1  /* SPDX-License-Identifier: GPL-2.0 */
2  /* Copyright (c) 2018, Intel Corporation. */
3  
4  #ifndef _ICE_TXRX_H_
5  #define _ICE_TXRX_H_
6  
7  #include "ice_type.h"
8  
9  #define ICE_DFLT_IRQ_WORK	256
10  #define ICE_RXBUF_3072		3072
11  #define ICE_RXBUF_2048		2048
12  #define ICE_RXBUF_1664		1664
13  #define ICE_RXBUF_1536		1536
14  #define ICE_MAX_CHAINED_RX_BUFS	5
15  #define ICE_MAX_BUF_TXD		8
16  #define ICE_MIN_TX_LEN		17
17  #define ICE_MAX_FRAME_LEGACY_RX 8320
18  
19  /* The size limit for a transmit buffer in a descriptor is (16K - 1).
20   * In order to align with the read requests we will align the value to
21   * the nearest 4K which represents our maximum read request size.
22   */
23  #define ICE_MAX_READ_REQ_SIZE	4096
24  #define ICE_MAX_DATA_PER_TXD	(16 * 1024 - 1)
25  #define ICE_MAX_DATA_PER_TXD_ALIGNED \
26  	(~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
27  
28  #define ICE_MAX_TXQ_PER_TXQG	128
29  
30  /* Attempt to maximize the headroom available for incoming frames. We use a 2K
31   * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
32   * This leaves us with 512 bytes of room.  From that we need to deduct the
33   * space needed for the shared info and the padding needed to IP align the
34   * frame.
35   *
36   * Note: For cache line sizes 256 or larger this value is going to end
37   *	 up negative.  In these cases we should fall back to the legacy
38   *	 receive path.
39   */
40  #if (PAGE_SIZE < 8192)
41  #define ICE_2K_TOO_SMALL_WITH_PADDING \
42  	((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
43  			SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
44  
45  /**
46   * ice_compute_pad - compute the padding
47   * @rx_buf_len: buffer length
48   *
49   * Figure out the size of half page based on given buffer length and
50   * then subtract the skb_shared_info followed by subtraction of the
51   * actual buffer length; this in turn results in the actual space that
52   * is left for padding usage
53   */
ice_compute_pad(int rx_buf_len)54  static inline int ice_compute_pad(int rx_buf_len)
55  {
56  	int half_page_size;
57  
58  	half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
59  	return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
60  }
61  
62  /**
63   * ice_skb_pad - determine the padding that we can supply
64   *
65   * Figure out the right Rx buffer size and based on that calculate the
66   * padding
67   */
ice_skb_pad(void)68  static inline int ice_skb_pad(void)
69  {
70  	int rx_buf_len;
71  
72  	/* If a 2K buffer cannot handle a standard Ethernet frame then
73  	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
74  	 *
75  	 * For a 3K buffer we need to add enough padding to allow for
76  	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
77  	 * cache-line alignment.
78  	 */
79  	if (ICE_2K_TOO_SMALL_WITH_PADDING)
80  		rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
81  	else
82  		rx_buf_len = ICE_RXBUF_1536;
83  
84  	/* if needed make room for NET_IP_ALIGN */
85  	rx_buf_len -= NET_IP_ALIGN;
86  
87  	return ice_compute_pad(rx_buf_len);
88  }
89  
90  #define ICE_SKB_PAD ice_skb_pad()
91  #else
92  #define ICE_2K_TOO_SMALL_WITH_PADDING false
93  #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
94  #endif
95  
96  /* We are assuming that the cache line is always 64 Bytes here for ice.
97   * In order to make sure that is a correct assumption there is a check in probe
98   * to print a warning if the read from GLPCI_CNF2 tells us that the cache line
99   * size is 128 bytes. We do it this way because we do not want to read the
100   * GLPCI_CNF2 register or a variable containing the value on every pass through
101   * the Tx path.
