1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <joel@joelfernandes.org>
9 
10 #define pr_fmt(fmt) fmt
11 
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/seq_buf.h>
32 #include <linux/spinlock.h>
33 #include <linux/smp.h>
34 #include <linux/stat.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/torture.h>
38 #include <linux/types.h>
39 
40 #include "rcu.h"
41 
42 #define SCALE_FLAG "-ref-scale: "
43 
44 #define SCALEOUT(s, x...) \
45 	pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
46 
47 #define VERBOSE_SCALEOUT(s, x...) \
48 	do { \
49 		if (verbose) \
50 			pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
51 	} while (0)
52 
53 static atomic_t verbose_batch_ctr;
54 
55 #define VERBOSE_SCALEOUT_BATCH(s, x...)							\
56 do {											\
57 	if (verbose &&									\
58 	    (verbose_batched <= 0 ||							\
59 	     !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {		\
60 		schedule_timeout_uninterruptible(1);					\
61 		pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);			\
62 	}										\
63 } while (0)
64 
65 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
66 
67 MODULE_DESCRIPTION("Scalability test for object reference mechanisms");
68 MODULE_LICENSE("GPL");
69 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
70 
71 static char *scale_type = "rcu";
72 module_param(scale_type, charp, 0444);
73 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
74 
75 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
76 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
77 
78 // Wait until there are multiple CPUs before starting test.
79 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
80 	      "Holdoff time before test start (s)");
81 // Number of typesafe_lookup structures, that is, the degree of concurrency.
82 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
83 // Number of loops per experiment, all readers execute operations concurrently.
84 torture_param(long, loops, 10000, "Number of loops per experiment.");
85 // Number of readers, with -1 defaulting to about 75% of the CPUs.
86 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
87 // Number of runs.
88 torture_param(int, nruns, 30, "Number of experiments to run.");
89 // Reader delay in nanoseconds, 0 for no delay.
90 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
91 
92 #ifdef MODULE
93 # define REFSCALE_SHUTDOWN 0
94 #else
95 # define REFSCALE_SHUTDOWN 1
96 #endif
97 
98 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
99 	      "Shutdown at end of scalability tests.");
100 
101 struct reader_task {
102 	struct task_struct *task;
103 	int start_reader;
104 	wait_queue_head_t wq;
105 	u64 last_duration_ns;
106 };
107 
108 static struct task_struct *shutdown_task;
109 static wait_queue_head_t shutdown_wq;
110 
111 static struct task_struct *main_task;
112 static wait_queue_head_t main_wq;
113 static int shutdown_start;
114 
115 static struct reader_task *reader_tasks;
116 
117 // Number of readers that are part of the current experiment.
118 static atomic_t nreaders_exp;
119 
120 // Use to wait for all threads to start.
121 static atomic_t n_init;
122 static atomic_t n_started;
123 static atomic_t n_warmedup;
124 static atomic_t n_cooleddown;
125 
126 // Track which experiment is currently running.
127 static int exp_idx;
128 
129 // Operations vector for selecting different types of tests.
130 struct ref_scale_ops {
131 	bool (*init)(void);
132 	void (*cleanup)(void);
133 	void (*readsection)(const int nloops);
134 	void (*delaysection)(const int nloops, const int udl, const int ndl);
135 	const char *name;
136 };
137 
138 static const struct ref_scale_ops *cur_ops;
139 
un_delay(const int udl,const int ndl)140 static void un_delay(const int udl, const int ndl)
141 {
142 	if (udl)
143 		udelay(udl);
144 	if (ndl)
145 		ndelay(ndl);
146 }
147 
ref_rcu_read_section(const int nloops)148 static void ref_rcu_read_section(const int nloops)
149 {
150 	int i;
151 
152 	for (i = nloops; i >= 0; i--) {
153 		rcu_read_lock();
154 		rcu_read_unlock();
155 	}
156 }
157 
ref_rcu_delay_section(const int nloops,const int udl,const int ndl)158 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
159 {
160 	int i;
161 
162 	for (i = nloops; i >= 0; i--) {
163 		rcu_read_lock();
164 		un_delay(udl, ndl);
165 		rcu_read_unlock();
166 	}
167 }
168 
rcu_sync_scale_init(void)169 static bool rcu_sync_scale_init(void)
170 {
171 	return true;
172 }
173 
174 static const struct ref_scale_ops rcu_ops = {
175 	.init		= rcu_sync_scale_init,
176 	.readsection	= ref_rcu_read_section,
177 	.delaysection	= ref_rcu_delay_section,
178 	.name		= "rcu"
179 };
180 
181 // Definitions for SRCU ref scale testing.
