1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Generic pidhash and scalable, time-bounded PID allocator
4   *
5   * (C) 2002-2003 Nadia Yvette Chambers, IBM
6   * (C) 2004 Nadia Yvette Chambers, Oracle
7   * (C) 2002-2004 Ingo Molnar, Red Hat
8   *
9   * pid-structures are backing objects for tasks sharing a given ID to chain
10   * against. There is very little to them aside from hashing them and
11   * parking tasks using given ID's on a list.
12   *
13   * The hash is always changed with the tasklist_lock write-acquired,
14   * and the hash is only accessed with the tasklist_lock at least
15   * read-acquired, so there's no additional SMP locking needed here.
16   *
17   * We have a list of bitmap pages, which bitmaps represent the PID space.
18   * Allocating and freeing PIDs is completely lockless. The worst-case
19   * allocation scenario when all but one out of 1 million PIDs possible are
20   * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21   * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22   *
23   * Pid namespaces:
24   *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25   *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26   *     Many thanks to Oleg Nesterov for comments and help
27   *
28   */
29  
30  #include <linux/mm.h>
31  #include <linux/export.h>
32  #include <linux/slab.h>
33  #include <linux/init.h>
34  #include <linux/rculist.h>
35  #include <linux/memblock.h>
36  #include <linux/pid_namespace.h>
37  #include <linux/init_task.h>
38  #include <linux/syscalls.h>
39  #include <linux/proc_ns.h>
40  #include <linux/refcount.h>
41  #include <linux/anon_inodes.h>
42  #include <linux/sched/signal.h>
43  #include <linux/sched/task.h>
44  #include <linux/idr.h>
45  #include <linux/pidfs.h>
46  #include <net/sock.h>
47  #include <uapi/linux/pidfd.h>
48  
49  struct pid init_struct_pid = {
50  	.count		= REFCOUNT_INIT(1),
51  	.tasks		= {
52  		{ .first = NULL },
53  		{ .first = NULL },
54  		{ .first = NULL },
55  	},
56  	.level		= 0,
57  	.numbers	= { {
58  		.nr		= 0,
59  		.ns		= &init_pid_ns,
60  	}, }
61  };
62  
63  int pid_max = PID_MAX_DEFAULT;
64  
65  int pid_max_min = RESERVED_PIDS + 1;
66  int pid_max_max = PID_MAX_LIMIT;
67  /*
68   * Pseudo filesystems start inode numbering after one. We use Reserved
69   * PIDs as a natural offset.
70   */
71  static u64 pidfs_ino = RESERVED_PIDS;
72  
73  /*
74   * PID-map pages start out as NULL, they get allocated upon
75   * first use and are never deallocated. This way a low pid_max
76   * value does not cause lots of bitmaps to be allocated, but
77   * the scheme scales to up to 4 million PIDs, runtime.
78   */
79  struct pid_namespace init_pid_ns = {
80  	.ns.count = REFCOUNT_INIT(2),
81  	.idr = IDR_INIT(init_pid_ns.idr),
82  	.pid_allocated = PIDNS_ADDING,
83  	.level = 0,
84  	.child_reaper = &init_task,
85  	.user_ns = &init_user_ns,
86  	.ns.inum = PROC_PID_INIT_INO,
87  #ifdef CONFIG_PID_NS
88  	.ns.ops = &pidns_operations,
89  #endif
90  #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
91  	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
92  #endif
93  };
94  EXPORT_SYMBOL_GPL(init_pid_ns);
95  
96  /*
97   * Note: disable interrupts while the pidmap_lock is held as an
98   * interrupt might come in and do read_lock(&tasklist_lock).
99   *
100   * If we don't disable interrupts there is a nasty deadlock between
101   * detach_pid()->free_pid() and another cpu that does
102   * spin_lock(&pidmap_lock) followed by an interrupt routine that does
103   * read_lock(&tasklist_lock);
104   *
105   * After we clean up the tasklist_lock and know there are no
106   * irq handlers that take it we can leave the interrupts enabled.
107   * For now it is easier to be safe than to prove it can't happen.
