1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Cadence NAND flash controller driver
4 *
5 * Copyright (C) 2019 Cadence
6 *
7 * Author: Piotr Sroka <piotrs@cadence.com>
8 */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/iopoll.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/property.h>
22 #include <linux/slab.h>
23
24 /*
25 * HPNFC can work in 3 modes:
26 * - PIO - can work in master or slave DMA
27 * - CDMA - needs Master DMA for accessing command descriptors.
28 * - Generic mode - can use only slave DMA.
29 * CDMA and PIO modes can be used to execute only base commands.
30 * Generic mode can be used to execute any command
31 * on NAND flash memory. Driver uses CDMA mode for
32 * block erasing, page reading, page programing.
33 * Generic mode is used for executing rest of commands.
34 */
35
36 #define MAX_ADDRESS_CYC 6
37 #define MAX_ERASE_ADDRESS_CYC 3
38 #define MAX_DATA_SIZE 0xFFFC
39 #define DMA_DATA_SIZE_ALIGN 8
40
41 /* Register definition. */
42 /*
43 * Command register 0.
44 * Writing data to this register will initiate a new transaction
45 * of the NF controller.
46 */
47 #define CMD_REG0 0x0000
48 /* Command type field mask. */
49 #define CMD_REG0_CT GENMASK(31, 30)
50 /* Command type CDMA. */
51 #define CMD_REG0_CT_CDMA 0uL
52 /* Command type generic. */
53 #define CMD_REG0_CT_GEN 3uL
54 /* Command thread number field mask. */
55 #define CMD_REG0_TN GENMASK(27, 24)
56
57 /* Command register 2. */
58 #define CMD_REG2 0x0008
59 /* Command register 3. */
60 #define CMD_REG3 0x000C
61 /* Pointer register to select which thread status will be selected. */
62 #define CMD_STATUS_PTR 0x0010
63 /* Command status register for selected thread. */
64 #define CMD_STATUS 0x0014
65
66 /* Interrupt status register. */
67 #define INTR_STATUS 0x0110
68 #define INTR_STATUS_SDMA_ERR BIT(22)
69 #define INTR_STATUS_SDMA_TRIGG BIT(21)
70 #define INTR_STATUS_UNSUPP_CMD BIT(19)
71 #define INTR_STATUS_DDMA_TERR BIT(18)
72 #define INTR_STATUS_CDMA_TERR BIT(17)
73 #define INTR_STATUS_CDMA_IDL BIT(16)
74
75 /* Interrupt enable register. */
76 #define INTR_ENABLE 0x0114
77 #define INTR_ENABLE_INTR_EN BIT(31)
78 #define INTR_ENABLE_SDMA_ERR_EN BIT(22)
79 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21)
80 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19)
81 #define INTR_ENABLE_DDMA_TERR_EN BIT(18)
82 #define INTR_ENABLE_CDMA_TERR_EN BIT(17)
83 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16)
84
85 /* Controller internal state. */
86 #define CTRL_STATUS 0x0118
87 #define CTRL_STATUS_INIT_COMP BIT(9)
88 #define CTRL_STATUS_CTRL_BUSY BIT(8)
89
90 /* Command Engine threads state. */
91 #define TRD_STATUS 0x0120
92
93 /* Command Engine interrupt thread error status. */
94 #define TRD_ERR_INT_STATUS 0x0128
95 /* Command Engine interrupt thread error enable. */
96 #define TRD_ERR_INT_STATUS_EN 0x0130
97 /* Command Engine interrupt thread complete status. */
98 #define TRD_COMP_INT_STATUS 0x0138
99
100 /*
101 * Transfer config 0 register.
102 * Configures data transfer parameters.
103 */
104 #define TRAN_CFG_0 0x0400
105 /* Offset value from the beginning of the page. */
106 #define TRAN_CFG_0_OFFSET GENMASK(31, 16)
107 /* Numbers of sectors to transfer within singlNF device's page. */
108 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
109
110 /*
111 * Transfer config 1 register.
112 * Configures data transfer parameters.
113 */
114 #define TRAN_CFG_1 0x0404
115 /* Size of last data sector. */
116 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
117 /* Size of not-last data sector. */
118 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
119
120 /* ECC engine configuration register 0. */
121 #define ECC_CONFIG_0 0x0428
122 /* Correction strength. */
123 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8)
124 /* Enable erased pages detection mechanism. */
125 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
126 /* Enable controller ECC check bits generation and correction. */
127 #define ECC_CONFIG_0_ECC_EN BIT(0)
128
129 /* ECC engine configuration register 1. */
130 #define ECC_CONFIG_1 0x042C
131
132 /* Multiplane settings register. */
133 #define MULTIPLANE_CFG 0x0434
134 /* Cache operation settings. */
135 #define CACHE_CFG 0x0438
136
137 /* DMA settings register. */
138 #define DMA_SETINGS 0x043C
139 /* Enable SDMA error report on access unprepared slave DMA interface. */
140 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17)
141
142 /* Transferred data block size for the slave DMA module. */
143 #define SDMA_SIZE 0x0440
144
145 /* Thread number associated with transferred data block
146 * for the slave DMA module.
147 */
148 #define SDMA_TRD_NUM 0x0444
149 /* Thread number mask. */
150 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
151
152 #define CONTROL_DATA_CTRL 0x0494
153 /* Thread number mask. */
154 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
155
156 #define CTRL_VERSION 0x800
157 #define CTRL_VERSION_REV GENMASK(7, 0)
158
159 /* Available hardware features of the controller. */
160 #define CTRL_FEATURES 0x804
161 /* Support for NV-DDR2/3 work mode. */
162 #define CTRL_FEATURES_NVDDR_2_3 BIT(28)
163 /* Support for NV-DDR work mode. */
164 #define CTRL_FEATURES_NVDDR BIT(27)
165 /* Support for asynchronous work mode. */
166 #define CTRL_FEATURES_ASYNC BIT(26)
167 /* Support for asynchronous work mode. */
168 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
169 /* Slave and Master DMA data width. */
170 #define CTRL_FEATURES_DMA_DWITH64 BIT(21)
171 /* Availability of Control Data feature.*/
172 #define CTRL_FEATURES_CONTROL_DATA BIT(10)
173
174 /* BCH Engine identification register 0 - correction strengths. */
175 #define BCH_CFG_0 0x838
176 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
177 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
178 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
179 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
180
181 /* BCH Engine identification register 1 - correction strengths. */
182 #define BCH_CFG_1 0x83C
183 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
184 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
185 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
186 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
187
188 /* BCH Engine identification register 2 - sector sizes. */
189 #define BCH_CFG_2 0x840
190 #define BCH_CFG_2_SECT_0 GENMASK(15, 0)
191 #define BCH_CFG_2_SECT_1 GENMASK(31, 16)
192
193 /* BCH Engine identification register 3. */
194 #define BCH_CFG_3 0x844
195 #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16)
196
197 /* Ready/Busy# line status. */
198 #define RBN_SETINGS 0x1004
199
200 /* Common settings. */
201 #define COMMON_SET 0x1008
202 /* 16 bit device connected to the NAND Flash interface. */
203 #define COMMON_SET_DEVICE_16BIT BIT(8)
204
205 /* Skip_bytes registers. */
206 #define SKIP_BYTES_CONF 0x100C
207 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
208 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
209
210 #define SKIP_BYTES_OFFSET 0x1010
211 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
212
213 /* Timings configuration. */
214 #define ASYNC_TOGGLE_TIMINGS 0x101c
215 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
216 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
217 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
218 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
219
220 #define TIMINGS0 0x1024
221 #define TIMINGS0_TADL GENMASK(31, 24)
222 #define TIMINGS0_TCCS GENMASK(23, 16)
223 #define TIMINGS0_TWHR GENMASK(15, 8)
224 #define TIMINGS0_TRHW GENMASK(7, 0)
225
226 #define TIMINGS1 0x1028
227 #define TIMINGS1_TRHZ GENMASK(31, 24)
228 #define TIMINGS1_TWB GENMASK(23, 16)
229 #define TIMINGS1_TVDLY GENMASK(7, 0)
230
231 #define TIMINGS2 0x102c
232 #define TIMINGS2_TFEAT GENMASK(25, 16)
233 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
234 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
235
236 /* Configuration of the resynchronization of slave DLL of PHY. */
237 #define DLL_PHY_CTRL 0x1034
238 #define DLL_PHY_CTRL_DLL_RST_N BIT(24)
239 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
240 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
241 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
242 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
243
244 /* Register controlling DQ related timing. */
245 #define PHY_DQ_TIMING 0x2000
246 /* Register controlling DSQ related timing. */
247 #define PHY_DQS_TIMING 0x2004
248 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0)
249 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16)
250 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20)
251
252 /* Register controlling the gate and loopback control related timing. */
253 #define PHY_GATE_LPBK_CTRL 0x2008
254 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
255
256 /* Register holds the control for the master DLL logic. */
257 #define PHY_DLL_MASTER_CTRL 0x200C
258 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
259
260 /* Register holds the control for the slave DLL logic. */
261 #define PHY_DLL_SLAVE_CTRL 0x2010
262
263 /* This register handles the global control settings for the PHY. */
264 #define PHY_CTRL 0x2080
265 #define PHY_CTRL_SDR_DQS BIT(14)
266 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
267
268 /*
269 * This register handles the global control settings
270 * for the termination selects for reads.
271 */
272 #define PHY_TSEL 0x2084
273
274 /* Generic command layout. */
275 #define GCMD_LAY_CS GENMASK_ULL(11, 8)
276 /*
277 * This bit informs the minicotroller if it has to wait for tWB
278 * after sending the last CMD/ADDR/DATA in the sequence.
279 */
280 #define GCMD_LAY_TWB BIT_ULL(6)
281 /* Type of generic instruction. */
282 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
283
284 /* Generic CMD sequence type. */
285 #define GCMD_LAY_INSTR_CMD 0
286 /* Generic ADDR sequence type. */
287 #define GCMD_LAY_INSTR_ADDR 1
288 /* Generic data transfer sequence type. */
289 #define GCMD_LAY_INSTR_DATA 2
290
291 /* Input part of generic command type of input is command. */
292 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
293
294 /* Generic command address sequence - address fields. */
295 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
296 /* Generic command address sequence - address size. */
297 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
298
299 /* Transfer direction field of generic command data sequence. */
300 #define GCMD_DIR BIT_ULL(11)
301 /* Read transfer direction of generic command data sequence. */
302 #define GCMD_DIR_READ 0
303 /* Write transfer direction of generic command data sequence. */
304 #define GCMD_DIR_WRITE 1
305
306 /* ECC enabled flag of generic command data sequence - ECC enabled. */
307 #define GCMD_ECC_EN BIT_ULL(12)
308 /* Generic command data sequence - sector size. */
309 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
310 /* Generic command data sequence - sector count. */
311 #define GCMD_SECT_CNT GENMASK_ULL(39, 32)
312 /* Generic command data sequence - last sector size. */
313 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
314
315 /* CDMA descriptor fields. */
316 /* Erase command type of CDMA descriptor. */
317 #define CDMA_CT_ERASE 0x1000
318 /* Program page command type of CDMA descriptor. */
319 #define CDMA_CT_WR 0x2100
320 /* Read page command type of CDMA descriptor. */
321 #define CDMA_CT_RD 0x2200
322
323 /* Flash pointer memory shift. */
324 #define CDMA_CFPTR_MEM_SHIFT 24
325 /* Flash pointer memory mask. */
326 #define CDMA_CFPTR_MEM GENMASK(26, 24)
327
328 /*
329 * Command DMA descriptor flags. If set causes issue interrupt after
330 * the completion of descriptor processing.