182 DEFINE_STATIC_SRCU(srcu_refctl_scale);
183 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
184 
srcu_ref_scale_read_section(const int nloops)185 static void srcu_ref_scale_read_section(const int nloops)
186 {
187 	int i;
188 	int idx;
189 
190 	for (i = nloops; i >= 0; i--) {
191 		idx = srcu_read_lock(srcu_ctlp);
192 		srcu_read_unlock(srcu_ctlp, idx);
193 	}
194 }
195 
srcu_ref_scale_delay_section(const int nloops,const int udl,const int ndl)196 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
197 {
198 	int i;
199 	int idx;
200 
201 	for (i = nloops; i >= 0; i--) {
202 		idx = srcu_read_lock(srcu_ctlp);
203 		un_delay(udl, ndl);
204 		srcu_read_unlock(srcu_ctlp, idx);
205 	}
206 }
207 
208 static const struct ref_scale_ops srcu_ops = {
209 	.init		= rcu_sync_scale_init,
210 	.readsection	= srcu_ref_scale_read_section,
211 	.delaysection	= srcu_ref_scale_delay_section,
212 	.name		= "srcu"
213 };
214 
215 #ifdef CONFIG_TASKS_RCU
216 
217 // Definitions for RCU Tasks ref scale testing: Empty read markers.
218 // These definitions also work for RCU Rude readers.
rcu_tasks_ref_scale_read_section(const int nloops)219 static void rcu_tasks_ref_scale_read_section(const int nloops)
220 {
221 	int i;
222 
223 	for (i = nloops; i >= 0; i--)
224 		continue;
225 }
226 
rcu_tasks_ref_scale_delay_section(const int nloops,const int udl,const int ndl)227 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
228 {
229 	int i;
230 
231 	for (i = nloops; i >= 0; i--)
232 		un_delay(udl, ndl);
233 }
234 
235 static const struct ref_scale_ops rcu_tasks_ops = {
236 	.init		= rcu_sync_scale_init,
237 	.readsection	= rcu_tasks_ref_scale_read_section,
238 	.delaysection	= rcu_tasks_ref_scale_delay_section,
239 	.name		= "rcu-tasks"
240 };
241 
242 #define RCU_TASKS_OPS &rcu_tasks_ops,
243 
244 #else // #ifdef CONFIG_TASKS_RCU
245 
246 #define RCU_TASKS_OPS
247 
248 #endif // #else // #ifdef CONFIG_TASKS_RCU
249 
250 #ifdef CONFIG_TASKS_TRACE_RCU
251 
252 // Definitions for RCU Tasks Trace ref scale testing.
rcu_trace_ref_scale_read_section(const int nloops)253 static void rcu_trace_ref_scale_read_section(const int nloops)
254 {
255 	int i;
256 
257 	for (i = nloops; i >= 0; i--) {
258 		rcu_read_lock_trace();
259 		rcu_read_unlock_trace();
260 	}
261 }
262 
rcu_trace_ref_scale_delay_section(const int nloops,const int udl,const int ndl)263 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
264 {
265 	int i;
266 
267 	for (i = nloops; i >= 0; i--) {
268 		rcu_read_lock_trace();
269 		un_delay(udl, ndl);
270 		rcu_read_unlock_trace();
271 	}
272 }
273 
274 static const struct ref_scale_ops rcu_trace_ops = {
275 	.init		= rcu_sync_scale_init,
276 	.readsection	= rcu_trace_ref_scale_read_section,
277 	.delaysection	= rcu_trace_ref_scale_delay_section,
278 	.name		= "rcu-trace"
279 };
280 
281 #define RCU_TRACE_OPS &rcu_trace_ops,
282 
283 #else // #ifdef CONFIG_TASKS_TRACE_RCU
284 
285 #define RCU_TRACE_OPS
286 
287 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
288 
289 // Definitions for reference count
290 static atomic_t refcnt;
291 
ref_refcnt_section(const int nloops)292 static void ref_refcnt_section(const int nloops)
293 {
294 	int i;
295 
296 	for (i = nloops; i >= 0; i--) {
297 		atomic_inc(&refcnt);
298 		atomic_dec(&refcnt);
299 	}
300 }
301 
ref_refcnt_delay_section(const int nloops,const int udl,const int ndl)302 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
303 {
304 	int i;
305 
306 	for (i = nloops; i >= 0; i--) {
307 		atomic_inc(&refcnt);
308 		un_delay(udl, ndl);
309 		atomic_dec(&refcnt);
310 	}
311 }
312 
313 static const struct ref_scale_ops refcnt_ops = {
314 	.init		= rcu_sync_scale_init,
315 	.readsection	= ref_refcnt_section,
316 	.delaysection	= ref_refcnt_delay_section,