108   */
109  
110  static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
111  
put_pid(struct pid * pid)112  void put_pid(struct pid *pid)
113  {
114  	struct pid_namespace *ns;
115  
116  	if (!pid)
117  		return;
118  
119  	ns = pid->numbers[pid->level].ns;
120  	if (refcount_dec_and_test(&pid->count)) {
121  		kmem_cache_free(ns->pid_cachep, pid);
122  		put_pid_ns(ns);
123  	}
124  }
125  EXPORT_SYMBOL_GPL(put_pid);
126  
delayed_put_pid(struct rcu_head * rhp)127  static void delayed_put_pid(struct rcu_head *rhp)
128  {
129  	struct pid *pid = container_of(rhp, struct pid, rcu);
130  	put_pid(pid);
131  }
132  
free_pid(struct pid * pid)133  void free_pid(struct pid *pid)
134  {
135  	/* We can be called with write_lock_irq(&tasklist_lock) held */
136  	int i;
137  	unsigned long flags;
138  
139  	spin_lock_irqsave(&pidmap_lock, flags);
140  	for (i = 0; i <= pid->level; i++) {
141  		struct upid *upid = pid->numbers + i;
142  		struct pid_namespace *ns = upid->ns;
143  		switch (--ns->pid_allocated) {
144  		case 2:
145  		case 1:
146  			/* When all that is left in the pid namespace
147  			 * is the reaper wake up the reaper.  The reaper
148  			 * may be sleeping in zap_pid_ns_processes().
149  			 */
150  			wake_up_process(ns->child_reaper);
151  			break;
152  		case PIDNS_ADDING:
153  			/* Handle a fork failure of the first process */
154  			WARN_ON(ns->child_reaper);
155  			ns->pid_allocated = 0;
156  			break;
157  		}
158  
159  		idr_remove(&ns->idr, upid->nr);
160  	}
161  	spin_unlock_irqrestore(&pidmap_lock, flags);
162  
163  	call_rcu(&pid->rcu, delayed_put_pid);
164  }
165  
alloc_pid(struct pid_namespace * ns,pid_t * set_tid,size_t set_tid_size)166  struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
167  		      size_t set_tid_size)
168  {
169  	struct pid *pid;
170  	enum pid_type type;
171  	int i, nr;
172  	struct pid_namespace *tmp;
173  	struct upid *upid;
174  	int retval = -ENOMEM;
175  
176  	/*
177  	 * set_tid_size contains the size of the set_tid array. Starting at
178  	 * the most nested currently active PID namespace it tells alloc_pid()
179  	 * which PID to set for a process in that most nested PID namespace
180  	 * up to set_tid_size PID namespaces. It does not have to set the PID
181  	 * for a process in all nested PID namespaces but set_tid_size must
182  	 * never be greater than the current ns->level + 1.
183  	 */
184  	if (set_tid_size > ns->level + 1)
185  		return ERR_PTR(-EINVAL);
186  
187  	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
188  	if (!pid)
189  		return ERR_PTR(retval);
190  
191  	tmp = ns;
192  	pid->level = ns->level;
193  
194  	for (i = ns->level; i >= 0; i--) {
195  		int tid = 0;
196  
197  		if (set_tid_size) {
198  			tid = set_tid[ns->level - i];
199  
200  			retval = -EINVAL;
201  			if (tid < 1 || tid >= pid_max)
202  				goto out_free;
203  			/*
204  			 * Also fail if a PID != 1 is requested and
205  			 * no PID 1 exists.
206  			 */
207  			if (tid != 1 && !tmp->child_reaper)
208  				goto out_free;
209  			retval = -EPERM;
210  			if (!checkpoint_restore_ns_capable(tmp->user_ns))
211  				goto out_free;
212  			set_tid_size--;
213  		}
214  
215  		idr_preload(GFP_KERNEL);
216  		spin_lock_irq(&pidmap_lock);
217  
218  		if (tid) {
219  			nr = idr_alloc(&tmp->idr, NULL, tid,
220  				       tid + 1, GFP_ATOMIC);
221  			/*
222  			 * If ENOSPC is returned it means that the PID is
223  			 * alreay in use. Return EEXIST in that case.
224  			 */
225  			if (nr == -ENOSPC)
226  				nr = -EEXIST;
227  		} else {
228  			int pid_min = 1;
229  			/*
230  			 * init really needs pid 1, but after reaching the
231  			 * maximum wrap back to RESERVED_PIDS
232  			 */
233  			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
234  				pid_min = RESERVED_PIDS;
235  
236  			/*
237  			 * Store a null pointer so find_pid_ns does not find
238  			 * a partially initialized PID (see below).
