1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * If TRACE_SYSTEM is defined, that will be the directory created
4  * in the ftrace directory under /sys/kernel/tracing/events/<system>
5  *
6  * The define_trace.h below will also look for a file name of
7  * TRACE_SYSTEM.h where TRACE_SYSTEM is what is defined here.
8  * In this case, it would look for sample-trace.h
9  *
10  * If the header name will be different than the system name
11  * (as in this case), then you can override the header name that
12  * define_trace.h will look up by defining TRACE_INCLUDE_FILE
13  *
14  * This file is called trace-events-sample.h but we want the system
15  * to be called "sample-trace". Therefore we must define the name of this
16  * file:
17  *
18  * #define TRACE_INCLUDE_FILE trace-events-sample
19  *
20  * As we do an the bottom of this file.
21  *
22  * Notice that TRACE_SYSTEM should be defined outside of #if
23  * protection, just like TRACE_INCLUDE_FILE.
24  */
25 #undef TRACE_SYSTEM
26 #define TRACE_SYSTEM sample-trace
27 
28 /*
29  * TRACE_SYSTEM is expected to be a C valid variable (alpha-numeric
30  * and underscore), although it may start with numbers. If for some
31  * reason it is not, you need to add the following lines:
32  */
33 #undef TRACE_SYSTEM_VAR
34 #define TRACE_SYSTEM_VAR sample_trace
35 /*
36  * But the above is only needed if TRACE_SYSTEM is not alpha-numeric
37  * and underscored. By default, TRACE_SYSTEM_VAR will be equal to
38  * TRACE_SYSTEM. As TRACE_SYSTEM_VAR must be alpha-numeric, if
39  * TRACE_SYSTEM is not, then TRACE_SYSTEM_VAR must be defined with
40  * only alpha-numeric and underscores.
41  *
42  * The TRACE_SYSTEM_VAR is only used internally and not visible to
43  * user space.
44  */
45 
46 /*
47  * Notice that this file is not protected like a normal header.
48  * We also must allow for rereading of this file. The
49  *
50  *  || defined(TRACE_HEADER_MULTI_READ)
51  *
52  * serves this purpose.
53  */
54 #if !defined(_TRACE_EVENT_SAMPLE_H) || defined(TRACE_HEADER_MULTI_READ)
55 #define _TRACE_EVENT_SAMPLE_H
56 
57 /*
58  * All trace headers should include tracepoint.h, until we finally
59  * make it into a standard header.
60  */
61 #include <linux/tracepoint.h>
62 
63 /*
64  * The TRACE_EVENT macro is broken up into 5 parts.
65  *
66  * name: name of the trace point. This is also how to enable the tracepoint.
67  *   A function called trace_foo_bar() will be created.
68  *
69  * proto: the prototype of the function trace_foo_bar()
70  *   Here it is trace_foo_bar(char *foo, int bar).
71  *
72  * args:  must match the arguments in the prototype.
73  *    Here it is simply "foo, bar".
74  *
75  * struct:  This defines the way the data will be stored in the ring buffer.
76  *          The items declared here become part of a special structure
77  *          called "__entry", which can be used in the fast_assign part of the
78  *          TRACE_EVENT macro.
79  *
80  *      Here are the currently defined types you can use:
81  *
82  *   __field : Is broken up into type and name. Where type can be any
83  *         primitive type (integer, long or pointer).
84  *
85  *        __field(int, foo)
86  *
87  *        __entry->foo = 5;
88  *
89  *   __field_struct : This can be any static complex data type (struct, union
90  *         but not an array). Be careful using complex types, as each
91  *         event is limited in size, and copying large amounts of data
92  *         into the ring buffer can slow things down.
93  *
94  *         __field_struct(struct bar, foo)
95  *
96  *         __entry->bar.x = y;
97 
98  *   __array: There are three fields (type, name, size). The type is the
99  *         type of elements in the array, the name is the name of the array.
100  *         size is the number of items in the array (not the total size).
101  *
102  *         __array( char, foo, 10) is the same as saying: char foo[10];
103  *
104  *         Assigning arrays can be done like any array:
105  *
106  *         __entry->foo[0] = 'a';
107  *
108  *         memcpy(__entry->foo, bar, 10);
109  *
110  *   __dynamic_array: This is similar to array, but can vary its size from
111  *         instance to instance of the tracepoint being called.