317 	.name		= "refcnt"
318 };
319 
320 // Definitions for rwlock
321 static rwlock_t test_rwlock;
322 
ref_rwlock_init(void)323 static bool ref_rwlock_init(void)
324 {
325 	rwlock_init(&test_rwlock);
326 	return true;
327 }
328 
ref_rwlock_section(const int nloops)329 static void ref_rwlock_section(const int nloops)
330 {
331 	int i;
332 
333 	for (i = nloops; i >= 0; i--) {
334 		read_lock(&test_rwlock);
335 		read_unlock(&test_rwlock);
336 	}
337 }
338 
ref_rwlock_delay_section(const int nloops,const int udl,const int ndl)339 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
340 {
341 	int i;
342 
343 	for (i = nloops; i >= 0; i--) {
344 		read_lock(&test_rwlock);
345 		un_delay(udl, ndl);
346 		read_unlock(&test_rwlock);
347 	}
348 }
349 
350 static const struct ref_scale_ops rwlock_ops = {
351 	.init		= ref_rwlock_init,
352 	.readsection	= ref_rwlock_section,
353 	.delaysection	= ref_rwlock_delay_section,
354 	.name		= "rwlock"
355 };
356 
357 // Definitions for rwsem
358 static struct rw_semaphore test_rwsem;
359 
ref_rwsem_init(void)360 static bool ref_rwsem_init(void)
361 {
362 	init_rwsem(&test_rwsem);
363 	return true;
364 }
365 
ref_rwsem_section(const int nloops)366 static void ref_rwsem_section(const int nloops)
367 {
368 	int i;
369 
370 	for (i = nloops; i >= 0; i--) {
371 		down_read(&test_rwsem);
372 		up_read(&test_rwsem);
373 	}
374 }
375 
ref_rwsem_delay_section(const int nloops,const int udl,const int ndl)376 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
377 {
378 	int i;
379 
380 	for (i = nloops; i >= 0; i--) {
381 		down_read(&test_rwsem);
382 		un_delay(udl, ndl);
383 		up_read(&test_rwsem);
384 	}
385 }
386 
387 static const struct ref_scale_ops rwsem_ops = {
388 	.init		= ref_rwsem_init,
389 	.readsection	= ref_rwsem_section,
390 	.delaysection	= ref_rwsem_delay_section,
391 	.name		= "rwsem"
392 };
393 
394 // Definitions for global spinlock
395 static DEFINE_RAW_SPINLOCK(test_lock);
396 
ref_lock_section(const int nloops)397 static void ref_lock_section(const int nloops)
398 {
399 	int i;
400 
401 	preempt_disable();
402 	for (i = nloops; i >= 0; i--) {
403 		raw_spin_lock(&test_lock);
404 		raw_spin_unlock(&test_lock);
405 	}
406 	preempt_enable();
407 }
408 
ref_lock_delay_section(const int nloops,const int udl,const int ndl)409 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
410 {
411 	int i;
412 
413 	preempt_disable();
414 	for (i = nloops; i >= 0; i--) {
415 		raw_spin_lock(&test_lock);
416 		un_delay(udl, ndl);
417 		raw_spin_unlock(&test_lock);
418 	}
419 	preempt_enable();
420 }
421 
422 static const struct ref_scale_ops lock_ops = {
423 	.readsection	= ref_lock_section,
424 	.delaysection	= ref_lock_delay_section,
425 	.name		= "lock"
426 };
427 
428 // Definitions for global irq-save spinlock
429 
ref_lock_irq_section(const int nloops)430 static void ref_lock_irq_section(const int nloops)
431 {
432 	unsigned long flags;
433 	int i;
434 
435 	preempt_disable();
436 	for (i = nloops; i >= 0; i--) {
437 		raw_spin_lock_irqsave(&test_lock, flags);
438 		raw_spin_unlock_irqrestore(&test_lock, flags);
439 	}
440 	preempt_enable();
441 }
442 
ref_lock_irq_delay_section(const int nloops,const int udl,const int ndl)443 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
444 {
445 	unsigned long flags;
446 	int i;
447 
448 	preempt_disable();
449 	for (i = nloops; i >= 0; i--) {
450 		raw_spin_lock_irqsave(&test_lock, flags);
451 		un_delay(udl, ndl);
452 		raw_spin_unlock_irqrestore(&test_lock, flags);
453 	}
454 	preempt_enable();
455 }
456 
457 static const struct ref_scale_ops lock_irq_ops = {
458 	.readsection	= ref_lock_irq_section,
459 	.delaysection	= ref_lock_irq_delay_section,
460 	.name		= "lock-irq"
461 };
462 
463 // Definitions acquire-release.
