1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38
39 #include "swap.h"
40 #include "internal.h"
41
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
47
48 /*
49 * The statistics below are not protected from concurrent access for
50 * performance reasons so they may not be a 100% accurate. However,
51 * they do provide useful information on roughly how many times a
52 * certain event is occurring.
53 */
54
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail;
69
70 /* Shrinker work queue */
71 static struct workqueue_struct *shrink_wq;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 #define ZSWAP_PARAM_UNSET ""
80
81 static int zswap_setup(void);
82
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 .set = zswap_enabled_param_set,
90 .get = param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 .set = zswap_compressor_param_set,
100 .get = param_get_charp,
101 .free = param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 &zswap_compressor, 0644);
105
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 .set = zswap_zpool_param_set,
111 .get = param_get_charp,
112 .free = param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 uint, 0644);
124
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled = IS_ENABLED(
127 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
128 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
129
zswap_is_enabled(void)130 bool zswap_is_enabled(void)
131 {
132 return zswap_enabled;
133 }
134
zswap_never_enabled(void)135 bool zswap_never_enabled(void)
136 {
137 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
138 }
139
140 /*********************************
141 * data structures
142 **********************************/
143
144 struct crypto_acomp_ctx {
145 struct crypto_acomp *acomp;
146 struct acomp_req *req;
147 struct crypto_wait wait;
148 u8 *buffer;
149 struct mutex mutex;
150 bool is_sleepable;
151 };
152
153 /*
154 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155 * The only case where lru_lock is not acquired while holding tree.lock is
156 * when a zswap_entry is taken off the lru for writeback, in that case it
157 * needs to be verified that it's still valid in the tree.
158 */
159 struct zswap_pool {
160 struct zpool *zpool;
161 struct crypto_acomp_ctx __percpu *acomp_ctx;
162 struct percpu_ref ref;
163 struct list_head list;
164 struct work_struct release_work;
165 struct hlist_node node;
166 char tfm_name[CRYPTO_MAX_ALG_NAME];
167 };
168
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru;
171
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock);
174 static struct mem_cgroup *zswap_next_shrink;
175 static struct work_struct zswap_shrink_work;
176 static struct shrinker *zswap_shrinker;
177
178 /*
179 * struct zswap_entry
180 *
181 * This structure contains the metadata for tracking a single compressed
182 * page within zswap.
183 *
184 * swpentry - associated swap entry, the offset indexes into the red-black tree
185 * length - the length in bytes of the compressed page data. Needed during
186 * decompression.
187 * referenced - true if the entry recently entered the zswap pool. Unset by the
188 * writeback logic. The entry is only reclaimed by the writeback
189 * logic if referenced is unset. See comments in the shrinker
190 * section for context.
191 * pool - the zswap_pool the entry's data is in
192 * handle - zpool allocation handle that stores the compressed page data
193 * objcg - the obj_cgroup that the compressed memory is charged to
194 * lru - handle to the pool's lru used to evict pages.
195 */
196 struct zswap_entry {
197 swp_entry_t swpentry;
198 unsigned int length;
199 bool referenced;
200 struct zswap_pool *pool;
201 unsigned long handle;
202 struct obj_cgroup *objcg;
203 struct list_head lru;
204 };
205
206 static struct xarray *zswap_trees[MAX_SWAPFILES];
207 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
208
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
215
216 enum zswap_init_type {
217 ZSWAP_UNINIT,
218 ZSWAP_INIT_SUCCEED,
219 ZSWAP_INIT_FAILED
220 };
221
222 static enum zswap_init_type zswap_init_state;
223
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock);
226
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool;
229
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
233
swap_zswap_tree(swp_entry_t swp)234 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
235 {
236 return &zswap_trees[swp_type(swp)][swp_offset(swp)
237 >> SWAP_ADDRESS_SPACE_SHIFT];
238 }
239
240 #define zswap_pool_debug(msg, p) \
241 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
242 zpool_get_type((p)->zpool))
243
244 /*********************************
245 * pool functions
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref *ref);
248
zswap_pool_create(char * type,char * compressor)249 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
250 {
251 struct zswap_pool *pool;
252 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
254 int ret;
255
256 if (!zswap_has_pool) {
257 /* if either are unset, pool initialization failed, and we
258 * need both params to be set correctly before trying to
259 * create a pool.
260 */
261 if (!strcmp(type, ZSWAP_PARAM_UNSET))
262 return NULL;
263 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
264 return NULL;
265 }
266
267 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
268 if (!pool)
269 return NULL;
270
271 /* unique name for each pool specifically required by zsmalloc */
272 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
273 pool->zpool = zpool_create_pool(type, name, gfp);
274 if (!pool->zpool) {
275 pr_err("%s zpool not available\n", type);
276 goto error;
277 }
278 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
279
280 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
281
282 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
283 if (!pool->acomp_ctx) {
284 pr_err("percpu alloc failed\n");
285 goto error;
286 }
287
288 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
289 &pool->node);
290 if (ret)
291 goto error;
292
293 /* being the current pool takes 1 ref; this func expects the
294 * caller to always add the new pool as the current pool
295 */
296 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
297 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
298 if (ret)
299 goto ref_fail;
300 INIT_LIST_HEAD(&pool->list);
301
302 zswap_pool_debug("created", pool);
303
304 return pool;
305
306 ref_fail:
307 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
308 error:
309 if (pool->acomp_ctx)
310 free_percpu(pool->acomp_ctx);
311 if (pool->zpool)
312 zpool_destroy_pool(pool->zpool);
313 kfree(pool);
314 return NULL;
315 }
316
__zswap_pool_create_fallback(void)317 static struct zswap_pool *__zswap_pool_create_fallback(void)
318 {
319 bool has_comp, has_zpool;
320
321 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
322 if (!has_comp && strcmp(zswap_compressor,
323 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
324 pr_err("compressor %s not available, using default %s\n",
325 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
326 param_free_charp(&zswap_compressor);
327 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