102   */
103  #define ICE_CACHE_LINE_BYTES		64
104  #define ICE_DESCS_PER_CACHE_LINE	(ICE_CACHE_LINE_BYTES / \
105  					 sizeof(struct ice_tx_desc))
106  #define ICE_DESCS_FOR_CTX_DESC		1
107  #define ICE_DESCS_FOR_SKB_DATA_PTR	1
108  /* Tx descriptors needed, worst case */
109  #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
110  		     ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
111  #define ICE_DESC_UNUSED(R)	\
112  	(u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
113  	      (R)->next_to_clean - (R)->next_to_use - 1)
114  
115  #define ICE_RX_DESC_UNUSED(R)	\
116  	((((R)->first_desc > (R)->next_to_use) ? 0 : (R)->count) + \
117  	      (R)->first_desc - (R)->next_to_use - 1)
118  
119  #define ICE_RING_QUARTER(R) ((R)->count >> 2)
120  
121  #define ICE_TX_FLAGS_TSO	BIT(0)
122  #define ICE_TX_FLAGS_HW_VLAN	BIT(1)
123  #define ICE_TX_FLAGS_SW_VLAN	BIT(2)
124  /* Free, was ICE_TX_FLAGS_DUMMY_PKT */
125  #define ICE_TX_FLAGS_TSYN	BIT(4)
126  #define ICE_TX_FLAGS_IPV4	BIT(5)
127  #define ICE_TX_FLAGS_IPV6	BIT(6)
128  #define ICE_TX_FLAGS_TUNNEL	BIT(7)
129  #define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN	BIT(8)
130  
131  #define ICE_XDP_PASS		0
132  #define ICE_XDP_CONSUMED	BIT(0)
133  #define ICE_XDP_TX		BIT(1)
134  #define ICE_XDP_REDIR		BIT(2)
135  #define ICE_XDP_EXIT		BIT(3)
136  #define ICE_SKB_CONSUMED	ICE_XDP_CONSUMED
137  
138  #define ICE_RX_DMA_ATTR \
139  	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
140  
141  #define ICE_ETH_PKT_HDR_PAD	(ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
142  
143  #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
144  
145  /**
146   * enum ice_tx_buf_type - type of &ice_tx_buf to act on Tx completion
147   * @ICE_TX_BUF_EMPTY: unused OR XSk frame, no action required
148   * @ICE_TX_BUF_DUMMY: dummy Flow Director packet, unmap and kfree()
149   * @ICE_TX_BUF_FRAG: mapped skb OR &xdp_buff frag, only unmap DMA
150   * @ICE_TX_BUF_SKB: &sk_buff, unmap and consume_skb(), update stats
151   * @ICE_TX_BUF_XDP_TX: &xdp_buff, unmap and page_frag_free(), stats
152   * @ICE_TX_BUF_XDP_XMIT: &xdp_frame, unmap and xdp_return_frame(), stats
153   * @ICE_TX_BUF_XSK_TX: &xdp_buff on XSk queue, xsk_buff_free(), stats
154   */
155  enum ice_tx_buf_type {
156  	ICE_TX_BUF_EMPTY	= 0U,
157  	ICE_TX_BUF_DUMMY,
158  	ICE_TX_BUF_FRAG,
159  	ICE_TX_BUF_SKB,
160  	ICE_TX_BUF_XDP_TX,
161  	ICE_TX_BUF_XDP_XMIT,
162  	ICE_TX_BUF_XSK_TX,
163  };
164  
165  struct ice_tx_buf {
166  	union {
167  		struct ice_tx_desc *next_to_watch;
168  		u32 rs_idx;
169  	};
170  	union {
171  		void *raw_buf;		/* used for XDP_TX and FDir rules */
172  		struct sk_buff *skb;	/* used for .ndo_start_xmit() */
173  		struct xdp_frame *xdpf;	/* used for .ndo_xdp_xmit() */
174  		struct xdp_buff *xdp;	/* used for XDP_TX ZC */
175  	};
176  	unsigned int bytecount;
177  	union {
178  		unsigned int gso_segs;
179  		unsigned int nr_frags;	/* used for mbuf XDP */
180  	};
181  	u32 tx_flags:12;
182  	u32 type:4;			/* &ice_tx_buf_type */
183  	u32 vid:16;
184  	DEFINE_DMA_UNMAP_LEN(len);
185  	DEFINE_DMA_UNMAP_ADDR(dma);
186  };
187  
188  struct ice_tx_offload_params {
189  	u64 cd_qw1;