464 static DEFINE_PER_CPU(unsigned long, test_acqrel);
465 
ref_acqrel_section(const int nloops)466 static void ref_acqrel_section(const int nloops)
467 {
468 	unsigned long x;
469 	int i;
470 
471 	preempt_disable();
472 	for (i = nloops; i >= 0; i--) {
473 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
474 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
475 	}
476 	preempt_enable();
477 }
478 
ref_acqrel_delay_section(const int nloops,const int udl,const int ndl)479 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
480 {
481 	unsigned long x;
482 	int i;
483 
484 	preempt_disable();
485 	for (i = nloops; i >= 0; i--) {
486 		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
487 		un_delay(udl, ndl);
488 		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
489 	}
490 	preempt_enable();
491 }
492 
493 static const struct ref_scale_ops acqrel_ops = {
494 	.readsection	= ref_acqrel_section,
495 	.delaysection	= ref_acqrel_delay_section,
496 	.name		= "acqrel"
497 };
498 
499 static volatile u64 stopopts;
500 
ref_clock_section(const int nloops)501 static void ref_clock_section(const int nloops)
502 {
503 	u64 x = 0;
504 	int i;
505 
506 	preempt_disable();
507 	for (i = nloops; i >= 0; i--)
508 		x += ktime_get_real_fast_ns();
509 	preempt_enable();
510 	stopopts = x;
511 }
512 
ref_clock_delay_section(const int nloops,const int udl,const int ndl)513 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
514 {
515 	u64 x = 0;
516 	int i;
517 
518 	preempt_disable();
519 	for (i = nloops; i >= 0; i--) {
520 		x += ktime_get_real_fast_ns();
521 		un_delay(udl, ndl);
522 	}
523 	preempt_enable();
524 	stopopts = x;
525 }
526 
527 static const struct ref_scale_ops clock_ops = {
528 	.readsection	= ref_clock_section,
529 	.delaysection	= ref_clock_delay_section,
530 	.name		= "clock"
531 };
532 
ref_jiffies_section(const int nloops)533 static void ref_jiffies_section(const int nloops)
534 {
535 	u64 x = 0;
536 	int i;
537 
538 	preempt_disable();
539 	for (i = nloops; i >= 0; i--)
540 		x += jiffies;
541 	preempt_enable();
542 	stopopts = x;
543 }
544 
ref_jiffies_delay_section(const int nloops,const int udl,const int ndl)545 static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
546 {
547 	u64 x = 0;
548 	int i;
549 
550 	preempt_disable();
551 	for (i = nloops; i >= 0; i--) {
552 		x += jiffies;
553 		un_delay(udl, ndl);
554 	}
555 	preempt_enable();
556 	stopopts = x;
557 }
558 
559 static const struct ref_scale_ops jiffies_ops = {
560 	.readsection	= ref_jiffies_section,
561 	.delaysection	= ref_jiffies_delay_section,
562 	.name		= "jiffies"
563 };
564 
565 ////////////////////////////////////////////////////////////////////////
566 //
567 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
568 //
569 
570 // Item to look up in a typesafe manner.  Array of pointers to these.
571 struct refscale_typesafe {
572 	atomic_t rts_refctr;  // Used by all flavors
573 	spinlock_t rts_lock;
574 	seqlock_t rts_seqlock;
575 	unsigned int a;
576 	unsigned int b;
577 };
578 
579 static struct kmem_cache *typesafe_kmem_cachep;
580 static struct refscale_typesafe **rtsarray;
581 static long rtsarray_size;
582 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
583 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
584 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
585 
586 // Conditionally acquire an explicit in-structure reference count.
typesafe_ref_acquire(struct refscale_typesafe * rtsp,unsigned int * start)587 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
588 {
589 	return atomic_inc_not_zero(&rtsp->rts_refctr);
590 }
591 
592 // Unconditionally release an explicit in-structure reference count.
typesafe_ref_release(struct refscale_typesafe * rtsp,unsigned int start)593 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
594 {
595 	if (!atomic_dec_return(&rtsp->rts_refctr)) {
596 		WRITE_ONCE(rtsp->a, rtsp->a + 1);
597 		kmem_cache_free(typesafe_kmem_cachep, rtsp);
598 	}
599 	return true;
600 }
601 
602 // Unconditionally acquire an explicit in-structure spinlock.
typesafe_lock_acquire(struct refscale_typesafe * rtsp,unsigned int * start)603 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
604 {
605 	spin_lock(&rtsp->rts_lock);
606 	return true;
607 }
608 
609 // Unconditionally release an explicit in-structure spinlock.
typesafe_lock_release(struct refscale_typesafe * rtsp,unsigned int start)610 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
611 {
612 	spin_unlock(&rtsp->rts_lock);
613 	return true;
614 }
615 
616 // Unconditionally acquire an explicit in-structure sequence lock.