331 */
332 #define CDMA_CF_INT BIT(8)
333 /*
334 * Command DMA descriptor flags - the next descriptor
335 * address field is valid and descriptor processing should continue.
336 */
337 #define CDMA_CF_CONT BIT(9)
338 /* DMA master flag of command DMA descriptor. */
339 #define CDMA_CF_DMA_MASTER BIT(10)
340
341 /* Operation complete status of command descriptor. */
342 #define CDMA_CS_COMP BIT(15)
343 /* Operation complete status of command descriptor. */
344 /* Command descriptor status - operation fail. */
345 #define CDMA_CS_FAIL BIT(14)
346 /* Command descriptor status - page erased. */
347 #define CDMA_CS_ERP BIT(11)
348 /* Command descriptor status - timeout occurred. */
349 #define CDMA_CS_TOUT BIT(10)
350 /*
351 * Maximum amount of correction applied to one ECC sector.
352 * It is part of command descriptor status.
353 */
354 #define CDMA_CS_MAXERR GENMASK(9, 2)
355 /* Command descriptor status - uncorrectable ECC error. */
356 #define CDMA_CS_UNCE BIT(1)
357 /* Command descriptor status - descriptor error. */
358 #define CDMA_CS_ERR BIT(0)
359
360 /* Status of operation - OK. */
361 #define STAT_OK 0
362 /* Status of operation - FAIL. */
363 #define STAT_FAIL 2
364 /* Status of operation - uncorrectable ECC error. */
365 #define STAT_ECC_UNCORR 3
366 /* Status of operation - page erased. */
367 #define STAT_ERASED 5
368 /* Status of operation - correctable ECC error. */
369 #define STAT_ECC_CORR 6
370 /* Status of operation - unsuspected state. */
371 #define STAT_UNKNOWN 7
372 /* Status of operation - operation is not completed yet. */
373 #define STAT_BUSY 0xFF
374
375 #define BCH_MAX_NUM_CORR_CAPS 8
376 #define BCH_MAX_NUM_SECTOR_SIZES 2
377
378 struct cadence_nand_timings {
379 u32 async_toggle_timings;
380 u32 timings0;
381 u32 timings1;
382 u32 timings2;
383 u32 dll_phy_ctrl;
384 u32 phy_ctrl;
385 u32 phy_dqs_timing;
386 u32 phy_gate_lpbk_ctrl;
387 };
388
389 /* Command DMA descriptor. */
390 struct cadence_nand_cdma_desc {
391 /* Next descriptor address. */
392 u64 next_pointer;
393
394 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
395 u32 flash_pointer;
396 /*field appears in HPNFC version 13*/
397 u16 bank;
398 u16 rsvd0;
399
400 /* Operation the controller needs to perform. */
401 u16 command_type;
402 u16 rsvd1;
403 /* Flags for operation of this command. */
404 u16 command_flags;
405 u16 rsvd2;
406
407 /* System/host memory address required for data DMA commands. */
408 u64 memory_pointer;
409
410 /* Status of operation. */
411 u32 status;
412 u32 rsvd3;
413
414 /* Address pointer to sync buffer location. */
415 u64 sync_flag_pointer;
416
417 /* Controls the buffer sync mechanism. */
418 u32 sync_arguments;
419 u32 rsvd4;
420
421 /* Control data pointer. */
422 u64 ctrl_data_ptr;
423 };
424
425 /* Interrupt status. */
426 struct cadence_nand_irq_status {
427 /* Thread operation complete status. */
428 u32 trd_status;
429 /* Thread operation error. */
430 u32 trd_error;
431 /* Controller status. */
432 u32 status;
433 };
434
435 /* Cadence NAND flash controller capabilities get from driver data. */
436 struct cadence_nand_dt_devdata {
437 /* Skew value of the output signals of the NAND Flash interface. */
438 u32 if_skew;
439 /* It informs if slave DMA interface is connected to DMA engine. */
440 unsigned int has_dma:1;
441 };
442
443 /* Cadence NAND flash controller capabilities read from registers. */
444 struct cdns_nand_caps {
445 /* Maximum number of banks supported by hardware. */
446 u8 max_banks;
447 /* Slave and Master DMA data width in bytes (4 or 8). */
448 u8 data_dma_width;
449 /* Control Data feature supported. */
450 bool data_control_supp;
451 /* Is PHY type DLL. */
452 bool is_phy_type_dll;
453 };
454
455 struct cdns_nand_ctrl {
456 struct device *dev;
457 struct nand_controller controller;
458 struct cadence_nand_cdma_desc *cdma_desc;
459 /* IP capability. */
460 const struct cadence_nand_dt_devdata *caps1;
461 struct cdns_nand_caps caps2;
462 u8 ctrl_rev;
463 dma_addr_t dma_cdma_desc;
464 u8 *buf;
465 u32 buf_size;
466 u8 curr_corr_str_idx;
467
468 /* Register interface. */
469 void __iomem *reg;
470
471 struct {
472 void __iomem *virt;
473 dma_addr_t dma;
474 } io;
475
476 int irq;
477 /* Interrupts that have happened. */
478 struct cadence_nand_irq_status irq_status;
479 /* Interrupts we are waiting for. */
480 struct cadence_nand_irq_status irq_mask;
481 struct completion complete;
482 /* Protect irq_mask and irq_status. */
483 spinlock_t irq_lock;
484
485 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
486 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
487 struct nand_ecc_caps ecc_caps;
488
489 int curr_trans_type;
490
491 struct dma_chan *dmac;
492
493 u32 nf_clk_rate;
494 /*
495 * Estimated Board delay. The value includes the total
496 * round trip delay for the signals and is used for deciding on values
497 * associated with data read capture.
498 */
499 u32 board_delay;
500
501 struct nand_chip *selected_chip;
502
503 unsigned long assigned_cs;
504 struct list_head chips;
505 u8 bch_metadata_size;
506 };
507
508 struct cdns_nand_chip {
509 struct cadence_nand_timings timings;
510 struct nand_chip chip;
511 u8 nsels;
512 struct list_head node;
513
514 /*
515 * part of oob area of NAND flash memory page.
516 * This part is available for user to read or write.
517 */
518 u32 avail_oob_size;
519
520 /* Sector size. There are few sectors per mtd->writesize */
521 u32 sector_size;
522 u32 sector_count;
523
524 /* Offset of BBM. */
525 u8 bbm_offs;
526 /* Number of bytes reserved for BBM. */
527 u8 bbm_len;
528 /* ECC strength index. */
529 u8 corr_str_idx;
530
531 u8 cs[] __counted_by(nsels);
532 };
533
534 static inline struct
to_cdns_nand_chip(struct nand_chip * chip)535 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
536 {
537 return container_of(chip, struct cdns_nand_chip, chip);
538 }
539
540 static inline struct
to_cdns_nand_ctrl(struct nand_controller * controller)541 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
542 {
543 return container_of(controller, struct cdns_nand_ctrl, controller);
544 }
545
546 static bool
cadence_nand_dma_buf_ok(struct cdns_nand_ctrl * cdns_ctrl,const void * buf,u32 buf_len)547 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
548 u32 buf_len)
549 {
550 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
551
552 return buf && virt_addr_valid(buf) &&
553 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
554 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
555 }
556
cadence_nand_wait_for_value(struct cdns_nand_ctrl * cdns_ctrl,u32 reg_offset,u32 timeout_us,u32 mask,bool is_clear)557 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
558 u32 reg_offset, u32 timeout_us,
559 u32 mask, bool is_clear)
560 {
561 u32 val;
562 int ret;
563
564 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
565 val, !(val & mask) == is_clear,
566 10, timeout_us);
567
568 if (ret < 0) {
569 dev_err(cdns_ctrl->dev,
570 "Timeout while waiting for reg %x with mask %x is clear %d\n",
571 reg_offset, mask, is_clear);
572 }
573
574 return ret;
575 }
576
cadence_nand_set_ecc_enable(struct cdns_nand_ctrl * cdns_ctrl,bool enable)577 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
578 bool enable)
579 {
580 u32 reg;
581
582 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
583 1000000,
584 CTRL_STATUS_CTRL_BUSY, true))
585 return -ETIMEDOUT;
586
587 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
588
589 if (enable)
590 reg |= ECC_CONFIG_0_ECC_EN;
591 else
592 reg &= ~ECC_CONFIG_0_ECC_EN;
593
594 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
595
596 return 0;
597 }
598
cadence_nand_set_ecc_strength(struct cdns_nand_ctrl * cdns_ctrl,u8 corr_str_idx)599 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
600 u8 corr_str_idx)
601 {
602 u32 reg;
603
604 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
605 return;
606
607 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
608 reg &= ~ECC_CONFIG_0_CORR_STR;
609 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
610 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
611
612 cdns_ctrl->curr_corr_str_idx = corr_str_idx;
613 }
614
cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl * cdns_ctrl,u8 strength)615 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
616 u8 strength)
617 {
618 int i, corr_str_idx = -1;
619
620 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
621 if (cdns_ctrl->ecc_strengths[i] == strength) {
622 corr_str_idx = i;
623 break;
624 }
625 }
626
627 return corr_str_idx;
628 }
629
cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl * cdns_ctrl,u16 marker_value)630 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
631 u16 marker_value)
632 {
633 u32 reg;
634
635 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
636 1000000,
637 CTRL_STATUS_CTRL_BUSY, true))
638 return -ETIMEDOUT;
639
640 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
641 reg &= ~SKIP_BYTES_MARKER_VALUE;
642 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
643 marker_value);
644
645 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
646
647 return 0;
648 }
649
cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl * cdns_ctrl,u8 num_of_bytes,u32 offset_value,int enable)650 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
651 u8 num_of_bytes,
652 u32 offset_value,
653 int enable)
654 {
655 u32 reg, skip_bytes_offset;
656
657 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
658 1000000,
659 CTRL_STATUS_CTRL_BUSY, true))
660 return -ETIMEDOUT;
661
662 if (!enable) {
663 num_of_bytes = 0;
664 offset_value = 0;
665 }
666
667 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
668 reg &= ~SKIP_BYTES_NUM_OF_BYTES;
669 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
670 num_of_bytes);
671 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
672 offset_value);
673
674 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
675 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
676
677 return 0;
678 }
679
680 /* Functions enables/disables hardware detection of erased data */
cadence_nand_set_erase_detection(struct cdns_nand_ctrl * cdns_ctrl,bool enable,u8 bitflips_threshold)681 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
682 bool enable,
683 u8 bitflips_threshold)
684 {
685 u32 reg;
686
687 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
688
689 if (enable)
690 reg |= ECC_CONFIG_0_ERASE_DET_EN;
691 else
692 reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
693
694 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
695 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
696 }
697
cadence_nand_set_access_width16(struct cdns_nand_ctrl * cdns_ctrl,bool bit_bus16)698 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
699 bool bit_bus16)
700 {
701 u32 reg;
702
703 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
704 1000000,
705 CTRL_STATUS_CTRL_BUSY, true))
706 return -ETIMEDOUT;
707
708 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
709
710 if (!bit_bus16)
711 reg &= ~COMMON_SET_DEVICE_16BIT;
712 else
713 reg |= COMMON_SET_DEVICE_16BIT;
714 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
715
716 return 0;
717 }
718
719 static void
cadence_nand_clear_interrupt(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_status)720 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
721 struct cadence_nand_irq_status *irq_status)
722 {
723 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
724 writel_relaxed(irq_status->trd_status,
725 cdns_ctrl->reg + TRD_COMP_INT_STATUS);
726 writel_relaxed(irq_status->trd_error,
727 cdns_ctrl->reg + TRD_ERR_INT_STATUS);
728 }
729
730 static void
cadence_nand_read_int_status(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_status)731 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
732 struct cadence_nand_irq_status *irq_status)
733 {
734 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
735 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
736 + TRD_COMP_INT_STATUS);
737 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
738 + TRD_ERR_INT_STATUS);
739 }
740
irq_detected(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_status)741 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
742 struct cadence_nand_irq_status *irq_status)
743 {
744 cadence_nand_read_int_status(cdns_ctrl, irq_status);
745
746 return irq_status->status || irq_status->trd_status ||
747 irq_status->trd_error;
748 }
749
cadence_nand_reset_irq(struct cdns_nand_ctrl * cdns_ctrl)750 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
751 {
752 unsigned long flags;
753
754 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
755 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
756 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
757 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
758 }
759
760 /*
761 * This is the interrupt service routine. It handles all interrupts
762 * sent to this device.