328 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
329 }
330 if (!has_comp) {
331 pr_err("default compressor %s not available\n",
332 zswap_compressor);
333 param_free_charp(&zswap_compressor);
334 zswap_compressor = ZSWAP_PARAM_UNSET;
335 }
336
337 has_zpool = zpool_has_pool(zswap_zpool_type);
338 if (!has_zpool && strcmp(zswap_zpool_type,
339 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
340 pr_err("zpool %s not available, using default %s\n",
341 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
342 param_free_charp(&zswap_zpool_type);
343 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
344 has_zpool = zpool_has_pool(zswap_zpool_type);
345 }
346 if (!has_zpool) {
347 pr_err("default zpool %s not available\n",
348 zswap_zpool_type);
349 param_free_charp(&zswap_zpool_type);
350 zswap_zpool_type = ZSWAP_PARAM_UNSET;
351 }
352
353 if (!has_comp || !has_zpool)
354 return NULL;
355
356 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
357 }
358
zswap_pool_destroy(struct zswap_pool * pool)359 static void zswap_pool_destroy(struct zswap_pool *pool)
360 {
361 zswap_pool_debug("destroying", pool);
362
363 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
364 free_percpu(pool->acomp_ctx);
365
366 zpool_destroy_pool(pool->zpool);
367 kfree(pool);
368 }
369
__zswap_pool_release(struct work_struct * work)370 static void __zswap_pool_release(struct work_struct *work)
371 {
372 struct zswap_pool *pool = container_of(work, typeof(*pool),
373 release_work);
374
375 synchronize_rcu();
376
377 /* nobody should have been able to get a ref... */
378 WARN_ON(!percpu_ref_is_zero(&pool->ref));
379 percpu_ref_exit(&pool->ref);
380
381 /* pool is now off zswap_pools list and has no references. */
382 zswap_pool_destroy(pool);
383 }
384
385 static struct zswap_pool *zswap_pool_current(void);
386
__zswap_pool_empty(struct percpu_ref * ref)387 static void __zswap_pool_empty(struct percpu_ref *ref)
388 {
389 struct zswap_pool *pool;
390
391 pool = container_of(ref, typeof(*pool), ref);
392
393 spin_lock_bh(&zswap_pools_lock);
394
395 WARN_ON(pool == zswap_pool_current());
396
397 list_del_rcu(&pool->list);
398
399 INIT_WORK(&pool->release_work, __zswap_pool_release);
400 schedule_work(&pool->release_work);
401
402 spin_unlock_bh(&zswap_pools_lock);
403 }
404
zswap_pool_get(struct zswap_pool * pool)405 static int __must_check zswap_pool_get(struct zswap_pool *pool)
406 {
407 if (!pool)
408 return 0;
409
410 return percpu_ref_tryget(&pool->ref);
411 }
412
zswap_pool_put(struct zswap_pool * pool)413 static void zswap_pool_put(struct zswap_pool *pool)
414 {
415 percpu_ref_put(&pool->ref);
416 }
417
__zswap_pool_current(void)418 static struct zswap_pool *__zswap_pool_current(void)
419 {
420 struct zswap_pool *pool;
421
422 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
423 WARN_ONCE(!pool && zswap_has_pool,
424 "%s: no page storage pool!\n", __func__);
425
426 return pool;
427 }
428
zswap_pool_current(void)429 static struct zswap_pool *zswap_pool_current(void)
430 {
431 assert_spin_locked(&zswap_pools_lock);
432
433 return __zswap_pool_current();
434 }
435
zswap_pool_current_get(void)436 static struct zswap_pool *zswap_pool_current_get(void)
437 {
438 struct zswap_pool *pool;
439
440 rcu_read_lock();
441
442 pool = __zswap_pool_current();
443 if (!zswap_pool_get(pool))
444 pool = NULL;
445
446 rcu_read_unlock();
447
448 return pool;
449 }
450
451 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * type,char * compressor)452 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
453 {
454 struct zswap_pool *pool;
455
456 assert_spin_locked(&zswap_pools_lock);
457
458 list_for_each_entry_rcu(pool, &zswap_pools, list) {
459 if (strcmp(pool->tfm_name, compressor))
460 continue;
461 if (strcmp(zpool_get_type(pool->zpool), type))
462 continue;
463 /* if we can't get it, it's about to be destroyed */
464 if (!zswap_pool_get(pool))
465 continue;
466 return pool;
467 }
468
469 return NULL;
470 }
471
zswap_max_pages(void)472 static unsigned long zswap_max_pages(void)
473 {
474 return totalram_pages() * zswap_max_pool_percent / 100;
475 }
476
zswap_accept_thr_pages(void)477 static unsigned long zswap_accept_thr_pages(void)
478 {
479 return zswap_max_pages() * zswap_accept_thr_percent / 100;
480 }
481
zswap_total_pages(void)482 unsigned long zswap_total_pages(void)
483 {
484 struct zswap_pool *pool;
485 unsigned long total = 0;
486
487 rcu_read_lock();
488 list_for_each_entry_rcu(pool, &zswap_pools, list)
489 total += zpool_get_total_pages(pool->zpool);
490 rcu_read_unlock();
491
492 return total;
493 }
494
zswap_check_limits(void)495 static bool zswap_check_limits(void)
496 {
497 unsigned long cur_pages = zswap_total_pages();
498 unsigned long max_pages = zswap_max_pages();
499
500 if (cur_pages >= max_pages) {
501 zswap_pool_limit_hit++;
502 zswap_pool_reached_full = true;
503 } else if (zswap_pool_reached_full &&
504 cur_pages <= zswap_accept_thr_pages()) {
505 zswap_pool_reached_full = false;
506 }
507 return zswap_pool_reached_full;
508 }
509
510 /*********************************
511 * param callbacks
512 **********************************/
513
zswap_pool_changed(const char * s,const struct kernel_param * kp)514 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
515 {
516 /* no change required */
517 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
518 return false;
519 return true;
520 }
521
522 /* val must be a null-terminated string */
__zswap_param_set(const char * val,const struct kernel_param * kp,char * type,char * compressor)523 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
524 char *type, char *compressor)
525 {
526 struct zswap_pool *pool, *put_pool = NULL;
527 char *s = strstrip((char *)val);
528 int ret = 0;
529 bool new_pool = false;
530
531 mutex_lock(&zswap_init_lock);
532 switch (zswap_init_state) {
533 case ZSWAP_UNINIT:
534 /* if this is load-time (pre-init) param setting,
535 * don't create a pool; that's done during init.
536 */
537 ret = param_set_charp(s, kp);
538 break;
539 case ZSWAP_INIT_SUCCEED:
540 new_pool = zswap_pool_changed(s, kp);
541 break;
542 case ZSWAP_INIT_FAILED:
543 pr_err("can't set param, initialization failed\n");
544 ret = -ENODEV;
545 }
546 mutex_unlock(&zswap_init_lock);
547
548 /* no need to create a new pool, return directly */
549 if (!new_pool)
550 return ret;
551
552 if (!type) {
553 if (!zpool_has_pool(s)) {
554 pr_err("zpool %s not available\n", s);
555 return -ENOENT;
556 }
557 type = s;
558 } else if (!compressor) {
559 if (!crypto_has_acomp(s, 0, 0)) {
560 pr_err("compressor %s not available\n", s);
561 return -ENOENT;
562 }
563 compressor = s;
564 } else {
565 WARN_ON(1);
566 return -EINVAL;
567 }
568
569 spin_lock_bh(&zswap_pools_lock);
570
571 pool = zswap_pool_find_get(type, compressor);
572 if (pool) {
573 zswap_pool_debug("using existing", pool);
574 WARN_ON(pool == zswap_pool_current());
575 list_del_rcu(&pool->list);
576 }
577
578 spin_unlock_bh(&zswap_pools_lock);
579
580 if (!pool)
581 pool = zswap_pool_create(type, compressor);
582 else {
583 /*
584 * Restore the initial ref dropped by percpu_ref_kill()
585 * when the pool was decommissioned and switch it again
586 * to percpu mode.