typesafe_seqlock_acquire(struct refscale_typesafe * rtsp,unsigned int * start)617 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
618 {
619 	*start = read_seqbegin(&rtsp->rts_seqlock);
620 	return true;
621 }
622 
623 // Conditionally release an explicit in-structure sequence lock.  Return
624 // true if this release was successful, that is, if no retry is required.
typesafe_seqlock_release(struct refscale_typesafe * rtsp,unsigned int start)625 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
626 {
627 	return !read_seqretry(&rtsp->rts_seqlock, start);
628 }
629 
630 // Do a read-side critical section with the specified delay in
631 // microseconds and nanoseconds inserted so as to increase probability
632 // of failure.
typesafe_delay_section(const int nloops,const int udl,const int ndl)633 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
634 {
635 	unsigned int a;
636 	unsigned int b;
637 	int i;
638 	long idx;
639 	struct refscale_typesafe *rtsp;
640 	unsigned int start;
641 
642 	for (i = nloops; i >= 0; i--) {
643 		preempt_disable();
644 		idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
645 		preempt_enable();
646 retry:
647 		rcu_read_lock();
648 		rtsp = rcu_dereference(rtsarray[idx]);
649 		a = READ_ONCE(rtsp->a);
650 		if (!rts_acquire(rtsp, &start)) {
651 			rcu_read_unlock();
652 			goto retry;
653 		}
654 		if (a != READ_ONCE(rtsp->a)) {
655 			(void)rts_release(rtsp, start);
656 			rcu_read_unlock();
657 			goto retry;
658 		}
659 		un_delay(udl, ndl);
660 		b = READ_ONCE(rtsp->a);
661 		// Remember, seqlock read-side release can fail.
662 		if (!rts_release(rtsp, start)) {
663 			rcu_read_unlock();
664 			goto retry;
665 		}
666 		WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
667 		b = rtsp->b;
668 		rcu_read_unlock();
669 		WARN_ON_ONCE(a * a != b);
670 	}
671 }
672 
673 // Because the acquisition and release methods are expensive, there
674 // is no point in optimizing away the un_delay() function's two checks.
675 // Thus simply define typesafe_read_section() as a simple wrapper around
676 // typesafe_delay_section().
typesafe_read_section(const int nloops)677 static void typesafe_read_section(const int nloops)
678 {
679 	typesafe_delay_section(nloops, 0, 0);
680 }
681 
682 // Allocate and initialize one refscale_typesafe structure.
typesafe_alloc_one(void)683 static struct refscale_typesafe *typesafe_alloc_one(void)
684 {
685 	struct refscale_typesafe *rtsp;
686 
687 	rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
688 	if (!rtsp)
689 		return NULL;
690 	atomic_set(&rtsp->rts_refctr, 1);
691 	WRITE_ONCE(rtsp->a, rtsp->a + 1);
692 	WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
693 	return rtsp;
694 }
695 
696 // Slab-allocator constructor for refscale_typesafe structures created
697 // out of a new slab of system memory.
refscale_typesafe_ctor(void * rtsp_in)698 static void refscale_typesafe_ctor(void *rtsp_in)
699 {
700 	struct refscale_typesafe *rtsp = rtsp_in;
701 
702 	spin_lock_init(&rtsp->rts_lock);
703 	seqlock_init(&rtsp->rts_seqlock);
704 	preempt_disable();
705 	rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
706 	preempt_enable();
707 }
708 
709 static const struct ref_scale_ops typesafe_ref_ops;
710 static const struct ref_scale_ops typesafe_lock_ops;
711 static const struct ref_scale_ops typesafe_seqlock_ops;
712 
713 // Initialize for a typesafe test.
typesafe_init(void)714 static bool typesafe_init(void)
715 {
716 	long idx;
717 	long si = lookup_instances;
718 
719 	typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
720 						 sizeof(struct refscale_typesafe), sizeof(void *),
721 						 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
722 	if (!typesafe_kmem_cachep)
723 		return false;
724 	if (si < 0)
725 		si = -si * nr_cpu_ids;
726 	else if (si == 0)
727 		si = nr_cpu_ids;
728 	rtsarray_size = si;
729 	rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
730 	if (!rtsarray)
731 		return false;
732 	for (idx = 0; idx < rtsarray_size; idx++) {
733 		rtsarray[idx] = typesafe_alloc_one();
734 		if (!rtsarray[idx])
735 			return false;
736 	}
737 	if (cur_ops == &typesafe_ref_ops) {
738 		rts_acquire = typesafe_ref_acquire;
739 		rts_release = typesafe_ref_release;
740 	} else if (cur_ops == &typesafe_lock_ops) {
741 		rts_acquire = typesafe_lock_acquire;
742 		rts_release = typesafe_lock_release;
743 	} else if (cur_ops == &typesafe_seqlock_ops) {
744 		rts_acquire = typesafe_seqlock_acquire;
745 		rts_release = typesafe_seqlock_release;
746 	} else {
747 		WARN_ON_ONCE(1);
748 		return false;
749 	}
750 	return true;
751 }
752 
753 // Clean up after a typesafe test.