763 */
cadence_nand_isr(int irq,void * dev_id)764 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
765 {
766 struct cdns_nand_ctrl *cdns_ctrl = dev_id;
767 struct cadence_nand_irq_status irq_status;
768 irqreturn_t result = IRQ_NONE;
769
770 spin_lock(&cdns_ctrl->irq_lock);
771
772 if (irq_detected(cdns_ctrl, &irq_status)) {
773 /* Handle interrupt. */
774 /* First acknowledge it. */
775 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
776 /* Status in the device context for someone to read. */
777 cdns_ctrl->irq_status.status |= irq_status.status;
778 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
779 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
780 /* Notify anyone who cares that it happened. */
781 complete(&cdns_ctrl->complete);
782 /* Tell the OS that we've handled this. */
783 result = IRQ_HANDLED;
784 }
785 spin_unlock(&cdns_ctrl->irq_lock);
786
787 return result;
788 }
789
cadence_nand_set_irq_mask(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_mask)790 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
791 struct cadence_nand_irq_status *irq_mask)
792 {
793 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
794 cdns_ctrl->reg + INTR_ENABLE);
795
796 writel_relaxed(irq_mask->trd_error,
797 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
798 }
799
800 static void
cadence_nand_wait_for_irq(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_mask,struct cadence_nand_irq_status * irq_status)801 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
802 struct cadence_nand_irq_status *irq_mask,
803 struct cadence_nand_irq_status *irq_status)
804 {
805 unsigned long timeout = msecs_to_jiffies(10000);
806 unsigned long time_left;
807
808 time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
809 timeout);
810
811 *irq_status = cdns_ctrl->irq_status;
812 if (time_left == 0) {
813 /* Timeout error. */
814 dev_err(cdns_ctrl->dev, "timeout occurred:\n");
815 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
816 irq_status->status, irq_mask->status);
817 dev_err(cdns_ctrl->dev,
818 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
819 irq_status->trd_status, irq_mask->trd_status);
820 dev_err(cdns_ctrl->dev,
821 "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
822 irq_status->trd_error, irq_mask->trd_error);
823 }
824 }
825
826 /* Execute generic command on NAND controller. */
cadence_nand_generic_cmd_send(struct cdns_nand_ctrl * cdns_ctrl,u8 chip_nr,u64 mini_ctrl_cmd)827 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
828 u8 chip_nr,
829 u64 mini_ctrl_cmd)
830 {
831 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
832
833 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
834 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
835 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
836
837 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
838 1000000,
839 CTRL_STATUS_CTRL_BUSY, true))
840 return -ETIMEDOUT;
841
842 cadence_nand_reset_irq(cdns_ctrl);
843
844 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
845 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
846
847 /* Select generic command. */
848 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
849 /* Thread number. */
850 reg |= FIELD_PREP(CMD_REG0_TN, 0);
851
852 /* Issue command. */
853 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
854
855 return 0;
856 }
857
858 /* Wait for data on slave DMA interface. */
cadence_nand_wait_on_sdma(struct cdns_nand_ctrl * cdns_ctrl,u8 * out_sdma_trd,u32 * out_sdma_size)859 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
860 u8 *out_sdma_trd,
861 u32 *out_sdma_size)
862 {
863 struct cadence_nand_irq_status irq_mask, irq_status;
864
865 irq_mask.trd_status = 0;
866 irq_mask.trd_error = 0;
867 irq_mask.status = INTR_STATUS_SDMA_TRIGG
868 | INTR_STATUS_SDMA_ERR
869 | INTR_STATUS_UNSUPP_CMD;
870
871 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
872 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
873 if (irq_status.status == 0) {
874 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
875 return -ETIMEDOUT;
876 }
877
878 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
879 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
880 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
881 *out_sdma_trd =
882 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
883 } else {
884 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
885 irq_status.status);
886 return -EIO;
887 }
888
889 return 0;
890 }
891
cadence_nand_get_caps(struct cdns_nand_ctrl * cdns_ctrl)892 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
893 {
894 u32 reg;
895
896 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
897
898 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
899
900 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
901 cdns_ctrl->caps2.data_dma_width = 8;
902 else
903 cdns_ctrl->caps2.data_dma_width = 4;
904
905 if (reg & CTRL_FEATURES_CONTROL_DATA)
906 cdns_ctrl->caps2.data_control_supp = true;
907
908 if (reg & (CTRL_FEATURES_NVDDR_2_3
909 | CTRL_FEATURES_NVDDR))
910 cdns_ctrl->caps2.is_phy_type_dll = true;
911 }
912
913 /* Prepare CDMA descriptor. */
914 static void
cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl * cdns_ctrl,char nf_mem,u32 flash_ptr,dma_addr_t mem_ptr,dma_addr_t ctrl_data_ptr,u16 ctype)915 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
916 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
917 dma_addr_t ctrl_data_ptr, u16 ctype)
918 {
919 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
920
921 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
922
923 /* Set fields for one descriptor. */
924 cdma_desc->flash_pointer = flash_ptr;
925 if (cdns_ctrl->ctrl_rev >= 13)
926 cdma_desc->bank = nf_mem;
927 else
928 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
929
930 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
931 cdma_desc->command_flags |= CDMA_CF_INT;
932
933 cdma_desc->memory_pointer = mem_ptr;
934 cdma_desc->status = 0;
935 cdma_desc->sync_flag_pointer = 0;
936 cdma_desc->sync_arguments = 0;
937
938 cdma_desc->command_type = ctype;
939 cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
940 }
941
cadence_nand_check_desc_error(struct cdns_nand_ctrl * cdns_ctrl,u32 desc_status)942 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
943 u32 desc_status)
944 {
945 if (desc_status & CDMA_CS_ERP)
946 return STAT_ERASED;
947
948 if (desc_status & CDMA_CS_UNCE)
949 return STAT_ECC_UNCORR;
950
951 if (desc_status & CDMA_CS_ERR) {
952 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
953 return STAT_FAIL;
954 }
955
956 if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
957 return STAT_ECC_CORR;
958
959 return STAT_FAIL;
960 }
961
cadence_nand_cdma_finish(struct cdns_nand_ctrl * cdns_ctrl)962 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
963 {
964 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
965 u8 status = STAT_BUSY;
966
967 if (desc_ptr->status & CDMA_CS_FAIL) {
968 status = cadence_nand_check_desc_error(cdns_ctrl,
969 desc_ptr->status);
970 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
971 } else if (desc_ptr->status & CDMA_CS_COMP) {
972 /* Descriptor finished with no errors. */
973 if (desc_ptr->command_flags & CDMA_CF_CONT) {
974 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
975 status = STAT_UNKNOWN;
976 } else {
977 /* Last descriptor. */
978 status = STAT_OK;
979 }
980 }
981
982 return status;
983 }
984
cadence_nand_cdma_send(struct cdns_nand_ctrl * cdns_ctrl,u8 thread)985 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
986 u8 thread)
987 {
988 u32 reg;
989 int status;
990
991 /* Wait for thread ready. */
992 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
993 1000000,
994 BIT(thread), true);
995 if (status)
996 return status;
997
998 cadence_nand_reset_irq(cdns_ctrl);
999 reinit_completion(&cdns_ctrl->complete);
1000
1001 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1002 cdns_ctrl->reg + CMD_REG2);
1003 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1004
1005 /* Select CDMA mode. */
1006 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1007 /* Thread number. */
1008 reg |= FIELD_PREP(CMD_REG0_TN, thread);
1009 /* Issue command. */
1010 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1011
1012 return 0;
1013 }
1014
1015 /* Send SDMA command and wait for finish. */
1016 static u32
cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl * cdns_ctrl,u8 thread)1017 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1018 u8 thread)
1019 {
1020 struct cadence_nand_irq_status irq_mask, irq_status = {0};
1021 int status;
1022
1023 irq_mask.trd_status = BIT(thread);
1024 irq_mask.trd_error = BIT(thread);
1025 irq_mask.status = INTR_STATUS_CDMA_TERR;
1026
1027 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1028
1029 status = cadence_nand_cdma_send(cdns_ctrl, thread);
1030 if (status)
1031 return status;
1032
1033 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1034
1035 if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1036 irq_status.trd_error == 0) {
1037 dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1038 return -ETIMEDOUT;
1039 }
1040 if (irq_status.status & irq_mask.status) {
1041 dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1042 return -EIO;
1043 }
1044
1045 return 0;
1046 }
1047
1048 /*
1049 * ECC size depends on configured ECC strength and on maximum supported
1050 * ECC step size.
1051 */
cadence_nand_calc_ecc_bytes(int max_step_size,int strength)1052 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1053 {
1054 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1055
1056 return ALIGN(nbytes, 2);
1057 }
1058
1059 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1060 static int \
1061 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1062 int strength)\
1063 {\
1064 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1065 }
1066
1067 CADENCE_NAND_CALC_ECC_BYTES(256)
1068 CADENCE_NAND_CALC_ECC_BYTES(512)
1069 CADENCE_NAND_CALC_ECC_BYTES(1024)
1070 CADENCE_NAND_CALC_ECC_BYTES(2048)
1071 CADENCE_NAND_CALC_ECC_BYTES(4096)
1072
1073 /* Function reads BCH capabilities. */
cadence_nand_read_bch_caps(struct cdns_nand_ctrl * cdns_ctrl)1074 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1075 {
1076 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1077 int max_step_size = 0, nstrengths, i;
1078 u32 reg;
1079
1080 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1081 cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1082 if (cdns_ctrl->bch_metadata_size < 4) {
1083 dev_err(cdns_ctrl->dev,
1084 "Driver needs at least 4 bytes of BCH meta data\n");
1085 return -EIO;
1086 }
1087
1088 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1089 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1090 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1091 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1092 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1093
1094 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1095 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1096 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1097 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1098 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1099
1100 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1101 cdns_ctrl->ecc_stepinfos[0].stepsize =
1102 FIELD_GET(BCH_CFG_2_SECT_0, reg);
1103
1104 cdns_ctrl->ecc_stepinfos[1].stepsize =
1105 FIELD_GET(BCH_CFG_2_SECT_1, reg);
1106
1107 nstrengths = 0;
1108 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1109 if (cdns_ctrl->ecc_strengths[i] != 0)
1110 nstrengths++;
1111 }
1112
1113 ecc_caps->nstepinfos = 0;
1114 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1115 /* ECC strengths are common for all step infos. */
1116 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1117 cdns_ctrl->ecc_stepinfos[i].strengths =
1118 cdns_ctrl->ecc_strengths;
1119
1120 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1121 ecc_caps->nstepinfos++;
1122
1123 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1124 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1125 }
1126 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1127
1128 switch (max_step_size) {
1129 case 256:
1130 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1131 break;
1132 case 512:
1133 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1134 break;
1135 case 1024:
1136 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1137 break;
1138 case 2048:
1139 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1140 break;
1141 case 4096:
1142 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1143 break;
1144 default:
1145 dev_err(cdns_ctrl->dev,
1146 "Unsupported sector size(ecc step size) %d\n",
1147 max_step_size);
1148 return -EIO;
1149 }
1150
1151 return 0;
1152 }
1153
1154 /* Hardware initialization. */
cadence_nand_hw_init(struct cdns_nand_ctrl * cdns_ctrl)1155 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1156 {
1157 int status;
1158 u32 reg;
1159
1160 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1161 1000000,
1162 CTRL_STATUS_INIT_COMP, false);
1163 if (status)
1164 return status;
1165
1166 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1167 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1168
1169 dev_info(cdns_ctrl->dev,
1170 "%s: cadence nand controller version reg %x\n",
1171 __func__, reg);
1172
1173 /* Disable cache and multiplane. */
1174 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1175 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1176
1177 /* Clear all interrupts. */
1178 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1179
1180 cadence_nand_get_caps(cdns_ctrl);
1181 if (cadence_nand_read_bch_caps(cdns_ctrl))
1182 return -EIO;
1183
1184 #ifndef CONFIG_64BIT
1185 if (cdns_ctrl->caps2.data_dma_width == 8) {
1186 dev_err(cdns_ctrl->dev,
1187 "cannot access 64-bit dma on !64-bit architectures");
1188 return -EIO;
1189 }
1190 #endif
1191
1192 /*
1193 * Set IO width access to 8.