587 */
588 percpu_ref_resurrect(&pool->ref);
589
590 /* Drop the ref from zswap_pool_find_get(). */
591 zswap_pool_put(pool);
592 }
593
594 if (pool)
595 ret = param_set_charp(s, kp);
596 else
597 ret = -EINVAL;
598
599 spin_lock_bh(&zswap_pools_lock);
600
601 if (!ret) {
602 put_pool = zswap_pool_current();
603 list_add_rcu(&pool->list, &zswap_pools);
604 zswap_has_pool = true;
605 } else if (pool) {
606 /* add the possibly pre-existing pool to the end of the pools
607 * list; if it's new (and empty) then it'll be removed and
608 * destroyed by the put after we drop the lock
609 */
610 list_add_tail_rcu(&pool->list, &zswap_pools);
611 put_pool = pool;
612 }
613
614 spin_unlock_bh(&zswap_pools_lock);
615
616 if (!zswap_has_pool && !pool) {
617 /* if initial pool creation failed, and this pool creation also
618 * failed, maybe both compressor and zpool params were bad.
619 * Allow changing this param, so pool creation will succeed
620 * when the other param is changed. We already verified this
621 * param is ok in the zpool_has_pool() or crypto_has_acomp()
622 * checks above.
623 */
624 ret = param_set_charp(s, kp);
625 }
626
627 /* drop the ref from either the old current pool,
628 * or the new pool we failed to add
629 */
630 if (put_pool)
631 percpu_ref_kill(&put_pool->ref);
632
633 return ret;
634 }
635
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)636 static int zswap_compressor_param_set(const char *val,
637 const struct kernel_param *kp)
638 {
639 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
640 }
641
zswap_zpool_param_set(const char * val,const struct kernel_param * kp)642 static int zswap_zpool_param_set(const char *val,
643 const struct kernel_param *kp)
644 {
645 return __zswap_param_set(val, kp, NULL, zswap_compressor);
646 }
647
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)648 static int zswap_enabled_param_set(const char *val,
649 const struct kernel_param *kp)
650 {
651 int ret = -ENODEV;
652
653 /* if this is load-time (pre-init) param setting, only set param. */
654 if (system_state != SYSTEM_RUNNING)
655 return param_set_bool(val, kp);
656
657 mutex_lock(&zswap_init_lock);
658 switch (zswap_init_state) {
659 case ZSWAP_UNINIT:
660 if (zswap_setup())
661 break;
662 fallthrough;
663 case ZSWAP_INIT_SUCCEED:
664 if (!zswap_has_pool)
665 pr_err("can't enable, no pool configured\n");
666 else
667 ret = param_set_bool(val, kp);
668 break;
669 case ZSWAP_INIT_FAILED:
670 pr_err("can't enable, initialization failed\n");
671 }
672 mutex_unlock(&zswap_init_lock);
673
674 return ret;
675 }
676
677 /*********************************
678 * lru functions
679 **********************************/
680
681 /* should be called under RCU */
682 #ifdef CONFIG_MEMCG
mem_cgroup_from_entry(struct zswap_entry * entry)683 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
684 {
685 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
686 }
687 #else
mem_cgroup_from_entry(struct zswap_entry * entry)688 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
689 {
690 return NULL;
691 }
692 #endif
693
entry_to_nid(struct zswap_entry * entry)694 static inline int entry_to_nid(struct zswap_entry *entry)
695 {
696 return page_to_nid(virt_to_page(entry));
697 }
698
zswap_lru_add(struct list_lru * list_lru,struct zswap_entry * entry)699 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
700 {
701 int nid = entry_to_nid(entry);
702 struct mem_cgroup *memcg;
703
704 /*
705 * Note that it is safe to use rcu_read_lock() here, even in the face of
706 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
707 * used in list_lru lookup, only two scenarios are possible:
708 *
709 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
710 * new entry will be reparented to memcg's parent's list_lru.
711 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
712 * new entry will be added directly to memcg's parent's list_lru.
713 *
714 * Similar reasoning holds for list_lru_del().
715 */
716 rcu_read_lock();
717 memcg = mem_cgroup_from_entry(entry);
718 /* will always succeed */
719 list_lru_add(list_lru, &entry->lru, nid, memcg);
720 rcu_read_unlock();
721 }
722
zswap_lru_del(struct list_lru * list_lru,struct zswap_entry * entry)723 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
724 {
725 int nid = entry_to_nid(entry);
726 struct mem_cgroup *memcg;
727
728 rcu_read_lock();
729 memcg = mem_cgroup_from_entry(entry);
730 /* will always succeed */
731 list_lru_del(list_lru, &entry->lru, nid, memcg);
732 rcu_read_unlock();
733 }
734
zswap_lruvec_state_init(struct lruvec * lruvec)735 void zswap_lruvec_state_init(struct lruvec *lruvec)
736 {
737 atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
738 }
739
zswap_folio_swapin(struct folio * folio)740 void zswap_folio_swapin(struct folio *folio)
741 {
742 struct lruvec *lruvec;
743
744 if (folio) {
745 lruvec = folio_lruvec(folio);
746 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
747 }
748 }
749
750 /*
751 * This function should be called when a memcg is being offlined.
752 *
753 * Since the global shrinker shrink_worker() may hold a reference
754 * of the memcg, we must check and release the reference in
755 * zswap_next_shrink.
756 *
757 * shrink_worker() must handle the case where this function releases
758 * the reference of memcg being shrunk.
759 */
zswap_memcg_offline_cleanup(struct mem_cgroup * memcg)760 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
761 {
762 /* lock out zswap shrinker walking memcg tree */
763 spin_lock(&zswap_shrink_lock);
764 if (zswap_next_shrink == memcg) {
765 do {
766 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
767 } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
768 }
769 spin_unlock(&zswap_shrink_lock);
770 }
771
772 /*********************************
773 * zswap entry functions
774 **********************************/
775 static struct kmem_cache *zswap_entry_cache;
776
zswap_entry_cache_alloc(gfp_t gfp,int nid)777 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
778 {
779 struct zswap_entry *entry;
780 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
781 if (!entry)
782 return NULL;
783 return entry;
784 }
785
zswap_entry_cache_free(struct zswap_entry * entry)786 static void zswap_entry_cache_free(struct zswap_entry *entry)
787 {
788 kmem_cache_free(zswap_entry_cache, entry);
789 }
790
791 /*
792 * Carries out the common pattern of freeing and entry's zpool allocation,
793 * freeing the entry itself, and decrementing the number of stored pages.