typesafe_cleanup(void)754 static void typesafe_cleanup(void)
755 {
756 	long idx;
757 
758 	if (rtsarray) {
759 		for (idx = 0; idx < rtsarray_size; idx++)
760 			kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
761 		kfree(rtsarray);
762 		rtsarray = NULL;
763 		rtsarray_size = 0;
764 	}
765 	kmem_cache_destroy(typesafe_kmem_cachep);
766 	typesafe_kmem_cachep = NULL;
767 	rts_acquire = NULL;
768 	rts_release = NULL;
769 }
770 
771 // The typesafe_init() function distinguishes these structures by address.
772 static const struct ref_scale_ops typesafe_ref_ops = {
773 	.init		= typesafe_init,
774 	.cleanup	= typesafe_cleanup,
775 	.readsection	= typesafe_read_section,
776 	.delaysection	= typesafe_delay_section,
777 	.name		= "typesafe_ref"
778 };
779 
780 static const struct ref_scale_ops typesafe_lock_ops = {
781 	.init		= typesafe_init,
782 	.cleanup	= typesafe_cleanup,
783 	.readsection	= typesafe_read_section,
784 	.delaysection	= typesafe_delay_section,
785 	.name		= "typesafe_lock"
786 };
787 
788 static const struct ref_scale_ops typesafe_seqlock_ops = {
789 	.init		= typesafe_init,
790 	.cleanup	= typesafe_cleanup,
791 	.readsection	= typesafe_read_section,
792 	.delaysection	= typesafe_delay_section,
793 	.name		= "typesafe_seqlock"
794 };
795 
rcu_scale_one_reader(void)796 static void rcu_scale_one_reader(void)
797 {
798 	if (readdelay <= 0)
799 		cur_ops->readsection(loops);
800 	else
801 		cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
802 }
803 
804 // Reader kthread.  Repeatedly does empty RCU read-side
805 // critical section, minimizing update-side interference.
806 static int
ref_scale_reader(void * arg)807 ref_scale_reader(void *arg)
808 {
809 	unsigned long flags;
810 	long me = (long)arg;
811 	struct reader_task *rt = &(reader_tasks[me]);
812 	u64 start;
813 	s64 duration;
814 
815 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
816 	WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
817 	set_user_nice(current, MAX_NICE);
818 	atomic_inc(&n_init);
819 	if (holdoff)
820 		schedule_timeout_interruptible(holdoff * HZ);
821 repeat:
822 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
823 
824 	// Wait for signal that this reader can start.
825 	wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
826 			   torture_must_stop());
827 
828 	if (torture_must_stop())
829 		goto end;
830 
831 	// Make sure that the CPU is affinitized appropriately during testing.
832 	WARN_ON_ONCE(raw_smp_processor_id() != me);
833 
834 	WRITE_ONCE(rt->start_reader, 0);
835 	if (!atomic_dec_return(&n_started))
836 		while (atomic_read_acquire(&n_started))
837 			cpu_relax();
838 
839 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
840 
841 
842 	// To reduce noise, do an initial cache-warming invocation, check
843 	// in, and then keep warming until everyone has checked in.
844 	rcu_scale_one_reader();
845 	if (!atomic_dec_return(&n_warmedup))
846 		while (atomic_read_acquire(&n_warmedup))
847 			rcu_scale_one_reader();
848 	// Also keep interrupts disabled.  This also has the effect
849 	// of preventing entries into slow path for rcu_read_unlock().
850 	local_irq_save(flags);
851 	start = ktime_get_mono_fast_ns();
852 
853 	rcu_scale_one_reader();
854 
855 	duration = ktime_get_mono_fast_ns() - start;
856 	local_irq_restore(flags);
857 
858 	rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
859 	// To reduce runtime-skew noise, do maintain-load invocations until
860 	// everyone is done.
