1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_SWAIT_H
3  #define _LINUX_SWAIT_H
4  
5  #include <linux/list.h>
6  #include <linux/stddef.h>
7  #include <linux/spinlock.h>
8  #include <linux/wait.h>
9  #include <asm/current.h>
10  
11  /*
12   * Simple waitqueues are semantically very different to regular wait queues
13   * (wait.h). The most important difference is that the simple waitqueue allows
14   * for deterministic behaviour -- IOW it has strictly bounded IRQ and lock hold
15   * times.
16   *
17   * Mainly, this is accomplished by two things. Firstly not allowing swake_up_all
18   * from IRQ disabled, and dropping the lock upon every wakeup, giving a higher
19   * priority task a chance to run.
20   *
21   * Secondly, we had to drop a fair number of features of the other waitqueue
22   * code; notably:
23   *
24   *  - mixing INTERRUPTIBLE and UNINTERRUPTIBLE sleeps on the same waitqueue;
25   *    all wakeups are TASK_NORMAL in order to avoid O(n) lookups for the right
26   *    sleeper state.
27   *
28   *  - the !exclusive mode; because that leads to O(n) wakeups, everything is
29   *    exclusive. As such swake_up_one will only ever awake _one_ waiter.
30   *
31   *  - custom wake callback functions; because you cannot give any guarantees
32   *    about random code. This also allows swait to be used in RT, such that
33   *    raw spinlock can be used for the swait queue head.
34   *
35   * As a side effect of these; the data structures are slimmer albeit more ad-hoc.
36   * For all the above, note that simple wait queues should _only_ be used under
37   * very specific realtime constraints -- it is best to stick with the regular
38   * wait queues in most cases.
39   */
40  
41  struct task_struct;
42  
43  struct swait_queue_head {
44  	raw_spinlock_t		lock;
45  	struct list_head	task_list;
46  };
47  
48  struct swait_queue {
49  	struct task_struct	*task;
50  	struct list_head	task_list;
51  };
52  
53  #define __SWAITQUEUE_INITIALIZER(name) {				\
54  	.task		= current,					\
55  	.task_list	= LIST_HEAD_INIT((name).task_list),		\
56  }
57  
58  #define DECLARE_SWAITQUEUE(name)					\
59  	struct swait_queue name = __SWAITQUEUE_INITIALIZER(name)
60  
61  #define __SWAIT_QUEUE_HEAD_INITIALIZER(name) {				\
62  	.lock		= __RAW_SPIN_LOCK_UNLOCKED(name.lock),		\
63  	.task_list	= LIST_HEAD_INIT((name).task_list),		\
64  }
65  
66  #define DECLARE_SWAIT_QUEUE_HEAD(name)					\
67  	struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INITIALIZER(name)
68  
69  extern void __init_swait_queue_head(struct swait_queue_head *q, const char *name,
70  				    struct lock_class_key *key);
71  
72  #define init_swait_queue_head(q)				\
73  	do {							\
74  		static struct lock_class_key __key;		\
75  		__init_swait_queue_head((q), #q, &__key);	\
76  	} while (0)
77  
78  #ifdef CONFIG_LOCKDEP
79  # define __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name)			\
80  	({ init_swait_queue_head(&name); name; })
81  # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name)			\
82  	struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name)
83  #else
84  # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name)			\
85  	DECLARE_SWAIT_QUEUE_HEAD(name)
86  #endif
87  
88  /**
89   * swait_active -- locklessly test for waiters on the queue
90   * @wq: the waitqueue to test for waiters
91   *
92   * returns true if the wait list is not empty
93   *
94   * NOTE: this function is lockless and requires care, incorrect usage _will_
95   * lead to sporadic and non-obvious failure.
96   *
97   * NOTE2: this function has the same above implications as regular waitqueues.
98   *
99   * Use either while holding swait_queue_head::lock or when used for wakeups
100   * with an extra smp_mb() like:
101   *
102   *      CPU0 - waker                    CPU1 - waiter
103   *
104   *                                      for (;;) {
105   *      @cond = true;                     prepare_to_swait_exclusive(&wq_head, &wait, state);
106   *      smp_mb();                         // smp_mb() from set_current_state()
107   *      if (swait_active(wq_head))        if (@cond)
108   *        wake_up(wq_head);                      break;
109   *                                        schedule();
110   *                                      }
111   *                                      finish_swait(&wq_head, &wait);
112   *
113   * Because without the explicit smp_mb() it's possible for the
114   * swait_active() load to get hoisted over the @cond store such that we'll
115   * observe an empty wait list while the waiter might not observe @cond.
116   * This, in turn, can trigger missing wakeups.
117   *
118   * Also note that this 'optimization' trades a spin_lock() for an smp_mb(),
119   * which (when the lock is uncontended) are of roughly equal cost.
120   */
swait_active(struct swait_queue_head * wq)121  static inline int swait_active(struct swait_queue_head *wq)
122  {
123  	return !list_empty(&wq->task_list);
124  }
125  
126  /**
127   * swq_has_sleeper - check if there are any waiting processes
128   * @wq: the waitqueue to test for waiters
129   *
130   * Returns true if @wq has waiting processes
131   *
132   * Please refer to the comment for swait_active.
133   */
swq_has_sleeper(struct swait_queue_head * wq)134  static inline bool swq_has_sleeper(struct swait_queue_head *wq)
135  {
136  	/*
137  	 * We need to be sure we are in sync with the list_add()
138  	 * modifications to the wait queue (task_list).
139  	 *
140  	 * This memory barrier should be paired with one on the
141  	 * waiting side.
