_info->autosuspend_delay);
1976 		pm_runtime_set_autosuspend_delay(dev,
1977 			platform_info->autosuspend_delay);
1978 		pm_runtime_use_autosuspend(dev);
1979 	}
1980 	pm_runtime_put(dev);
1981 
1982 	return 0;
1983 
1984  err_spi_register:
1985 	if (platform_info->enable_dma)
1986 		pl022_dma_remove(pl022);
1987  err_no_irq:
1988  err_no_clk:
1989  err_no_ioremap:
1990 	amba_release_regions(adev);
1991  err_no_ioregion:
1992 	spi_controller_put(host);
1993 	return status;
1994 }
1995 
1996 static void
pl022_remove(struct amba_device * adev)1997 pl022_remove(struct amba_device *adev)
1998 {
1999 	struct pl022 *pl022 = amba_get_drvdata(adev);
2000 
2001 	if (!pl022)
2002 		return;
2003 
2004 	/*
2005 	 * undo pm_runtime_put() in probe.  I assume that we're not
2006 	 * accessing the primecell here.
2007 	 */
2008 	pm_runtime_get_noresume(&adev->dev);
2009 
2010 	load_ssp_default_config(pl022);
2011 	if (pl022->host_info->enable_dma)
2012 		pl022_dma_remove(pl022);
2013 
2014 	amba_release_regions(adev);
2015 }
2016 
2017 #ifdef CONFIG_PM_SLEEP
pl022_suspend(struct device * dev)2018 static int pl022_suspend(struct device *dev)
2019 {
2020 	struct pl022 *pl022 = dev_get_drvdata(dev);
2021 	int ret;
2022 
2023 	ret = spi_controller_suspend(pl022->host);
2024 	if (ret)
2025 		return ret;
2026 
2027 	ret = pm_runtime_force_suspend(dev);
2028 	if (ret) {
2029 		spi_controller_resume(pl022->host);
2030 		return ret;
2031 	}
2032 
2033 	pinctrl_pm_select_sleep_state(dev);
2034 
2035 	dev_dbg(dev, "suspended\n");
2036 	return 0;
2037 }
2038 
pl022_resume(struct device * dev)2039 static int pl022_resume(struct device *dev)
2040 {
2041 	struct pl022 *pl022 = dev_get_drvdata(dev);
2042 	int ret;
2043 
2044 	ret = pm_runtime_force_resume(dev);
2045 	if (ret)
2046 		dev_err(dev, "problem resuming\n");
2047 
2048 	/* Start the queue running */
2049 	ret = spi_controller_resume(pl022->host);
2050 	if (!ret)
2051 		dev_dbg(dev, "resumed\n");
2052 
2053 	return ret;
2054 }
2055 #endif
2056 
2057 #ifdef CONFIG_PM
pl022_runtime_suspend(struct device * dev)2058 static int pl022_runtime_suspend(struct device *dev)
2059 {
2060 	struct pl022 *pl022 = dev_get_drvdata(dev);
2061 
2062 	clk_disable_unprepare(pl022->clk);
2063 	pinctrl_pm_select_idle_state(dev);
2064 
2065 	return 0;
2066 }
2067 
pl022_runtime_resume(struct device * dev)2068 static int pl022_runtime_resume(struct device *dev)
2069 {
2070 	struct pl022 *pl022 = dev_get_drvdata(dev);
2071 
2072 	pinctrl_pm_select_default_state(dev);
2073 	clk_prepare_enable(pl022->clk);
2074 
2075 	return 0;
2076 }
2077 #endif
2078 
2079 static const struct dev_pm_ops pl022_dev_pm_ops = {
2080 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2081 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2082 };
2083 
2084 static struct vendor_data vendor_arm = {
2085 	.fifodepth = 8,
2086 	.max_bpw = 16,
2087 	.unidir = false,
2088 	.extended_cr = false,
2089 	.pl023 = false,
2090 	.loopback = true,
2091 	.internal_cs_ctrl = false,
2092 };
2093 
2094 static struct vendor_data vendor_st = {
2095 	.fifodepth = 32,
2096 	.max_bpw = 32,
2097 	.unidir = false,
2098 	.extended_cr = true,
2099 	.pl023 = false,
2100 	.loopback = true,
2101 	.internal_cs_ctrl = false,
2102 };
2103 
2104 static struct vendor_data vendor_st_pl023 = {
2105 	.fifodepth = 32,
2106 	.max_bpw = 32,
2107 	.unidir = false,
2108 	.extended_cr = true,
2109 	.pl023 = true,
2110 	.loopback = false,
2111 	.internal_cs_ctrl = false,
2112 };
2113 
2114 static struct vendor_data vendor_lsi = {
2115 	.fifodepth = 8,
2116 	.max_bpw = 16,
2117 	.unidir = false,
2118 	.extended_cr = false,
2119 	.pl023 = false,
2120 	.loopback = true,
2121 	.internal_cs_ctrl = true,
2122 };
2123 
2124 static const struct amba_id pl022_ids[] = {
2125 	{
2126 		/*
2127 		 * ARM PL022 variant, this has a 16bit wide
2128 		 * and 8 locations deep TX/RX FIFO
2129 		 */
2130 		.id	= 0x00041022,
2131 		.mask	= 0x000fffff,
2132 		.data	= &vendor_arm,
2133 	},
2134 	{
2135 		/*
2136 		 * ST Micro derivative, this has 32bit wide
2137 		 * and 32 locations deep TX/RX FIFO
2138 		 */
2139 		.id	= 0x01080022,
2140 		.mask	= 0xffffffff,
2141 		.data	= &vendor_st,
2142 	},
2143 	{
2144 		/*
2145 		 * ST-Ericsson derivative "PL023" (this is not
2146 		 * an official ARM number), this is a PL022 SSP block
2147 		 * stripped to SPI mode only, it has 32bit wide
2148 		 * and 32 locations deep TX/RX FIFO but no extended
2149 		 * CR0/CR1 register
2150 		 */
2151 		.id	= 0x00080023,
2152 		.mask	= 0xffffffff,
2153 		.data	= &vendor_st_pl023,
2154 	},
2155 	{
2156 		/*
2157 		 * PL022 variant that has a chip select control register whih
2158 		 * allows control of 5 output signals nCS[0:4].
2159 		 */
2160 		.id	= 0x000b6022,
2161 		.mask	= 0x000fffff,
2162 		.data	= &vendor_lsi,
2163 	},
2164 	{ 0, 0 },
2165 };
2166 
2167 MODULE_DEVICE_TABLE(amba, pl022_ids);
2168 
2169 static struct amba_driver pl022_driver = {
2170 	.drv = {
2171 		.name	= "ssp-pl022",
2172 		.pm	= &pl022_dev_pm_ops,
2173 	},
2174 	.id_table	= pl022_ids,
2175 	.probe		= pl022_probe,
2176 	.remove		= pl022_remove,
2177 };
2178 
pl022_init(void)2179 static int __init pl022_init(void)
2180 {
2181 	return amba_driver_register(&pl022_driver);
2182 }
2183 subsys_initcall(pl022_init);
2184 
pl022_exit(void)2185 static void __exit pl022_exit(void)
2186 {
2187 	amba_driver_unregister(&pl022_driver);
2188 }
2189 module_exit(pl022_exit);
2190 
2191 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2192 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2193 MODULE_LICENSE("GPL");
2194