112  *         Like __array, this too has three elements (type, name, size);
113  *         type is the type of the element, name is the name of the array.
114  *         The size is different than __array. It is not a static number,
115  *         but the algorithm to figure out the length of the array for the
116  *         specific instance of tracepoint. Again, size is the number of
117  *         items in the array, not the total length in bytes.
118  *
119  *         __dynamic_array( int, foo, bar) is similar to: int foo[bar];
120  *
121  *         Note, unlike arrays, you must use the __get_dynamic_array() macro
122  *         to access the array.
123  *
124  *         memcpy(__get_dynamic_array(foo), bar, 10);
125  *
126  *         Notice, that "__entry" is not needed here.
127  *
128  *   __string: This is a special kind of __dynamic_array. It expects to
129  *         have a null terminated character array passed to it (it allows
130  *         for NULL too, which would be converted into "(null)"). __string
131  *         takes two parameter (name, src), where name is the name of
132  *         the string saved, and src is the string to copy into the
133  *         ring buffer.
134  *
135  *         __string(foo, bar)  is similar to:  strcpy(foo, bar)
136  *
137  *         To assign a string, use the helper macro __assign_str().
138  *
139  *         __assign_str(foo);
140  *
141  *	   The __string() macro saves off the string that is passed into
142  *         the second parameter, and the __assign_str() will store than
143  *         saved string into the "foo" field.
144  *
145  *   __vstring: This is similar to __string() but instead of taking a
146  *         dynamic length, it takes a variable list va_list 'va' variable.
147  *         Some event callers already have a message from parameters saved
148  *         in a va_list. Passing in the format and the va_list variable
149  *         will save just enough on the ring buffer for that string.
150  *         Note, the va variable used is a pointer to a va_list, not
151  *         to the va_list directly.
152  *
153  *           (va_list *va)
154  *
155  *         __vstring(foo, fmt, va)  is similar to:  vsnprintf(foo, fmt, va)
156  *
157  *         To assign the string, use the helper macro __assign_vstr().
158  *
159  *         __assign_vstr(foo, fmt, va);
160  *
161  *         In most cases, the __assign_vstr() macro will take the same
162  *         parameters as the __vstring() macro had to declare the string.
163  *         Use __get_str() to retrieve the __vstring() just like it would for
164  *         __string().
165  *
166  *   __string_len: This is a helper to a __dynamic_array, but it understands
167  *	   that the array has characters in it, it will allocate 'len' + 1 bytes
168  *         in the ring buffer and add a '\0' to the string. This is
169  *         useful if the string being saved has no terminating '\0' byte.
170  *         It requires that the length of the string is known as it acts
171  *         like a memcpy().
172  *
173  *         Declared with:
174  *
175  *         __string_len(foo, bar, len)
176  *
177  *         To assign this string, use the helper macro __assign_str().
178  *         The length is saved via the __string_len() and is retrieved in
179  *         __assign_str().
180  *
181  *         __assign_str(foo);
182  *
183  *         Then len + 1 is allocated to the ring buffer, and a nul terminating
184  *         byte is added. This is similar to:
185  *
186  *         memcpy(__get_str(foo), bar, len);
187  *         __get_str(foo)[len] = 0;
188  *
189  *        The advantage of using this over __dynamic_array, is that it
190  *        takes care of allocating the extra byte on the ring buffer
191  *        for the '\0' terminating byte, and __get_str(foo) can be used
192  *        in the TP_printk().
193  *
194  *   __bitmask: This is another kind of __dynamic_array, but it expects
195  *         an array of longs, and the number of bits to parse. It takes
196  *         two parameters (name, nr_bits), where name is the name of the
197  *         bitmask to save, and the nr_bits is the number of bits to record.
198  *
199  *         __bitmask(target_cpu, nr_cpumask_bits)
200  *
201  *         To assign a bitmask, use the __assign_bitmask() helper macro.
202  *
203  *         __assign_bitmask(target_cpus, cpumask_bits(bar), nr_cpumask_bits);
204  *
205  *   __cpumask: This is pretty much the same as __bitmask but is specific for
206  *         CPU masks. The type displayed to the user via the format files will
207  *         be "cpumaks_t" such that user space may deal with them differently
208  *         if they choose to do so, and the bits is always set to nr_cpumask_bits.