794 */
zswap_entry_free(struct zswap_entry * entry)795 static void zswap_entry_free(struct zswap_entry *entry)
796 {
797 zswap_lru_del(&zswap_list_lru, entry);
798 zpool_free(entry->pool->zpool, entry->handle);
799 zswap_pool_put(entry->pool);
800 if (entry->objcg) {
801 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
802 obj_cgroup_put(entry->objcg);
803 }
804 zswap_entry_cache_free(entry);
805 atomic_dec(&zswap_stored_pages);
806 }
807
808 /*********************************
809 * compressed storage functions
810 **********************************/
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)811 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
812 {
813 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
814 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
815 struct crypto_acomp *acomp;
816 struct acomp_req *req;
817 int ret;
818
819 mutex_init(&acomp_ctx->mutex);
820
821 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
822 if (!acomp_ctx->buffer)
823 return -ENOMEM;
824
825 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
826 if (IS_ERR(acomp)) {
827 pr_err("could not alloc crypto acomp %s : %ld\n",
828 pool->tfm_name, PTR_ERR(acomp));
829 ret = PTR_ERR(acomp);
830 goto acomp_fail;
831 }
832 acomp_ctx->acomp = acomp;
833 acomp_ctx->is_sleepable = acomp_is_async(acomp);
834
835 req = acomp_request_alloc(acomp_ctx->acomp);
836 if (!req) {
837 pr_err("could not alloc crypto acomp_request %s\n",
838 pool->tfm_name);
839 ret = -ENOMEM;
840 goto req_fail;
841 }
842 acomp_ctx->req = req;
843
844 crypto_init_wait(&acomp_ctx->wait);
845 /*
846 * if the backend of acomp is async zip, crypto_req_done() will wakeup
847 * crypto_wait_req(); if the backend of acomp is scomp, the callback
848 * won't be called, crypto_wait_req() will return without blocking.
849 */
850 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
851 crypto_req_done, &acomp_ctx->wait);
852
853 return 0;
854
855 req_fail:
856 crypto_free_acomp(acomp_ctx->acomp);
857 acomp_fail:
858 kfree(acomp_ctx->buffer);
859 return ret;
860 }
861
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)862 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
863 {
864 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
865 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
866
867 if (!IS_ERR_OR_NULL(acomp_ctx)) {
868 if (!IS_ERR_OR_NULL(acomp_ctx->req))
869 acomp_request_free(acomp_ctx->req);
870 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
871 crypto_free_acomp(acomp_ctx->acomp);
872 kfree(acomp_ctx->buffer);
873 }
874
875 return 0;
876 }
877
zswap_compress(struct folio * folio,struct zswap_entry * entry)878 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
879 {
880 struct crypto_acomp_ctx *acomp_ctx;
881 struct scatterlist input, output;
882 int comp_ret = 0, alloc_ret = 0;
883 unsigned int dlen = PAGE_SIZE;
884 unsigned long handle;
885 struct zpool *zpool;
886 char *buf;
887 gfp_t gfp;
888 u8 *dst;
889
890 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
891
892 mutex_lock(&acomp_ctx->mutex);
893
894 dst = acomp_ctx->buffer;
895 sg_init_table(&input, 1);
896 sg_set_folio(&input, folio, PAGE_SIZE, 0);
897
898 /*
899 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
900 * and hardware-accelerators may won't check the dst buffer size, so
901 * giving the dst buffer with enough length to avoid buffer overflow.
902 */
903 sg_init_one(&output, dst, PAGE_SIZE * 2);
904 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
905
906 /*
907 * it maybe looks a little bit silly that we send an asynchronous request,
908 * then wait for its completion synchronously. This makes the process look
909 * synchronous in fact.
910 * Theoretically, acomp supports users send multiple acomp requests in one
911 * acomp instance, then get those requests done simultaneously. but in this
912 * case, zswap actually does store and load page by page, there is no
913 * existing method to send the second page before the first page is done
914 * in one thread doing zwap.
915 * but in different threads running on different cpu, we have different
916 * acomp instance, so multiple threads can do (de)compression in parallel.
917 */
918 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
919 dlen = acomp_ctx->req->dlen;
920 if (comp_ret)
921 goto unlock;
922
923 zpool = entry->pool->zpool;
924 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
925 if (zpool_malloc_support_movable(zpool))
926 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
927 alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
928 if (alloc_ret)
929 goto unlock;
930
931 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
932 memcpy(buf, dst, dlen);
933 zpool_unmap_handle(zpool, handle);
934
935 entry->handle = handle;
936 entry->length = dlen;
937
938 unlock:
939 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
940 zswap_reject_compress_poor++;
941 else if (comp_ret)
942 zswap_reject_compress_fail++;
943 else if (alloc_ret)
944 zswap_reject_alloc_fail++;
945
946 mutex_unlock(&acomp_ctx->mutex);
947 return comp_ret == 0 && alloc_ret == 0;
948 }
949
zswap_decompress(struct zswap_entry * entry,struct folio * folio)950 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
951 {
952 struct zpool *zpool = entry->pool->zpool;
953 struct scatterlist input, output;
954 struct crypto_acomp_ctx *acomp_ctx;
955 u8 *src;
956
957 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
958 mutex_lock(&acomp_ctx->mutex);
959
960 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
961 /*
962 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
963 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
964 * resort to copying the buffer to a temporary one.
965 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
966 * such as a kmap address of high memory or even ever a vmap address.
967 * However, sg_init_one is only equipped to handle linearly mapped low memory.
968 * In such cases, we also must copy the buffer to a temporary and lowmem one.
969 */
970 if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
971 !virt_addr_valid(src)) {
972 memcpy(acomp_ctx->buffer, src, entry->length);
973 src = acomp_ctx->buffer;
974 zpool_unmap_handle(zpool, entry->handle);
975 }
976
977 sg_init_one(&input, src, entry->length);
978 sg_init_table(&output, 1);
979 sg_set_folio(&output, folio, PAGE_SIZE, 0);
980 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
981 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
982 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
983 mutex_unlock(&acomp_ctx->mutex);
984
985 if (src != acomp_ctx->buffer)
986 zpool_unmap_handle(zpool, entry->handle);
987 }
988
989 /*********************************
990 * writeback code
991 **********************************/
992 /*
993 * Attempts to free an entry by adding a folio to the swap cache,
994 * decompressing the entry data into the folio, and issuing a
995 * bio write to write the folio back to the swap device.
