1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * GPMC support functions
4   *
5   * Copyright (C) 2005-2006 Nokia Corporation
6   *
7   * Author: Juha Yrjola
8   *
9   * Copyright (C) 2009 Texas Instruments
10   * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
11   */
12  #include <linux/cleanup.h>
13  #include <linux/cpu_pm.h>
14  #include <linux/irq.h>
15  #include <linux/kernel.h>
16  #include <linux/module.h>
17  #include <linux/init.h>
18  #include <linux/err.h>
19  #include <linux/clk.h>
20  #include <linux/ioport.h>
21  #include <linux/spinlock.h>
22  #include <linux/io.h>
23  #include <linux/gpio/driver.h>
24  #include <linux/gpio/consumer.h> /* GPIO descriptor enum */
25  #include <linux/gpio/machine.h>
26  #include <linux/interrupt.h>
27  #include <linux/irqdomain.h>
28  #include <linux/platform_device.h>
29  #include <linux/of.h>
30  #include <linux/of_address.h>
31  #include <linux/of_device.h>
32  #include <linux/of_platform.h>
33  #include <linux/omap-gpmc.h>
34  #include <linux/pm_runtime.h>
35  #include <linux/sizes.h>
36  
37  #include <linux/platform_data/mtd-nand-omap2.h>
38  
39  #define	DEVICE_NAME		"omap-gpmc"
40  
41  /* GPMC register offsets */
42  #define GPMC_REVISION		0x00
43  #define GPMC_SYSCONFIG		0x10
44  #define GPMC_SYSSTATUS		0x14
45  #define GPMC_IRQSTATUS		0x18
46  #define GPMC_IRQENABLE		0x1c
47  #define GPMC_TIMEOUT_CONTROL	0x40
48  #define GPMC_ERR_ADDRESS	0x44
49  #define GPMC_ERR_TYPE		0x48
50  #define GPMC_CONFIG		0x50
51  #define GPMC_STATUS		0x54
52  #define GPMC_PREFETCH_CONFIG1	0x1e0
53  #define GPMC_PREFETCH_CONFIG2	0x1e4
54  #define GPMC_PREFETCH_CONTROL	0x1ec
55  #define GPMC_PREFETCH_STATUS	0x1f0
56  #define GPMC_ECC_CONFIG		0x1f4
57  #define GPMC_ECC_CONTROL	0x1f8
58  #define GPMC_ECC_SIZE_CONFIG	0x1fc
59  #define GPMC_ECC1_RESULT        0x200
60  #define GPMC_ECC_BCH_RESULT_0   0x240   /* not available on OMAP2 */
61  #define	GPMC_ECC_BCH_RESULT_1	0x244	/* not available on OMAP2 */
62  #define	GPMC_ECC_BCH_RESULT_2	0x248	/* not available on OMAP2 */
63  #define	GPMC_ECC_BCH_RESULT_3	0x24c	/* not available on OMAP2 */
64  #define	GPMC_ECC_BCH_RESULT_4	0x300	/* not available on OMAP2 */
65  #define	GPMC_ECC_BCH_RESULT_5	0x304	/* not available on OMAP2 */
66  #define	GPMC_ECC_BCH_RESULT_6	0x308	/* not available on OMAP2 */
67  
68  /* GPMC ECC control settings */
69  #define GPMC_ECC_CTRL_ECCCLEAR		0x100
70  #define GPMC_ECC_CTRL_ECCDISABLE	0x000
71  #define GPMC_ECC_CTRL_ECCREG1		0x001
72  #define GPMC_ECC_CTRL_ECCREG2		0x002
73  #define GPMC_ECC_CTRL_ECCREG3		0x003
74  #define GPMC_ECC_CTRL_ECCREG4		0x004
75  #define GPMC_ECC_CTRL_ECCREG5		0x005
76  #define GPMC_ECC_CTRL_ECCREG6		0x006
77  #define GPMC_ECC_CTRL_ECCREG7		0x007
78  #define GPMC_ECC_CTRL_ECCREG8		0x008
79  #define GPMC_ECC_CTRL_ECCREG9		0x009
80  
81  #define GPMC_CONFIG_LIMITEDADDRESS		BIT(1)
82  
83  #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS	BIT(0)
84  
85  #define	GPMC_CONFIG2_CSEXTRADELAY		BIT(7)
86  #define	GPMC_CONFIG3_ADVEXTRADELAY		BIT(7)
87  #define	GPMC_CONFIG4_OEEXTRADELAY		BIT(7)
88  #define	GPMC_CONFIG4_WEEXTRADELAY		BIT(23)
89  #define	GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN	BIT(6)
90  #define	GPMC_CONFIG6_CYCLE2CYCLESAMECSEN	BIT(7)
91  
92  #define GPMC_CS0_OFFSET		0x60
93  #define GPMC_CS_SIZE		0x30
94  #define	GPMC_BCH_SIZE		0x10
95  
96  /*
97   * The first 1MB of GPMC address space is typically mapped to
98   * the internal ROM. Never allocate the first page, to
99   * facilitate bug detection; even if we didn't boot from ROM.
100   * As GPMC minimum partition size is 16MB we can only start from
101   * there.
102   */
103  #define GPMC_MEM_START		0x1000000
104  #define GPMC_MEM_END		0x3FFFFFFF
105  
106  #define GPMC_CHUNK_SHIFT	24		/* 16 MB */
107  #define GPMC_SECTION_SHIFT	28		/* 128 MB */
108  
109  #define CS_NUM_SHIFT		24
110  #define ENABLE_PREFETCH		(0x1 << 7)
111  #define DMA_MPU_MODE		2
112  
113  #define	GPMC_REVISION_MAJOR(l)		(((l) >> 4) & 0xf)
114  #define	GPMC_REVISION_MINOR(l)		((l) & 0xf)
115  
116  #define	GPMC_HAS_WR_ACCESS		0x1
117  #define	GPMC_HAS_WR_DATA_MUX_BUS	0x2
118  #define	GPMC_HAS_MUX_AAD		0x4
119  
120  #define GPMC_NR_WAITPINS		4
121  
122  #define GPMC_CS_CONFIG1		0x00
123  #define GPMC_CS_CONFIG2		0x04
124  #define GPMC_CS_CONFIG3		0x08
125  #define GPMC_CS_CONFIG4		0x0c
126  #define GPMC_CS_CONFIG5		0x10
127  #define GPMC_CS_CONFIG6		0x14
128  #define GPMC_CS_CONFIG7		0x18
129  #define GPMC_CS_NAND_COMMAND	0x1c
130  #define GPMC_CS_NAND_ADDRESS	0x20
131  #define GPMC_CS_NAND_DATA	0x24
132  
133  /* Control Commands */
134  #define GPMC_CONFIG_RDY_BSY	0x00000001
135  #define GPMC_CONFIG_DEV_SIZE	0x00000002
136  #define GPMC_CONFIG_DEV_TYPE	0x00000003
137  
138  #define GPMC_CONFIG_WAITPINPOLARITY(pin)	(BIT(pin) << 8)
139  #define GPMC_CONFIG1_WRAPBURST_SUPP     (1 << 31)
140  #define GPMC_CONFIG1_READMULTIPLE_SUPP  (1 << 30)
141  #define GPMC_CONFIG1_READTYPE_ASYNC     (0 << 29)
142  #define GPMC_CONFIG1_READTYPE_SYNC      (1 << 29)
143  #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
144  #define GPMC_CONFIG1_WRITETYPE_ASYNC    (0 << 27)
145  #define GPMC_CONFIG1_WRITETYPE_SYNC     (1 << 27)
146  #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25)
147  /** CLKACTIVATIONTIME Max Ticks */
148  #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
149  #define GPMC_CONFIG1_PAGE_LEN(val)      (((val) & 3) << 23)
150  /** ATTACHEDDEVICEPAGELENGTH Max Value */
151  #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
152  #define GPMC_CONFIG1_WAIT_READ_MON      (1 << 22)
153  #define GPMC_CONFIG1_WAIT_WRITE_MON     (1 << 21)
154  #define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18)
155  /** WAITMONITORINGTIME Max Ticks */
156  #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX  2
157  #define GPMC_CONFIG1_WAIT_PIN_SEL(val)  (((val) & 3) << 16)
158  #define GPMC_CONFIG1_DEVICESIZE(val)    (((val) & 3) << 12)
159  #define GPMC_CONFIG1_DEVICESIZE_16      GPMC_CONFIG1_DEVICESIZE(1)
160  /** DEVICESIZE Max Value */
161  #define GPMC_CONFIG1_DEVICESIZE_MAX     1
162  #define GPMC_CONFIG1_DEVICETYPE(val)    (((val) & 3) << 10)
163  #define GPMC_CONFIG1_DEVICETYPE_NOR     GPMC_CONFIG1_DEVICETYPE(0)
164  #define GPMC_CONFIG1_MUXTYPE(val)       (((val) & 3) << 8)
165  #define GPMC_CONFIG1_TIME_PARA_GRAN     (1 << 4)
166  #define GPMC_CONFIG1_FCLK_DIV(val)      ((val) & 3)
167  #define GPMC_CONFIG1_FCLK_DIV2          (GPMC_CONFIG1_FCLK_DIV(1))
168  #define GPMC_CONFIG1_FCLK_DIV3          (GPMC_CONFIG1_FCLK_DIV(2))
169  #define GPMC_CONFIG1_FCLK_DIV4          (GPMC_CONFIG1_FCLK_DIV(3))
170  #define GPMC_CONFIG7_CSVALID		(1 << 6)
171  
172  #define GPMC_CONFIG7_BASEADDRESS_MASK	0x3f
173  #define GPMC_CONFIG7_CSVALID_MASK	BIT(6)
174  #define GPMC_CONFIG7_MASKADDRESS_OFFSET	8
175  #define GPMC_CONFIG7_MASKADDRESS_MASK	(0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
176  /* All CONFIG7 bits except reserved bits */
177  #define GPMC_CONFIG7_MASK		(GPMC_CONFIG7_BASEADDRESS_MASK | \
178  					 GPMC_CONFIG7_CSVALID_MASK |     \
179  					 GPMC_CONFIG7_MASKADDRESS_MASK)
180  
181  #define GPMC_DEVICETYPE_NOR		0
182  #define GPMC_DEVICETYPE_NAND		2
183  #define GPMC_CONFIG_WRITEPROTECT	0x00000010
184  #define WR_RD_PIN_MONITORING		0x00600000
185  
186  /* ECC commands */
187  #define GPMC_ECC_READ		0 /* Reset Hardware ECC for read */
188  #define GPMC_ECC_WRITE		1 /* Reset Hardware ECC for write */
189  #define GPMC_ECC_READSYN	2 /* Reset before syndrom is read back */
190  
191  #define	GPMC_NR_NAND_IRQS	2 /* number of NAND specific IRQs */
192  
193  enum gpmc_clk_domain {
194  	GPMC_CD_FCLK,
195  	GPMC_CD_CLK
196  };
197  
198  struct gpmc_cs_data {
199  	const char *name;
200  
201  #define GPMC_CS_RESERVED	(1 << 0)
202  	u32 flags;
203  
204  	struct resource mem;
205  };
206  
207  /* Structure to save gpmc cs context */
208  struct gpmc_cs_config {
209  	u32 config1;
210  	u32 config2;
211  	u32 config3;
212  	u32 config4;
213  	u32 config5;
214  	u32 config6;
215  	u32 config7;
216  	int is_valid;
217  };
218  
219  /*
220   * Structure to save/restore gpmc context
221   * to support core off on OMAP3
222   */
223  struct omap3_gpmc_regs {
224  	u32 sysconfig;
225  	u32 irqenable;
226  	u32 timeout_ctrl;
227  	u32 config;
228  	u32 prefetch_config1;
229  	u32 prefetch_config2;
230  	u32 prefetch_control;
231  	struct gpmc_cs_config cs_context[GPMC_CS_NUM];
232  };
233  
234  struct gpmc_waitpin {
235  	u32 pin;
236  	u32 polarity;
237  	struct gpio_desc *desc;
238  };
239  
240  struct gpmc_device {
241  	struct device *dev;
242  	int irq;
243  	struct irq_chip irq_chip;
244  	struct gpio_chip gpio_chip;
245  	struct notifier_block nb;
246  	struct omap3_gpmc_regs context;
247  	struct gpmc_waitpin *waitpins;
248  	int nirqs;
249  	unsigned int is_suspended:1;
250  	struct resource *data;
251  };
252  
253  static struct irq_domain *gpmc_irq_domain;
254  
255  static struct resource	gpmc_mem_root;
256  static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
257  static DEFINE_SPINLOCK(gpmc_mem_lock);
258  /* Define chip-selects as reserved by default until probe completes */
259  static unsigned int gpmc_cs_num = GPMC_CS_NUM;
260  static unsigned int gpmc_nr_waitpins;
261  static unsigned int gpmc_capability;
262  static void __iomem *gpmc_base;
263  
264  static struct clk *gpmc_l3_clk;
265  
266  static irqreturn_t gpmc_handle_irq(int irq, void *dev);
267  
gpmc_write_reg(int idx,u32 val)268  static void gpmc_write_reg(int idx, u32 val)
269  {
270  	writel_relaxed(val, gpmc_base + idx);
271  }
272  
gpmc_read_reg(int idx)273  static u32 gpmc_read_reg(int idx)
274  {
275  	return readl_relaxed(gpmc_base + idx);
276  }
277  
gpmc_cs_write_reg(int cs,int idx,u32 val)278  void gpmc_cs_write_reg(int cs, int idx, u32 val)
279  {
280  	void __iomem *reg_addr;
281  
282  	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
283  	writel_relaxed(val, reg_addr);
284  }
285  
gpmc_cs_read_reg(int cs,int idx)286  static u32 gpmc_cs_read_reg(int cs, int idx)
287  {
288  	void __iomem *reg_addr;
289  
290  	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
291  	return readl_relaxed(reg_addr);
292  }
293  
294  /* TODO: Add support for gpmc_fck to clock framework and use it */
gpmc_get_fclk_period(void)295  static unsigned long gpmc_get_fclk_period(void)
296  {
297  	unsigned long rate = clk_get_rate(gpmc_l3_clk);
298  
299  	rate /= 1000;
300  	rate = 1000000000 / rate;	/* In picoseconds */
301  
302  	return rate;
303  }
304  
305  /**
306   * gpmc_get_clk_period - get period of selected clock domain in ps
307   * @cs: Chip Select Region.