209  *
210  *         __cpumask(target_cpu)
211  *
212  *         To assign a cpumask, use the __assign_cpumask() helper macro.
213  *
214  *         __assign_cpumask(target_cpus, cpumask_bits(bar));
215  *
216  * fast_assign: This is a C like function that is used to store the items
217  *    into the ring buffer. A special variable called "__entry" will be the
218  *    structure that points into the ring buffer and has the same fields as
219  *    described by the struct part of TRACE_EVENT above.
220  *
221  * printk: This is a way to print out the data in pretty print. This is
222  *    useful if the system crashes and you are logging via a serial line,
223  *    the data can be printed to the console using this "printk" method.
224  *    This is also used to print out the data from the trace files.
225  *    Again, the __entry macro is used to access the data from the ring buffer.
226  *
227  *    Note, __dynamic_array, __string, __bitmask and __cpumask require special
228  *       helpers to access the data.
229  *
230  *      For __dynamic_array(int, foo, bar) use __get_dynamic_array(foo)
231  *            Use __get_dynamic_array_len(foo) to get the length of the array
232  *            saved. Note, __get_dynamic_array_len() returns the total allocated
233  *            length of the dynamic array; __print_array() expects the second
234  *            parameter to be the number of elements. To get that, the array length
235  *            needs to be divided by the element size.
236  *
237  *      For __string(foo, bar) use __get_str(foo)
238  *
239  *      For __bitmask(target_cpus, nr_cpumask_bits) use __get_bitmask(target_cpus)
240  *
241  *      For __cpumask(target_cpus) use __get_cpumask(target_cpus)
242  *
243  *
244  * Note, that for both the assign and the printk, __entry is the handler
245  * to the data structure in the ring buffer, and is defined by the
246  * TP_STRUCT__entry.
247  */
248 
249 /*
250  * It is OK to have helper functions in the file, but they need to be protected
251  * from being defined more than once. Remember, this file gets included more
252  * than once.
253  */
254 #ifndef __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
255 #define __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
__length_of(const int * list)256 static inline int __length_of(const int *list)
257 {
258 	int i;
259 
260 	if (!list)
261 		return 0;
262 
263 	for (i = 0; list[i]; i++)
264 		;
265 	return i;
266 }
267 
268 enum {
269 	TRACE_SAMPLE_FOO = 2,
270 	TRACE_SAMPLE_BAR = 4,
271 	TRACE_SAMPLE_ZOO = 8,
272 };
273 #endif
274 
275 /*
276  * If enums are used in the TP_printk(), their names will be shown in
277  * format files and not their values. This can cause problems with user
278  * space programs that parse the format files to know how to translate
279  * the raw binary trace output into human readable text.
280  *
281  * To help out user space programs, any enum that is used in the TP_printk()
282  * should be defined by TRACE_DEFINE_ENUM() macro. All that is needed to
283  * be done is to add this macro with the enum within it in the trace
284  * header file, and it will be converted in the output.
285  */
286 
287 TRACE_DEFINE_ENUM(TRACE_SAMPLE_FOO);
288 TRACE_DEFINE_ENUM(TRACE_SAMPLE_BAR);
289 TRACE_DEFINE_ENUM(TRACE_SAMPLE_ZOO);
290 
291 TRACE_EVENT(foo_bar,
292 
293 	TP_PROTO(const char *foo, int bar, const int *lst,
294 		 const char *string, const struct cpumask *mask,
295 		 const char *fmt, va_list *va),
296 
297 	TP_ARGS(foo, bar, lst, string, mask, fmt, va),
298 
299 	TP_STRUCT__entry(
300 		__array(	char,	foo,    10		)
301 		__field(	int,	bar			)
302 		__dynamic_array(int,	list,   __length_of(lst))
303 		__string(	str,	string			)
304 		__bitmask(	cpus,	num_possible_cpus()	)
305 		__cpumask(	cpum				)
306 		__vstring(	vstr,	fmt,	va		)
307 		__string_len(	lstr,	foo,	bar / 2 < strlen(foo) ? bar / 2 : strlen(foo) )
308 	),
309 
310 	TP_fast_assign(
311 		strscpy(__entry->foo, foo, 10);
312 		__entry->bar	= bar;
313 		memcpy(__get_dynamic_array(list), lst,
314 		       __length_of(lst) * sizeof(int));
315 		__assign_str(str);
316 		__assign_str(lstr);
317 		__assign_vstr(vstr, fmt, va);
318 		__assign_bitmask(cpus, cpumask_bits(mask), num_possible_cpus());
319 		__assign_cpumask(cpum, cpumask_bits(mask));
320 	),
321 
322 	TP_printk("foo %s %d %s %s %s %s %s (%s) (%s) %s", __entry->foo, __entry->bar,
323 
324 /*
325  * Notice here the use of some helper functions. This includes:
326  *
327  *  __print_symbolic( variable, { value, "string" }, ... ),
328  *
329  *    The variable is tested against each value of the { } pair. If
330  *    the variable matches one of the values, then it will print the
331  *    string in that pair. If non are matched, it returns a string
332  *    version of the number (if __entry->bar == 7 then "7" is returned).