190  	struct ice_tx_ring *tx_ring;
191  	u32 td_cmd;
192  	u32 td_offset;
193  	u32 td_l2tag1;
194  	u32 cd_tunnel_params;
195  	u16 cd_l2tag2;
196  	u8 header_len;
197  };
198  
199  struct ice_rx_buf {
200  	dma_addr_t dma;
201  	struct page *page;
202  	unsigned int page_offset;
203  	unsigned int pgcnt;
204  	unsigned int act;
205  	unsigned int pagecnt_bias;
206  };
207  
208  struct ice_q_stats {
209  	u64 pkts;
210  	u64 bytes;
211  };
212  
213  struct ice_txq_stats {
214  	u64 restart_q;
215  	u64 tx_busy;
216  	u64 tx_linearize;
217  	int prev_pkt; /* negative if no pending Tx descriptors */
218  };
219  
220  struct ice_rxq_stats {
221  	u64 non_eop_descs;
222  	u64 alloc_page_failed;
223  	u64 alloc_buf_failed;
224  };
225  
226  struct ice_ring_stats {
227  	struct rcu_head rcu;	/* to avoid race on free */
228  	struct ice_q_stats stats;
229  	struct u64_stats_sync syncp;
230  	union {
231  		struct ice_txq_stats tx_stats;
232  		struct ice_rxq_stats rx_stats;
233  	};
234  };
235  
236  enum ice_ring_state_t {
237  	ICE_TX_XPS_INIT_DONE,
238  	ICE_TX_NBITS,
239  };
240  
241  /* this enum matches hardware bits and is meant to be used by DYN_CTLN
242   * registers and QINT registers or more generally anywhere in the manual
243   * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
244   * register but instead is a special value meaning "don't update" ITR0/1/2.
245   */
246  enum ice_dyn_idx_t {
247  	ICE_IDX_ITR0 = 0,
248  	ICE_IDX_ITR1 = 1,
249  	ICE_IDX_ITR2 = 2,
250  	ICE_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
251  };
252  
253  /* Header split modes defined by DTYPE field of Rx RLAN context */
254  enum ice_rx_dtype {
255  	ICE_RX_DTYPE_NO_SPLIT		= 0,
256  	ICE_RX_DTYPE_HEADER_SPLIT	= 1,
257  	ICE_RX_DTYPE_SPLIT_ALWAYS	= 2,
258  };
259  
260  struct ice_pkt_ctx {
261  	u64 cached_phctime;
262  	__be16 vlan_proto;
263  };
264  
265  struct ice_xdp_buff {
266  	struct xdp_buff xdp_buff;
267  	const union ice_32b_rx_flex_desc *eop_desc;
268  	const struct ice_pkt_ctx *pkt_ctx;
269  };
270  
271  /* Required for compatibility with xdp_buffs from xsk_pool */
272  static_assert(offsetof(struct ice_xdp_buff, xdp_buff) == 0);
273  
274  /* indices into GLINT_ITR registers */
275  #define ICE_RX_ITR	ICE_IDX_ITR0
276  #define ICE_TX_ITR	ICE_IDX_ITR1
277  #define ICE_ITR_8K	124
278  #define ICE_ITR_20K	50
279  #define ICE_ITR_MAX	8160 /* 0x1FE0 */
280  #define ICE_DFLT_TX_ITR	ICE_ITR_20K
281  #define ICE_DFLT_RX_ITR	ICE_ITR_20K
282  enum ice_dynamic_itr {
283  	ITR_STATIC = 0,
284  	ITR_DYNAMIC = 1
285  };
286  
287  #define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC)
288  #define ICE_ITR_GRAN_S		1	/* ITR granularity is always 2us */
289  #define ICE_ITR_GRAN_US		BIT(ICE_ITR_GRAN_S)
290  #define ICE_ITR_MASK		0x1FFE	/* ITR register value alignment mask */
291  #define ITR_REG_ALIGN(setting)	((setting) & ICE_ITR_MASK)
292  
293  #define ICE_DFLT_INTRL	0
294  #define ICE_MAX_INTRL	236
295  
296  #define ICE_IN_WB_ON_ITR_MODE	255
297  /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
298   * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
299   * set the write-back latency to the usecs passed in.