996 *
997 * This can be thought of as a "resumed writeback" of the folio
998 * to the swap device. We are basically resuming the same swap
999 * writeback path that was intercepted with the zswap_store()
1000 * in the first place. After the folio has been decompressed into
1001 * the swap cache, the compressed version stored by zswap can be
1002 * freed.
1003 */
zswap_writeback_entry(struct zswap_entry * entry,swp_entry_t swpentry)1004 static int zswap_writeback_entry(struct zswap_entry *entry,
1005 swp_entry_t swpentry)
1006 {
1007 struct xarray *tree;
1008 pgoff_t offset = swp_offset(swpentry);
1009 struct folio *folio;
1010 struct mempolicy *mpol;
1011 bool folio_was_allocated;
1012 struct writeback_control wbc = {
1013 .sync_mode = WB_SYNC_NONE,
1014 };
1015
1016 /* try to allocate swap cache folio */
1017 mpol = get_task_policy(current);
1018 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1019 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1020 if (!folio)
1021 return -ENOMEM;
1022
1023 /*
1024 * Found an existing folio, we raced with swapin or concurrent
1025 * shrinker. We generally writeback cold folios from zswap, and
1026 * swapin means the folio just became hot, so skip this folio.
1027 * For unlikely concurrent shrinker case, it will be unlinked
1028 * and freed when invalidated by the concurrent shrinker anyway.
1029 */
1030 if (!folio_was_allocated) {
1031 folio_put(folio);
1032 return -EEXIST;
1033 }
1034
1035 /*
1036 * folio is locked, and the swapcache is now secured against
1037 * concurrent swapping to and from the slot, and concurrent
1038 * swapoff so we can safely dereference the zswap tree here.
1039 * Verify that the swap entry hasn't been invalidated and recycled
1040 * behind our backs, to avoid overwriting a new swap folio with
1041 * old compressed data. Only when this is successful can the entry
1042 * be dereferenced.
1043 */
1044 tree = swap_zswap_tree(swpentry);
1045 if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1046 delete_from_swap_cache(folio);
1047 folio_unlock(folio);
1048 folio_put(folio);
1049 return -ENOMEM;
1050 }
1051
1052 zswap_decompress(entry, folio);
1053
1054 count_vm_event(ZSWPWB);
1055 if (entry->objcg)
1056 count_objcg_events(entry->objcg, ZSWPWB, 1);
1057
1058 zswap_entry_free(entry);
1059
1060 /* folio is up to date */
1061 folio_mark_uptodate(folio);
1062
1063 /* move it to the tail of the inactive list after end_writeback */
1064 folio_set_reclaim(folio);
1065
1066 /* start writeback */
1067 __swap_writepage(folio, &wbc);
1068 folio_put(folio);
1069
1070 return 0;
1071 }
1072
1073 /*********************************
1074 * shrinker functions
1075 **********************************/
1076 /*
1077 * The dynamic shrinker is modulated by the following factors:
1078 *
1079 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1080 * the entry a second chance) before rotating it in the LRU list. If the
1081 * entry is considered again by the shrinker, with its referenced bit unset,
1082 * it is written back. The writeback rate as a result is dynamically
1083 * adjusted by the pool activities - if the pool is dominated by new entries
1084 * (i.e lots of recent zswapouts), these entries will be protected and
1085 * the writeback rate will slow down. On the other hand, if the pool has a
1086 * lot of stagnant entries, these entries will be reclaimed immediately,
1087 * effectively increasing the writeback rate.
1088 *
1089 * 2. Swapins counter: If we observe swapins, it is a sign that we are
1090 * overshrinking and should slow down. We maintain a swapins counter, which
1091 * is consumed and subtract from the number of eligible objects on the LRU
1092 * in zswap_shrinker_count().
1093 *
1094 * 3. Compression ratio. The better the workload compresses, the less gains we
1095 * can expect from writeback. We scale down the number of objects available
1096 * for reclaim by this ratio.
1097 */
shrink_memcg_cb(struct list_head * item,struct list_lru_one * l,spinlock_t * lock,void * arg)1098 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1099 spinlock_t *lock, void *arg)
1100 {
1101 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1102 bool *encountered_page_in_swapcache = (bool *)arg;
1103 swp_entry_t swpentry;
1104 enum lru_status ret = LRU_REMOVED_RETRY;
1105 int writeback_result;
1106
1107 /*
1108 * Second chance algorithm: if the entry has its referenced bit set, give it
1109 * a second chance. Only clear the referenced bit and rotate it in the
1110 * zswap's LRU list.
1111 */
1112 if (entry->referenced) {
1113 entry->referenced = false;
1114 return LRU_ROTATE;
1115 }
1116
1117 /*
1118 * As soon as we drop the LRU lock, the entry can be freed by
1119 * a concurrent invalidation. This means the following:
1120 *
1121 * 1. We extract the swp_entry_t to the stack, allowing
1122 * zswap_writeback_entry() to pin the swap entry and
1123 * then validate the zwap entry against that swap entry's
1124 * tree using pointer value comparison. Only when that
1125 * is successful can the entry be dereferenced.
1126 *
1127 * 2. Usually, objects are taken off the LRU for reclaim. In
1128 * this case this isn't possible, because if reclaim fails
1129 * for whatever reason, we have no means of knowing if the
1130 * entry is alive to put it back on the LRU.
1131 *
1132 * So rotate it before dropping the lock. If the entry is
1133 * written back or invalidated, the free path will unlink
1134 * it. For failures, rotation is the right thing as well.
1135 *
1136 * Temporary failures, where the same entry should be tried
1137 * again immediately, almost never happen for this shrinker.
1138 * We don't do any trylocking; -ENOMEM comes closest,
1139 * but that's extremely rare and doesn't happen spuriously
1140 * either. Don't bother distinguishing this case.
1141 */
1142 list_move_tail(item, &l->list);
1143
1144 /*
1145 * Once the lru lock is dropped, the entry might get freed. The
1146 * swpentry is copied to the stack, and entry isn't deref'd again
1147 * until the entry is verified to still be alive in the tree.
1148 */
1149 swpentry = entry->swpentry;
1150
1151 /*
1152 * It's safe to drop the lock here because we return either
1153 * LRU_REMOVED_RETRY or LRU_RETRY.
1154 */
1155 spin_unlock(lock);
1156
1157 writeback_result = zswap_writeback_entry(entry, swpentry);
1158
1159 if (writeback_result) {
1160 zswap_reject_reclaim_fail++;
1161 ret = LRU_RETRY;
1162
1163 /*
1164 * Encountering a page already in swap cache is a sign that we are shrinking
1165 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1166 * shrinker context).