308   * @cd: Clock Domain.
309   *
310   * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
311   * prior to calling this function with GPMC_CD_CLK.
312   */
gpmc_get_clk_period(int cs,enum gpmc_clk_domain cd)313  static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
314  {
315  	unsigned long tick_ps = gpmc_get_fclk_period();
316  	u32 l;
317  	int div;
318  
319  	switch (cd) {
320  	case GPMC_CD_CLK:
321  		/* get current clk divider */
322  		l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
323  		div = (l & 0x03) + 1;
324  		/* get GPMC_CLK period */
325  		tick_ps *= div;
326  		break;
327  	case GPMC_CD_FCLK:
328  	default:
329  		break;
330  	}
331  
332  	return tick_ps;
333  }
334  
gpmc_ns_to_clk_ticks(unsigned int time_ns,int cs,enum gpmc_clk_domain cd)335  static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
336  					 enum gpmc_clk_domain cd)
337  {
338  	unsigned long tick_ps;
339  
340  	/* Calculate in picosecs to yield more exact results */
341  	tick_ps = gpmc_get_clk_period(cs, cd);
342  
343  	return (time_ns * 1000 + tick_ps - 1) / tick_ps;
344  }
345  
gpmc_ns_to_ticks(unsigned int time_ns)346  static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
347  {
348  	return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
349  }
350  
gpmc_ps_to_ticks(unsigned int time_ps)351  static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
352  {
353  	unsigned long tick_ps;
354  
355  	/* Calculate in picosecs to yield more exact results */
356  	tick_ps = gpmc_get_fclk_period();
357  
358  	return (time_ps + tick_ps - 1) / tick_ps;
359  }
360  
gpmc_clk_ticks_to_ns(unsigned int ticks,int cs,enum gpmc_clk_domain cd)361  static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
362  					 enum gpmc_clk_domain cd)
363  {
364  	return ticks * gpmc_get_clk_period(cs, cd) / 1000;
365  }
366  
gpmc_ticks_to_ns(unsigned int ticks)367  unsigned int gpmc_ticks_to_ns(unsigned int ticks)
368  {
369  	return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
370  }
371  
gpmc_ticks_to_ps(unsigned int ticks)372  static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
373  {
374  	return ticks * gpmc_get_fclk_period();
375  }
376  
gpmc_round_ps_to_ticks(unsigned int time_ps)377  static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
378  {
379  	unsigned long ticks = gpmc_ps_to_ticks(time_ps);
380  
381  	return ticks * gpmc_get_fclk_period();
382  }
383  
gpmc_cs_modify_reg(int cs,int reg,u32 mask,bool value)384  static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
385  {
386  	u32 l;
387  
388  	l = gpmc_cs_read_reg(cs, reg);
389  	if (value)
390  		l |= mask;
391  	else
392  		l &= ~mask;
393  	gpmc_cs_write_reg(cs, reg, l);
394  }
395  
gpmc_cs_bool_timings(int cs,const struct gpmc_bool_timings * p)396  static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
397  {
398  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
399  			   GPMC_CONFIG1_TIME_PARA_GRAN,
400  			   p->time_para_granularity);
401  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
402  			   GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
403  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
404  			   GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
405  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
406  			   GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
407  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
408  			   GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
409  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
410  			   GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
411  			   p->cycle2cyclesamecsen);
412  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
413  			   GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
414  			   p->cycle2cyclediffcsen);
415  }
416  
417  #ifdef CONFIG_OMAP_GPMC_DEBUG
418  /**
419   * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
420   * @cs:      Chip Select Region
421   * @reg:     GPMC_CS_CONFIGn register offset.
422   * @st_bit:  Start Bit
423   * @end_bit: End Bit. Must be >= @st_bit.
424   * @max:     Maximum parameter value (before optional @shift).
425   *           If 0, maximum is as high as @st_bit and @end_bit allow.
426   * @name:    DTS node name, w/o "gpmc,"
427   * @cd:      Clock Domain of timing parameter.
428   * @shift:   Parameter value left shifts @shift, which is then printed instead of value.
429   * @raw:     Raw Format Option.
430   *           raw format:  gpmc,name = <value>
431   *           tick format: gpmc,name = <value> /&zwj;* x ns -- y ns; x ticks *&zwj;/
432   *           Where x ns -- y ns result in the same tick value.
433   *           When @max is exceeded, "invalid" is printed inside comment.
434   * @noval:   Parameter values equal to 0 are not printed.
435   * @return:  Specified timing parameter (after optional @shift).
436   *
437   */
get_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,const char * name,const enum gpmc_clk_domain cd,int shift,bool raw,bool noval)438  static int get_gpmc_timing_reg(
439  	/* timing specifiers */
440  	int cs, int reg, int st_bit, int end_bit, int max,
441  	const char *name, const enum gpmc_clk_domain cd,
442  	/* value transform */
443  	int shift,
444  	/* format specifiers */
445  	bool raw, bool noval)
446  {
447  	u32 l;
448  	int nr_bits;
449  	int mask;
450  	bool invalid;
451  
452  	l = gpmc_cs_read_reg(cs, reg);
453  	nr_bits = end_bit - st_bit + 1;
454  	mask = (1 << nr_bits) - 1;
455  	l = (l >> st_bit) & mask;
456  	if (!max)
457  		max = mask;
458  	invalid = l > max;
459  	if (shift)
460  		l = (shift << l);
461  	if (noval && (l == 0))
462  		return 0;
463  	if (!raw) {
464  		/* DTS tick format for timings in ns */
465  		unsigned int time_ns;
466  		unsigned int time_ns_min = 0;
467  
468  		if (l)
469  			time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
470  		time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
471  		pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
472  			name, time_ns, time_ns_min, time_ns, l,
473  			invalid ? "; invalid " : " ");
474  	} else {
475  		/* raw format */
476  		pr_info("gpmc,%s = <%u>;%s\n", name, l,
477  			invalid ? " /* invalid */" : "");
478  	}
479  
480  	return l;
481  }
482  
483  #define GPMC_PRINT_CONFIG(cs, config) \
484  	pr_info("cs%i %s: 0x%08x\n", cs, #config, \
485  		gpmc_cs_read_reg(cs, config))
486  #define GPMC_GET_RAW(reg, st, end, field) \
487  	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
488  #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
489  	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
490  #define GPMC_GET_RAW_BOOL(reg, st, end, field) \
491  	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
492  #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
493  	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
494  #define GPMC_GET_TICKS(reg, st, end, field) \
495  	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
496  #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
497  	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
498  #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
499  	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
500  
gpmc_show_regs(int cs,const char * desc)501  static void gpmc_show_regs(int cs, const char *desc)
502  {
503  	pr_info("gpmc cs%i %s:\n", cs, desc);
504  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
505  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
506  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
507  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
508  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
509  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
510  }
511  
512  /*
513   * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
514   * see commit c9fb809.
515   */
gpmc_cs_show_timings(int cs,const char * desc)516  static void gpmc_cs_show_timings(int cs, const char *desc)
517  {
518  	gpmc_show_regs(cs, desc);
519  
520  	pr_info("gpmc cs%i access configuration:\n", cs);
521  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1,  4,  4, "time-para-granularity");
522  	GPMC_GET_RAW(GPMC_CS_CONFIG1,  8,  9, "mux-add-data");
523  	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
524  			       GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
525  	GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
526  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
527  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
528  	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
529  			       GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
530  			       "burst-length");
531  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
532  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
533  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
534  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
535  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
536  
537  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2,  7,  7, "cs-extra-delay");
538  
539  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3,  7,  7, "adv-extra-delay");
540  
541  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
542  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4,  7,  7, "oe-extra-delay");
543  
544  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  7,  7, "cycle2cycle-samecsen");
545  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  6,  6, "cycle2cycle-diffcsen");
546  
547  	pr_info("gpmc cs%i timings configuration:\n", cs);
548  	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  0,  3, "cs-on-ns");
549  	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  8, 12, "cs-rd-off-ns");
550  	GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
551  
552  	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  0,  3, "adv-on-ns");
553  	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  8, 12, "adv-rd-off-ns");
554  	GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
555  	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
556  		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
557  		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
558  				"adv-aad-mux-rd-off-ns");
559  		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
560  				"adv-aad-mux-wr-off-ns");
561  	}
562  
563  	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  0,  3, "oe-on-ns");
564  	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  8, 12, "oe-off-ns");
565  	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
566  		GPMC_GET_TICKS(GPMC_CS_CONFIG4,  4,  6, "oe-aad-mux-on-ns");
567  		GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
568  	}
569  	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
570  	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
571  
572  	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  0,  4, "rd-cycle-ns");
573  	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  8, 12, "wr-cycle-ns");
574  	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
575  
576  	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
577  
578  	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
579  	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
580  
581  	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
582  			      GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
583  			      "wait-monitoring-ns", GPMC_CD_CLK);
584  	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
585  			      GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
586  			      "clk-activation-ns", GPMC_CD_FCLK);
587  
588  	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
589  	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
590  }
591  #else
gpmc_cs_show_timings(int cs,const char * desc)592  static inline void gpmc_cs_show_timings(int cs, const char *desc)
593  {
594  }
595  #endif
596  
597  /**
598   * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
599   * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
600   * prior to calling this function with @cd equal to GPMC_CD_CLK.
601   *
602   * @cs:      Chip Select Region.
603   * @reg:     GPMC_CS_CONFIGn register offset.
604   * @st_bit:  Start Bit
605   * @end_bit: End Bit. Must be >= @st_bit.
606   * @max:     Maximum parameter value.
607   *           If 0, maximum is as high as @st_bit and @end_bit allow.
608   * @time:    Timing parameter in ns.
609   * @cd:      Timing parameter clock domain.
610   * @name:    Timing parameter name.
611   * @return:  0 on success, -1 on error.