300   */
301  #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx)	\
302  	((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
303  	  GLINT_DYN_CTL_INTERVAL_M) | \
304  	 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
305  	  GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
306  	 GLINT_DYN_CTL_WB_ON_ITR_M)
307  
308  /* Legacy or Advanced Mode Queue */
309  #define ICE_TX_ADVANCED	0
310  #define ICE_TX_LEGACY	1
311  
312  /* descriptor ring, associated with a VSI */
313  struct ice_rx_ring {
314  	/* CL1 - 1st cacheline starts here */
315  	void *desc;			/* Descriptor ring memory */
316  	struct device *dev;		/* Used for DMA mapping */
317  	struct net_device *netdev;	/* netdev ring maps to */
318  	struct ice_vsi *vsi;		/* Backreference to associated VSI */
319  	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
320  	u8 __iomem *tail;
321  	u16 q_index;			/* Queue number of ring */
322  
323  	u16 count;			/* Number of descriptors */
324  	u16 reg_idx;			/* HW register index of the ring */
325  	u16 next_to_alloc;
326  
327  	union {
328  		struct ice_rx_buf *rx_buf;
329  		struct xdp_buff **xdp_buf;
330  	};
331  	/* CL2 - 2nd cacheline starts here */
332  	union {
333  		struct ice_xdp_buff xdp_ext;
334  		struct xdp_buff xdp;
335  	};
336  	/* CL3 - 3rd cacheline starts here */
337  	union {
338  		struct ice_pkt_ctx pkt_ctx;
339  		struct {
340  			u64 cached_phctime;
341  			__be16 vlan_proto;
342  		};
343  	};
344  	struct bpf_prog *xdp_prog;
345  	u16 rx_offset;
346  
347  	/* used in interrupt processing */
348  	u16 next_to_use;
349  	u16 next_to_clean;
350  	u16 first_desc;
351  
352  	/* stats structs */
353  	struct ice_ring_stats *ring_stats;
354  
355  	struct rcu_head rcu;		/* to avoid race on free */
356  	/* CL4 - 4th cacheline starts here */
357  	struct ice_channel *ch;
358  	struct ice_tx_ring *xdp_ring;
359  	struct ice_rx_ring *next;	/* pointer to next ring in q_vector */
360  	struct xsk_buff_pool *xsk_pool;
361  	u32 nr_frags;
362  	dma_addr_t dma;			/* physical address of ring */
363  	u16 rx_buf_len;
364  	u8 dcb_tc;			/* Traffic class of ring */
365  	u8 ptp_rx;
366  #define ICE_RX_FLAGS_RING_BUILD_SKB	BIT(1)
367  #define ICE_RX_FLAGS_CRC_STRIP_DIS	BIT(2)
368  #define ICE_RX_FLAGS_MULTIDEV		BIT(3)
369  	u8 flags;
370  	/* CL5 - 5th cacheline starts here */
371  	struct xdp_rxq_info xdp_rxq;
372  } ____cacheline_internodealigned_in_smp;
373  
374  struct ice_tx_ring {
375  	/* CL1 - 1st cacheline starts here */
376  	struct ice_tx_ring *next;	/* pointer to next ring in q_vector */
377  	void *desc;			/* Descriptor ring memory */
378  	struct device *dev;		/* Used for DMA mapping */
379  	u8 __iomem *tail;
380  	struct ice_tx_buf *tx_buf;
381  	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
382  	struct net_device *netdev;	/* netdev ring maps to */
383  	struct ice_vsi *vsi;		/* Backreference to associated VSI */
384  	/* CL2 - 2nd cacheline starts here */
385  	dma_addr_t dma;			/* physical address of ring */
386  	struct xsk_buff_pool *xsk_pool;
387  	u16 next_to_use;
388  	u16 next_to_clean;
389  	u16 q_handle;			/* Queue handle per TC */
390  	u16 reg_idx;			/* HW register index of the ring */
391  	u16 count;			/* Number of descriptors */
392  	u16 q_index;			/* Queue number of ring */
393  	u16 xdp_tx_active;
394  	/* stats structs */
395  	struct ice_ring_stats *ring_stats;
396  	/* CL3 - 3rd cacheline starts here */
397  	struct rcu_head rcu;		/* to avoid race on free */
398  	DECLARE_BITMAP(xps_state, ICE_TX_NBITS);	/* XPS Config State */
399  	struct ice_channel *ch;
400  	struct ice_ptp_tx *tx_tstamps;
401  	spinlock_t tx_lock;
402  	u32 txq_teid;			/* Added Tx queue TEID */