1167 */
1168 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1169 ret = LRU_STOP;
1170 *encountered_page_in_swapcache = true;
1171 }
1172 } else {
1173 zswap_written_back_pages++;
1174 }
1175
1176 spin_lock(lock);
1177 return ret;
1178 }
1179
zswap_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1180 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1181 struct shrink_control *sc)
1182 {
1183 unsigned long shrink_ret;
1184 bool encountered_page_in_swapcache = false;
1185
1186 if (!zswap_shrinker_enabled ||
1187 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1188 sc->nr_scanned = 0;
1189 return SHRINK_STOP;
1190 }
1191
1192 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1193 &encountered_page_in_swapcache);
1194
1195 if (encountered_page_in_swapcache)
1196 return SHRINK_STOP;
1197
1198 return shrink_ret ? shrink_ret : SHRINK_STOP;
1199 }
1200
zswap_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1201 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1202 struct shrink_control *sc)
1203 {
1204 struct mem_cgroup *memcg = sc->memcg;
1205 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1206 atomic_long_t *nr_disk_swapins =
1207 &lruvec->zswap_lruvec_state.nr_disk_swapins;
1208 unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1209 nr_remain;
1210
1211 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1212 return 0;
1213
1214 /*
1215 * The shrinker resumes swap writeback, which will enter block
1216 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1217 * rules (may_enter_fs()), which apply on a per-folio basis.
1218 */
1219 if (!gfp_has_io_fs(sc->gfp_mask))
1220 return 0;
1221
1222 /*
1223 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1224 * have them per-node and thus per-lruvec. Careful if memcg is
1225 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1226 * for the lruvec, but not for memcg_page_state().
1227 *
1228 * Without memcg, use the zswap pool-wide metrics.
1229 */
1230 if (!mem_cgroup_disabled()) {
1231 mem_cgroup_flush_stats(memcg);
1232 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1233 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1234 } else {
1235 nr_backing = zswap_total_pages();
1236 nr_stored = atomic_read(&zswap_stored_pages);
1237 }
1238
1239 if (!nr_stored)
1240 return 0;
1241
1242 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1243 if (!nr_freeable)
1244 return 0;
1245
1246 /*
1247 * Subtract from the lru size the number of pages that are recently swapped
1248 * in from disk. The idea is that had we protect the zswap's LRU by this
1249 * amount of pages, these disk swapins would not have happened.
1250 */
1251 nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1252 do {
1253 if (nr_freeable >= nr_disk_swapins_cur)
1254 nr_remain = 0;
1255 else
1256 nr_remain = nr_disk_swapins_cur - nr_freeable;
1257 } while (!atomic_long_try_cmpxchg(
1258 nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1259
1260 nr_freeable -= nr_disk_swapins_cur - nr_remain;
1261 if (!nr_freeable)
1262 return 0;
1263
1264 /*
1265 * Scale the number of freeable pages by the memory saving factor.
1266 * This ensures that the better zswap compresses memory, the fewer
1267 * pages we will evict to swap (as it will otherwise incur IO for
1268 * relatively small memory saving).
1269 */
1270 return mult_frac(nr_freeable, nr_backing, nr_stored);
1271 }
1272
zswap_alloc_shrinker(void)1273 static struct shrinker *zswap_alloc_shrinker(void)
1274 {
1275 struct shrinker *shrinker;
1276
1277 shrinker =
1278 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1279 if (!shrinker)
1280 return NULL;
1281
1282 shrinker->scan_objects = zswap_shrinker_scan;
1283 shrinker->count_objects = zswap_shrinker_count;
1284 shrinker->batch = 0;
1285 shrinker->seeks = DEFAULT_SEEKS;
1286 return shrinker;
1287 }
1288
shrink_memcg(struct mem_cgroup * memcg)1289 static int shrink_memcg(struct mem_cgroup *memcg)
1290 {
1291 int nid, shrunk = 0, scanned = 0;
1292
1293 if (!mem_cgroup_zswap_writeback_enabled(memcg))
1294 return -ENOENT;
1295
1296 /*
1297 * Skip zombies because their LRUs are reparented and we would be
1298 * reclaiming from the parent instead of the dead memcg.
1299 */
1300 if (memcg && !mem_cgroup_online(memcg))
1301 return -ENOENT;
1302
1303 for_each_node_state(nid, N_NORMAL_MEMORY) {
1304 unsigned long nr_to_walk = 1;
1305
1306 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1307 &shrink_memcg_cb, NULL, &nr_to_walk);
1308 scanned += 1 - nr_to_walk;
1309 }
1310
1311 if (!scanned)
1312 return -ENOENT;
1313
1314 return shrunk ? 0 : -EAGAIN;
1315 }
1316
shrink_worker(struct work_struct * w)1317 static void shrink_worker(struct work_struct *w)
1318 {
1319 struct mem_cgroup *memcg;
1320 int ret, failures = 0, attempts = 0;
1321 unsigned long thr;
1322
1323 /* Reclaim down to the accept threshold */
1324 thr = zswap_accept_thr_pages();
1325
1326 /*
1327 * Global reclaim will select cgroup in a round-robin fashion from all
1328 * online memcgs, but memcgs that have no pages in zswap and
1329 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1330 * candidates for shrinking.
1331 *
1332 * Shrinking will be aborted if we encounter the following
1333 * MAX_RECLAIM_RETRIES times:
1334 * - No writeback-candidate memcgs found in a memcg tree walk.
1335 * - Shrinking a writeback-candidate memcg failed.
1336 *
1337 * We save iteration cursor memcg into zswap_next_shrink,
1338 * which can be modified by the offline memcg cleaner
1339 * zswap_memcg_offline_cleanup().
1340 *
1341 * Since the offline cleaner is called only once, we cannot leave an
1342 * offline memcg reference in zswap_next_shrink.
1343 * We can rely on the cleaner only if we get online memcg under lock.
1344 *
1345 * If we get an offline memcg, we cannot determine if the cleaner has
1346 * already been called or will be called later. We must put back the
1347 * reference before returning from this function. Otherwise, the
1348 * offline memcg left in zswap_next_shrink will hold the reference
1349 * until the next run of shrink_worker().
1350 */
1351 do {
1352 /*
1353 * Start shrinking from the next memcg after zswap_next_shrink.
1354 * When the offline cleaner has already advanced the cursor,
1355 * advancing the cursor here overlooks one memcg, but this
1356 * should be negligibly rare.
1357 *
1358 * If we get an online memcg, keep the extra reference in case
1359 * the original one obtained by mem_cgroup_iter() is dropped by
1360 * zswap_memcg_offline_cleanup() while we are shrinking the
1361 * memcg.