612   */
set_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,int time,enum gpmc_clk_domain cd,const char * name)613  static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
614  			       int time, enum gpmc_clk_domain cd, const char *name)
615  {
616  	u32 l;
617  	int ticks, mask, nr_bits;
618  
619  	if (time == 0)
620  		ticks = 0;
621  	else
622  		ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
623  	nr_bits = end_bit - st_bit + 1;
624  	mask = (1 << nr_bits) - 1;
625  
626  	if (!max)
627  		max = mask;
628  
629  	if (ticks > max) {
630  		pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
631  		       __func__, cs, name, time, ticks, max);
632  
633  		return -1;
634  	}
635  
636  	l = gpmc_cs_read_reg(cs, reg);
637  #ifdef CONFIG_OMAP_GPMC_DEBUG
638  	pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
639  		cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
640  			(l >> st_bit) & mask, time);
641  #endif
642  	l &= ~(mask << st_bit);
643  	l |= ticks << st_bit;
644  	gpmc_cs_write_reg(cs, reg, l);
645  
646  	return 0;
647  }
648  
649  /**
650   * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
651   * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
652   * read  --> don't sample bus too early
653   * write --> data is longer on bus
654   *
655   * Formula:
656   * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
657   *                    / waitmonitoring_ticks)
658   * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
659   * div <= 0 check.
660   *
661   * @wait_monitoring: WAITMONITORINGTIME in ns.
662   * @return:          -1 on failure to scale, else proper divider > 0.
663   */
gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)664  static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
665  {
666  	int div = gpmc_ns_to_ticks(wait_monitoring);
667  
668  	div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
669  	div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
670  
671  	if (div > 4)
672  		return -1;
673  	if (div <= 0)
674  		div = 1;
675  
676  	return div;
677  }
678  
679  /**
680   * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
681   * @sync_clk: GPMC_CLK period in ps.
682   * @return:   Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
683   *            Else, returns -1.
684   */
gpmc_calc_divider(unsigned int sync_clk)685  int gpmc_calc_divider(unsigned int sync_clk)
686  {
687  	int div = gpmc_ps_to_ticks(sync_clk);
688  
689  	if (div > 4)
690  		return -1;
691  	if (div <= 0)
692  		div = 1;
693  
694  	return div;
695  }
696  
697  /**
698   * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
699   * @cs:     Chip Select Region.
700   * @t:      GPMC timing parameters.
701   * @s:      GPMC timing settings.
702   * @return: 0 on success, -1 on error.
703   */
gpmc_cs_set_timings(int cs,const struct gpmc_timings * t,const struct gpmc_settings * s)704  int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
705  			const struct gpmc_settings *s)
706  {
707  	int div, ret;
708  	u32 l;
709  
710  	div = gpmc_calc_divider(t->sync_clk);
711  	if (div < 0)
712  		return -EINVAL;
713  
714  	/*
715  	 * See if we need to change the divider for waitmonitoringtime.
716  	 *
717  	 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
718  	 * pure asynchronous accesses, i.e. both read and write asynchronous.
719  	 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
720  	 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
721  	 *
722  	 * This statement must not change div to scale async WAITMONITORINGTIME
723  	 * to protect mixed synchronous and asynchronous accesses.
724  	 *
725  	 * We raise an error later if WAITMONITORINGTIME does not fit.
726  	 */
727  	if (!s->sync_read && !s->sync_write &&
728  	    (s->wait_on_read || s->wait_on_write)
729  	   ) {
730  		div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
731  		if (div < 0) {
732  			pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
733  			       __func__,
734  			       t->wait_monitoring
735  			       );
736  			return -ENXIO;
737  		}
738  	}
739  
740  	ret = 0;
741  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on,
742  				   GPMC_CD_FCLK, "cs_on");
743  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off,
744  				   GPMC_CD_FCLK, "cs_rd_off");
745  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off,
746  				   GPMC_CD_FCLK, "cs_wr_off");
747  	if (ret)
748  		return -ENXIO;
749  
750  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on,
751  				   GPMC_CD_FCLK, "adv_on");
752  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off,
753  				   GPMC_CD_FCLK, "adv_rd_off");
754  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off,
755  				   GPMC_CD_FCLK, "adv_wr_off");
756  	if (ret)
757  		return -ENXIO;
758  
759  	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
760  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0,
761  					   t->adv_aad_mux_on, GPMC_CD_FCLK,
762  					   "adv_aad_mux_on");
763  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0,
764  					   t->adv_aad_mux_rd_off, GPMC_CD_FCLK,
765  					   "adv_aad_mux_rd_off");
766  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0,
767  					   t->adv_aad_mux_wr_off, GPMC_CD_FCLK,
768  					   "adv_aad_mux_wr_off");
769  		if (ret)
770  			return -ENXIO;
771  	}
772  
773  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on,
774  				   GPMC_CD_FCLK, "oe_on");
775  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off,
776  				   GPMC_CD_FCLK, "oe_off");
777  	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
778  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0,
779  					   t->oe_aad_mux_on, GPMC_CD_FCLK,
780  					   "oe_aad_mux_on");
781  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0,
782  					   t->oe_aad_mux_off, GPMC_CD_FCLK,
783  					   "oe_aad_mux_off");
784  	}
785  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on,
786  				   GPMC_CD_FCLK, "we_on");
787  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off,
788  				   GPMC_CD_FCLK, "we_off");
789  	if (ret)
790  		return -ENXIO;
791  
792  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle,
793  				   GPMC_CD_FCLK, "rd_cycle");
794  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle,
795  				   GPMC_CD_FCLK, "wr_cycle");
796  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access,
797  				   GPMC_CD_FCLK, "access");
798  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0,
799  				   t->page_burst_access, GPMC_CD_FCLK,
800  				   "page_burst_access");
801  	if (ret)
802  		return -ENXIO;
803  
804  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0,
805  				   t->bus_turnaround, GPMC_CD_FCLK,
806  				   "bus_turnaround");
807  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0,
808  				   t->cycle2cycle_delay, GPMC_CD_FCLK,
809  				   "cycle2cycle_delay");
810  	if (ret)
811  		return -ENXIO;
812  
813  	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) {
814  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0,
815  					   t->wr_data_mux_bus, GPMC_CD_FCLK,
816  					   "wr_data_mux_bus");
817  		if (ret)
818  			return -ENXIO;
819  	}
820  	if (gpmc_capability & GPMC_HAS_WR_ACCESS) {
821  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0,
822  					   t->wr_access, GPMC_CD_FCLK,
823  					   "wr_access");
824  		if (ret)
825  			return -ENXIO;
826  	}
827  
828  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
829  	l &= ~0x03;
830  	l |= (div - 1);
831  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
832  
833  	ret = 0;
834  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19,
835  				   GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
836  				   t->wait_monitoring, GPMC_CD_CLK,
837  				   "wait_monitoring");
838  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26,
839  				   GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
840  				   t->clk_activation, GPMC_CD_FCLK,
841  				   "clk_activation");
842  	if (ret)
843  		return -ENXIO;
844  
845  #ifdef CONFIG_OMAP_GPMC_DEBUG
846  	pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
847  			cs, (div * gpmc_get_fclk_period()) / 1000, div);
848  #endif
849  
850  	gpmc_cs_bool_timings(cs, &t->bool_timings);
851  	gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
852  
853  	return 0;
854  }
855  
gpmc_cs_set_memconf(int cs,u32 base,u32 size)856  static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
857  {
858  	u32 l;
859  	u32 mask;
860  
861  	/*
862  	 * Ensure that base address is aligned on a
863  	 * boundary equal to or greater than size.
864  	 */
865  	if (base & (size - 1))
866  		return -EINVAL;
867  
868  	base >>= GPMC_CHUNK_SHIFT;
869  	mask = (1 << GPMC_SECTION_SHIFT) - size;
870  	mask >>= GPMC_CHUNK_SHIFT;
871  	mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
872  
873  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
874  	l &= ~GPMC_CONFIG7_MASK;
875  	l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
876  	l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
877  	l |= GPMC_CONFIG7_CSVALID;
878  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
879  
880  	return 0;
881  }
882  
gpmc_cs_enable_mem(int cs)883  static void gpmc_cs_enable_mem(int cs)
884  {
885  	u32 l;
886  
887  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
888  	l |= GPMC_CONFIG7_CSVALID;
889  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
890  }
891  
gpmc_cs_disable_mem(int cs)892  static void gpmc_cs_disable_mem(int cs)
893  {
894  	u32 l;
895  
896  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
897  	l &= ~GPMC_CONFIG7_CSVALID;
898  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
899  }
900  
gpmc_cs_get_memconf(int cs,u32 * base,u32 * size)901  static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
902  {
903  	u32 l;
904  	u32 mask;
905  
906  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
907  	*base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
908  	mask = (l >> 8) & 0x0f;
909  	*size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
910  }
911  
gpmc_cs_mem_enabled(int cs)912  static int gpmc_cs_mem_enabled(int cs)
913  {
914  	u32 l;
915  
916  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
917  	return l & GPMC_CONFIG7_CSVALID;
918  }
919  
gpmc_cs_set_reserved(int cs,int reserved)920  static void gpmc_cs_set_reserved(int cs, int reserved)
921  {
922  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
923  
924  	gpmc->flags |= GPMC_CS_RESERVED;
925  }
926  
gpmc_cs_reserved(int cs)927  static bool gpmc_cs_reserved(int cs)
928  {
929  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
930  
931  	return gpmc->flags & GPMC_CS_RESERVED;
932  }
933  
gpmc_mem_align(unsigned long size)934  static unsigned long gpmc_mem_align(unsigned long size)
935  {
936  	int order;
937  
938  	size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
939  	order = GPMC_CHUNK_SHIFT - 1;
940  	do {
941  		size >>= 1;
942  		order++;
943  	} while (size);
944  	size = 1 << order;
945  	return size;
946  }
947  
gpmc_cs_insert_mem(int cs,unsigned long base,unsigned long size)948  static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
949  {
950  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
951  	struct resource *res = &gpmc->mem;
952  	int r;
953  
954  	size = gpmc_mem_align(size);
955  	spin_lock(&gpmc_mem_lock);
956  	res->start = base;
957  	res->end = base + size - 1;
958  	r = request_resource(&gpmc_mem_root, res);
959  	spin_unlock(&gpmc_mem_lock);
960  
961  	return r;
962  }
963  
gpmc_cs_delete_mem(int cs)964  static int gpmc_cs_delete_mem(int cs)
965  {
966  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
967  	struct resource *res = &gpmc->mem;
968  	int r;
969  
970  	spin_lock(&gpmc_mem_lock);
971  	r = release_resource(res);
972  	res->start = 0;
973  	res->end = 0;
974  	spin_unlock(&gpmc_mem_lock);
975  
976  	return r;
977  }
978  
gpmc_cs_request(int cs,unsigned long size,unsigned long * base)979  int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
980  {
981  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
982  	struct resource *res = &gpmc->mem;
983  	int r = -1;
984  
985  	if (cs >= gpmc_cs_num) {
986  		pr_err("%s: requested chip-select is disabled\n", __func__);
987  		return -ENODEV;
988  	}
989  	size = gpmc_mem_align(size);
990  	if (size > (1 << GPMC_SECTION_SHIFT))
991  		return -ENOMEM;
992  
993  	guard(spinlock)(&gpmc_mem_lock);
994  
995  	if (gpmc_cs_reserved(cs))
996  		return -EBUSY;
997  
998  	if (gpmc_cs_mem_enabled(cs))
999  		r = adjust_resource(res, res->start & ~(size - 1), size);
1000  	if (r < 0)
1001  		r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
1002  				      size, NULL, NULL);
1003  	if (r < 0)
1004  		return r;
1005  
1006  	/* Disable CS while changing base address and size mask */
1007  	gpmc_cs_disable_mem(cs);
1008  
1009  	r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
1010  	if (r < 0) {
1011  		release_resource(res);
1012  		return r;
1013  	}
1014  
1015  	/* Enable CS */
1016  	gpmc_cs_enable_mem(cs);
1017  	*base = res->start;
1018  	gpmc_cs_set_reserved(cs, 1);
1019  
1020  	return 0;
1021  }
1022  EXPORT_SYMBOL(gpmc_cs_request);
1023  
gpmc_cs_free(int cs)1024  void gpmc_cs_free(int cs)
1025  {
1026  	struct gpmc_cs_data *gpmc;
1027  	struct resource *res;
1028  
1029  	guard(spinlock)(&gpmc_mem_lock);
1030  	if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1031  		WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs);
1032  		return;
1033  	}
1034  	gpmc = &gpmc_cs[cs];
1035  	res = &gpmc->mem;
1036  
1037  	gpmc_cs_disable_mem(cs);
1038  	if (res->flags)
1039  		release_resource(res);
1040  	gpmc_cs_set_reserved(cs, 0);
1041  }
1042  EXPORT_SYMBOL(gpmc_cs_free);
1043  
gpmc_is_valid_waitpin(u32 waitpin)1044  static bool gpmc_is_valid_waitpin(u32 waitpin)
1045  {
1046  	return waitpin < gpmc_nr_waitpins;
1047  }
1048  
gpmc_alloc_waitpin(struct gpmc_device * gpmc,struct gpmc_settings * p)1049  static int gpmc_alloc_waitpin(struct gpmc_device *gpmc,
1050  			      struct gpmc_settings *p)
1051  {
1052  	int ret;
1053  	struct gpmc_waitpin *waitpin;
1054  	struct gpio_desc *waitpin_desc;
1055  
1056  	if (!gpmc_is_valid_waitpin(p->wait_pin))
1057  		return -EINVAL;
1058  
1059  	waitpin = &gpmc->waitpins[p->wait_pin];
1060  
1061  	if (!waitpin->desc) {
1062  		/* Reserve the GPIO for wait pin usage.