142  	 */
143  	smp_mb();
144  	return swait_active(wq);
145  }
146  
147  extern void swake_up_one(struct swait_queue_head *q);
148  extern void swake_up_all(struct swait_queue_head *q);
149  extern void swake_up_locked(struct swait_queue_head *q, int wake_flags);
150  
151  extern void prepare_to_swait_exclusive(struct swait_queue_head *q, struct swait_queue *wait, int state);
152  extern long prepare_to_swait_event(struct swait_queue_head *q, struct swait_queue *wait, int state);
153  
154  extern void __finish_swait(struct swait_queue_head *q, struct swait_queue *wait);
155  extern void finish_swait(struct swait_queue_head *q, struct swait_queue *wait);
156  
157  /* as per ___wait_event() but for swait, therefore "exclusive == 1" */
158  #define ___swait_event(wq, condition, state, ret, cmd)			\
159  ({									\
160  	__label__ __out;						\
161  	struct swait_queue __wait;					\
162  	long __ret = ret;						\
163  									\
164  	INIT_LIST_HEAD(&__wait.task_list);				\
165  	for (;;) {							\
166  		long __int = prepare_to_swait_event(&wq, &__wait, state);\
167  									\
168  		if (condition)						\
169  			break;						\
170  									\
171  		if (___wait_is_interruptible(state) && __int) {		\
172  			__ret = __int;					\
173  			goto __out;					\
174  		}							\
175  									\
176  		cmd;							\
177  	}								\
178  	finish_swait(&wq, &__wait);					\
179  __out:	__ret;								\
180  })
181  
182  #define __swait_event(wq, condition)					\
183  	(void)___swait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0,	\
184  			    schedule())
185  
186  #define swait_event_exclusive(wq, condition)				\
187  do {									\
188  	if (condition)							\
189  		break;							\
190  	__swait_event(wq, condition);					\
191  } while (0)
192  
193  #define __swait_event_timeout(wq, condition, timeout)			\
194  	___swait_event(wq, ___wait_cond_timeout(condition),		\
195  		      TASK_UNINTERRUPTIBLE, timeout,			\
196  		      __ret = schedule_timeout(__ret))
197  
198  #define swait_event_timeout_exclusive(wq, condition, timeout)		\
199  ({									\
200  	long __ret = timeout;						\
201  	if (!___wait_cond_timeout(condition))				\
202  		__ret = __swait_event_timeout(wq, condition, timeout);	\
203  	__ret;								\
204  })
205  
206  #define __swait_event_interruptible(wq, condition)			\
207  	___swait_event(wq, condition, TASK_INTERRUPTIBLE, 0,		\
208  		      schedule())
209  
210  #define swait_event_interruptible_exclusive(wq, condition)		\
211  ({									\
212  	int __ret = 0;							\
213  	if (!(condition))						\
214  		__ret = __swait_event_interruptible(wq, condition);	\
215  	__ret;								\
216  })
217  
218  #define __swait_event_interruptible_timeout(wq, condition, timeout)	\
219  	___swait_event(wq, ___wait_cond_timeout(condition),		\
220  		      TASK_INTERRUPTIBLE, timeout,			\
221  		      __ret = schedule_timeout(__ret))
222  
223  #define swait_event_interruptible_timeout_exclusive(wq, condition, timeout)\
224  ({									\
225  	long __ret = timeout;						\
226  	if (!___wait_cond_timeout(condition))				\
227  		__ret = __swait_event_interruptible_timeout(wq,		\
228  						condition, timeout);	\
229  	__ret;								\
230  })
231  
232  #define __swait_event_idle(wq, condition)				\
233  	(void)___swait_event(wq, condition, TASK_IDLE, 0, schedule())
234  
235  /**
236   * swait_event_idle_exclusive - wait without system load contribution
237   * @wq: the waitqueue to wait on
238   * @condition: a C expression for the event to wait for
239   *
240   * The process is put to sleep (TASK_IDLE) until the @condition evaluates to
241   * true. The @condition is checked each time the waitqueue @wq is woken up.
242   *
243   * This function is mostly used when a kthread or workqueue waits for some
244   * condition and doesn't want to contribute to system load. Signals are
245   * ignored.
246   */
247  #define swait_event_idle_exclusive(wq, condition)			\
248  do {									\
249  	if (condition)							\
250  		break;							\
251  	__swait_event_idle(wq, condition);				\
252  } while (0)
253  
254  #define __swait_event_idle_timeout(wq, condition, timeout)		\
255  	___swait_event(wq, ___wait_cond_timeout(condition),		\
256  		       TASK_IDLE, timeout,				\
257  		       __ret = schedule_timeout(__ret))
258  
259  /**
260   * swait_event_idle_timeout_exclusive - wait up to timeout without load contribution
261   * @wq: the waitqueue to wait on
262   * @condition: a C expression for the event to wait for
263   * @timeout: timeout at which we'll give up in jiffies
264   *
265   * The process is put to sleep (TASK_IDLE) until the @condition evaluates to
266   * true. The @condition is checked each time the waitqueue @wq is woken up.
267   *
268   * This function is mostly used when a kthread or workqueue waits for some
269   * condition and doesn't want to contribute to system load. Signals are
270   * ignored.
271   *
272   * Returns:
273   * 0 if the @condition evaluated to %false after the @timeout elapsed,
274   * 1 if the @condition evaluated to %true after the @timeout elapsed,
275   * or the remaining jiffies (at least 1) if the @condition evaluated
276   * to %true before the @timeout elapsed.
277   */
278  #define swait_event_idle_timeout_exclusive(wq, condition, timeout)	\
279  ({									\
280  	long __ret = timeout;						\
281  	if (!___wait_cond_timeout(condition))				\
282  		__ret = __swait_event_idle_timeout(wq,			\
283  						   condition, timeout);	\
284  	__ret;								\
285  })
286  
287  #endif /* _LINUX_SWAIT_H */
288