1362 */
1363 spin_lock(&zswap_shrink_lock);
1364 do {
1365 memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1366 zswap_next_shrink = memcg;
1367 } while (memcg && !mem_cgroup_tryget_online(memcg));
1368 spin_unlock(&zswap_shrink_lock);
1369
1370 if (!memcg) {
1371 /*
1372 * Continue shrinking without incrementing failures if
1373 * we found candidate memcgs in the last tree walk.
1374 */
1375 if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1376 break;
1377
1378 attempts = 0;
1379 goto resched;
1380 }
1381
1382 ret = shrink_memcg(memcg);
1383 /* drop the extra reference */
1384 mem_cgroup_put(memcg);
1385
1386 /*
1387 * There are no writeback-candidate pages in the memcg.
1388 * This is not an issue as long as we can find another memcg
1389 * with pages in zswap. Skip this without incrementing attempts
1390 * and failures.
1391 */
1392 if (ret == -ENOENT)
1393 continue;
1394 ++attempts;
1395
1396 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1397 break;
1398 resched:
1399 cond_resched();
1400 } while (zswap_total_pages() > thr);
1401 }
1402
1403 /*********************************
1404 * main API
1405 **********************************/
zswap_store(struct folio * folio)1406 bool zswap_store(struct folio *folio)
1407 {
1408 swp_entry_t swp = folio->swap;
1409 pgoff_t offset = swp_offset(swp);
1410 struct xarray *tree = swap_zswap_tree(swp);
1411 struct zswap_entry *entry, *old;
1412 struct obj_cgroup *objcg = NULL;
1413 struct mem_cgroup *memcg = NULL;
1414
1415 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1416 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1417
1418 /* Large folios aren't supported */
1419 if (folio_test_large(folio))
1420 return false;
1421
1422 if (!zswap_enabled)
1423 goto check_old;
1424
1425 /* Check cgroup limits */
1426 objcg = get_obj_cgroup_from_folio(folio);
1427 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1428 memcg = get_mem_cgroup_from_objcg(objcg);
1429 if (shrink_memcg(memcg)) {
1430 mem_cgroup_put(memcg);
1431 goto reject;
1432 }
1433 mem_cgroup_put(memcg);
1434 }
1435
1436 if (zswap_check_limits())
1437 goto reject;
1438
1439 /* allocate entry */
1440 entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1441 if (!entry) {
1442 zswap_reject_kmemcache_fail++;
1443 goto reject;
1444 }
1445
1446 /* if entry is successfully added, it keeps the reference */
1447 entry->pool = zswap_pool_current_get();
1448 if (!entry->pool)
1449 goto freepage;
1450
1451 if (objcg) {
1452 memcg = get_mem_cgroup_from_objcg(objcg);
1453 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1454 mem_cgroup_put(memcg);
1455 goto put_pool;
1456 }
1457 mem_cgroup_put(memcg);
1458 }
1459
1460 if (!zswap_compress(folio, entry))
1461 goto put_pool;
1462
1463 entry->swpentry = swp;
1464 entry->objcg = objcg;
1465 entry->referenced = true;
1466
1467 old = xa_store(tree, offset, entry, GFP_KERNEL);
1468 if (xa_is_err(old)) {
1469 int err = xa_err(old);
1470
1471 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1472 zswap_reject_alloc_fail++;
1473 goto store_failed;
1474 }
1475
1476 /*
1477 * We may have had an existing entry that became stale when
1478 * the folio was redirtied and now the new version is being
1479 * swapped out. Get rid of the old.
1480 */
1481 if (old)
1482 zswap_entry_free(old);
1483
1484 if (objcg) {
1485 obj_cgroup_charge_zswap(objcg, entry->length);
1486 count_objcg_events(objcg, ZSWPOUT, 1);
1487 }
1488
1489 /*
1490 * We finish initializing the entry while it's already in xarray.
1491 * This is safe because:
1492 *
1493 * 1. Concurrent stores and invalidations are excluded by folio lock.
1494 *
1495 * 2. Writeback is excluded by the entry not being on the LRU yet.
1496 * The publishing order matters to prevent writeback from seeing
1497 * an incoherent entry.
1498 */
1499 if (entry->length) {
1500 INIT_LIST_HEAD(&entry->lru);
1501 zswap_lru_add(&zswap_list_lru, entry);
1502 }
1503
1504 /* update stats */
1505 atomic_inc(&zswap_stored_pages);
1506 count_vm_event(ZSWPOUT);
1507
1508 return true;
1509
1510 store_failed:
1511 zpool_free(entry->pool->zpool, entry->handle);
1512 put_pool:
1513 zswap_pool_put(entry->pool);
1514 freepage:
1515 zswap_entry_cache_free(entry);
1516 reject:
1517 obj_cgroup_put(objcg);
1518 if (zswap_pool_reached_full)
1519 queue_work(shrink_wq, &zswap_shrink_work);
1520 check_old:
1521 /*
1522 * If the zswap store fails or zswap is disabled, we must invalidate the
1523 * possibly stale entry which was previously stored at this offset.
1524 * Otherwise, writeback could overwrite the new data in the swapfile.
1525 */
1526 entry = xa_erase(tree, offset);
1527 if (entry)
1528 zswap_entry_free(entry);
1529 return false;
1530 }
1531
zswap_load(struct folio * folio)1532 bool zswap_load(struct folio *folio)
1533 {
1534 swp_entry_t swp = folio->swap;
1535 pgoff_t offset = swp_offset(swp);
1536 bool swapcache = folio_test_swapcache(folio);
1537 struct xarray *tree = swap_zswap_tree(swp);
1538 struct zswap_entry *entry;
1539
1540 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1541
1542 if (zswap_never_enabled())
1543 return false;
1544
1545 /*
1546 * Large folios should not be swapped in while zswap is being used, as
1547 * they are not properly handled. Zswap does not properly load large
1548 * folios, and a large folio may only be partially in zswap.
1549 *
1550 * Return true without marking the folio uptodate so that an IO error is
1551 * emitted (e.g. do_swap_page() will sigbus).
1552 */
1553 if (WARN_ON_ONCE(folio_test_large(folio)))
1554 return true;
1555
1556 /*
1557 * When reading into the swapcache, invalidate our entry. The
1558 * swapcache can be the authoritative owner of the page and
1559 * its mappings, and the pressure that results from having two
1560 * in-memory copies outweighs any benefits of caching the
1561 * compression work.
1562 *
1563 * (Most swapins go through the swapcache. The notable
1564 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1565 * files, which reads into a private page and may free it if
1566 * the fault fails. We remain the primary owner of the entry.)