1063  		 * GPIO polarity doesn't matter here. Wait pin polarity
1064  		 * is set in GPMC_CONFIG register.
1065  		 */
1066  		waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
1067  							 p->wait_pin, "WAITPIN",
1068  							 GPIO_ACTIVE_HIGH,
1069  							 GPIOD_IN);
1070  
1071  		ret = PTR_ERR(waitpin_desc);
1072  		if (IS_ERR(waitpin_desc) && ret != -EBUSY)
1073  			return ret;
1074  
1075  		/* New wait pin */
1076  		waitpin->desc = waitpin_desc;
1077  		waitpin->pin = p->wait_pin;
1078  		waitpin->polarity = p->wait_pin_polarity;
1079  	} else {
1080  		/* Shared wait pin */
1081  		if (p->wait_pin_polarity != waitpin->polarity ||
1082  		    p->wait_pin != waitpin->pin) {
1083  			dev_err(gpmc->dev,
1084  				"shared-wait-pin: invalid configuration\n");
1085  			return -EINVAL;
1086  		}
1087  		dev_info(gpmc->dev, "shared wait-pin: %d\n", waitpin->pin);
1088  	}
1089  
1090  	return 0;
1091  }
1092  
gpmc_free_waitpin(struct gpmc_device * gpmc,int wait_pin)1093  static void gpmc_free_waitpin(struct gpmc_device *gpmc,
1094  			      int wait_pin)
1095  {
1096  	if (gpmc_is_valid_waitpin(wait_pin))
1097  		gpiochip_free_own_desc(gpmc->waitpins[wait_pin].desc);
1098  }
1099  
1100  /**
1101   * gpmc_configure - write request to configure gpmc
1102   * @cmd: command type
1103   * @wval: value to write
1104   * @return status of the operation
1105   */
gpmc_configure(int cmd,int wval)1106  int gpmc_configure(int cmd, int wval)
1107  {
1108  	u32 regval;
1109  
1110  	switch (cmd) {
1111  	case GPMC_CONFIG_WP:
1112  		regval = gpmc_read_reg(GPMC_CONFIG);
1113  		if (wval)
1114  			regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
1115  		else
1116  			regval |= GPMC_CONFIG_WRITEPROTECT;  /* WP is OFF */
1117  		gpmc_write_reg(GPMC_CONFIG, regval);
1118  		break;
1119  
1120  	default:
1121  		pr_err("%s: command not supported\n", __func__);
1122  		return -EINVAL;
1123  	}
1124  
1125  	return 0;
1126  }
1127  EXPORT_SYMBOL(gpmc_configure);
1128  
gpmc_nand_writebuffer_empty(void)1129  static bool gpmc_nand_writebuffer_empty(void)
1130  {
1131  	if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
1132  		return true;
1133  
1134  	return false;
1135  }
1136  
1137  static struct gpmc_nand_ops nand_ops = {
1138  	.nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
1139  };
1140  
1141  /**
1142   * gpmc_omap_get_nand_ops - Get the GPMC NAND interface
1143   * @reg: the GPMC NAND register map exclusive for NAND use.
1144   * @cs: GPMC chip select number on which the NAND sits. The
1145   *      register map returned will be specific to this chip select.
1146   *
1147   * Returns NULL on error e.g. invalid cs.
1148   */
gpmc_omap_get_nand_ops(struct gpmc_nand_regs * reg,int cs)1149  struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
1150  {
1151  	int i;
1152  
1153  	if (cs >= gpmc_cs_num)
1154  		return NULL;
1155  
1156  	reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
1157  				GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
1158  	reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
1159  				GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
1160  	reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
1161  				GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
1162  	reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
1163  	reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
1164  	reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
1165  	reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
1166  	reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
1167  	reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
1168  	reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
1169  	reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1170  
1171  	for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
1172  		reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
1173  					   GPMC_BCH_SIZE * i;
1174  		reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
1175  					   GPMC_BCH_SIZE * i;
1176  		reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
1177  					   GPMC_BCH_SIZE * i;
1178  		reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
1179  					   GPMC_BCH_SIZE * i;
1180  		reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
1181  					   i * GPMC_BCH_SIZE;
1182  		reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
1183  					   i * GPMC_BCH_SIZE;
1184  		reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
1185  					   i * GPMC_BCH_SIZE;
1186  	}
1187  
1188  	return &nand_ops;
1189  }
1190  EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
1191  
gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings * t,struct gpmc_settings * s,int freq,int latency)1192  static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
1193  						struct gpmc_settings *s,
1194  						int freq, int latency)
1195  {
1196  	struct gpmc_device_timings dev_t;
1197  	const int t_cer  = 15;
1198  	const int t_avdp = 12;
1199  	const int t_cez  = 20; /* max of t_cez, t_oez */
1200  	const int t_wpl  = 40;
1201  	const int t_wph  = 30;
1202  	int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
1203  
1204  	switch (freq) {
1205  	case 104:
1206  		min_gpmc_clk_period = 9600; /* 104 MHz */
1207  		t_ces   = 3;
1208  		t_avds  = 4;
1209  		t_avdh  = 2;
1210  		t_ach   = 3;
1211  		t_aavdh = 6;
1212  		t_rdyo  = 6;
1213  		break;
1214  	case 83:
1215  		min_gpmc_clk_period = 12000; /* 83 MHz */
1216  		t_ces   = 5;
1217  		t_avds  = 4;
1218  		t_avdh  = 2;
1219  		t_ach   = 6;
1220  		t_aavdh = 6;
1221  		t_rdyo  = 9;
1222  		break;
1223  	case 66:
1224  		min_gpmc_clk_period = 15000; /* 66 MHz */
1225  		t_ces   = 6;
1226  		t_avds  = 5;
1227  		t_avdh  = 2;
1228  		t_ach   = 6;
1229  		t_aavdh = 6;
1230  		t_rdyo  = 11;
1231  		break;
1232  	default:
1233  		min_gpmc_clk_period = 18500; /* 54 MHz */
1234  		t_ces   = 7;
1235  		t_avds  = 7;
1236  		t_avdh  = 7;
1237  		t_ach   = 9;
1238  		t_aavdh = 7;
1239  		t_rdyo  = 15;
1240  		break;
1241  	}
1242  
1243  	/* Set synchronous read timings */
1244  	memset(&dev_t, 0, sizeof(dev_t));
1245  
1246  	if (!s->sync_write) {
1247  		dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
1248  		dev_t.t_wpl = t_wpl * 1000;
1249  		dev_t.t_wph = t_wph * 1000;
1250  		dev_t.t_aavdh = t_aavdh * 1000;
1251  	}
1252  	dev_t.ce_xdelay = true;
1253  	dev_t.avd_xdelay = true;
1254  	dev_t.oe_xdelay = true;
1255  	dev_t.we_xdelay = true;
1256  	dev_t.clk = min_gpmc_clk_period;
1257  	dev_t.t_bacc = dev_t.clk;
1258  	dev_t.t_ces = t_ces * 1000;
1259  	dev_t.t_avds = t_avds * 1000;
1260  	dev_t.t_avdh = t_avdh * 1000;
1261  	dev_t.t_ach = t_ach * 1000;
1262  	dev_t.cyc_iaa = (latency + 1);
1263  	dev_t.t_cez_r = t_cez * 1000;
1264  	dev_t.t_cez_w = dev_t.t_cez_r;
1265  	dev_t.cyc_aavdh_oe = 1;
1266  	dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
1267  
1268  	gpmc_calc_timings(t, s, &dev_t);
1269  }
1270  
gpmc_omap_onenand_set_timings(struct device * dev,int cs,int freq,int latency,struct gpmc_onenand_info * info)1271  int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
1272  				  int latency,
1273  				  struct gpmc_onenand_info *info)
1274  {
1275  	int ret;
1276  	struct gpmc_timings gpmc_t;
1277  	struct gpmc_settings gpmc_s;
1278  
1279  	gpmc_read_settings_dt(dev->of_node, &gpmc_s);
1280  
1281  	info->sync_read = gpmc_s.sync_read;
1282  	info->sync_write = gpmc_s.sync_write;
1283  	info->burst_len = gpmc_s.burst_len;
1284  
1285  	if (!gpmc_s.sync_read && !gpmc_s.sync_write)
1286  		return 0;
1287  
1288  	gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
1289  
1290  	ret = gpmc_cs_program_settings(cs, &gpmc_s);
1291  	if (ret < 0)
1292  		return ret;
1293  
1294  	return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1295  }
1296  EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
1297  
gpmc_get_client_irq(unsigned int irq_config)1298  int gpmc_get_client_irq(unsigned int irq_config)
1299  {
1300  	if (!gpmc_irq_domain) {
1301  		pr_warn("%s called before GPMC IRQ domain available\n",
1302  			__func__);
1303  		return 0;
1304  	}
1305  
1306  	/* we restrict this to NAND IRQs only */
1307  	if (irq_config >= GPMC_NR_NAND_IRQS)
1308  		return 0;
1309  
1310  	return irq_create_mapping(gpmc_irq_domain, irq_config);
1311  }
1312  
gpmc_irq_endis(unsigned long hwirq,bool endis)1313  static int gpmc_irq_endis(unsigned long hwirq, bool endis)
1314  {
1315  	u32 regval;
1316  
1317  	/* bits GPMC_NR_NAND_IRQS to 8 are reserved */
1318  	if (hwirq >= GPMC_NR_NAND_IRQS)
1319  		hwirq += 8 - GPMC_NR_NAND_IRQS;
1320  
1321  	regval = gpmc_read_reg(GPMC_IRQENABLE);
1322  	if (endis)
1323  		regval |= BIT(hwirq);
1324  	else
1325  		regval &= ~BIT(hwirq);
1326  	gpmc_write_reg(GPMC_IRQENABLE, regval);
1327  
1328  	return 0;
1329  }
1330  
gpmc_irq_disable(struct irq_data * p)1331  static void gpmc_irq_disable(struct irq_data *p)
1332  {
1333  	gpmc_irq_endis(p->hwirq, false);
1334  }
1335  
gpmc_irq_enable(struct irq_data * p)1336  static void gpmc_irq_enable(struct irq_data *p)
1337  {
1338  	gpmc_irq_endis(p->hwirq, true);
1339  }
1340  
gpmc_irq_mask(struct irq_data * d)1341  static void gpmc_irq_mask(struct irq_data *d)
1342  {
1343  	gpmc_irq_endis(d->hwirq, false);
1344  }
1345  
gpmc_irq_unmask(struct irq_data * d)1346  static void gpmc_irq_unmask(struct irq_data *d)
1347  {
1348  	gpmc_irq_endis(d->hwirq, true);
1349  }
1350  
gpmc_irq_edge_config(unsigned long hwirq,bool rising_edge)1351  static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
1352  {
1353  	u32 regval;
1354  
1355  	/* NAND IRQs polarity is not configurable */
1356  	if (hwirq < GPMC_NR_NAND_IRQS)
1357  		return;
1358  
1359  	/* WAITPIN starts at BIT 8 */
1360  	hwirq += 8 - GPMC_NR_NAND_IRQS;
1361  
1362  	regval = gpmc_read_reg(GPMC_CONFIG);
1363  	if (rising_edge)
1364  		regval &= ~BIT(hwirq);
1365  	else
1366  		regval |= BIT(hwirq);
1367  
1368  	gpmc_write_reg(GPMC_CONFIG, regval);
1369  }
1370  
gpmc_irq_ack(struct irq_data * d)1371  static void gpmc_irq_ack(struct irq_data *d)
1372  {
1373  	unsigned int hwirq = d->hwirq;
1374  
1375  	/* skip reserved bits */
1376  	if (hwirq >= GPMC_NR_NAND_IRQS)
1377  		hwirq += 8 - GPMC_NR_NAND_IRQS;
1378  
1379  	/* Setting bit to 1 clears (or Acks) the interrupt */
1380  	gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
1381  }
1382  
gpmc_irq_set_type(struct irq_data * d,unsigned int trigger)1383  static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
1384  {
1385  	/* can't set type for NAND IRQs */
1386  	if (d->hwirq < GPMC_NR_NAND_IRQS)
1387  		return -EINVAL;
1388  
1389  	/* We can support either rising or falling edge at a time */
1390  	if (trigger == IRQ_TYPE_EDGE_FALLING)
1391  		gpmc_irq_edge_config(d->hwirq, false);
1392  	else if (trigger == IRQ_TYPE_EDGE_RISING)
1393  		gpmc_irq_edge_config(d->hwirq, true);
1394  	else
1395  		return -EINVAL;