333  */
334 		  __print_symbolic(__entry->bar,
335 				   { 0, "zero" },
336 				   { TRACE_SAMPLE_FOO, "TWO" },
337 				   { TRACE_SAMPLE_BAR, "FOUR" },
338 				   { TRACE_SAMPLE_ZOO, "EIGHT" },
339 				   { 10, "TEN" }
340 			  ),
341 
342 /*
343  *  __print_flags( variable, "delim", { value, "flag" }, ... ),
344  *
345  *    This is similar to __print_symbolic, except that it tests the bits
346  *    of the value. If ((FLAG & variable) == FLAG) then the string is
347  *    printed. If more than one flag matches, then each one that does is
348  *    also printed with delim in between them.
349  *    If not all bits are accounted for, then the not found bits will be
350  *    added in hex format: 0x506 will show BIT2|BIT4|0x500
351  */
352 		  __print_flags(__entry->bar, "|",
353 				{ 1, "BIT1" },
354 				{ 2, "BIT2" },
355 				{ 4, "BIT3" },
356 				{ 8, "BIT4" }
357 			  ),
358 /*
359  *  __print_array( array, len, element_size )
360  *
361  *    This prints out the array that is defined by __array in a nice format.
362  */
363 		  __print_array(__get_dynamic_array(list),
364 				__get_dynamic_array_len(list) / sizeof(int),
365 				sizeof(int)),
366 		  __get_str(str), __get_str(lstr),
367 		  __get_bitmask(cpus), __get_cpumask(cpum),
368 		  __get_str(vstr))
369 );
370 
371 /*
372  * There may be a case where a tracepoint should only be called if
373  * some condition is set. Otherwise the tracepoint should not be called.
374  * But to do something like:
375  *
376  *  if (cond)
377  *     trace_foo();
378  *
379  * Would cause a little overhead when tracing is not enabled, and that
380  * overhead, even if small, is not something we want. As tracepoints
381  * use static branch (aka jump_labels), where no branch is taken to
382  * skip the tracepoint when not enabled, and a jmp is placed to jump
383  * to the tracepoint code when it is enabled, having a if statement
384  * nullifies that optimization. It would be nice to place that
385  * condition within the static branch. This is where TRACE_EVENT_CONDITION
386  * comes in.
387  *
388  * TRACE_EVENT_CONDITION() is just like TRACE_EVENT, except it adds another
389  * parameter just after args. Where TRACE_EVENT has:
390  *
391  * TRACE_EVENT(name, proto, args, struct, assign, printk)
392  *
393  * the CONDITION version has:
394  *
395  * TRACE_EVENT_CONDITION(name, proto, args, cond, struct, assign, printk)
396  *
397  * Everything is the same as TRACE_EVENT except for the new cond. Think
398  * of the cond variable as:
399  *
400  *   if (cond)
401  *      trace_foo_bar_with_cond();
402  *
403  * Except that the logic for the if branch is placed after the static branch.
404  * That is, the if statement that processes the condition will not be
405  * executed unless that traecpoint is enabled. Otherwise it still remains
406  * a nop.