1567 */
1568 if (swapcache)
1569 entry = xa_erase(tree, offset);
1570 else
1571 entry = xa_load(tree, offset);
1572
1573 if (!entry)
1574 return false;
1575
1576 zswap_decompress(entry, folio);
1577
1578 count_vm_event(ZSWPIN);
1579 if (entry->objcg)
1580 count_objcg_events(entry->objcg, ZSWPIN, 1);
1581
1582 if (swapcache) {
1583 zswap_entry_free(entry);
1584 folio_mark_dirty(folio);
1585 }
1586
1587 folio_mark_uptodate(folio);
1588 return true;
1589 }
1590
zswap_invalidate(swp_entry_t swp)1591 void zswap_invalidate(swp_entry_t swp)
1592 {
1593 pgoff_t offset = swp_offset(swp);
1594 struct xarray *tree = swap_zswap_tree(swp);
1595 struct zswap_entry *entry;
1596
1597 entry = xa_erase(tree, offset);
1598 if (entry)
1599 zswap_entry_free(entry);
1600 }
1601
zswap_swapon(int type,unsigned long nr_pages)1602 int zswap_swapon(int type, unsigned long nr_pages)
1603 {
1604 struct xarray *trees, *tree;
1605 unsigned int nr, i;
1606
1607 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1608 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1609 if (!trees) {
1610 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1611 return -ENOMEM;
1612 }
1613
1614 for (i = 0; i < nr; i++)
1615 xa_init(trees + i);
1616
1617 nr_zswap_trees[type] = nr;
1618 zswap_trees[type] = trees;
1619 return 0;
1620 }
1621
zswap_swapoff(int type)1622 void zswap_swapoff(int type)
1623 {
1624 struct xarray *trees = zswap_trees[type];
1625 unsigned int i;
1626
1627 if (!trees)
1628 return;
1629
1630 /* try_to_unuse() invalidated all the entries already */
1631 for (i = 0; i < nr_zswap_trees[type]; i++)
1632 WARN_ON_ONCE(!xa_empty(trees + i));
1633
1634 kvfree(trees);
1635 nr_zswap_trees[type] = 0;
1636 zswap_trees[type] = NULL;
1637 }
1638
1639 /*********************************
1640 * debugfs functions
1641 **********************************/
1642 #ifdef CONFIG_DEBUG_FS
1643 #include <linux/debugfs.h>
1644
1645 static struct dentry *zswap_debugfs_root;
1646
debugfs_get_total_size(void * data,u64 * val)1647 static int debugfs_get_total_size(void *data, u64 *val)
1648 {
1649 *val = zswap_total_pages() * PAGE_SIZE;
1650 return 0;
1651 }
1652 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1653
zswap_debugfs_init(void)1654 static int zswap_debugfs_init(void)
1655 {
1656 if (!debugfs_initialized())
1657 return -ENODEV;
1658
1659 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1660
1661 debugfs_create_u64("pool_limit_hit", 0444,
1662 zswap_debugfs_root, &zswap_pool_limit_hit);
1663 debugfs_create_u64("reject_reclaim_fail", 0444,
1664 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1665 debugfs_create_u64("reject_alloc_fail", 0444,
1666 zswap_debugfs_root, &zswap_reject_alloc_fail);
1667 debugfs_create_u64("reject_kmemcache_fail", 0444,
1668 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1669 debugfs_create_u64("reject_compress_fail", 0444,
1670 zswap_debugfs_root, &zswap_reject_compress_fail);
1671 debugfs_create_u64("reject_compress_poor", 0444,
1672 zswap_debugfs_root, &zswap_reject_compress_poor);
1673 debugfs_create_u64("written_back_pages", 0444,
1674 zswap_debugfs_root, &zswap_written_back_pages);
1675 debugfs_create_file("pool_total_size", 0444,
1676 zswap_debugfs_root, NULL, &total_size_fops);
1677 debugfs_create_atomic_t("stored_pages", 0444,
1678 zswap_debugfs_root, &zswap_stored_pages);
1679
1680 return 0;
1681 }
1682 #else
zswap_debugfs_init(void)1683 static int zswap_debugfs_init(void)
1684 {
1685 return 0;
1686 }
1687 #endif
1688
1689 /*********************************
1690 * module init and exit
1691 **********************************/
zswap_setup(void)1692 static int zswap_setup(void)
1693 {
1694 struct zswap_pool *pool;
1695 int ret;
1696
1697 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1698 if (!zswap_entry_cache) {
1699 pr_err("entry cache creation failed\n");
1700 goto cache_fail;
1701 }
1702
1703 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1704 "mm/zswap_pool:prepare",
1705 zswap_cpu_comp_prepare,
1706 zswap_cpu_comp_dead);
1707 if (ret)
1708 goto hp_fail;
1709
1710 shrink_wq = alloc_workqueue("zswap-shrink",
1711 WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1712 if (!shrink_wq)
1713 goto shrink_wq_fail;
1714
1715 zswap_shrinker = zswap_alloc_shrinker();
1716 if (!zswap_shrinker)
1717 goto shrinker_fail;
1718 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1719 goto lru_fail;
1720 shrinker_register(zswap_shrinker);
1721
1722 INIT_WORK(&zswap_shrink_work, shrink_worker);
1723
1724 pool = __zswap_pool_create_fallback();
1725 if (pool) {
1726 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1727 zpool_get_type(pool->zpool));
1728 list_add(&pool->list, &zswap_pools);
1729 zswap_has_pool = true;
1730 static_branch_enable(&zswap_ever_enabled);
1731 } else {
1732 pr_err("pool creation failed\n");
1733 zswap_enabled = false;
1734 }
1735
1736 if (zswap_debugfs_init())
1737 pr_warn("debugfs initialization failed\n");
1738 zswap_init_state = ZSWAP_INIT_SUCCEED;
1739 return 0;
1740
1741 lru_fail:
1742 shrinker_free(zswap_shrinker);
1743 shrinker_fail:
1744 destroy_workqueue(shrink_wq);
1745 shrink_wq_fail:
1746 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1747 hp_fail:
1748 kmem_cache_destroy(zswap_entry_cache);
1749 cache_fail:
1750 /* if built-in, we aren't unloaded on failure; don't allow use */
1751 zswap_init_state = ZSWAP_INIT_FAILED;
1752 zswap_enabled = false;
1753 return -ENOMEM;
1754 }
1755
zswap_init(void)1756 static int __init zswap_init(void)
1757 {
1758 if (!zswap_enabled)
1759 return 0;
1760 return zswap_setup();
1761 }
1762 /* must be late so crypto has time to come up */
1763 late_initcall(zswap_init);
1764
1765 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1766 MODULE_DESCRIPTION("Compressed cache for swap pages");
1767