1396  
1397  	return 0;
1398  }
1399  
gpmc_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hw)1400  static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
1401  			irq_hw_number_t hw)
1402  {
1403  	struct gpmc_device *gpmc = d->host_data;
1404  
1405  	irq_set_chip_data(virq, gpmc);
1406  	if (hw < GPMC_NR_NAND_IRQS) {
1407  		irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
1408  		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1409  					 handle_simple_irq);
1410  	} else {
1411  		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1412  					 handle_edge_irq);
1413  	}
1414  
1415  	return 0;
1416  }
1417  
1418  static const struct irq_domain_ops gpmc_irq_domain_ops = {
1419  	.map    = gpmc_irq_map,
1420  	.xlate  = irq_domain_xlate_twocell,
1421  };
1422  
gpmc_handle_irq(int irq,void * data)1423  static irqreturn_t gpmc_handle_irq(int irq, void *data)
1424  {
1425  	int hwirq, virq;
1426  	u32 regval, regvalx;
1427  	struct gpmc_device *gpmc = data;
1428  
1429  	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1430  	regvalx = regval;
1431  
1432  	if (!regval)
1433  		return IRQ_NONE;
1434  
1435  	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
1436  		/* skip reserved status bits */
1437  		if (hwirq == GPMC_NR_NAND_IRQS)
1438  			regvalx >>= 8 - GPMC_NR_NAND_IRQS;
1439  
1440  		if (regvalx & BIT(hwirq)) {
1441  			virq = irq_find_mapping(gpmc_irq_domain, hwirq);
1442  			if (!virq) {
1443  				dev_warn(gpmc->dev,
1444  					 "spurious irq detected hwirq %d, virq %d\n",
1445  					 hwirq, virq);
1446  			}
1447  
1448  			generic_handle_irq(virq);
1449  		}
1450  	}
1451  
1452  	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1453  
1454  	return IRQ_HANDLED;
1455  }
1456  
gpmc_setup_irq(struct gpmc_device * gpmc)1457  static int gpmc_setup_irq(struct gpmc_device *gpmc)
1458  {
1459  	u32 regval;
1460  	int rc;
1461  
1462  	/* Disable interrupts */
1463  	gpmc_write_reg(GPMC_IRQENABLE, 0);
1464  
1465  	/* clear interrupts */
1466  	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1467  	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1468  
1469  	gpmc->irq_chip.name = "gpmc";
1470  	gpmc->irq_chip.irq_enable = gpmc_irq_enable;
1471  	gpmc->irq_chip.irq_disable = gpmc_irq_disable;
1472  	gpmc->irq_chip.irq_ack = gpmc_irq_ack;
1473  	gpmc->irq_chip.irq_mask = gpmc_irq_mask;
1474  	gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
1475  	gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
1476  
1477  	gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
1478  						gpmc->nirqs,
1479  						&gpmc_irq_domain_ops,
1480  						gpmc);
1481  	if (!gpmc_irq_domain) {
1482  		dev_err(gpmc->dev, "IRQ domain add failed\n");
1483  		return -ENODEV;
1484  	}
1485  
1486  	rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
1487  	if (rc) {
1488  		dev_err(gpmc->dev, "failed to request irq %d: %d\n",
1489  			gpmc->irq, rc);
1490  		irq_domain_remove(gpmc_irq_domain);
1491  		gpmc_irq_domain = NULL;
1492  	}
1493  
1494  	return rc;
1495  }
1496  
gpmc_free_irq(struct gpmc_device * gpmc)1497  static int gpmc_free_irq(struct gpmc_device *gpmc)
1498  {
1499  	int hwirq;
1500  
1501  	free_irq(gpmc->irq, gpmc);
1502  
1503  	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
1504  		irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
1505  
1506  	irq_domain_remove(gpmc_irq_domain);
1507  	gpmc_irq_domain = NULL;
1508  
1509  	return 0;
1510  }
1511  
gpmc_mem_exit(void)1512  static void gpmc_mem_exit(void)
1513  {
1514  	int cs;
1515  
1516  	for (cs = 0; cs < gpmc_cs_num; cs++) {
1517  		if (!gpmc_cs_mem_enabled(cs))
1518  			continue;
1519  		gpmc_cs_delete_mem(cs);
1520  	}
1521  }
1522  
gpmc_mem_init(struct gpmc_device * gpmc)1523  static void gpmc_mem_init(struct gpmc_device *gpmc)
1524  {
1525  	int cs;
1526  
1527  	if (!gpmc->data) {
1528  		/* All legacy devices have same data IO window */
1529  		gpmc_mem_root.start = GPMC_MEM_START;
1530  		gpmc_mem_root.end = GPMC_MEM_END;
1531  	} else {
1532  		gpmc_mem_root.start = gpmc->data->start;
1533  		gpmc_mem_root.end = gpmc->data->end;
1534  	}
1535  
1536  	/* Reserve all regions that has been set up by bootloader */
1537  	for (cs = 0; cs < gpmc_cs_num; cs++) {
1538  		u32 base, size;
1539  
1540  		if (!gpmc_cs_mem_enabled(cs))
1541  			continue;
1542  		gpmc_cs_get_memconf(cs, &base, &size);
1543  		if (gpmc_cs_insert_mem(cs, base, size)) {
1544  			pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
1545  				__func__, cs, base, base + size);
1546  			gpmc_cs_disable_mem(cs);
1547  		}
1548  	}
1549  }
1550  
gpmc_round_ps_to_sync_clk(u32 time_ps,u32 sync_clk)1551  static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
1552  {
1553  	u32 temp;
1554  	int div;
1555  
1556  	div = gpmc_calc_divider(sync_clk);
1557  	temp = gpmc_ps_to_ticks(time_ps);
1558  	temp = (temp + div - 1) / div;
1559  	return gpmc_ticks_to_ps(temp * div);
1560  }
1561  
1562  /* XXX: can the cycles be avoided ? */
gpmc_calc_sync_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1563  static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1564  				       struct gpmc_device_timings *dev_t,
1565  				       bool mux)
1566  {
1567  	u32 temp;
1568  
1569  	/* adv_rd_off */
1570  	temp = dev_t->t_avdp_r;
1571  	/* XXX: mux check required ? */
1572  	if (mux) {
1573  		/* XXX: t_avdp not to be required for sync, only added for tusb
1574  		 * this indirectly necessitates requirement of t_avdp_r and
1575  		 * t_avdp_w instead of having a single t_avdp
1576  		 */
1577  		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_avdh);
1578  		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1579  	}
1580  	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1581  
1582  	/* oe_on */
1583  	temp = dev_t->t_oeasu; /* XXX: remove this ? */
1584  	if (mux) {
1585  		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_ach);
1586  		temp = max_t(u32, temp, gpmc_t->adv_rd_off +
1587  				gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
1588  	}
1589  	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1590  
1591  	/* access */
1592  	/* XXX: any scope for improvement ?, by combining oe_on
1593  	 * and clk_activation, need to check whether
1594  	 * access = clk_activation + round to sync clk ?
1595  	 */
1596  	temp = max_t(u32, dev_t->t_iaa,	dev_t->cyc_iaa * gpmc_t->sync_clk);
1597  	temp += gpmc_t->clk_activation;
1598  	if (dev_t->cyc_oe)
1599  		temp = max_t(u32, temp, gpmc_t->oe_on +
1600  				gpmc_ticks_to_ps(dev_t->cyc_oe));
1601  	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1602  
1603  	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1604  	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1605  
1606  	/* rd_cycle */
1607  	temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
1608  	temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
1609  							gpmc_t->access;
1610  	/* XXX: barter t_ce_rdyz with t_cez_r ? */
1611  	if (dev_t->t_ce_rdyz)
1612  		temp = max_t(u32, temp,	gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
1613  	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1614  
1615  	return 0;
1616  }
1617  
gpmc_calc_sync_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1618  static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1619  					struct gpmc_device_timings *dev_t,
1620  					bool mux)
1621  {
1622  	u32 temp;
1623  
1624  	/* adv_wr_off */
1625  	temp = dev_t->t_avdp_w;
1626  	if (mux) {
1627  		temp = max_t(u32, temp,
1628  			gpmc_t->clk_activation + dev_t->t_avdh);
1629  		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1630  	}
1631  	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1632  
1633  	/* wr_data_mux_bus */
1634  	temp = max_t(u32, dev_t->t_weasu,
1635  			gpmc_t->clk_activation + dev_t->t_rdyo);
1636  	/* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
1637  	 * and in that case remember to handle we_on properly
1638  	 */
1639  	if (mux) {
1640  		temp = max_t(u32, temp,
1641  			gpmc_t->adv_wr_off + dev_t->t_aavdh);
1642  		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1643  				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1644  	}
1645  	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1646  
1647  	/* we_on */
1648  	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1649  		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1650  	else
1651  		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1652  
1653  	/* wr_access */
1654  	/* XXX: gpmc_capability check reqd ? , even if not, will not harm */
1655  	gpmc_t->wr_access = gpmc_t->access;
1656  
1657  	/* we_off */
1658  	temp = gpmc_t->we_on + dev_t->t_wpl;
1659  	temp = max_t(u32, temp,
1660  			gpmc_t->wr_access + gpmc_ticks_to_ps(1));
1661  	temp = max_t(u32, temp,
1662  		gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
1663  	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1664  
1665  	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1666  							dev_t->t_wph);
1667  
1668  	/* wr_cycle */
1669  	temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
1670  	temp += gpmc_t->wr_access;
1671  	/* XXX: barter t_ce_rdyz with t_cez_w ? */
1672  	if (dev_t->t_ce_rdyz)
1673  		temp = max_t(u32, temp,
1674  				 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
1675  	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1676  
1677  	return 0;
1678  }
1679  
gpmc_calc_async_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1680  static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1681  					struct gpmc_device_timings *dev_t,
1682  					bool mux)
1683  {
1684  	u32 temp;
1685  
1686  	/* adv_rd_off */
1687  	temp = dev_t->t_avdp_r;
1688  	if (mux)
1689  		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1690  	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1691  
1692  	/* oe_on */
1693  	temp = dev_t->t_oeasu;
1694  	if (mux)
1695  		temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh);
1696  	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1697  
1698  	/* access */
1699  	temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
1700  		     gpmc_t->oe_on + dev_t->t_oe);
1701  	temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce);
1702  	temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa);
1703  	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1704  
1705  	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1706  	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1707  
1708  	/* rd_cycle */
1709  	temp = max_t(u32, dev_t->t_rd_cycle,
1710  			gpmc_t->cs_rd_off + dev_t->t_cez_r);
1711  	temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
1712  	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1713  
1714  	return 0;
1715  }
1716  
gpmc_calc_async_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1717  static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1718  					 struct gpmc_device_timings *dev_t,