861 	if (!atomic_dec_return(&n_cooleddown))
862 		while (atomic_read_acquire(&n_cooleddown))
863 			rcu_scale_one_reader();
864 
865 	if (atomic_dec_and_test(&nreaders_exp))
866 		wake_up(&main_wq);
867 
868 	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
869 				me, exp_idx, atomic_read(&nreaders_exp));
870 
871 	if (!torture_must_stop())
872 		goto repeat;
873 end:
874 	torture_kthread_stopping("ref_scale_reader");
875 	return 0;
876 }
877 
reset_readers(void)878 static void reset_readers(void)
879 {
880 	int i;
881 	struct reader_task *rt;
882 
883 	for (i = 0; i < nreaders; i++) {
884 		rt = &(reader_tasks[i]);
885 
886 		rt->last_duration_ns = 0;
887 	}
888 }
889 
890 // Print the results of each reader and return the sum of all their durations.
process_durations(int n)891 static u64 process_durations(int n)
892 {
893 	int i;
894 	struct reader_task *rt;
895 	struct seq_buf s;
896 	char *buf;
897 	u64 sum = 0;
898 
899 	buf = kmalloc(800 + 64, GFP_KERNEL);
900 	if (!buf)
901 		return 0;
902 	seq_buf_init(&s, buf, 800 + 64);
903 
904 	seq_buf_printf(&s, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
905 		       exp_idx);
906 
907 	for (i = 0; i < n && !torture_must_stop(); i++) {
908 		rt = &(reader_tasks[i]);
909 
910 		if (i % 5 == 0)
911 			seq_buf_putc(&s, '\n');
912 
913 		if (seq_buf_used(&s) >= 800) {
914 			pr_alert("%s", seq_buf_str(&s));
915 			seq_buf_clear(&s);
916 		}
917 
918 		seq_buf_printf(&s, "%d: %llu\t", i, rt->last_duration_ns);
919 
920 		sum += rt->last_duration_ns;
921 	}
922 	pr_alert("%s\n", seq_buf_str(&s));
923 
924 	kfree(buf);
925 	return sum;
926 }
927 
928 // The main_func is the main orchestrator, it performs a bunch of
929 // experiments.  For every experiment, it orders all the readers
930 // involved to start and waits for them to finish the experiment. It
931 // then reads their timestamps and starts the next experiment. Each
932 // experiment progresses from 1 concurrent reader to N of them at which
933 // point all the timestamps are printed.
main_func(void * arg)934 static int main_func(void *arg)
935 {
936 	int exp, r;
937 	char buf1[64];
938 	char *buf;
939 	u64 *result_avg;
940 
941 	set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
942 	set_user_nice(current, MAX_NICE);
943 
944 	VERBOSE_SCALEOUT("main_func task started");
945 	result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
946 	buf = kzalloc(800 + 64, GFP_KERNEL);
947 	if (!result_avg || !buf) {
948 		SCALEOUT_ERRSTRING("out of memory");
949 		goto oom_exit;
950 	}
951 	if (holdoff)
952 		schedule_timeout_interruptible(holdoff * HZ);
953 
954 	// Wait for all threads to start.
955 	atomic_inc(&n_init);
956 	while (atomic_read(&n_init) < nreaders + 1)
957 		schedule_timeout_uninterruptible(1);
958 
959 	// Start exp readers up per experiment
960 	for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
961 		if (torture_must_stop())
962 			goto end;
963 
964 		reset_readers();
965 		atomic_set(&nreaders_exp, nreaders);
966 		atomic_set(&n_started, nreaders);
967 		atomic_set(&n_warmedup, nreaders);
968 		atomic_set(&n_cooleddown, nreaders);
969 
970 		exp_idx = exp;
971 
972 		for (r = 0; r < nreaders; r++) {
973 			smp_store_release(&reader_tasks[r].start_reader, 1);
974 			wake_up(&reader_tasks[r].wq);
975 		}
976 
977 		VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
978 				nreaders);
979 
980 		wait_event(main_wq,
981 			   !atomic_read(&nreaders_exp) || torture_must_stop());
982 
983 		VERBOSE_SCALEOUT("main_func: experiment ended");
984 
985 		if (torture_must_stop())
986 			goto end;
987 
988 		result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
989 	}
990 
991 	// Print the average of all experiments
992 	SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
993 
994 	pr_alert("Runs\tTime(ns)\n");
995 	for (exp = 0; exp < nruns; exp++) {
996 		u64 avg;
997 		u32 rem;
998 
999 		avg = div_u64_rem(result_avg[exp], 1000, &rem);
1000 		sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
1001 		strcat(buf, buf1);
1002 		if (strlen(buf) >= 800) {
1003 			pr_alert("%s", buf);
1004 			buf[0] = 0;
1005 		}
1006 	}
1007 
1008 	pr_alert("%s", buf);
1009 
1010 oom_exit:
1011 	// This will shutdown everything including us.