407  */
408 TRACE_EVENT_CONDITION(foo_bar_with_cond,
409 
410 	TP_PROTO(const char *foo, int bar),
411 
412 	TP_ARGS(foo, bar),
413 
414 	TP_CONDITION(!(bar % 10)),
415 
416 	TP_STRUCT__entry(
417 		__string(	foo,    foo		)
418 		__field(	int,	bar			)
419 	),
420 
421 	TP_fast_assign(
422 		__assign_str(foo);
423 		__entry->bar	= bar;
424 	),
425 
426 	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
427 );
428 
429 int foo_bar_reg(void);
430 void foo_bar_unreg(void);
431 
432 /*
433  * Now in the case that some function needs to be called when the
434  * tracepoint is enabled and/or when it is disabled, the
435  * TRACE_EVENT_FN() serves this purpose. This is just like TRACE_EVENT()
436  * but adds two more parameters at the end:
437  *
438  * TRACE_EVENT_FN( name, proto, args, struct, assign, printk, reg, unreg)
439  *
440  * reg and unreg are functions with the prototype of:
441  *
442  *    void reg(void)
443  *
444  * The reg function gets called before the tracepoint is enabled, and
445  * the unreg function gets called after the tracepoint is disabled.
446  *
447  * Note, reg and unreg are allowed to be NULL. If you only need to
448  * call a function before enabling, or after disabling, just set one
449  * function and pass in NULL for the other parameter.
450  */
451 TRACE_EVENT_FN(foo_bar_with_fn,
452 
453 	TP_PROTO(const char *foo, int bar),
454 
455 	TP_ARGS(foo, bar),
456 
457 	TP_STRUCT__entry(
458 		__string(	foo,    foo		)
459 		__field(	int,	bar		)
460 	),
461 
462 	TP_fast_assign(
463 		__assign_str(foo);
464 		__entry->bar	= bar;
465 	),
466 
467 	TP_printk("foo %s %d", __get_str(foo), __entry->bar),
468 
469 	foo_bar_reg, foo_bar_unreg
470 );
471 
472 /*
473  * Each TRACE_EVENT macro creates several helper functions to produce
474  * the code to add the tracepoint, create the files in the trace
475  * directory, hook it to perf, assign the values and to print out
476  * the raw data from the ring buffer. To prevent too much bloat,
477  * if there are more than one tracepoint that uses the same format
478  * for the proto, args, struct, assign and printk, and only the name
479  * is different, it is highly recommended to use the DECLARE_EVENT_CLASS
480  *
481  * DECLARE_EVENT_CLASS() macro creates most of the functions for the
482  * tracepoint. Then DEFINE_EVENT() is use to hook a tracepoint to those
483  * functions. This DEFINE_EVENT() is an instance of the class and can
484  * be enabled and disabled separately from other events (either TRACE_EVENT
485  * or other DEFINE_EVENT()s).
486  *
487  * Note, TRACE_EVENT() itself is simply defined as:
488  *
489  * #define TRACE_EVENT(name, proto, args, tstruct, assign, printk)  \
490  *  DECLARE_EVENT_CLASS(name, proto, args, tstruct, assign, printk); \
491  *  DEFINE_EVENT(name, name, proto, args)
492  *
493  * The DEFINE_EVENT() also can be declared with conditions and reg functions:
494  *
495  * DEFINE_EVENT_CONDITION(template, name, proto, args, cond);
496  * DEFINE_EVENT_FN(template, name, proto, args, reg, unreg);
497  */
498 DECLARE_EVENT_CLASS(foo_template,
499 
500 	TP_PROTO(const char *foo, int bar),
501 
502 	TP_ARGS(foo, bar),
503 
504 	TP_STRUCT__entry(
505 		__string(	foo,    foo		)
506 		__field(	int,	bar		)
507 	),
508 
509 	TP_fast_assign(
510 		__assign_str(foo);
511 		__entry->bar	= bar;
512 	),
513 
514 	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
515 );
516 
517 /*
518  * Here's a better way for the previous samples (except, the first
519  * example had more fields and could not be used here).