1719  					 bool mux)
1720  {
1721  	u32 temp;
1722  
1723  	/* adv_wr_off */
1724  	temp = dev_t->t_avdp_w;
1725  	if (mux)
1726  		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1727  	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1728  
1729  	/* wr_data_mux_bus */
1730  	temp = dev_t->t_weasu;
1731  	if (mux) {
1732  		temp = max_t(u32, temp,	gpmc_t->adv_wr_off + dev_t->t_aavdh);
1733  		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1734  				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1735  	}
1736  	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1737  
1738  	/* we_on */
1739  	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1740  		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1741  	else
1742  		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1743  
1744  	/* we_off */
1745  	temp = gpmc_t->we_on + dev_t->t_wpl;
1746  	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1747  
1748  	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1749  							dev_t->t_wph);
1750  
1751  	/* wr_cycle */
1752  	temp = max_t(u32, dev_t->t_wr_cycle,
1753  				gpmc_t->cs_wr_off + dev_t->t_cez_w);
1754  	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1755  
1756  	return 0;
1757  }
1758  
gpmc_calc_sync_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t)1759  static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1760  			struct gpmc_device_timings *dev_t)
1761  {
1762  	u32 temp;
1763  
1764  	gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1765  						gpmc_get_fclk_period();
1766  
1767  	gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1768  					dev_t->t_bacc,
1769  					gpmc_t->sync_clk);
1770  
1771  	temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1772  	gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1773  
1774  	if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1775  		return 0;
1776  
1777  	if (dev_t->ce_xdelay)
1778  		gpmc_t->bool_timings.cs_extra_delay = true;
1779  	if (dev_t->avd_xdelay)
1780  		gpmc_t->bool_timings.adv_extra_delay = true;
1781  	if (dev_t->oe_xdelay)
1782  		gpmc_t->bool_timings.oe_extra_delay = true;
1783  	if (dev_t->we_xdelay)
1784  		gpmc_t->bool_timings.we_extra_delay = true;
1785  
1786  	return 0;
1787  }
1788  
gpmc_calc_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool sync)1789  static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1790  				    struct gpmc_device_timings *dev_t,
1791  				    bool sync)
1792  {
1793  	u32 temp;
1794  
1795  	/* cs_on */
1796  	gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1797  
1798  	/* adv_on */
1799  	temp = dev_t->t_avdasu;
1800  	if (dev_t->t_ce_avd)
1801  		temp = max_t(u32, temp,
1802  				gpmc_t->cs_on + dev_t->t_ce_avd);
1803  	gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1804  
1805  	if (sync)
1806  		gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1807  
1808  	return 0;
1809  }
1810  
1811  /*
1812   * TODO: remove this function once all peripherals are confirmed to
1813   * work with generic timing. Simultaneously gpmc_cs_set_timings()
1814   * has to be modified to handle timings in ps instead of ns
1815   */
gpmc_convert_ps_to_ns(struct gpmc_timings * t)1816  static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1817  {
1818  	t->cs_on /= 1000;
1819  	t->cs_rd_off /= 1000;
1820  	t->cs_wr_off /= 1000;
1821  	t->adv_on /= 1000;
1822  	t->adv_rd_off /= 1000;
1823  	t->adv_wr_off /= 1000;
1824  	t->we_on /= 1000;
1825  	t->we_off /= 1000;
1826  	t->oe_on /= 1000;
1827  	t->oe_off /= 1000;
1828  	t->page_burst_access /= 1000;
1829  	t->access /= 1000;
1830  	t->rd_cycle /= 1000;
1831  	t->wr_cycle /= 1000;
1832  	t->bus_turnaround /= 1000;
1833  	t->cycle2cycle_delay /= 1000;
1834  	t->wait_monitoring /= 1000;
1835  	t->clk_activation /= 1000;
1836  	t->wr_access /= 1000;
1837  	t->wr_data_mux_bus /= 1000;
1838  }
1839  
gpmc_calc_timings(struct gpmc_timings * gpmc_t,struct gpmc_settings * gpmc_s,struct gpmc_device_timings * dev_t)1840  int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1841  		      struct gpmc_settings *gpmc_s,
1842  		      struct gpmc_device_timings *dev_t)
1843  {
1844  	bool mux = false, sync = false;
1845  
1846  	if (gpmc_s) {
1847  		mux = gpmc_s->mux_add_data ? true : false;
1848  		sync = (gpmc_s->sync_read || gpmc_s->sync_write);
1849  	}
1850  
1851  	memset(gpmc_t, 0, sizeof(*gpmc_t));
1852  
1853  	gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1854  
1855  	if (gpmc_s && gpmc_s->sync_read)
1856  		gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1857  	else
1858  		gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1859  
1860  	if (gpmc_s && gpmc_s->sync_write)
1861  		gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1862  	else
1863  		gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1864  
1865  	/* TODO: remove, see function definition */
1866  	gpmc_convert_ps_to_ns(gpmc_t);
1867  
1868  	return 0;
1869  }
1870  
1871  /**
1872   * gpmc_cs_program_settings - programs non-timing related settings
1873   * @cs:		GPMC chip-select to program
1874   * @p:		pointer to GPMC settings structure
1875   *
1876   * Programs non-timing related settings for a GPMC chip-select, such as
1877   * bus-width, burst configuration, etc. Function should be called once
1878   * for each chip-select that is being used and must be called before
1879   * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
1880   * register will be initialised to zero by this function. Returns 0 on
1881   * success and appropriate negative error code on failure.
1882   */
gpmc_cs_program_settings(int cs,struct gpmc_settings * p)1883  int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
1884  {
1885  	u32 config1;
1886  
1887  	if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
1888  		pr_err("%s: invalid width %d!", __func__, p->device_width);
1889  		return -EINVAL;
1890  	}
1891  
1892  	/* Address-data multiplexing not supported for NAND devices */
1893  	if (p->device_nand && p->mux_add_data) {
1894  		pr_err("%s: invalid configuration!\n", __func__);
1895  		return -EINVAL;
1896  	}
1897  
1898  	if ((p->mux_add_data > GPMC_MUX_AD) ||
1899  	    ((p->mux_add_data == GPMC_MUX_AAD) &&
1900  	     !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
1901  		pr_err("%s: invalid multiplex configuration!\n", __func__);
1902  		return -EINVAL;
1903  	}
1904  
1905  	/* Page/burst mode supports lengths of 4, 8 and 16 bytes */
1906  	if (p->burst_read || p->burst_write) {
1907  		switch (p->burst_len) {
1908  		case GPMC_BURST_4:
1909  		case GPMC_BURST_8:
1910  		case GPMC_BURST_16:
1911  			break;
1912  		default:
1913  			pr_err("%s: invalid page/burst-length (%d)\n",
1914  			       __func__, p->burst_len);
1915  			return -EINVAL;
1916  		}
1917  	}
1918  
1919  	if (p->wait_pin != GPMC_WAITPIN_INVALID &&
1920  	    p->wait_pin > gpmc_nr_waitpins) {
1921  		pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
1922  		return -EINVAL;
1923  	}
1924  
1925  	config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
1926  
1927  	if (p->sync_read)
1928  		config1 |= GPMC_CONFIG1_READTYPE_SYNC;
1929  	if (p->sync_write)
1930  		config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
1931  	if (p->wait_on_read)
1932  		config1 |= GPMC_CONFIG1_WAIT_READ_MON;
1933  	if (p->wait_on_write)
1934  		config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
1935  	if (p->wait_on_read || p->wait_on_write)
1936  		config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
1937  	if (p->device_nand)
1938  		config1	|= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
1939  	if (p->mux_add_data)
1940  		config1	|= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
1941  	if (p->burst_read)
1942  		config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
1943  	if (p->burst_write)
1944  		config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
1945  	if (p->burst_read || p->burst_write) {
1946  		config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
1947  		config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
1948  	}
1949  
1950  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
1951  
1952  	if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_INVALID) {
1953  		config1 = gpmc_read_reg(GPMC_CONFIG);
1954  
1955  		if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_LOW)
1956  			config1 &= ~GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
1957  		else if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_HIGH)
1958  			config1 |= GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
1959  
1960  		gpmc_write_reg(GPMC_CONFIG, config1);
1961  	}
1962  
1963  	return 0;
1964  }
1965  
1966  #ifdef CONFIG_OF
gpmc_cs_set_name(int cs,const char * name)1967  static void gpmc_cs_set_name(int cs, const char *name)
1968  {
1969  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1970  
1971  	gpmc->name = name;
1972  }
1973  
gpmc_cs_get_name(int cs)1974  static const char *gpmc_cs_get_name(int cs)
1975  {
1976  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1977  
1978  	return gpmc->name;
1979  }
1980  
1981  /**
1982   * gpmc_cs_remap - remaps a chip-select physical base address
1983   * @cs:		chip-select to remap
1984   * @base:	physical base address to re-map chip-select to
1985   *
1986   * Re-maps a chip-select to a new physical base address specified by
1987   * "base". Returns 0 on success and appropriate negative error code
1988   * on failure.
1989   */
gpmc_cs_remap(int cs,u32 base)1990  static int gpmc_cs_remap(int cs, u32 base)
1991  {
1992  	int ret;
1993  	u32 old_base, size;
1994  
1995  	if (cs >= gpmc_cs_num) {
1996  		pr_err("%s: requested chip-select is disabled\n", __func__);
1997  		return -ENODEV;
1998  	}
1999  
2000  	/*
2001  	 * Make sure we ignore any device offsets from the GPMC partition
2002  	 * allocated for the chip select and that the new base confirms
2003  	 * to the GPMC 16MB minimum granularity.
2004  	 */
2005  	base &= ~(SZ_16M - 1);
2006  
2007  	gpmc_cs_get_memconf(cs, &old_base, &size);
2008  	if (base == old_base)
2009  		return 0;
2010  
2011  	ret = gpmc_cs_delete_mem(cs);
2012  	if (ret < 0)
2013  		return ret;
2014  
2015  	ret = gpmc_cs_insert_mem(cs, base, size);
2016  	if (ret < 0)
2017  		return ret;
2018  
2019  	ret = gpmc_cs_set_memconf(cs, base, size);
2020  
2021  	return ret;
2022  }
2023  
2024  /**
2025   * gpmc_read_settings_dt - read gpmc settings from device-tree
2026   * @np:		pointer to device-tree node for a gpmc child device
2027   * @p:		pointer to gpmc settings structure
2028   *
2029   * Reads the GPMC settings for a GPMC child device from device-tree and
2030   * stores them in the GPMC settings structure passed. The GPMC settings
2031   * structure is initialised to zero by this function and so any
2032   * previously stored settings will be cleared.