239  			 */
240  			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
241  					      pid_max, GFP_ATOMIC);
242  		}
243  		spin_unlock_irq(&pidmap_lock);
244  		idr_preload_end();
245  
246  		if (nr < 0) {
247  			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
248  			goto out_free;
249  		}
250  
251  		pid->numbers[i].nr = nr;
252  		pid->numbers[i].ns = tmp;
253  		tmp = tmp->parent;
254  	}
255  
256  	/*
257  	 * ENOMEM is not the most obvious choice especially for the case
258  	 * where the child subreaper has already exited and the pid
259  	 * namespace denies the creation of any new processes. But ENOMEM
260  	 * is what we have exposed to userspace for a long time and it is
261  	 * documented behavior for pid namespaces. So we can't easily
262  	 * change it even if there were an error code better suited.
263  	 */
264  	retval = -ENOMEM;
265  
266  	get_pid_ns(ns);
267  	refcount_set(&pid->count, 1);
268  	spin_lock_init(&pid->lock);
269  	for (type = 0; type < PIDTYPE_MAX; ++type)
270  		INIT_HLIST_HEAD(&pid->tasks[type]);
271  
272  	init_waitqueue_head(&pid->wait_pidfd);
273  	INIT_HLIST_HEAD(&pid->inodes);
274  
275  	upid = pid->numbers + ns->level;
276  	spin_lock_irq(&pidmap_lock);
277  	if (!(ns->pid_allocated & PIDNS_ADDING))
278  		goto out_unlock;
279  	pid->stashed = NULL;
280  	pid->ino = ++pidfs_ino;
281  	for ( ; upid >= pid->numbers; --upid) {
282  		/* Make the PID visible to find_pid_ns. */
283  		idr_replace(&upid->ns->idr, pid, upid->nr);
284  		upid->ns->pid_allocated++;
285  	}
286  	spin_unlock_irq(&pidmap_lock);
287  
288  	return pid;
289  
290  out_unlock:
291  	spin_unlock_irq(&pidmap_lock);
292  	put_pid_ns(ns);
293  
294  out_free:
295  	spin_lock_irq(&pidmap_lock);
296  	while (++i <= ns->level) {
297  		upid = pid->numbers + i;
298  		idr_remove(&upid->ns->idr, upid->nr);
299  	}
300  
301  	/* On failure to allocate the first pid, reset the state */
302  	if (ns->pid_allocated == PIDNS_ADDING)
303  		idr_set_cursor(&ns->idr, 0);
304  
305  	spin_unlock_irq(&pidmap_lock);
306  
307  	kmem_cache_free(ns->pid_cachep, pid);
308  	return ERR_PTR(retval);
309  }
310  
disable_pid_allocation(struct pid_namespace * ns)311  void disable_pid_allocation(struct pid_namespace *ns)
312  {
313  	spin_lock_irq(&pidmap_lock);
314  	ns->pid_allocated &= ~PIDNS_ADDING;
315  	spin_unlock_irq(&pidmap_lock);
316  }
317  
find_pid_ns(int nr,struct pid_namespace * ns)318  struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
319  {
320  	return idr_find(&ns->idr, nr);
321  }
322  EXPORT_SYMBOL_GPL(find_pid_ns);
323  
find_vpid(int nr)324  struct pid *find_vpid(int nr)
325  {
326  	return find_pid_ns(nr, task_active_pid_ns(current));
327  }
328  EXPORT_SYMBOL_GPL(find_vpid);
329  
task_pid_ptr(struct task_struct * task,enum pid_type type)330  static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
331  {
332  	return (type == PIDTYPE_PID) ?
333  		&task->thread_pid :
334  		&task->signal->pids[type];
335  }
336  
337  /*
338   * attach_pid() must be called with the tasklist_lock write-held.