403  	/* CL4 - 4th cacheline starts here */
404  #define ICE_TX_FLAGS_RING_XDP		BIT(0)
405  #define ICE_TX_FLAGS_RING_VLAN_L2TAG1	BIT(1)
406  #define ICE_TX_FLAGS_RING_VLAN_L2TAG2	BIT(2)
407  	u8 flags;
408  	u8 dcb_tc;			/* Traffic class of ring */
409  } ____cacheline_internodealigned_in_smp;
410  
ice_ring_uses_build_skb(struct ice_rx_ring * ring)411  static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring)
412  {
413  	return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
414  }
415  
ice_set_ring_build_skb_ena(struct ice_rx_ring * ring)416  static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring)
417  {
418  	ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
419  }
420  
ice_clear_ring_build_skb_ena(struct ice_rx_ring * ring)421  static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring)
422  {
423  	ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
424  }
425  
ice_ring_ch_enabled(struct ice_tx_ring * ring)426  static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring)
427  {
428  	return !!ring->ch;
429  }
430  
ice_ring_is_xdp(struct ice_tx_ring * ring)431  static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring)
432  {
433  	return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
434  }
435  
436  enum ice_container_type {
437  	ICE_RX_CONTAINER,
438  	ICE_TX_CONTAINER,
439  };
440  
441  struct ice_ring_container {
442  	/* head of linked-list of rings */
443  	union {
444  		struct ice_rx_ring *rx_ring;
445  		struct ice_tx_ring *tx_ring;
446  	};
447  	struct dim dim;		/* data for net_dim algorithm */
448  	u16 itr_idx;		/* index in the interrupt vector */
449  	/* this matches the maximum number of ITR bits, but in usec
450  	 * values, so it is shifted left one bit (bit zero is ignored)
451  	 */
452  	union {
453  		struct {
454  			u16 itr_setting:13;
455  			u16 itr_reserved:2;
456  			u16 itr_mode:1;
457  		};
458  		u16 itr_settings;
459  	};
460  	enum ice_container_type type;
461  };
462  
463  struct ice_coalesce_stored {
464  	u16 itr_tx;
465  	u16 itr_rx;
466  	u8 intrl;
467  	u8 tx_valid;
468  	u8 rx_valid;
469  };
470  
471  /* iterator for handling rings in ring container */
472  #define ice_for_each_rx_ring(pos, head) \
473  	for (pos = (head).rx_ring; pos; pos = pos->next)
474  
475  #define ice_for_each_tx_ring(pos, head) \
476  	for (pos = (head).tx_ring; pos; pos = pos->next)
477  
ice_rx_pg_order(struct ice_rx_ring * ring)478  static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring)
479  {
480  #if (PAGE_SIZE < 8192)
481  	if (ring->rx_buf_len > (PAGE_SIZE / 2))
482  		return 1;
483  #endif
484  	return 0;
485  }
486  
487  #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
488  
489  union ice_32b_rx_flex_desc;
490  
491  bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, unsigned int cleaned_count);
492  netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
493  u16
494  ice_select_queue(struct net_device *dev, struct sk_buff *skb,
495  		 struct net_device *sb_dev);
496  void ice_clean_tx_ring(struct ice_tx_ring *tx_ring);
497  void ice_clean_rx_ring(struct ice_rx_ring *rx_ring);
498  int ice_setup_tx_ring(struct ice_tx_ring *tx_ring);
499  int ice_setup_rx_ring(struct ice_rx_ring *rx_ring);
500  void ice_free_tx_ring(struct ice_tx_ring *tx_ring);
501  void ice_free_rx_ring(struct ice_rx_ring *rx_ring);
502  int ice_napi_poll(struct napi_struct *napi, int budget);
503  int
504  ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
505  		   u8 *raw_packet);
506  int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget);
507  void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring);
508  #endif /* _ICE_TXRX_H_ */
509