1194 * It is because during SW device discovering width access
1195 * is expected to be 8.
1196 */
1197 status = cadence_nand_set_access_width16(cdns_ctrl, false);
1198
1199 return status;
1200 }
1201
1202 #define TT_MAIN_OOB_AREAS 2
1203 #define TT_RAW_PAGE 3
1204 #define TT_BBM 4
1205 #define TT_MAIN_OOB_AREA_EXT 5
1206
1207 /* Prepare size of data to transfer. */
1208 static void
cadence_nand_prepare_data_size(struct nand_chip * chip,int transfer_type)1209 cadence_nand_prepare_data_size(struct nand_chip *chip,
1210 int transfer_type)
1211 {
1212 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1213 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1214 struct mtd_info *mtd = nand_to_mtd(chip);
1215 u32 sec_size = 0, offset = 0, sec_cnt = 1;
1216 u32 last_sec_size = cdns_chip->sector_size;
1217 u32 data_ctrl_size = 0;
1218 u32 reg = 0;
1219
1220 if (cdns_ctrl->curr_trans_type == transfer_type)
1221 return;
1222
1223 switch (transfer_type) {
1224 case TT_MAIN_OOB_AREA_EXT:
1225 sec_cnt = cdns_chip->sector_count;
1226 sec_size = cdns_chip->sector_size;
1227 data_ctrl_size = cdns_chip->avail_oob_size;
1228 break;
1229 case TT_MAIN_OOB_AREAS:
1230 sec_cnt = cdns_chip->sector_count;
1231 last_sec_size = cdns_chip->sector_size
1232 + cdns_chip->avail_oob_size;
1233 sec_size = cdns_chip->sector_size;
1234 break;
1235 case TT_RAW_PAGE:
1236 last_sec_size = mtd->writesize + mtd->oobsize;
1237 break;
1238 case TT_BBM:
1239 offset = mtd->writesize + cdns_chip->bbm_offs;
1240 last_sec_size = 8;
1241 break;
1242 }
1243
1244 reg = 0;
1245 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1246 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1247 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1248
1249 reg = 0;
1250 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1251 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1252 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1253
1254 if (cdns_ctrl->caps2.data_control_supp) {
1255 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1256 reg &= ~CONTROL_DATA_CTRL_SIZE;
1257 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1258 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1259 }
1260
1261 cdns_ctrl->curr_trans_type = transfer_type;
1262 }
1263
1264 static int
cadence_nand_cdma_transfer(struct cdns_nand_ctrl * cdns_ctrl,u8 chip_nr,int page,void * buf,void * ctrl_dat,u32 buf_size,u32 ctrl_dat_size,enum dma_data_direction dir,bool with_ecc)1265 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1266 int page, void *buf, void *ctrl_dat, u32 buf_size,
1267 u32 ctrl_dat_size, enum dma_data_direction dir,
1268 bool with_ecc)
1269 {
1270 dma_addr_t dma_buf, dma_ctrl_dat = 0;
1271 u8 thread_nr = chip_nr;
1272 int status;
1273 u16 ctype;
1274
1275 if (dir == DMA_FROM_DEVICE)
1276 ctype = CDMA_CT_RD;
1277 else
1278 ctype = CDMA_CT_WR;
1279
1280 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1281
1282 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1283 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1284 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1285 return -EIO;
1286 }
1287
1288 if (ctrl_dat && ctrl_dat_size) {
1289 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1290 ctrl_dat_size, dir);
1291 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1292 dma_unmap_single(cdns_ctrl->dev, dma_buf,
1293 buf_size, dir);
1294 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1295 return -EIO;
1296 }
1297 }
1298
1299 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1300 dma_buf, dma_ctrl_dat, ctype);
1301
1302 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1303
1304 dma_unmap_single(cdns_ctrl->dev, dma_buf,
1305 buf_size, dir);
1306
1307 if (ctrl_dat && ctrl_dat_size)
1308 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1309 ctrl_dat_size, dir);
1310 if (status)
1311 return status;
1312
1313 return cadence_nand_cdma_finish(cdns_ctrl);
1314 }
1315
cadence_nand_set_timings(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_timings * t)1316 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1317 struct cadence_nand_timings *t)
1318 {
1319 writel_relaxed(t->async_toggle_timings,
1320 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1321 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1322 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1323 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1324
1325 if (cdns_ctrl->caps2.is_phy_type_dll)
1326 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1327
1328 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1329
1330 if (cdns_ctrl->caps2.is_phy_type_dll) {
1331 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1332 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1333 writel_relaxed(t->phy_dqs_timing,
1334 cdns_ctrl->reg + PHY_DQS_TIMING);
1335 writel_relaxed(t->phy_gate_lpbk_ctrl,
1336 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1337 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1338 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1339 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1340 }
1341 }
1342
cadence_nand_select_target(struct nand_chip * chip)1343 static int cadence_nand_select_target(struct nand_chip *chip)
1344 {
1345 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1346 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1347
1348 if (chip == cdns_ctrl->selected_chip)
1349 return 0;
1350
1351 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1352 1000000,
1353 CTRL_STATUS_CTRL_BUSY, true))
1354 return -ETIMEDOUT;
1355
1356 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1357
1358 cadence_nand_set_ecc_strength(cdns_ctrl,
1359 cdns_chip->corr_str_idx);
1360
1361 cadence_nand_set_erase_detection(cdns_ctrl, true,
1362 chip->ecc.strength);
1363
1364 cdns_ctrl->curr_trans_type = -1;
1365 cdns_ctrl->selected_chip = chip;
1366
1367 return 0;
1368 }
1369
cadence_nand_erase(struct nand_chip * chip,u32 page)1370 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1371 {
1372 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1373 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1374 int status;
1375 u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1376
1377 cadence_nand_cdma_desc_prepare(cdns_ctrl,
1378 cdns_chip->cs[chip->cur_cs],
1379 page, 0, 0,
1380 CDMA_CT_ERASE);
1381 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1382 if (status) {
1383 dev_err(cdns_ctrl->dev, "erase operation failed\n");
1384 return -EIO;
1385 }
1386
1387 status = cadence_nand_cdma_finish(cdns_ctrl);
1388 if (status)
1389 return status;
1390
1391 return 0;
1392 }
1393
cadence_nand_read_bbm(struct nand_chip * chip,int page,u8 * buf)1394 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1395 {
1396 int status;
1397 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1398 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1399 struct mtd_info *mtd = nand_to_mtd(chip);
1400
1401 cadence_nand_prepare_data_size(chip, TT_BBM);
1402
1403 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1404
1405 /*
1406 * Read only bad block marker from offset
1407 * defined by a memory manufacturer.
1408 */
1409 status = cadence_nand_cdma_transfer(cdns_ctrl,
1410 cdns_chip->cs[chip->cur_cs],
1411 page, cdns_ctrl->buf, NULL,
1412 mtd->oobsize,
1413 0, DMA_FROM_DEVICE, false);
1414 if (status) {
1415 dev_err(cdns_ctrl->dev, "read BBM failed\n");
1416 return -EIO;
1417 }
1418
1419 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1420
1421 return 0;
1422 }
1423
cadence_nand_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1424 static int cadence_nand_write_page(struct nand_chip *chip,
1425 const u8 *buf, int oob_required,
1426 int page)
1427 {
1428 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1429 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1430 struct mtd_info *mtd = nand_to_mtd(chip);
1431 int status;
1432 u16 marker_val = 0xFFFF;
1433
1434 status = cadence_nand_select_target(chip);
1435 if (status)
1436 return status;
1437
1438 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1439 mtd->writesize
1440 + cdns_chip->bbm_offs,
1441 1);
1442
1443 if (oob_required) {
1444 marker_val = *(u16 *)(chip->oob_poi
1445 + cdns_chip->bbm_offs);
1446 } else {
1447 /* Set oob data to 0xFF. */
1448 memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1449 cdns_chip->avail_oob_size);
1450 }
1451
1452 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1453
1454 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1455
1456 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1457 cdns_ctrl->caps2.data_control_supp) {
1458 u8 *oob;
1459
1460 if (oob_required)
1461 oob = chip->oob_poi;
1462 else
1463 oob = cdns_ctrl->buf + mtd->writesize;
1464
1465 status = cadence_nand_cdma_transfer(cdns_ctrl,
1466 cdns_chip->cs[chip->cur_cs],
1467 page, (void *)buf, oob,
1468 mtd->writesize,
1469 cdns_chip->avail_oob_size,
1470 DMA_TO_DEVICE, true);
1471 if (status) {
1472 dev_err(cdns_ctrl->dev, "write page failed\n");
1473 return -EIO;
1474 }
1475
1476 return 0;
1477 }
1478
1479 if (oob_required) {
1480 /* Transfer the data to the oob area. */
1481 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1482 cdns_chip->avail_oob_size);
1483 }
1484
1485 memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1486
1487 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1488
1489 return cadence_nand_cdma_transfer(cdns_ctrl,
1490 cdns_chip->cs[chip->cur_cs],
1491 page, cdns_ctrl->buf, NULL,
1492 mtd->writesize
1493 + cdns_chip->avail_oob_size,
1494 0, DMA_TO_DEVICE, true);
1495 }
1496
cadence_nand_write_oob(struct nand_chip * chip,int page)1497 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1498 {
1499 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1500 struct mtd_info *mtd = nand_to_mtd(chip);
1501
1502 memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1503
1504 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1505 }
1506
cadence_nand_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1507 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1508 const u8 *buf, int oob_required,
1509 int page)
1510 {
1511 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1512 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1513 struct mtd_info *mtd = nand_to_mtd(chip);
1514 int writesize = mtd->writesize;
1515 int oobsize = mtd->oobsize;
1516 int ecc_steps = chip->ecc.steps;
1517 int ecc_size = chip->ecc.size;
1518 int ecc_bytes = chip->ecc.bytes;
1519 void *tmp_buf = cdns_ctrl->buf;
1520 int oob_skip = cdns_chip->bbm_len;
1521 size_t size = writesize + oobsize;
1522 int i, pos, len;
1523 int status = 0;
1524
1525 status = cadence_nand_select_target(chip);
1526 if (status)
1527 return status;
1528
1529 /*
1530 * Fill the buffer with 0xff first except the full page transfer.
1531 * This simplifies the logic.