1012 	if (shutdown) {
1013 		shutdown_start = 1;
1014 		wake_up(&shutdown_wq);
1015 	}
1016 
1017 	// Wait for torture to stop us
1018 	while (!torture_must_stop())
1019 		schedule_timeout_uninterruptible(1);
1020 
1021 end:
1022 	torture_kthread_stopping("main_func");
1023 	kfree(result_avg);
1024 	kfree(buf);
1025 	return 0;
1026 }
1027 
1028 static void
ref_scale_print_module_parms(const struct ref_scale_ops * cur_ops,const char * tag)1029 ref_scale_print_module_parms(const struct ref_scale_ops *cur_ops, const char *tag)
1030 {
1031 	pr_alert("%s" SCALE_FLAG
1032 		 "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1033 		 verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1034 }
1035 
1036 static void
ref_scale_cleanup(void)1037 ref_scale_cleanup(void)
1038 {
1039 	int i;
1040 
1041 	if (torture_cleanup_begin())
1042 		return;
1043 
1044 	if (!cur_ops) {
1045 		torture_cleanup_end();
1046 		return;
1047 	}
1048 
1049 	if (reader_tasks) {
1050 		for (i = 0; i < nreaders; i++)
1051 			torture_stop_kthread("ref_scale_reader",
1052 					     reader_tasks[i].task);
1053 	}
1054 	kfree(reader_tasks);
1055 
1056 	torture_stop_kthread("main_task", main_task);
1057 	kfree(main_task);
1058 
1059 	// Do scale-type-specific cleanup operations.
1060 	if (cur_ops->cleanup != NULL)
1061 		cur_ops->cleanup();
1062 
1063 	torture_cleanup_end();
1064 }
1065 
1066 // Shutdown kthread.  Just waits to be awakened, then shuts down system.
1067 static int
ref_scale_shutdown(void * arg)1068 ref_scale_shutdown(void *arg)
1069 {
1070 	wait_event_idle(shutdown_wq, shutdown_start);
1071 
1072 	smp_mb(); // Wake before output.
1073 	ref_scale_cleanup();
1074 	kernel_power_off();
1075 
1076 	return -EINVAL;
1077 }
1078 
1079 static int __init
ref_scale_init(void)1080 ref_scale_init(void)
1081 {
1082 	long i;
1083 	int firsterr = 0;
1084 	static const struct ref_scale_ops *scale_ops[] = {
1085 		&rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
1086 		&rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops,
1087 		&typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1088 	};
1089 
1090 	if (!torture_init_begin(scale_type, verbose))
1091 		return -EBUSY;
1092 
1093 	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1094 		cur_ops = scale_ops[i];
1095 		if (strcmp(scale_type, cur_ops->name) == 0)
1096 			break;
1097 	}
1098 	if (i == ARRAY_SIZE(scale_ops)) {
1099 		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1100 		pr_alert("rcu-scale types:");
1101 		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1102 			pr_cont(" %s", scale_ops[i]->name);
1103 		pr_cont("\n");
1104 		firsterr = -EINVAL;
1105 		cur_ops = NULL;
1106 		goto unwind;
1107 	}
1108 	if (cur_ops->init)
1109 		if (!cur_ops->init()) {
1110 			firsterr = -EUCLEAN;
1111 			goto unwind;
1112 		}
1113 
1114 	ref_scale_print_module_parms(cur_ops, "Start of test");
1115 
1116 	// Shutdown task
1117 	if (shutdown) {
1118 		init_waitqueue_head(&shutdown_wq);
1119 		firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1120 						  shutdown_task);
1121 		if (torture_init_error(firsterr))
1122 			goto unwind;
1123 		schedule_timeout_uninterruptible(1);
1124 	}
1125 
1126 	// Reader tasks (default to ~75% of online CPUs).
1127 	if (nreaders < 0)
1128 		nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1129 	if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1130 		loops = 1;
1131 	if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1132 		nreaders = 1;
1133 	if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1134 		nruns = 1;
1135 	reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1136 			       GFP_KERNEL);
1137 	if (!reader_tasks) {
1138 		SCALEOUT_ERRSTRING("out of memory");
1139 		firsterr = -ENOMEM;
1140 		goto unwind;
1141 	}
1142 
1143 	VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1144 
1145 	for (i = 0; i < nreaders; i++) {
1146 		init_waitqueue_head(&reader_tasks[i].wq);
1147 		firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1148 						  reader_tasks[i].task);
1149 		if (torture_init_error(firsterr))
1150 			goto unwind;
1151 	}
1152 
1153 	// Main Task
1154 	init_waitqueue_head(&main_wq);
1155 	firsterr = torture_create_kthread(main_func, NULL, main_task);
1156 	if (torture_init_error(firsterr))
1157 		goto unwind;
1158 
1159 	torture_init_end();
1160 	return 0;
1161 
1162 unwind:
1163 	torture_init_end();
1164 	ref_scale_cleanup();
1165 	if (shutdown) {
1166 		WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1167 		kernel_power_off();
1168 	}
1169 	return firsterr;
1170 }
1171 
1172 module_init(ref_scale_init);
1173 module_exit(ref_scale_cleanup);
1174