339   */
attach_pid(struct task_struct * task,enum pid_type type)340  void attach_pid(struct task_struct *task, enum pid_type type)
341  {
342  	struct pid *pid = *task_pid_ptr(task, type);
343  	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
344  }
345  
__change_pid(struct task_struct * task,enum pid_type type,struct pid * new)346  static void __change_pid(struct task_struct *task, enum pid_type type,
347  			struct pid *new)
348  {
349  	struct pid **pid_ptr = task_pid_ptr(task, type);
350  	struct pid *pid;
351  	int tmp;
352  
353  	pid = *pid_ptr;
354  
355  	hlist_del_rcu(&task->pid_links[type]);
356  	*pid_ptr = new;
357  
358  	if (type == PIDTYPE_PID) {
359  		WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
360  		wake_up_all(&pid->wait_pidfd);
361  	}
362  
363  	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364  		if (pid_has_task(pid, tmp))
365  			return;
366  
367  	free_pid(pid);
368  }
369  
detach_pid(struct task_struct * task,enum pid_type type)370  void detach_pid(struct task_struct *task, enum pid_type type)
371  {
372  	__change_pid(task, type, NULL);
373  }
374  
change_pid(struct task_struct * task,enum pid_type type,struct pid * pid)375  void change_pid(struct task_struct *task, enum pid_type type,
376  		struct pid *pid)
377  {
378  	__change_pid(task, type, pid);
379  	attach_pid(task, type);
380  }
381  
exchange_tids(struct task_struct * left,struct task_struct * right)382  void exchange_tids(struct task_struct *left, struct task_struct *right)
383  {
384  	struct pid *pid1 = left->thread_pid;
385  	struct pid *pid2 = right->thread_pid;
386  	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
387  	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
388  
389  	/* Swap the single entry tid lists */
390  	hlists_swap_heads_rcu(head1, head2);
391  
392  	/* Swap the per task_struct pid */
393  	rcu_assign_pointer(left->thread_pid, pid2);
394  	rcu_assign_pointer(right->thread_pid, pid1);
395  
396  	/* Swap the cached value */
397  	WRITE_ONCE(left->pid, pid_nr(pid2));
398  	WRITE_ONCE(right->pid, pid_nr(pid1));
399  }
400  
401  /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)402  void transfer_pid(struct task_struct *old, struct task_struct *new,
403  			   enum pid_type type)
404  {
405  	WARN_ON_ONCE(type == PIDTYPE_PID);
406  	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
407  }
408  
pid_task(struct pid * pid,enum pid_type type)409  struct task_struct *pid_task(struct pid *pid, enum pid_type type)
410  {
411  	struct task_struct *result = NULL;
412  	if (pid) {
413  		struct hlist_node *first;
414  		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
415  					      lockdep_tasklist_lock_is_held());
416  		if (first)
417  			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
418  	}
419  	return result;
420  }
421  EXPORT_SYMBOL(pid_task);
422  
423  /*
424   * Must be called under rcu_read_lock().
425   */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)426  struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
427  {
428  	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
429  			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
430  	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
431  }
432  
find_task_by_vpid(pid_t vnr)433  struct task_struct *find_task_by_vpid(pid_t vnr)
434  {
435  	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
436  }
437  
find_get_task_by_vpid(pid_t nr)438  struct task_struct *find_get_task_by_vpid(pid_t nr)
439  {
440  	struct task_struct *task;
441  
442  	rcu_read_lock();
443  	task = find_task_by_vpid(nr);
444  	if (task)
445  		get_task_struct(task);
446  	rcu_read_unlock();
447  
448  	return task;
449  }
450  
get_task_pid(struct task_struct * task,enum pid_type type)451  struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
452  {
453  	struct pid *pid;
454  	rcu_read_lock();
455  	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
456  	rcu_read_unlock();
457  	return pid;
458  }
459  EXPORT_SYMBOL_GPL(get_task_pid);
460  
get_pid_task(struct pid * pid,enum pid_type type)461  struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
462  {
463  	struct task_struct *result;
464  	rcu_read_lock();
465  	result = pid_task(pid, type);
466  	if (result)
467  		get_task_struct(result);
468  	rcu_read_unlock();
469  	return result;
470  }
471  EXPORT_SYMBOL_GPL(get_pid_task);
472  
find_get_pid(pid_t nr)473  struct pid *find_get_pid(pid_t nr)
474  {
475  	struct pid *pid;
476  
477  	rcu_read_lock();
478  	pid = get_pid(find_vpid(nr));
479  	rcu_read_unlock();
480  
481  	return pid;
482  }
483  EXPORT_SYMBOL_GPL(find_get_pid);
484  
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)485  pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
486  {
487  	struct upid *upid;
488  	pid_t nr = 0;
489  
490  	if (pid && ns->level <= pid->level) {
491  		upid = &pid->numbers[ns->level];
492  		if (upid->ns == ns)
493  			nr = upid->nr;
494  	}
495  	return nr;
496  }
497  EXPORT_SYMBOL_GPL(pid_nr_ns);
498  
pid_vnr(struct pid * pid)499  pid_t pid_vnr(struct pid *pid)
500  {
501  	return pid_nr_ns(pid, task_active_pid_ns(current));
502  }
503  EXPORT_SYMBOL_GPL(pid_vnr);
504  
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)505  pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
506  			struct pid_namespace *ns)
507  {
508  	pid_t nr = 0;
509  
510  	rcu_read_lock();
511  	if (!ns)
512  		ns = task_active_pid_ns(current);
513  	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
514  	rcu_read_unlock();
515  
516  	return nr;
517  }
518  EXPORT_SYMBOL(__task_pid_nr_ns);
519  
task_active_pid_ns(struct task_struct * tsk)520  struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
521  {
522  	return ns_of_pid(task_pid(tsk));
523  }
524  EXPORT_SYMBOL_GPL(task_active_pid_ns);
525  
526  /*
527   * Used by proc to find the first pid that is greater than or equal to nr.