1532 */
1533 if (!buf || !oob_required)
1534 memset(tmp_buf, 0xff, size);
1535
1536 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1537
1538 /* Arrange the buffer for syndrome payload/ecc layout. */
1539 if (buf) {
1540 for (i = 0; i < ecc_steps; i++) {
1541 pos = i * (ecc_size + ecc_bytes);
1542 len = ecc_size;
1543
1544 if (pos >= writesize)
1545 pos += oob_skip;
1546 else if (pos + len > writesize)
1547 len = writesize - pos;
1548
1549 memcpy(tmp_buf + pos, buf, len);
1550 buf += len;
1551 if (len < ecc_size) {
1552 len = ecc_size - len;
1553 memcpy(tmp_buf + writesize + oob_skip, buf,
1554 len);
1555 buf += len;
1556 }
1557 }
1558 }
1559
1560 if (oob_required) {
1561 const u8 *oob = chip->oob_poi;
1562 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1563 (cdns_chip->sector_size + chip->ecc.bytes)
1564 + cdns_chip->sector_size + oob_skip;
1565
1566 /* BBM at the beginning of the OOB area. */
1567 memcpy(tmp_buf + writesize, oob, oob_skip);
1568
1569 /* OOB free. */
1570 memcpy(tmp_buf + oob_data_offset, oob,
1571 cdns_chip->avail_oob_size);
1572 oob += cdns_chip->avail_oob_size;
1573
1574 /* OOB ECC. */
1575 for (i = 0; i < ecc_steps; i++) {
1576 pos = ecc_size + i * (ecc_size + ecc_bytes);
1577 if (i == (ecc_steps - 1))
1578 pos += cdns_chip->avail_oob_size;
1579
1580 len = ecc_bytes;
1581
1582 if (pos >= writesize)
1583 pos += oob_skip;
1584 else if (pos + len > writesize)
1585 len = writesize - pos;
1586
1587 memcpy(tmp_buf + pos, oob, len);
1588 oob += len;
1589 if (len < ecc_bytes) {
1590 len = ecc_bytes - len;
1591 memcpy(tmp_buf + writesize + oob_skip, oob,
1592 len);
1593 oob += len;
1594 }
1595 }
1596 }
1597
1598 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1599
1600 return cadence_nand_cdma_transfer(cdns_ctrl,
1601 cdns_chip->cs[chip->cur_cs],
1602 page, cdns_ctrl->buf, NULL,
1603 mtd->writesize +
1604 mtd->oobsize,
1605 0, DMA_TO_DEVICE, false);
1606 }
1607
cadence_nand_write_oob_raw(struct nand_chip * chip,int page)1608 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1609 int page)
1610 {
1611 return cadence_nand_write_page_raw(chip, NULL, true, page);
1612 }
1613
cadence_nand_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)1614 static int cadence_nand_read_page(struct nand_chip *chip,
1615 u8 *buf, int oob_required, int page)
1616 {
1617 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1618 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1619 struct mtd_info *mtd = nand_to_mtd(chip);
1620 int status = 0;
1621 int ecc_err_count = 0;
1622
1623 status = cadence_nand_select_target(chip);
1624 if (status)
1625 return status;
1626
1627 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1628 mtd->writesize
1629 + cdns_chip->bbm_offs, 1);
1630
1631 /*
1632 * If data buffer can be accessed by DMA and data_control feature
1633 * is supported then transfer data and oob directly.
1634 */
1635 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1636 cdns_ctrl->caps2.data_control_supp) {
1637 u8 *oob;
1638
1639 if (oob_required)
1640 oob = chip->oob_poi;
1641 else
1642 oob = cdns_ctrl->buf + mtd->writesize;
1643
1644 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1645 status = cadence_nand_cdma_transfer(cdns_ctrl,
1646 cdns_chip->cs[chip->cur_cs],
1647 page, buf, oob,
1648 mtd->writesize,
1649 cdns_chip->avail_oob_size,
1650 DMA_FROM_DEVICE, true);
1651 /* Otherwise use bounce buffer. */
1652 } else {
1653 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1654 status = cadence_nand_cdma_transfer(cdns_ctrl,
1655 cdns_chip->cs[chip->cur_cs],
1656 page, cdns_ctrl->buf,
1657 NULL, mtd->writesize
1658 + cdns_chip->avail_oob_size,
1659 0, DMA_FROM_DEVICE, true);
1660
1661 memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1662 if (oob_required)
1663 memcpy(chip->oob_poi,
1664 cdns_ctrl->buf + mtd->writesize,
1665 mtd->oobsize);
1666 }
1667
1668 switch (status) {
1669 case STAT_ECC_UNCORR:
1670 mtd->ecc_stats.failed++;
1671 ecc_err_count++;
1672 break;
1673 case STAT_ECC_CORR:
1674 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1675 cdns_ctrl->cdma_desc->status);
1676 mtd->ecc_stats.corrected += ecc_err_count;
1677 break;
1678 case STAT_ERASED:
1679 case STAT_OK:
1680 break;
1681 default:
1682 dev_err(cdns_ctrl->dev, "read page failed\n");
1683 return -EIO;
1684 }
1685
1686 if (oob_required)
1687 if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1688 return -EIO;
1689
1690 return ecc_err_count;
1691 }
1692
1693 /* Reads OOB data from the device. */
cadence_nand_read_oob(struct nand_chip * chip,int page)1694 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1695 {
1696 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1697
1698 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1699 }
1700
cadence_nand_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)1701 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1702 u8 *buf, int oob_required, int page)
1703 {
1704 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1705 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1706 struct mtd_info *mtd = nand_to_mtd(chip);
1707 int oob_skip = cdns_chip->bbm_len;
1708 int writesize = mtd->writesize;
1709 int ecc_steps = chip->ecc.steps;
1710 int ecc_size = chip->ecc.size;
1711 int ecc_bytes = chip->ecc.bytes;
1712 void *tmp_buf = cdns_ctrl->buf;
1713 int i, pos, len;
1714 int status = 0;
1715
1716 status = cadence_nand_select_target(chip);
1717 if (status)
1718 return status;
1719
1720 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1721
1722 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1723 status = cadence_nand_cdma_transfer(cdns_ctrl,
1724 cdns_chip->cs[chip->cur_cs],
1725 page, cdns_ctrl->buf, NULL,
1726 mtd->writesize
1727 + mtd->oobsize,
1728 0, DMA_FROM_DEVICE, false);
1729
1730 switch (status) {
1731 case STAT_ERASED:
1732 case STAT_OK:
1733 break;
1734 default:
1735 dev_err(cdns_ctrl->dev, "read raw page failed\n");
1736 return -EIO;
1737 }
1738
1739 /* Arrange the buffer for syndrome payload/ecc layout. */
1740 if (buf) {
1741 for (i = 0; i < ecc_steps; i++) {
1742 pos = i * (ecc_size + ecc_bytes);
1743 len = ecc_size;
1744
1745 if (pos >= writesize)
1746 pos += oob_skip;
1747 else if (pos + len > writesize)
1748 len = writesize - pos;
1749
1750 memcpy(buf, tmp_buf + pos, len);
1751 buf += len;
1752 if (len < ecc_size) {
1753 len = ecc_size - len;
1754 memcpy(buf, tmp_buf + writesize + oob_skip,
1755 len);
1756 buf += len;
1757 }
1758 }
1759 }
1760
1761 if (oob_required) {
1762 u8 *oob = chip->oob_poi;
1763 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1764 (cdns_chip->sector_size + chip->ecc.bytes)
1765 + cdns_chip->sector_size + oob_skip;
1766
1767 /* OOB free. */
1768 memcpy(oob, tmp_buf + oob_data_offset,
1769 cdns_chip->avail_oob_size);
1770
1771 /* BBM at the beginning of the OOB area. */
1772 memcpy(oob, tmp_buf + writesize, oob_skip);
1773
1774 oob += cdns_chip->avail_oob_size;
1775
1776 /* OOB ECC */
1777 for (i = 0; i < ecc_steps; i++) {
1778 pos = ecc_size + i * (ecc_size + ecc_bytes);
1779 len = ecc_bytes;
1780
1781 if (i == (ecc_steps - 1))
1782 pos += cdns_chip->avail_oob_size;
1783
1784 if (pos >= writesize)
1785 pos += oob_skip;
1786 else if (pos + len > writesize)
1787 len = writesize - pos;
1788
1789 memcpy(oob, tmp_buf + pos, len);
1790 oob += len;
1791 if (len < ecc_bytes) {
1792 len = ecc_bytes - len;
1793 memcpy(oob, tmp_buf + writesize + oob_skip,
1794 len);
1795 oob += len;
1796 }
1797 }
1798 }
1799
1800 return 0;
1801 }
1802
cadence_nand_read_oob_raw(struct nand_chip * chip,int page)1803 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1804 int page)
1805 {
1806 return cadence_nand_read_page_raw(chip, NULL, true, page);
1807 }
1808
cadence_nand_slave_dma_transfer_finished(void * data)1809 static void cadence_nand_slave_dma_transfer_finished(void *data)
1810 {
1811 struct completion *finished = data;
1812
1813 complete(finished);
1814 }
1815
cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl * cdns_ctrl,void * buf,dma_addr_t dev_dma,size_t len,enum dma_data_direction dir)1816 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1817 void *buf,
1818 dma_addr_t dev_dma, size_t len,
1819 enum dma_data_direction dir)
1820 {
1821 DECLARE_COMPLETION_ONSTACK(finished);
1822 struct dma_chan *chan;
1823 struct dma_device *dma_dev;
1824 dma_addr_t src_dma, dst_dma, buf_dma;
1825 struct dma_async_tx_descriptor *tx;
1826 dma_cookie_t cookie;
1827
1828 chan = cdns_ctrl->dmac;
1829 dma_dev = chan->device;
1830
1831 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1832 if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1833 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1834 goto err;
1835 }
1836
1837 if (dir == DMA_FROM_DEVICE) {
1838 src_dma = cdns_ctrl->io.dma;
1839 dst_dma = buf_dma;
1840 } else {
1841 src_dma = buf_dma;
1842 dst_dma = cdns_ctrl->io.dma;
1843 }
1844
1845 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1846 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1847 if (!tx) {
1848 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1849 goto err_unmap;
1850 }
1851
1852 tx->callback = cadence_nand_slave_dma_transfer_finished;
1853 tx->callback_param = &finished;
1854
1855 cookie = dmaengine_submit(tx);
1856 if (dma_submit_error(cookie)) {
1857 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1858 goto err_unmap;
1859 }
1860
1861 dma_async_issue_pending(cdns_ctrl->dmac);
1862 wait_for_completion(&finished);
1863
1864 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1865
1866 return 0;
1867
1868 err_unmap:
1869 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1870
1871 err:
1872 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1873
1874 return -EIO;
1875 }
1876
cadence_nand_read_buf(struct cdns_nand_ctrl * cdns_ctrl,u8 * buf,int len)1877 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1878 u8 *buf, int len)
1879 {
1880 u8 thread_nr = 0;
1881 u32 sdma_size;
1882 int status;
1883
1884 /* Wait until slave DMA interface is ready to data transfer. */
1885 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1886 if (status)
1887 return status;
1888
1889 if (!cdns_ctrl->caps1->has_dma) {
1890 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1891
1892 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1893
1894 /* read alingment data */
1895 if (data_dma_width == 4)
1896 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1897 #ifdef CONFIG_64BIT
1898 else
1899 readsq(cdns_ctrl->io.virt, buf, len_in_words);
1900 #endif
1901
1902 if (sdma_size > len) {
1903 int read_bytes = (data_dma_width == 4) ?