2033   */
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2034  void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2035  {
2036  	memset(p, 0, sizeof(struct gpmc_settings));
2037  
2038  	p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
2039  	p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
2040  	of_property_read_u32(np, "gpmc,device-width", &p->device_width);
2041  	of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
2042  
2043  	if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
2044  		p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
2045  		p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
2046  		p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
2047  		if (!p->burst_read && !p->burst_write)
2048  			pr_warn("%s: page/burst-length set but not used!\n",
2049  				__func__);
2050  	}
2051  
2052  	p->wait_pin = GPMC_WAITPIN_INVALID;
2053  	p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
2054  
2055  	if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
2056  		if (!gpmc_is_valid_waitpin(p->wait_pin)) {
2057  			pr_err("%s: Invalid wait-pin (%d)\n", __func__, p->wait_pin);
2058  			p->wait_pin = GPMC_WAITPIN_INVALID;
2059  		}
2060  
2061  		if (!of_property_read_u32(np, "ti,wait-pin-polarity",
2062  					  &p->wait_pin_polarity)) {
2063  			if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_HIGH &&
2064  			    p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_LOW) {
2065  				pr_err("%s: Invalid wait-pin-polarity (%d)\n",
2066  				       __func__, p->wait_pin_polarity);
2067  				p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
2068  				}
2069  		}
2070  
2071  		p->wait_on_read = of_property_read_bool(np,
2072  							"gpmc,wait-on-read");
2073  		p->wait_on_write = of_property_read_bool(np,
2074  							 "gpmc,wait-on-write");
2075  		if (!p->wait_on_read && !p->wait_on_write)
2076  			pr_debug("%s: rd/wr wait monitoring not enabled!\n",
2077  				 __func__);
2078  	}
2079  }
2080  
gpmc_read_timings_dt(struct device_node * np,struct gpmc_timings * gpmc_t)2081  static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
2082  						struct gpmc_timings *gpmc_t)
2083  {
2084  	struct gpmc_bool_timings *p;
2085  
2086  	if (!np || !gpmc_t)
2087  		return;
2088  
2089  	memset(gpmc_t, 0, sizeof(*gpmc_t));
2090  
2091  	/* minimum clock period for syncronous mode */
2092  	of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
2093  
2094  	/* chip select timtings */
2095  	of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
2096  	of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
2097  	of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
2098  
2099  	/* ADV signal timings */
2100  	of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
2101  	of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
2102  	of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
2103  	of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
2104  			     &gpmc_t->adv_aad_mux_on);
2105  	of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
2106  			     &gpmc_t->adv_aad_mux_rd_off);
2107  	of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
2108  			     &gpmc_t->adv_aad_mux_wr_off);
2109  
2110  	/* WE signal timings */
2111  	of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
2112  	of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
2113  
2114  	/* OE signal timings */
2115  	of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
2116  	of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
2117  	of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
2118  			     &gpmc_t->oe_aad_mux_on);
2119  	of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
2120  			     &gpmc_t->oe_aad_mux_off);
2121  
2122  	/* access and cycle timings */
2123  	of_property_read_u32(np, "gpmc,page-burst-access-ns",
2124  			     &gpmc_t->page_burst_access);
2125  	of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
2126  	of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
2127  	of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
2128  	of_property_read_u32(np, "gpmc,bus-turnaround-ns",
2129  			     &gpmc_t->bus_turnaround);
2130  	of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
2131  			     &gpmc_t->cycle2cycle_delay);
2132  	of_property_read_u32(np, "gpmc,wait-monitoring-ns",
2133  			     &gpmc_t->wait_monitoring);
2134  	of_property_read_u32(np, "gpmc,clk-activation-ns",
2135  			     &gpmc_t->clk_activation);
2136  
2137  	/* only applicable to OMAP3+ */
2138  	of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
2139  	of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
2140  			     &gpmc_t->wr_data_mux_bus);
2141  
2142  	/* bool timing parameters */
2143  	p = &gpmc_t->bool_timings;
2144  
2145  	p->cycle2cyclediffcsen =
2146  		of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
2147  	p->cycle2cyclesamecsen =
2148  		of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
2149  	p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
2150  	p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
2151  	p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
2152  	p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
2153  	p->time_para_granularity =
2154  		of_property_read_bool(np, "gpmc,time-para-granularity");
2155  }
2156  
2157  /**
2158   * gpmc_probe_generic_child - configures the gpmc for a child device
2159   * @pdev:	pointer to gpmc platform device
2160   * @child:	pointer to device-tree node for child device
2161   *
2162   * Allocates and configures a GPMC chip-select for a child device.
2163   * Returns 0 on success and appropriate negative error code on failure.
2164   */
gpmc_probe_generic_child(struct platform_device * pdev,struct device_node * child)2165  static int gpmc_probe_generic_child(struct platform_device *pdev,
2166  				struct device_node *child)
2167  {
2168  	struct gpmc_settings gpmc_s;
2169  	struct gpmc_timings gpmc_t;
2170  	struct resource res;
2171  	unsigned long base;
2172  	const char *name;
2173  	int ret, cs;
2174  	u32 val;
2175  	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2176  
2177  	if (of_property_read_u32(child, "reg", &cs) < 0) {
2178  		dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
2179  			child);
2180  		return -ENODEV;
2181  	}
2182  
2183  	if (of_address_to_resource(child, 0, &res) < 0) {
2184  		dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
2185  			child);
2186  		return -ENODEV;
2187  	}
2188  
2189  	/*
2190  	 * Check if we have multiple instances of the same device
2191  	 * on a single chip select. If so, use the already initialized
2192  	 * timings.
2193  	 */
2194  	name = gpmc_cs_get_name(cs);
2195  	if (name && of_node_name_eq(child, name))
2196  		goto no_timings;
2197  
2198  	ret = gpmc_cs_request(cs, resource_size(&res), &base);
2199  	if (ret < 0) {
2200  		dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
2201  		return ret;
2202  	}
2203  	gpmc_cs_set_name(cs, child->full_name);
2204  
2205  	gpmc_read_settings_dt(child, &gpmc_s);
2206  	gpmc_read_timings_dt(child, &gpmc_t);
2207  
2208  	/*
2209  	 * For some GPMC devices we still need to rely on the bootloader
2210  	 * timings because the devices can be connected via FPGA.
2211  	 * REVISIT: Add timing support from slls644g.pdf.
2212  	 */
2213  	if (!gpmc_t.cs_rd_off) {
2214  		WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
2215  			cs);
2216  		gpmc_cs_show_timings(cs,
2217  				     "please add GPMC bootloader timings to .dts");
2218  		goto no_timings;
2219  	}
2220  
2221  	/* CS must be disabled while making changes to gpmc configuration */
2222  	gpmc_cs_disable_mem(cs);
2223  
2224  	/*
2225  	 * FIXME: gpmc_cs_request() will map the CS to an arbitrary
2226  	 * location in the gpmc address space. When booting with
2227  	 * device-tree we want the NOR flash to be mapped to the
2228  	 * location specified in the device-tree blob. So remap the
2229  	 * CS to this location. Once DT migration is complete should
2230  	 * just make gpmc_cs_request() map a specific address.
2231  	 */
2232  	ret = gpmc_cs_remap(cs, res.start);
2233  	if (ret < 0) {
2234  		dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
2235  			cs, &res.start);
2236  		if (res.start < GPMC_MEM_START) {
2237  			dev_info(&pdev->dev,
2238  				 "GPMC CS %d start cannot be lesser than 0x%x\n",
2239  				 cs, GPMC_MEM_START);
2240  		} else if (res.end > GPMC_MEM_END) {
2241  			dev_info(&pdev->dev,
2242  				 "GPMC CS %d end cannot be greater than 0x%x\n",
2243  				 cs, GPMC_MEM_END);
2244  		}
2245  		goto err;
2246  	}
2247  
2248  	if (of_node_name_eq(child, "nand")) {
2249  		/* Warn about older DT blobs with no compatible property */
2250  		if (!of_property_read_bool(child, "compatible")) {
2251  			dev_warn(&pdev->dev,
2252  				 "Incompatible NAND node: missing compatible");
2253  			ret = -EINVAL;
2254  			goto err;
2255  		}
2256  	}
2257  
2258  	if (of_node_name_eq(child, "onenand")) {
2259  		/* Warn about older DT blobs with no compatible property */
2260  		if (!of_property_read_bool(child, "compatible")) {
2261  			dev_warn(&pdev->dev,
2262  				 "Incompatible OneNAND node: missing compatible");
2263  			ret = -EINVAL;
2264  			goto err;
2265  		}
2266  	}
2267  
2268  	if (of_match_node(omap_nand_ids, child)) {
2269  		/* NAND specific setup */
2270  		val = 8;
2271  		of_property_read_u32(child, "nand-bus-width", &val);
2272  		switch (val) {
2273  		case 8:
2274  			gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
2275  			break;
2276  		case 16:
2277  			gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
2278  			break;
2279  		default:
2280  			dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n",
2281  				child);
2282  			ret = -EINVAL;
2283  			goto err;
2284  		}
2285  
2286  		/* disable write protect */
2287  		gpmc_configure(GPMC_CONFIG_WP, 0);
2288  		gpmc_s.device_nand = true;
2289  	} else {
2290  		ret = of_property_read_u32(child, "bank-width",
2291  					   &gpmc_s.device_width);
2292  		if (ret < 0 && !gpmc_s.device_width) {
2293  			dev_err(&pdev->dev,
2294  				"%pOF has no 'gpmc,device-width' property\n",
2295  				child);
2296  			goto err;
2297  		}
2298  	}
2299  
2300  	/* Reserve wait pin if it is required and valid */
2301  	if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
2302  		ret = gpmc_alloc_waitpin(gpmc, &gpmc_s);
2303  		if (ret < 0)
2304  			goto err;
2305  	}
2306  
2307  	gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
2308  
2309  	ret = gpmc_cs_program_settings(cs, &gpmc_s);
2310  	if (ret < 0)
2311  		goto err_cs;
2312  
2313  	ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
2314  	if (ret) {
2315  		dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n",
2316  			child);
2317  		goto err_cs;
2318  	}
2319  
2320  	/* Clear limited address i.e. enable A26-A11 */
2321  	val = gpmc_read_reg(GPMC_CONFIG);
2322  	val &= ~GPMC_CONFIG_LIMITEDADDRESS;
2323  	gpmc_write_reg(GPMC_CONFIG, val);
2324  
2325  	/* Enable CS region */
2326  	gpmc_cs_enable_mem(cs);
2327  
2328  no_timings:
2329  
2330  	/* create platform device, NULL on error or when disabled */
2331  	if (!of_platform_device_create(child, NULL, &pdev->dev))
2332  		goto err_child_fail;
2333  
2334  	/* create children and other common bus children */
2335  	if (of_platform_default_populate(child, NULL, &pdev->dev))
2336  		goto err_child_fail;
2337  
2338  	return 0;
2339  
2340  err_child_fail:
2341  
2342  	dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child);
2343  	ret = -ENODEV;
2344  
2345  err_cs:
2346  	gpmc_free_waitpin(gpmc, gpmc_s.wait_pin);
2347  err:
2348  	gpmc_cs_free(cs);
2349  
2350  	return ret;
2351  }
2352  
2353  static const struct of_device_id gpmc_dt_ids[];
2354  
gpmc_probe_dt(struct platform_device * pdev)2355  static int gpmc_probe_dt(struct platform_device *pdev)
2356  {
2357  	int ret;
2358  	const struct of_device_id *of_id =
2359  		of_match_device(gpmc_dt_ids, &pdev->dev);
2360  
2361  	if (!of_id)
2362  		return 0;
2363  
2364  	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
2365  				   &gpmc_cs_num);
2366  	if (ret < 0) {
2367  		pr_err("%s: number of chip-selects not defined\n", __func__);
2368  		return ret;
2369  	} else if (gpmc_cs_num < 1) {
2370  		pr_err("%s: all chip-selects are disabled\n", __func__);
2371  		return -EINVAL;
2372  	} else if (gpmc_cs_num > GPMC_CS_NUM) {
2373  		pr_err("%s: number of supported chip-selects cannot be > %d\n",
2374  					 __func__, GPMC_CS_NUM);
2375  		return -EINVAL;
2376  	}
2377  
2378  	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
2379  				   &gpmc_nr_waitpins);
2380  	if (ret < 0) {
2381  		pr_err("%s: number of wait pins not found!\n", __func__);
2382  		return ret;
2383  	}
2384  
2385  	return 0;
2386  }
2387  