528   *
529   * If there is a pid at nr this function is exactly the same as find_pid_ns.
530   */
find_ge_pid(int nr,struct pid_namespace * ns)531  struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
532  {
533  	return idr_get_next(&ns->idr, &nr);
534  }
535  EXPORT_SYMBOL_GPL(find_ge_pid);
536  
pidfd_get_pid(unsigned int fd,unsigned int * flags)537  struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
538  {
539  	struct fd f;
540  	struct pid *pid;
541  
542  	f = fdget(fd);
543  	if (!fd_file(f))
544  		return ERR_PTR(-EBADF);
545  
546  	pid = pidfd_pid(fd_file(f));
547  	if (!IS_ERR(pid)) {
548  		get_pid(pid);
549  		*flags = fd_file(f)->f_flags;
550  	}
551  
552  	fdput(f);
553  	return pid;
554  }
555  
556  /**
557   * pidfd_get_task() - Get the task associated with a pidfd
558   *
559   * @pidfd: pidfd for which to get the task
560   * @flags: flags associated with this pidfd
561   *
562   * Return the task associated with @pidfd. The function takes a reference on
563   * the returned task. The caller is responsible for releasing that reference.
564   *
565   * Return: On success, the task_struct associated with the pidfd.
566   *	   On error, a negative errno number will be returned.
567   */
pidfd_get_task(int pidfd,unsigned int * flags)568  struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
569  {
570  	unsigned int f_flags;
571  	struct pid *pid;
572  	struct task_struct *task;
573  
574  	pid = pidfd_get_pid(pidfd, &f_flags);
575  	if (IS_ERR(pid))
576  		return ERR_CAST(pid);
577  
578  	task = get_pid_task(pid, PIDTYPE_TGID);
579  	put_pid(pid);
580  	if (!task)
581  		return ERR_PTR(-ESRCH);
582  
583  	*flags = f_flags;
584  	return task;
585  }
586  
587  /**
588   * pidfd_create() - Create a new pid file descriptor.
589   *
590   * @pid:   struct pid that the pidfd will reference
591   * @flags: flags to pass
592   *
593   * This creates a new pid file descriptor with the O_CLOEXEC flag set.
594   *
595   * Note, that this function can only be called after the fd table has
596   * been unshared to avoid leaking the pidfd to the new process.
597   *
598   * This symbol should not be explicitly exported to loadable modules.
599   *
600   * Return: On success, a cloexec pidfd is returned.
601   *         On error, a negative errno number will be returned.
602   */
pidfd_create(struct pid * pid,unsigned int flags)603  static int pidfd_create(struct pid *pid, unsigned int flags)
604  {
605  	int pidfd;
606  	struct file *pidfd_file;
607  
608  	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
609  	if (pidfd < 0)
610  		return pidfd;
611  
612  	fd_install(pidfd, pidfd_file);
613  	return pidfd;
614  }
615  
616  /**
617   * sys_pidfd_open() - Open new pid file descriptor.
618   *
619   * @pid:   pid for which to retrieve a pidfd
620   * @flags: flags to pass
621   *
622   * This creates a new pid file descriptor with the O_CLOEXEC flag set for
623   * the task identified by @pid. Without PIDFD_THREAD flag the target task
624   * must be a thread-group leader.
625   *
626   * Return: On success, a cloexec pidfd is returned.
627   *         On error, a negative errno number will be returned.