1904 len_in_words << 2 : len_in_words << 3;
1905
1906 /* read rest data from slave DMA interface if any */
1907 if (data_dma_width == 4)
1908 ioread32_rep(cdns_ctrl->io.virt,
1909 cdns_ctrl->buf,
1910 sdma_size / 4 - len_in_words);
1911 #ifdef CONFIG_64BIT
1912 else
1913 readsq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1914 sdma_size / 8 - len_in_words);
1915 #endif
1916
1917 /* copy rest of data */
1918 memcpy(buf + read_bytes, cdns_ctrl->buf,
1919 len - read_bytes);
1920 }
1921 return 0;
1922 }
1923
1924 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1925 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1926 cdns_ctrl->io.dma,
1927 len, DMA_FROM_DEVICE);
1928 if (status == 0)
1929 return 0;
1930
1931 dev_warn(cdns_ctrl->dev,
1932 "Slave DMA transfer failed. Try again using bounce buffer.");
1933 }
1934
1935 /* If DMA transfer is not possible or failed then use bounce buffer. */
1936 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1937 cdns_ctrl->io.dma,
1938 sdma_size, DMA_FROM_DEVICE);
1939
1940 if (status) {
1941 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1942 return status;
1943 }
1944
1945 memcpy(buf, cdns_ctrl->buf, len);
1946
1947 return 0;
1948 }
1949
cadence_nand_write_buf(struct cdns_nand_ctrl * cdns_ctrl,const u8 * buf,int len)1950 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1951 const u8 *buf, int len)
1952 {
1953 u8 thread_nr = 0;
1954 u32 sdma_size;
1955 int status;
1956
1957 /* Wait until slave DMA interface is ready to data transfer. */
1958 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1959 if (status)
1960 return status;
1961
1962 if (!cdns_ctrl->caps1->has_dma) {
1963 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1964
1965 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1966
1967 if (data_dma_width == 4)
1968 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1969 #ifdef CONFIG_64BIT
1970 else
1971 writesq(cdns_ctrl->io.virt, buf, len_in_words);
1972 #endif
1973
1974 if (sdma_size > len) {
1975 int written_bytes = (data_dma_width == 4) ?
1976 len_in_words << 2 : len_in_words << 3;
1977
1978 /* copy rest of data */
1979 memcpy(cdns_ctrl->buf, buf + written_bytes,
1980 len - written_bytes);
1981
1982 /* write all expected by nand controller data */
1983 if (data_dma_width == 4)
1984 iowrite32_rep(cdns_ctrl->io.virt,
1985 cdns_ctrl->buf,
1986 sdma_size / 4 - len_in_words);
1987 #ifdef CONFIG_64BIT
1988 else
1989 writesq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1990 sdma_size / 8 - len_in_words);
1991 #endif
1992 }
1993
1994 return 0;
1995 }
1996
1997 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1998 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
1999 cdns_ctrl->io.dma,
2000 len, DMA_TO_DEVICE);
2001 if (status == 0)
2002 return 0;
2003
2004 dev_warn(cdns_ctrl->dev,
2005 "Slave DMA transfer failed. Try again using bounce buffer.");
2006 }
2007
2008 /* If DMA transfer is not possible or failed then use bounce buffer. */
2009 memcpy(cdns_ctrl->buf, buf, len);
2010
2011 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
2012 cdns_ctrl->io.dma,
2013 sdma_size, DMA_TO_DEVICE);
2014
2015 if (status)
2016 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
2017
2018 return status;
2019 }
2020
cadence_nand_force_byte_access(struct nand_chip * chip,bool force_8bit)2021 static int cadence_nand_force_byte_access(struct nand_chip *chip,
2022 bool force_8bit)
2023 {
2024 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2025
2026 /*
2027 * Callers of this function do not verify if the NAND is using a 16-bit
2028 * an 8-bit bus for normal operations, so we need to take care of that
2029 * here by leaving the configuration unchanged if the NAND does not have
2030 * the NAND_BUSWIDTH_16 flag set.
2031 */
2032 if (!(chip->options & NAND_BUSWIDTH_16))
2033 return 0;
2034
2035 return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
2036 }
2037
cadence_nand_cmd_opcode(struct nand_chip * chip,const struct nand_subop * subop)2038 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
2039 const struct nand_subop *subop)
2040 {
2041 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2042 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2043 const struct nand_op_instr *instr;
2044 unsigned int op_id = 0;
2045 u64 mini_ctrl_cmd = 0;
2046 int ret;
2047
2048 instr = &subop->instrs[op_id];
2049
2050 if (instr->delay_ns > 0)
2051 mini_ctrl_cmd |= GCMD_LAY_TWB;
2052
2053 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2054 GCMD_LAY_INSTR_CMD);
2055 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2056 instr->ctx.cmd.opcode);
2057
2058 ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2059 cdns_chip->cs[chip->cur_cs],
2060 mini_ctrl_cmd);
2061 if (ret)
2062 dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2063 instr->ctx.cmd.opcode);
2064
2065 return ret;
2066 }
2067
cadence_nand_cmd_address(struct nand_chip * chip,const struct nand_subop * subop)2068 static int cadence_nand_cmd_address(struct nand_chip *chip,
2069 const struct nand_subop *subop)
2070 {
2071 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2072 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2073 const struct nand_op_instr *instr;
2074 unsigned int op_id = 0;
2075 u64 mini_ctrl_cmd = 0;
2076 unsigned int offset, naddrs;
2077 u64 address = 0;
2078 const u8 *addrs;
2079 int ret;
2080 int i;
2081
2082 instr = &subop->instrs[op_id];
2083
2084 if (instr->delay_ns > 0)
2085 mini_ctrl_cmd |= GCMD_LAY_TWB;
2086
2087 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2088 GCMD_LAY_INSTR_ADDR);
2089
2090 offset = nand_subop_get_addr_start_off(subop, op_id);
2091 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2092 addrs = &instr->ctx.addr.addrs[offset];
2093
2094 for (i = 0; i < naddrs; i++)
2095 address |= (u64)addrs[i] << (8 * i);
2096
2097 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2098 address);
2099 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2100 naddrs - 1);
2101
2102 ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2103 cdns_chip->cs[chip->cur_cs],
2104 mini_ctrl_cmd);
2105 if (ret)
2106 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2107
2108 return ret;
2109 }
2110
cadence_nand_cmd_erase(struct nand_chip * chip,const struct nand_subop * subop)2111 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2112 const struct nand_subop *subop)
2113 {
2114 unsigned int op_id;
2115
2116 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2117 int i;
2118 const struct nand_op_instr *instr = NULL;
2119 unsigned int offset, naddrs;
2120 const u8 *addrs;
2121 u32 page = 0;
2122
2123 instr = &subop->instrs[1];
2124 offset = nand_subop_get_addr_start_off(subop, 1);
2125 naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2126 addrs = &instr->ctx.addr.addrs[offset];
2127
2128 for (i = 0; i < naddrs; i++)
2129 page |= (u32)addrs[i] << (8 * i);
2130
2131 return cadence_nand_erase(chip, page);
2132 }
2133
2134 /*
2135 * If it is not an erase operation then handle operation
2136 * by calling exec_op function.
2137 */
2138 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2139 int ret;
2140 const struct nand_operation nand_op = {
2141 .cs = chip->cur_cs,
2142 .instrs = &subop->instrs[op_id],
2143 .ninstrs = 1};
2144 ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2145 if (ret)
2146 return ret;
2147 }
2148
2149 return 0;
2150 }
2151
cadence_nand_cmd_data(struct nand_chip * chip,const struct nand_subop * subop)2152 static int cadence_nand_cmd_data(struct nand_chip *chip,
2153 const struct nand_subop *subop)
2154 {
2155 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2156 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2157 const struct nand_op_instr *instr;
2158 unsigned int offset, op_id = 0;
2159 u64 mini_ctrl_cmd = 0;
2160 int len = 0;
2161 int ret;
2162
2163 instr = &subop->instrs[op_id];
2164
2165 if (instr->delay_ns > 0)
2166 mini_ctrl_cmd |= GCMD_LAY_TWB;
2167
2168 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2169 GCMD_LAY_INSTR_DATA);
2170
2171 if (instr->type == NAND_OP_DATA_OUT_INSTR)
2172 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2173 GCMD_DIR_WRITE);
2174
2175 len = nand_subop_get_data_len(subop, op_id);
2176 offset = nand_subop_get_data_start_off(subop, op_id);
2177 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2178 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2179 if (instr->ctx.data.force_8bit) {
2180 ret = cadence_nand_force_byte_access(chip, true);
2181 if (ret) {
2182 dev_err(cdns_ctrl->dev,
2183 "cannot change byte access generic data cmd failed\n");
2184 return ret;
2185 }
2186 }
2187
2188 ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2189 cdns_chip->cs[chip->cur_cs],
2190 mini_ctrl_cmd);
2191 if (ret) {
2192 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2193 return ret;
2194 }
2195
2196 if (instr->type == NAND_OP_DATA_IN_INSTR) {
2197 void *buf = instr->ctx.data.buf.in + offset;
2198
2199 ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2200 } else {
2201 const void *buf = instr->ctx.data.buf.out + offset;
2202
2203 ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2204 }
2205
2206 if (ret) {
2207 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2208 return ret;
2209 }
2210
2211 if (instr->ctx.data.force_8bit) {
2212 ret = cadence_nand_force_byte_access(chip, false);
2213 if (ret) {
2214 dev_err(cdns_ctrl->dev,
2215 "cannot change byte access generic data cmd failed\n");
2216 }
2217 }
2218
2219 return ret;
2220 }
2221
cadence_nand_cmd_waitrdy(struct nand_chip * chip,const struct nand_subop * subop)2222 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2223 const struct nand_subop *subop)
2224 {
2225 int status;
2226 unsigned int op_id = 0;
2227 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2228 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2229 const struct nand_op_instr *instr = &subop->instrs[op_id];
2230 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2231
2232 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2233 timeout_us,
2234 BIT(cdns_chip->cs[chip->cur_cs]),
2235 false);
2236 return status;
2237 }
2238
2239 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2240 NAND_OP_PARSER_PATTERN(
2241 cadence_nand_cmd_erase,
2242 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2243 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2244 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2245 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2246 NAND_OP_PARSER_PATTERN(
2247 cadence_nand_cmd_opcode,
2248 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2249 NAND_OP_PARSER_PATTERN(
2250 cadence_nand_cmd_address,
2251 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2252 NAND_OP_PARSER_PATTERN(
2253 cadence_nand_cmd_data,
2254 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2255 NAND_OP_PARSER_PATTERN(
2256 cadence_nand_cmd_data,
2257 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2258 NAND_OP_PARSER_PATTERN(
2259 cadence_nand_cmd_waitrdy,
2260 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2261 );
2262
cadence_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2263 static int cadence_nand_exec_op(struct nand_chip *chip,
2264 const struct nand_operation *op,
2265 bool check_only)
2266 {
2267 if (!check_only) {
2268 int status = cadence_nand_select_target(chip);
2269
2270 if (status)
2271 return status;
2272 }
2273
2274 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2275 check_only);
2276 }
2277
cadence_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2278 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2279 struct mtd_oob_region *oobregion)
2280 {
2281 struct nand_chip *chip = mtd_to_nand(mtd);
2282 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2283
2284 if (section)
2285 return -ERANGE;
2286
2287 oobregion->offset = cdns_chip->bbm_len;
2288 oobregion->length = cdns_chip->avail_oob_size
2289 - cdns_chip->bbm_len;
2290
2291 return 0;
2292 }
2293
cadence_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2294 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2295 struct mtd_oob_region *oobregion)
2296 {
2297 struct nand_chip *chip = mtd_to_nand(mtd);
2298 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2299
2300 if (section)
2301 return -ERANGE;
2302
2303 oobregion->offset = cdns_chip->avail_oob_size;
2304 oobregion->length = chip->ecc.total;
2305
2306 return 0;
2307 }
2308
2309 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2310 .free = cadence_nand_ooblayout_free,
2311 .ecc = cadence_nand_ooblayout_ecc,
2312 };
2313
calc_cycl(u32 timing,u32 clock)2314 static int calc_cycl(u32 timing, u32 clock)
2315 {
2316 if (timing == 0 || clock == 0)
2317 return 0;
2318
2319 if ((timing % clock) > 0)
2320 return timing / clock;
2321 else
2322 return timing / clock - 1;
2323 }
2324
2325 /* Calculate max data valid window. */
calc_tdvw_max(u32 trp_cnt,u32 clk_period,u32 trhoh_min,u32 board_delay_skew_min,u32 ext_mode)2326 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2327 u32 board_delay_skew_min, u32 ext_mode)
2328 {
2329 if (ext_mode == 0)
2330 clk_period /= 2;
2331
2332 return (trp_cnt + 1) * clk_period + trhoh_min +
2333 board_delay_skew_min;
2334 }
2335
2336 /* Calculate data valid window. */
calc_tdvw(u32 trp_cnt,u32 clk_period,u32 trhoh_min,u32 trea_max,u32 ext_mode)2337 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2338 u32 trea_max, u32 ext_mode)
2339 {
2340 if (ext_mode == 0)
2341 clk_period /= 2;
2342
2343 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2344 }
2345
2346 static int
cadence_nand_setup_interface(struct nand_chip * chip,int chipnr,const struct nand_interface_config * conf)2347 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2348 const struct nand_interface_config *conf)
2349 {
2350 const struct nand_sdr_timings *sdr;
2351 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2352 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2353 struct cadence_nand_timings *t = &cdns_chip->timings;
2354 u32 reg;
2355 u32 board_delay = cdns_ctrl->board_delay;
2356 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2357 cdns_ctrl->nf_clk_rate);
2358 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2359 u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2360 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2361 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2362 u32 if_skew = cdns_ctrl->caps1->if_skew;
2363 u32 board_delay_skew_min = board_delay - if_skew;
2364 u32 board_delay_skew_max = board_delay + if_skew;
2365 u32 dqs_sampl_res, phony_dqs_mod;
2366 u32 tdvw, tdvw_min, tdvw_max;
2367 u32 ext_rd_mode, ext_wr_mode;
2368 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2369 u32 sampling_point;
2370
2371 sdr = nand_get_sdr_timings(conf);
2372 if (IS_ERR(sdr))
2373 return PTR_ERR(sdr);
2374
2375 memset(t, 0, sizeof(*t));
2376 /* Sampling point calculation. */
2377
2378 if (cdns_ctrl->caps2.is_phy_type_dll)
2379 phony_dqs_mod = 2;
2380 else
2381 phony_dqs_mod = 1;
2382
2383 dqs_sampl_res = clk_period / phony_dqs_mod;
2384
2385 tdvw_min = sdr->tREA_max + board_delay_skew_max;
2386 /*
2387 * The idea of those calculation is to get the optimum value
2388 * for tRP and tRH timings. If it is NOT possible to sample data
2389 * with optimal tRP/tRH settings, the parameters will be extended.