gpmc_probe_dt_children(struct platform_device * pdev)2388  static void gpmc_probe_dt_children(struct platform_device *pdev)
2389  {
2390  	int ret;
2391  	struct device_node *child;
2392  
2393  	for_each_available_child_of_node(pdev->dev.of_node, child) {
2394  		ret = gpmc_probe_generic_child(pdev, child);
2395  		if (ret) {
2396  			dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n",
2397  				child, ret);
2398  		}
2399  	}
2400  }
2401  #else
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2402  void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2403  {
2404  	memset(p, 0, sizeof(*p));
2405  }
gpmc_probe_dt(struct platform_device * pdev)2406  static int gpmc_probe_dt(struct platform_device *pdev)
2407  {
2408  	return 0;
2409  }
2410  
gpmc_probe_dt_children(struct platform_device * pdev)2411  static void gpmc_probe_dt_children(struct platform_device *pdev)
2412  {
2413  }
2414  #endif /* CONFIG_OF */
2415  
gpmc_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)2416  static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
2417  {
2418  	return 1;	/* we're input only */
2419  }
2420  
gpmc_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)2421  static int gpmc_gpio_direction_input(struct gpio_chip *chip,
2422  				     unsigned int offset)
2423  {
2424  	return 0;	/* we're input only */
2425  }
2426  
gpmc_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int value)2427  static int gpmc_gpio_direction_output(struct gpio_chip *chip,
2428  				      unsigned int offset, int value)
2429  {
2430  	return -EINVAL;	/* we're input only */
2431  }
2432  
gpmc_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)2433  static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
2434  			  int value)
2435  {
2436  }
2437  
gpmc_gpio_get(struct gpio_chip * chip,unsigned int offset)2438  static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
2439  {
2440  	u32 reg;
2441  
2442  	offset += 8;
2443  
2444  	reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
2445  
2446  	return !!reg;
2447  }
2448  
gpmc_gpio_init(struct gpmc_device * gpmc)2449  static int gpmc_gpio_init(struct gpmc_device *gpmc)
2450  {
2451  	int ret;
2452  
2453  	gpmc->gpio_chip.parent = gpmc->dev;
2454  	gpmc->gpio_chip.owner = THIS_MODULE;
2455  	gpmc->gpio_chip.label = DEVICE_NAME;
2456  	gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
2457  	gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
2458  	gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
2459  	gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
2460  	gpmc->gpio_chip.set = gpmc_gpio_set;
2461  	gpmc->gpio_chip.get = gpmc_gpio_get;
2462  	gpmc->gpio_chip.base = -1;
2463  
2464  	ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
2465  	if (ret < 0) {
2466  		dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
2467  		return ret;
2468  	}
2469  
2470  	return 0;
2471  }
2472  
omap3_gpmc_save_context(struct gpmc_device * gpmc)2473  static void omap3_gpmc_save_context(struct gpmc_device *gpmc)
2474  {
2475  	struct omap3_gpmc_regs *gpmc_context;
2476  	int i;
2477  
2478  	if (!gpmc || !gpmc_base)
2479  		return;
2480  
2481  	gpmc_context = &gpmc->context;
2482  
2483  	gpmc_context->sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
2484  	gpmc_context->irqenable = gpmc_read_reg(GPMC_IRQENABLE);
2485  	gpmc_context->timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
2486  	gpmc_context->config = gpmc_read_reg(GPMC_CONFIG);
2487  	gpmc_context->prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
2488  	gpmc_context->prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
2489  	gpmc_context->prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2490  	for (i = 0; i < gpmc_cs_num; i++) {
2491  		gpmc_context->cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
2492  		if (gpmc_context->cs_context[i].is_valid) {
2493  			gpmc_context->cs_context[i].config1 =
2494  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
2495  			gpmc_context->cs_context[i].config2 =
2496  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
2497  			gpmc_context->cs_context[i].config3 =
2498  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
2499  			gpmc_context->cs_context[i].config4 =
2500  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
2501  			gpmc_context->cs_context[i].config5 =
2502  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
2503  			gpmc_context->cs_context[i].config6 =
2504  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
2505  			gpmc_context->cs_context[i].config7 =
2506  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
2507  		}
2508  	}
2509  }
2510  
omap3_gpmc_restore_context(struct gpmc_device * gpmc)2511  static void omap3_gpmc_restore_context(struct gpmc_device *gpmc)
2512  {
2513  	struct omap3_gpmc_regs *gpmc_context;
2514  	int i;
2515  
2516  	if (!gpmc || !gpmc_base)
2517  		return;
2518  
2519  	gpmc_context = &gpmc->context;
2520  
2521  	gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context->sysconfig);
2522  	gpmc_write_reg(GPMC_IRQENABLE, gpmc_context->irqenable);
2523  	gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context->timeout_ctrl);
2524  	gpmc_write_reg(GPMC_CONFIG, gpmc_context->config);
2525  	gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context->prefetch_config1);
2526  	gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context->prefetch_config2);
2527  	gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context->prefetch_control);
2528  	for (i = 0; i < gpmc_cs_num; i++) {
2529  		if (gpmc_context->cs_context[i].is_valid) {
2530  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
2531  					  gpmc_context->cs_context[i].config1);
2532  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
2533  					  gpmc_context->cs_context[i].config2);
2534  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
2535  					  gpmc_context->cs_context[i].config3);
2536  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
2537  					  gpmc_context->cs_context[i].config4);
2538  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
2539  					  gpmc_context->cs_context[i].config5);
2540  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
2541  					  gpmc_context->cs_context[i].config6);
2542  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
2543  					  gpmc_context->cs_context[i].config7);
2544  		} else {
2545  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 0);
2546  		}
2547  	}
2548  }
2549  
omap_gpmc_context_notifier(struct notifier_block * nb,unsigned long cmd,void * v)2550  static int omap_gpmc_context_notifier(struct notifier_block *nb,
2551  				      unsigned long cmd, void *v)
2552  {
2553  	struct gpmc_device *gpmc;
2554  
2555  	gpmc = container_of(nb, struct gpmc_device, nb);
2556  	if (gpmc->is_suspended || pm_runtime_suspended(gpmc->dev))
2557  		return NOTIFY_OK;
2558  
2559  	switch (cmd) {
2560  	case CPU_CLUSTER_PM_ENTER:
2561  		omap3_gpmc_save_context(gpmc);
2562  		break;
2563  	case CPU_CLUSTER_PM_ENTER_FAILED:	/* No need to restore context */
2564  		break;
2565  	case CPU_CLUSTER_PM_EXIT:
2566  		omap3_gpmc_restore_context(gpmc);
2567  		break;
2568  	}
2569  
2570  	return NOTIFY_OK;
2571  }
2572  
gpmc_probe(struct platform_device * pdev)2573  static int gpmc_probe(struct platform_device *pdev)
2574  {
2575  	int rc, i;
2576  	u32 l;
2577  	struct resource *res;
2578  	struct gpmc_device *gpmc;
2579  
2580  	gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
2581  	if (!gpmc)
2582  		return -ENOMEM;
2583  
2584  	gpmc->dev = &pdev->dev;
2585  	platform_set_drvdata(pdev, gpmc);
2586  
2587  	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg");
2588  	if (!res) {
2589  		/* legacy DT */
2590  		gpmc_base = devm_platform_ioremap_resource(pdev, 0);
2591  		if (IS_ERR(gpmc_base))
2592  			return PTR_ERR(gpmc_base);
2593  	} else {
2594  		gpmc_base = devm_ioremap_resource(&pdev->dev, res);
2595  		if (IS_ERR(gpmc_base))
2596  			return PTR_ERR(gpmc_base);
2597  
2598  		res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "data");
2599  		if (!res) {
2600  			dev_err(&pdev->dev, "couldn't get data reg resource\n");
2601  			return -ENOENT;
2602  		}
2603  
2604  		gpmc->data = res;
2605  	}
2606  
2607  	gpmc->irq = platform_get_irq(pdev, 0);
2608  	if (gpmc->irq < 0)
2609  		return gpmc->irq;
2610  
2611  	gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2612  	if (IS_ERR(gpmc_l3_clk)) {
2613  		dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2614  		return PTR_ERR(gpmc_l3_clk);
2615  	}
2616  
2617  	if (!clk_get_rate(gpmc_l3_clk)) {
2618  		dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
2619  		return -EINVAL;
2620  	}
2621  
2622  	if (pdev->dev.of_node) {
2623  		rc = gpmc_probe_dt(pdev);
2624  		if (rc)
2625  			return rc;
2626  	} else {
2627  		gpmc_cs_num = GPMC_CS_NUM;
2628  		gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2629  	}
2630  
2631  	gpmc->waitpins = devm_kzalloc(&pdev->dev,
2632  				      gpmc_nr_waitpins * sizeof(struct gpmc_waitpin),
2633  				      GFP_KERNEL);
2634  	if (!gpmc->waitpins)
2635  		return -ENOMEM;
2636  
2637  	for (i = 0; i < gpmc_nr_waitpins; i++)
2638  		gpmc->waitpins[i].pin = GPMC_WAITPIN_INVALID;
2639  
2640  	pm_runtime_enable(&pdev->dev);
2641  	pm_runtime_get_sync(&pdev->dev);
2642  
2643  	l = gpmc_read_reg(GPMC_REVISION);
2644  
2645  	/*
2646  	 * FIXME: Once device-tree migration is complete the below flags
2647  	 * should be populated based upon the device-tree compatible
2648  	 * string. For now just use the IP revision. OMAP3+ devices have
2649  	 * the wr_access and wr_data_mux_bus register fields. OMAP4+
2650  	 * devices support the addr-addr-data multiplex protocol.
2651  	 *
2652  	 * GPMC IP revisions:
2653  	 * - OMAP24xx			= 2.0
2654  	 * - OMAP3xxx			= 5.0
2655  	 * - OMAP44xx/54xx/AM335x	= 6.0
2656  	 */
2657  	if (GPMC_REVISION_MAJOR(l) > 0x4)
2658  		gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2659  	if (GPMC_REVISION_MAJOR(l) > 0x5)
2660  		gpmc_capability |= GPMC_HAS_MUX_AAD;
2661  	dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
2662  		 GPMC_REVISION_MINOR(l));
2663  
2664  	gpmc_mem_init(gpmc);
2665  	rc = gpmc_gpio_init(gpmc);
2666  	if (rc)
2667  		goto gpio_init_failed;
2668  
2669  	gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
2670  	rc = gpmc_setup_irq(gpmc);
2671  	if (rc) {
2672  		dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
2673  		goto gpio_init_failed;
2674  	}
2675  
2676  	gpmc_probe_dt_children(pdev);
2677  
2678  	gpmc->nb.notifier_call = omap_gpmc_context_notifier;
2679  	cpu_pm_register_notifier(&gpmc->nb);
2680  
2681  	return 0;
2682  
2683  gpio_init_failed:
2684  	gpmc_mem_exit();
2685  	pm_runtime_put_sync(&pdev->dev);
2686  	pm_runtime_disable(&pdev->dev);
2687  
2688  	return rc;
2689  }
2690  
gpmc_remove(struct platform_device * pdev)2691  static void gpmc_remove(struct platform_device *pdev)
2692  {
2693  	int i;
2694  	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2695  
2696  	cpu_pm_unregister_notifier(&gpmc->nb);
2697  	for (i = 0; i < gpmc_nr_waitpins; i++)
2698  		gpmc_free_waitpin(gpmc, i);
2699  	gpmc_free_irq(gpmc);
2700  	gpmc_mem_exit();
2701  	pm_runtime_put_sync(&pdev->dev);
2702  	pm_runtime_disable(&pdev->dev);
2703  }
2704  
2705  #ifdef CONFIG_PM_SLEEP
gpmc_suspend(struct device * dev)2706  static int gpmc_suspend(struct device *dev)
2707  {
2708  	struct gpmc_device *gpmc = dev_get_drvdata(dev);
2709  
2710  	omap3_gpmc_save_context(gpmc);
2711  	pm_runtime_put_sync(dev);
2712  	gpmc->is_suspended = 1;
2713  
2714  	return 0;
2715  }
2716  
gpmc_resume(struct device * dev)2717  static int gpmc_resume(struct device *dev)
2718  {
2719  	struct gpmc_device *gpmc = dev_get_drvdata(dev);
2720  
2721  	pm_runtime_get_sync(dev);
2722  	omap3_gpmc_restore_context(gpmc);
2723  	gpmc->is_suspended = 0;
2724  
2725  	return 0;
2726  }
2727  #endif
2728  
2729  static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
2730  
2731  #ifdef CONFIG_OF
2732  static const struct of_device_id gpmc_dt_ids[] = {
2733  	{ .compatible = "ti,omap2420-gpmc" },
2734  	{ .compatible = "ti,omap2430-gpmc" },
2735  	{ .compatible = "ti,omap3430-gpmc" },	/* omap3430 & omap3630 */
2736  	{ .compatible = "ti,omap4430-gpmc" },	/* omap4430 & omap4460 & omap543x */
2737  	{ .compatible = "ti,am3352-gpmc" },	/* am335x devices */
2738  	{ .compatible = "ti,am64-gpmc" },
2739  	{ }
2740  };
2741  MODULE_DEVICE_TABLE(of, gpmc_dt_ids);
2742  #endif
2743  
2744  static struct platform_driver gpmc_driver = {
2745  	.probe		= gpmc_probe,
2746  	.remove_new	= gpmc_remove,
2747  	.driver		= {
2748  		.name	= DEVICE_NAME,
2749  		.of_match_table = of_match_ptr(gpmc_dt_ids),
2750  		.pm	= &gpmc_pm_ops,
2751  	},
2752  };
2753  
2754  module_platform_driver(gpmc_driver);
2755  
2756  MODULE_DESCRIPTION("Texas Instruments GPMC driver");
2757  MODULE_LICENSE("GPL");
2758