628   */
SYSCALL_DEFINE2(pidfd_open,pid_t,pid,unsigned int,flags)629  SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
630  {
631  	int fd;
632  	struct pid *p;
633  
634  	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
635  		return -EINVAL;
636  
637  	if (pid <= 0)
638  		return -EINVAL;
639  
640  	p = find_get_pid(pid);
641  	if (!p)
642  		return -ESRCH;
643  
644  	fd = pidfd_create(p, flags);
645  
646  	put_pid(p);
647  	return fd;
648  }
649  
pid_idr_init(void)650  void __init pid_idr_init(void)
651  {
652  	/* Verify no one has done anything silly: */
653  	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
654  
655  	/* bump default and minimum pid_max based on number of cpus */
656  	pid_max = min(pid_max_max, max_t(int, pid_max,
657  				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
658  	pid_max_min = max_t(int, pid_max_min,
659  				PIDS_PER_CPU_MIN * num_possible_cpus());
660  	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
661  
662  	idr_init(&init_pid_ns.idr);
663  
664  	init_pid_ns.pid_cachep = kmem_cache_create("pid",
665  			struct_size_t(struct pid, numbers, 1),
666  			__alignof__(struct pid),
667  			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
668  			NULL);
669  }
670  
__pidfd_fget(struct task_struct * task,int fd)671  static struct file *__pidfd_fget(struct task_struct *task, int fd)
672  {
673  	struct file *file;
674  	int ret;
675  
676  	ret = down_read_killable(&task->signal->exec_update_lock);
677  	if (ret)
678  		return ERR_PTR(ret);
679  
680  	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
681  		file = fget_task(task, fd);
682  	else
683  		file = ERR_PTR(-EPERM);
684  
685  	up_read(&task->signal->exec_update_lock);
686  
687  	if (!file) {
688  		/*
689  		 * It is possible that the target thread is exiting; it can be
690  		 * either:
691  		 * 1. before exit_signals(), which gives a real fd
692  		 * 2. before exit_files() takes the task_lock() gives a real fd
693  		 * 3. after exit_files() releases task_lock(), ->files is NULL;
694  		 *    this has PF_EXITING, since it was set in exit_signals(),
695  		 *    __pidfd_fget() returns EBADF.
696  		 * In case 3 we get EBADF, but that really means ESRCH, since
697  		 * the task is currently exiting and has freed its files
698  		 * struct, so we fix it up.
699  		 */
700  		if (task->flags & PF_EXITING)
701  			file = ERR_PTR(-ESRCH);
702  		else
703  			file = ERR_PTR(-EBADF);
704  	}
705  
706  	return file;
707  }
708  
pidfd_getfd(struct pid * pid,int fd)709  static int pidfd_getfd(struct pid *pid, int fd)
710  {
711  	struct task_struct *task;
712  	struct file *file;
713  	int ret;
714  
715  	task = get_pid_task(pid, PIDTYPE_PID);
716  	if (!task)
717  		return -ESRCH;
718  
719  	file = __pidfd_fget(task, fd);
720  	put_task_struct(task);
721  	if (IS_ERR(file))
722  		return PTR_ERR(file);
723  
724  	ret = receive_fd(file, NULL, O_CLOEXEC);
725  	fput(file);
726  
727  	return ret;
728  }
729  
730  /**
731   * sys_pidfd_getfd() - Get a file descriptor from another process
732   *
733   * @pidfd:	the pidfd file descriptor of the process
734   * @fd:		the file descriptor number to get
735   * @flags:	flags on how to get the fd (reserved)
736   *
737   * This syscall gets a copy of a file descriptor from another process
738   * based on the pidfd, and file descriptor number. It requires that
739   * the calling process has the ability to ptrace the process represented
740   * by the pidfd. The process which is having its file descriptor copied
741   * is otherwise unaffected.
742   *
743   * Return: On success, a cloexec file descriptor is returned.
744   *         On error, a negative errno number will be returned.
745   */
SYSCALL_DEFINE3(pidfd_getfd,int,pidfd,int,fd,unsigned int,flags)746  SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
747  		unsigned int, flags)
748  {
749  	struct pid *pid;
750  	struct fd f;
751  	int ret;
752  
753  	/* flags is currently unused - make sure it's unset */
754  	if (flags)
755  		return -EINVAL;
756  
757  	f = fdget(pidfd);
758  	if (!fd_file(f))
759  		return -EBADF;
760  
761  	pid = pidfd_pid(fd_file(f));
762  	if (IS_ERR(pid))
763  		ret = PTR_ERR(pid);
764  	else
765  		ret = pidfd_getfd(pid, fd);
766  
767  	fdput(f);
768  	return ret;
769  }
770