2390 * If clk_period is 50ns (the lowest value) this condition is met
2391 * for SDR timing modes 1, 2, 3, 4 and 5.
2392 * If clk_period is 20ns the condition is met only for SDR timing
2393 * mode 5.
2394 */
2395 if (sdr->tRC_min <= clk_period &&
2396 sdr->tRP_min <= (clk_period / 2) &&
2397 sdr->tREH_min <= (clk_period / 2)) {
2398 /* Performance mode. */
2399 ext_rd_mode = 0;
2400 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2401 sdr->tREA_max, ext_rd_mode);
2402 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2403 board_delay_skew_min,
2404 ext_rd_mode);
2405 /*
2406 * Check if data valid window and sampling point can be found
2407 * and is not on the edge (ie. we have hold margin).
2408 * If not extend the tRP timings.
2409 */
2410 if (tdvw > 0) {
2411 if (tdvw_max <= tdvw_min ||
2412 (tdvw_max % dqs_sampl_res) == 0) {
2413 /*
2414 * No valid sampling point so the RE pulse need
2415 * to be widen widening by half clock cycle.
2416 */
2417 ext_rd_mode = 1;
2418 }
2419 } else {
2420 /*
2421 * There is no valid window
2422 * to be able to sample data the tRP need to be widen.
2423 * Very safe calculations are performed here.
2424 */
2425 trp_cnt = (sdr->tREA_max + board_delay_skew_max
2426 + dqs_sampl_res) / clk_period;
2427 ext_rd_mode = 1;
2428 }
2429
2430 } else {
2431 /* Extended read mode. */
2432 u32 trh;
2433
2434 ext_rd_mode = 1;
2435 trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2436 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2437 if (sdr->tREH_min >= trh)
2438 trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2439 else
2440 trh_cnt = calc_cycl(trh, clk_period);
2441
2442 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2443 sdr->tREA_max, ext_rd_mode);
2444 /*
2445 * Check if data valid window and sampling point can be found
2446 * or if it is at the edge check if previous is valid
2447 * - if not extend the tRP timings.
2448 */
2449 if (tdvw > 0) {
2450 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2451 sdr->tRHOH_min,
2452 board_delay_skew_min,
2453 ext_rd_mode);
2454
2455 if ((((tdvw_max / dqs_sampl_res)
2456 * dqs_sampl_res) <= tdvw_min) ||
2457 (((tdvw_max % dqs_sampl_res) == 0) &&
2458 (((tdvw_max / dqs_sampl_res - 1)
2459 * dqs_sampl_res) <= tdvw_min))) {
2460 /*
2461 * Data valid window width is lower than
2462 * sampling resolution and do not hit any
2463 * sampling point to be sure the sampling point
2464 * will be found the RE low pulse width will be
2465 * extended by one clock cycle.
2466 */
2467 trp_cnt = trp_cnt + 1;
2468 }
2469 } else {
2470 /*
2471 * There is no valid window to be able to sample data.
2472 * The tRP need to be widen.
2473 * Very safe calculations are performed here.
2474 */
2475 trp_cnt = (sdr->tREA_max + board_delay_skew_max
2476 + dqs_sampl_res) / clk_period;
2477 }
2478 }
2479
2480 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2481 sdr->tRHOH_min,
2482 board_delay_skew_min, ext_rd_mode);
2483
2484 if (sdr->tWC_min <= clk_period &&
2485 (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2486 (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2487 ext_wr_mode = 0;
2488 } else {
2489 u32 twh;
2490
2491 ext_wr_mode = 1;
2492 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2493 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2494 twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2495 clk_period);
2496
2497 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2498 if (sdr->tWH_min >= twh)
2499 twh = sdr->tWH_min;
2500
2501 twh_cnt = calc_cycl(twh + if_skew, clk_period);
2502 }
2503
2504 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2505 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2506 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2507 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2508 t->async_toggle_timings = reg;
2509 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2510
2511 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2512 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2513 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2514 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2515 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2516
2517 /*
2518 * If timing exceeds delay field in timing register
2519 * then use maximum value.
2520 */
2521 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2522 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2523 else
2524 reg |= TIMINGS0_TCCS;
2525
2526 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2527 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2528 t->timings0 = reg;
2529 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2530
2531 /* The following is related to single signal so skew is not needed. */
2532 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2533 trhz_cnt = trhz_cnt + 1;
2534 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2535 /*
2536 * Because of the two stage syncflop the value must be increased by 3
2537 * first value is related with sync, second value is related
2538 * with output if delay.
2539 */
2540 twb_cnt = twb_cnt + 3 + 5;
2541 /*
2542 * The following is related to the we edge of the random data input
2543 * sequence so skew is not needed.
2544 */
2545 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2546 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2547 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2548 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2549 t->timings1 = reg;
2550 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2551
2552 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2553 if (tfeat_cnt < twb_cnt)
2554 tfeat_cnt = twb_cnt;
2555
2556 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2557 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2558
2559 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2560 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2561 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2562 t->timings2 = reg;
2563 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2564
2565 if (cdns_ctrl->caps2.is_phy_type_dll) {
2566 reg = DLL_PHY_CTRL_DLL_RST_N;
2567 if (ext_wr_mode)
2568 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2569 if (ext_rd_mode)
2570 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2571
2572 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2573 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2574 t->dll_phy_ctrl = reg;
2575 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2576 }
2577
2578 /* Sampling point calculation. */
2579 if ((tdvw_max % dqs_sampl_res) > 0)
2580 sampling_point = tdvw_max / dqs_sampl_res;
2581 else
2582 sampling_point = (tdvw_max / dqs_sampl_res - 1);
2583
2584 if (sampling_point * dqs_sampl_res > tdvw_min) {
2585 dll_phy_dqs_timing =
2586 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2587 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2588 phony_dqs_timing = sampling_point / phony_dqs_mod;
2589
2590 if ((sampling_point % 2) > 0) {
2591 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2592 if ((tdvw_max % dqs_sampl_res) == 0)
2593 /*
2594 * Calculation for sampling point at the edge
2595 * of data and being odd number.