520  */
521 DEFINE_EVENT(foo_template, foo_with_template_simple,
522 	TP_PROTO(const char *foo, int bar),
523 	TP_ARGS(foo, bar));
524 
525 DEFINE_EVENT_CONDITION(foo_template, foo_with_template_cond,
526 	TP_PROTO(const char *foo, int bar),
527 	TP_ARGS(foo, bar),
528 	TP_CONDITION(!(bar % 8)));
529 
530 
531 DEFINE_EVENT_FN(foo_template, foo_with_template_fn,
532 	TP_PROTO(const char *foo, int bar),
533 	TP_ARGS(foo, bar),
534 	foo_bar_reg, foo_bar_unreg);
535 
536 /*
537  * Anytime two events share basically the same values and have
538  * the same output, use the DECLARE_EVENT_CLASS() and DEFINE_EVENT()
539  * when ever possible.
540  */
541 
542 /*
543  * If the event is similar to the DECLARE_EVENT_CLASS, but you need
544  * to have a different output, then use DEFINE_EVENT_PRINT() which
545  * lets you override the TP_printk() of the class.
546  */
547 
548 DEFINE_EVENT_PRINT(foo_template, foo_with_template_print,
549 	TP_PROTO(const char *foo, int bar),
550 	TP_ARGS(foo, bar),
551 	TP_printk("bar %s %d", __get_str(foo), __entry->bar));
552 
553 /*
554  * There are yet another __rel_loc dynamic data attribute. If you
555  * use __rel_dynamic_array() and __rel_string() etc. macros, you
556  * can use this attribute. There is no difference from the viewpoint
557  * of functionality with/without 'rel' but the encoding is a bit
558  * different. This is expected to be used with user-space event,
559  * there is no reason that the kernel event use this, but only for
560  * testing.
561  */
562 
563 TRACE_EVENT(foo_rel_loc,
564 
565 	TP_PROTO(const char *foo, int bar, unsigned long *mask, const cpumask_t *cpus),
566 
567 	TP_ARGS(foo, bar, mask, cpus),
568 
569 	TP_STRUCT__entry(
570 		__rel_string(	foo,	foo	)
571 		__field(	int,	bar	)
572 		__rel_bitmask(	bitmask,
573 			BITS_PER_BYTE * sizeof(unsigned long)	)
574 		__rel_cpumask(	cpumask )
575 	),
576 
577 	TP_fast_assign(
578 		__assign_rel_str(foo);
579 		__entry->bar = bar;
580 		__assign_rel_bitmask(bitmask, mask,
581 			BITS_PER_BYTE * sizeof(unsigned long));
582 		__assign_rel_cpumask(cpumask, cpus);
583 	),
584 
585 	TP_printk("foo_rel_loc %s, %d, %s, %s", __get_rel_str(foo), __entry->bar,
586 		  __get_rel_bitmask(bitmask),
587 		  __get_rel_cpumask(cpumask))
588 );
589 #endif
590 
591 /***** NOTICE! The #if protection ends here. *****/
592 
593 
594 /*
595  * There are several ways I could have done this. If I left out the
596  * TRACE_INCLUDE_PATH, then it would default to the kernel source
597  * include/trace/events directory.
598  *
599  * I could specify a path from the define_trace.h file back to this
600  * file.
601  *
602  * #define TRACE_INCLUDE_PATH ../../samples/trace_events
603  *
604  * But the safest and easiest way to simply make it use the directory
605  * that the file is in is to add in the Makefile:
606  *
607  * CFLAGS_trace-events-sample.o := -I$(src)
608  *
609  * This will make sure the current path is part of the include
610  * structure for our file so that define_trace.h can find it.
611  *
612  * I could have made only the top level directory the include:
613  *
614  * CFLAGS_trace-events-sample.o := -I$(PWD)
615  *
616  * And then let the path to this directory be the TRACE_INCLUDE_PATH:
617  *
618  * #define TRACE_INCLUDE_PATH samples/trace_events
619  *
620  * But then if something defines "samples" or "trace_events" as a macro
621  * then we could risk that being converted too, and give us an unexpected
622  * result.
623  */
624 #undef TRACE_INCLUDE_PATH
625 #undef TRACE_INCLUDE_FILE
626 #define TRACE_INCLUDE_PATH .
627 /*
628  * TRACE_INCLUDE_FILE is not needed if the filename and TRACE_SYSTEM are equal
629  */
630 #define TRACE_INCLUDE_FILE trace-events-sample
631 #include <trace/define_trace.h>
632