2596 */
2597 phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2598 / phony_dqs_mod - 1;
2599
2600 if (!cdns_ctrl->caps2.is_phy_type_dll)
2601 phony_dqs_timing--;
2602
2603 } else {
2604 phony_dqs_timing--;
2605 }
2606 rd_del_sel = phony_dqs_timing + 3;
2607 } else {
2608 dev_warn(cdns_ctrl->dev,
2609 "ERROR : cannot find valid sampling point\n");
2610 }
2611
2612 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2613 if (cdns_ctrl->caps2.is_phy_type_dll)
2614 reg |= PHY_CTRL_SDR_DQS;
2615 t->phy_ctrl = reg;
2616 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2617
2618 if (cdns_ctrl->caps2.is_phy_type_dll) {
2619 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2620 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2621 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2622 dll_phy_dqs_timing);
2623 t->phy_dqs_timing = dll_phy_dqs_timing;
2624
2625 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2626 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2627 reg);
2628 t->phy_gate_lpbk_ctrl = reg;
2629
2630 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2631 PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2632 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2633 }
2634
2635 return 0;
2636 }
2637
cadence_nand_attach_chip(struct nand_chip * chip)2638 static int cadence_nand_attach_chip(struct nand_chip *chip)
2639 {
2640 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2641 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2642 u32 ecc_size;
2643 struct mtd_info *mtd = nand_to_mtd(chip);
2644 int ret;
2645
2646 if (chip->options & NAND_BUSWIDTH_16) {
2647 ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2648 if (ret)
2649 return ret;
2650 }
2651
2652 chip->bbt_options |= NAND_BBT_USE_FLASH;
2653 chip->bbt_options |= NAND_BBT_NO_OOB;
2654 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2655
2656 chip->options |= NAND_NO_SUBPAGE_WRITE;
2657
2658 cdns_chip->bbm_offs = chip->badblockpos;
2659 cdns_chip->bbm_offs &= ~0x01;
2660 /* this value should be even number */
2661 cdns_chip->bbm_len = 2;
2662
2663 ret = nand_ecc_choose_conf(chip,
2664 &cdns_ctrl->ecc_caps,
2665 mtd->oobsize - cdns_chip->bbm_len);
2666 if (ret) {
2667 dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2668 return ret;
2669 }
2670
2671 dev_dbg(cdns_ctrl->dev,
2672 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2673 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2674
2675 /* Error correction configuration. */
2676 cdns_chip->sector_size = chip->ecc.size;
2677 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2678 ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2679
2680 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2681
2682 if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2683 cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2684
2685 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2686 > mtd->oobsize)
2687 cdns_chip->avail_oob_size -= 4;
2688
2689 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2690 if (ret < 0)
2691 return -EINVAL;
2692
2693 cdns_chip->corr_str_idx = (u8)ret;
2694
2695 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2696 1000000,
2697 CTRL_STATUS_CTRL_BUSY, true))
2698 return -ETIMEDOUT;
2699
2700 cadence_nand_set_ecc_strength(cdns_ctrl,
2701 cdns_chip->corr_str_idx);
2702
2703 cadence_nand_set_erase_detection(cdns_ctrl, true,
2704 chip->ecc.strength);
2705
2706 /* Override the default read operations. */
2707 chip->ecc.read_page = cadence_nand_read_page;
2708 chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2709 chip->ecc.write_page = cadence_nand_write_page;
2710 chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2711 chip->ecc.read_oob = cadence_nand_read_oob;
2712 chip->ecc.write_oob = cadence_nand_write_oob;
2713 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2714 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2715
2716 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2717 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2718
2719 /* Is 32-bit DMA supported? */
2720 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2721 if (ret) {
2722 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2723 return ret;
2724 }
2725
2726 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2727
2728 return 0;
2729 }
2730
2731 static const struct nand_controller_ops cadence_nand_controller_ops = {
2732 .attach_chip = cadence_nand_attach_chip,
2733 .exec_op = cadence_nand_exec_op,
2734 .setup_interface = cadence_nand_setup_interface,
2735 };
2736
cadence_nand_chip_init(struct cdns_nand_ctrl * cdns_ctrl,struct device_node * np)2737 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2738 struct device_node *np)
2739 {
2740 struct cdns_nand_chip *cdns_chip;
2741 struct mtd_info *mtd;
2742 struct nand_chip *chip;
2743 int nsels, ret, i;
2744 u32 cs;
2745
2746 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2747 if (nsels <= 0) {
2748 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2749 return -EINVAL;
2750 }
2751
2752 /* Allocate the nand chip structure. */
2753 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2754 (nsels * sizeof(u8)),
2755 GFP_KERNEL);
2756 if (!cdns_chip) {
2757 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2758 return -ENOMEM;
2759 }
2760
2761 cdns_chip->nsels = nsels;
2762
2763 for (i = 0; i < nsels; i++) {
2764 /* Retrieve CS id. */
2765 ret = of_property_read_u32_index(np, "reg", i, &cs);
2766 if (ret) {
2767 dev_err(cdns_ctrl->dev,
2768 "could not retrieve reg property: %d\n",
2769 ret);
2770 return ret;
2771 }
2772
2773 if (cs >= cdns_ctrl->caps2.max_banks) {
2774 dev_err(cdns_ctrl->dev,
2775 "invalid reg value: %u (max CS = %d)\n",
2776 cs, cdns_ctrl->caps2.max_banks);
2777 return -EINVAL;
2778 }
2779
2780 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2781 dev_err(cdns_ctrl->dev,
2782 "CS %d already assigned\n", cs);
2783 return -EINVAL;
2784 }
2785
2786 cdns_chip->cs[i] = cs;
2787 }
2788
2789 chip = &cdns_chip->chip;
2790 chip->controller = &cdns_ctrl->controller;
2791 nand_set_flash_node(chip, np);
2792
2793 mtd = nand_to_mtd(chip);
2794 mtd->dev.parent = cdns_ctrl->dev;
2795
2796 /*
2797 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2798 * in the DT node, this entry will be overwritten in nand_scan_ident().
2799 */
2800 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2801
2802 ret = nand_scan(chip, cdns_chip->nsels);
2803 if (ret) {
2804 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2805 return ret;
2806 }
2807
2808 ret = mtd_device_register(mtd, NULL, 0);
2809 if (ret) {
2810 dev_err(cdns_ctrl->dev,
2811 "failed to register mtd device: %d\n", ret);
2812 nand_cleanup(chip);
2813 return ret;
2814 }
2815
2816 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2817
2818 return 0;
2819 }
2820
cadence_nand_chips_cleanup(struct cdns_nand_ctrl * cdns_ctrl)2821 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2822 {
2823 struct cdns_nand_chip *entry, *temp;
2824 struct nand_chip *chip;
2825 int ret;
2826
2827 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2828 chip = &entry->chip;
2829 ret = mtd_device_unregister(nand_to_mtd(chip));
2830 WARN_ON(ret);
2831 nand_cleanup(chip);
2832 list_del(&entry->node);
2833 }
2834 }
2835
cadence_nand_chips_init(struct cdns_nand_ctrl * cdns_ctrl)2836 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2837 {
2838 struct device_node *np = cdns_ctrl->dev->of_node;
2839 int max_cs = cdns_ctrl->caps2.max_banks;
2840 int nchips, ret;
2841
2842 nchips = of_get_child_count(np);
2843
2844 if (nchips > max_cs) {
2845 dev_err(cdns_ctrl->dev,
2846 "too many NAND chips: %d (max = %d CS)\n",
2847 nchips, max_cs);
2848 return -EINVAL;
2849 }
2850
2851 for_each_child_of_node_scoped(np, nand_np) {
2852 ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2853 if (ret) {
2854 cadence_nand_chips_cleanup(cdns_ctrl);
2855 return ret;
2856 }
2857 }
2858
2859 return 0;
2860 }
2861
2862 static void
cadence_nand_irq_cleanup(int irqnum,struct cdns_nand_ctrl * cdns_ctrl)2863 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2864 {
2865 /* Disable interrupts. */
2866 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2867 }
2868
cadence_nand_init(struct cdns_nand_ctrl * cdns_ctrl)2869 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2870 {
2871 dma_cap_mask_t mask;
2872 int ret;
2873
2874 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2875 sizeof(*cdns_ctrl->cdma_desc),
2876 &cdns_ctrl->dma_cdma_desc,
2877 GFP_KERNEL);
2878 if (!cdns_ctrl->dma_cdma_desc)
2879 return -ENOMEM;
2880
2881 cdns_ctrl->buf_size = SZ_16K;
2882 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2883 if (!cdns_ctrl->buf) {
2884 ret = -ENOMEM;
2885 goto free_buf_desc;
2886 }
2887
2888 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2889 IRQF_SHARED, "cadence-nand-controller",
2890 cdns_ctrl)) {
2891 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2892 ret = -ENODEV;
2893 goto free_buf;
2894 }
2895
2896 spin_lock_init(&cdns_ctrl->irq_lock);
2897 init_completion(&cdns_ctrl->complete);
2898
2899 ret = cadence_nand_hw_init(cdns_ctrl);
2900 if (ret)
2901 goto disable_irq;
2902
2903 dma_cap_zero(mask);
2904 dma_cap_set(DMA_MEMCPY, mask);
2905
2906 if (cdns_ctrl->caps1->has_dma) {
2907 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2908 if (!cdns_ctrl->dmac) {
2909 dev_err(cdns_ctrl->dev,
2910 "Unable to get a DMA channel\n");
2911 ret = -EBUSY;
2912 goto disable_irq;
2913 }
2914 }
2915
2916 nand_controller_init(&cdns_ctrl->controller);
2917 INIT_LIST_HEAD(&cdns_ctrl->chips);
2918
2919 cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2920 cdns_ctrl->curr_corr_str_idx = 0xFF;
2921
2922 ret = cadence_nand_chips_init(cdns_ctrl);
2923 if (ret) {
2924 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2925 ret);
2926 goto dma_release_chnl;
2927 }
2928
2929 kfree(cdns_ctrl->buf);
2930 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2931 if (!cdns_ctrl->buf) {
2932 ret = -ENOMEM;
2933 goto dma_release_chnl;
2934 }
2935
2936 return 0;
2937
2938 dma_release_chnl:
2939 if (cdns_ctrl->dmac)
2940 dma_release_channel(cdns_ctrl->dmac);
2941
2942 disable_irq:
2943 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2944
2945 free_buf:
2946 kfree(cdns_ctrl->buf);
2947
2948 free_buf_desc:
2949 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2950 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2951
2952 return ret;
2953 }
2954
2955 /* Driver exit point. */
cadence_nand_remove(struct cdns_nand_ctrl * cdns_ctrl)2956 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2957 {
2958 cadence_nand_chips_cleanup(cdns_ctrl);
2959 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2960 kfree(cdns_ctrl->buf);
2961 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2962 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2963
2964 if (cdns_ctrl->dmac)
2965 dma_release_channel(cdns_ctrl->dmac);
2966 }
2967
2968 struct cadence_nand_dt {
2969 struct cdns_nand_ctrl cdns_ctrl;
2970 struct clk *clk;
2971 };
2972
2973 static const struct cadence_nand_dt_devdata cadence_nand_default = {
2974 .if_skew = 0,
2975 .has_dma = 1,
2976 };
2977
2978 static const struct of_device_id cadence_nand_dt_ids[] = {
2979 {
2980 .compatible = "cdns,hp-nfc",
2981 .data = &cadence_nand_default
2982 }, {}
2983 };
2984
2985 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2986
cadence_nand_dt_probe(struct platform_device * ofdev)2987 static int cadence_nand_dt_probe(struct platform_device *ofdev)
2988 {
2989 struct resource *res;
2990 struct cadence_nand_dt *dt;
2991 struct cdns_nand_ctrl *cdns_ctrl;
2992 int ret;
2993 const struct cadence_nand_dt_devdata *devdata;
2994 u32 val;
2995
2996 devdata = device_get_match_data(&ofdev->dev);
2997 if (!devdata) {
2998 pr_err("Failed to find the right device id.\n");
2999 return -ENOMEM;
3000 }
3001
3002 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
3003 if (!dt)
3004 return -ENOMEM;
3005
3006 cdns_ctrl = &dt->cdns_ctrl;
3007 cdns_ctrl->caps1 = devdata;
3008
3009 cdns_ctrl->dev = &ofdev->dev;
3010 cdns_ctrl->irq = platform_get_irq(ofdev, 0);
3011 if (cdns_ctrl->irq < 0)
3012 return cdns_ctrl->irq;
3013
3014 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
3015
3016 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
3017 if (IS_ERR(cdns_ctrl->reg))
3018 return PTR_ERR(cdns_ctrl->reg);
3019
3020 cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
3021 if (IS_ERR(cdns_ctrl->io.virt))
3022 return PTR_ERR(cdns_ctrl->io.virt);
3023 cdns_ctrl->io.dma = res->start;
3024
3025 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
3026 if (IS_ERR(dt->clk))
3027 return PTR_ERR(dt->clk);
3028
3029 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
3030
3031 ret = of_property_read_u32(ofdev->dev.of_node,
3032 "cdns,board-delay-ps", &val);
3033 if (ret) {
3034 val = 4830;
3035 dev_info(cdns_ctrl->dev,
3036 "missing cdns,board-delay-ps property, %d was set\n",
3037 val);
3038 }
3039 cdns_ctrl->board_delay = val;
3040
3041 ret = cadence_nand_init(cdns_ctrl);
3042 if (ret)
3043 return ret;
3044
3045 platform_set_drvdata(ofdev, dt);
3046 return 0;
3047 }
3048
cadence_nand_dt_remove(struct platform_device * ofdev)3049 static void cadence_nand_dt_remove(struct platform_device *ofdev)
3050 {
3051 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3052
3053 cadence_nand_remove(&dt->cdns_ctrl);
3054 }
3055
3056 static struct platform_driver cadence_nand_dt_driver = {
3057 .probe = cadence_nand_dt_probe,
3058 .remove_new = cadence_nand_dt_remove,
3059 .driver = {
3060 .name = "cadence-nand-controller",
3061 .of_match_table = cadence_nand_dt_ids,
3062 },
3063 };
3064
3065 module_platform_driver(cadence_nand_dt_driver);
3066
3067 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3068 MODULE_LICENSE("GPL v2");
3069 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3070
3071