1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sl28cpld PWM driver
4  *
5  * Copyright (c) 2020 Michael Walle <michael@walle.cc>
6  *
7  * There is no public datasheet available for this PWM core. But it is easy
8  * enough to be briefly explained. It consists of one 8-bit counter. The PWM
9  * supports four distinct frequencies by selecting when to reset the counter.
10  * With the prescaler setting you can select which bit of the counter is used
11  * to reset it. This implies that the higher the frequency the less remaining
12  * bits are available for the actual counter.
13  *
14  * Let cnt[7:0] be the counter, clocked at 32kHz:
15  * +-----------+--------+--------------+-----------+---------------+
16  * | prescaler |  reset | counter bits | frequency | period length |
17  * +-----------+--------+--------------+-----------+---------------+
18  * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
19  * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
20  * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
21  * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
22  * +-----------+--------+--------------+-----------+---------------+
23  *
24  * Limitations:
25  * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
26  * - The hardware cannot atomically set the prescaler and the counter value,
27  *   which might lead to glitches and inconsistent states if a write fails.
28  * - The counter is not reset if you switch the prescaler which leads
29  *   to glitches, too.
30  * - The duty cycle will switch immediately and not after a complete cycle.
31  * - Depending on the actual implementation, disabling the PWM might have
32  *   side effects. For example, if the output pin is shared with a GPIO pin
33  *   it will automatically switch back to GPIO mode.
34  */
35 
36 #include <linux/bitfield.h>
37 #include <linux/kernel.h>
38 #include <linux/mod_devicetable.h>
39 #include <linux/module.h>
40 #include <linux/platform_device.h>
41 #include <linux/property.h>
42 #include <linux/pwm.h>
43 #include <linux/regmap.h>
44 
45 /*
46  * PWM timer block registers.
47  */
48 #define SL28CPLD_PWM_CTRL			0x00
49 #define   SL28CPLD_PWM_CTRL_ENABLE		BIT(7)
50 #define   SL28CPLD_PWM_CTRL_PRESCALER_MASK	GENMASK(1, 0)
51 #define SL28CPLD_PWM_CYCLE			0x01
52 #define   SL28CPLD_PWM_CYCLE_MAX		GENMASK(6, 0)
53 
54 #define SL28CPLD_PWM_CLK			32000 /* 32 kHz */
55 #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)	(1 << (7 - (prescaler)))
56 #define SL28CPLD_PWM_PERIOD(prescaler) \
57 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
58 
59 /*
60  * We calculate the duty cycle like this:
61  *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
62  *
63  * With
64  *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
65  *   max_duty_cycle = 1 << (7 - prescaler)
66  * this then simplifies to:
67  *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
68  *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
69  *
70  * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
71  * precision by doing the divison first.
72  */
73 #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
74 	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
75 #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
76 	(DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
77 
78 #define sl28cpld_pwm_read(priv, reg, val) \
79 	regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
80 #define sl28cpld_pwm_write(priv, reg, val) \
81 	regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
82 
83 struct sl28cpld_pwm {
84 	struct regmap *regmap;
85 	u32 offset;
86 };
87 
sl28cpld_pwm_from_chip(struct pwm_chip * chip)88 static inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip)
89 {
90 	return pwmchip_get_drvdata(chip);
91 }
92 
sl28cpld_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)93 static int sl28cpld_pwm_get_state(struct pwm_chip *chip,
94 				  struct pwm_device *pwm,
95 				  struct pwm_state *state)
96 {
97 	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
98 	unsigned int reg;
99 	int prescaler;
100 
101 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, &reg);
102 
103 	state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
104 
105 	prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
106 	state->period = SL28CPLD_PWM_PERIOD(prescaler);
107 
108 	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, &reg);
109 	state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
110 	state->polarity = PWM_POLARITY_NORMAL;
111 
112 	/*
113 	 * Sanitize values for the PWM core. Depending on the prescaler it
114 	 * might happen that we calculate a duty_cycle greater than the actual
115 	 * period. This might happen if someone (e.g. the bootloader) sets an
116 	 * invalid combination of values. The behavior of the hardware is
117 	 * undefined in this case. But we need to report sane values back to
118 	 * the PWM core.
119 	 */
120 	state->duty_cycle = min(state->duty_cycle, state->period);
121 
122 	return 0;
123 }
124 
sl28cpld_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)125 static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
126 			      const struct pwm_state *state)
127 {
128 	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
129 	unsigned int cycle, prescaler;
130 	bool write_duty_cycle_first;
131 	int ret;
132 	u8 ctrl;
133 
134 	/* Polarity inversion is not supported */
135 	if (state->polarity != PWM_POLARITY_NORMAL)
136 		return -EINVAL;
137 
138 	/*
139 	 * Calculate the prescaler. Pick the biggest period that isn't
140 	 * bigger than the requested period.
141 	 */
142 	prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
143 	prescaler = order_base_2(prescaler);
144 
145 	if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
146 		return -ERANGE;
147 
148 	ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
149 	if (state->enabled)
150 		ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
151 
152 	cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
153 	cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
154 
155 	/*
156 	 * Work around the hardware limitation. See also above. Trap 100% duty
157 	 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
158 	 * care about the frequency because its "all-one" in either case.
159 	 *
160 	 * We don't need to check the actual prescaler setting, because only
161 	 * if the prescaler is 0 we can have this particular value.
162 	 */
163 	if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
164 		ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
165 		ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
166 		cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
167 	}
168 
169 	/*
170 	 * To avoid glitches when we switch the prescaler, we have to make sure
171 	 * we have a valid duty cycle for the new mode.
172 	 *
173 	 * Take the current prescaler (or the current period length) into
174 	 * account to decide whether we have to write the duty cycle or the new
175 	 * prescaler first. If the period length is decreasing we have to
176 	 * write the duty cycle first.
177 	 */
178 	write_duty_cycle_first = pwm->state.period > state->period;
179 
180 	if (write_duty_cycle_first) {
181 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
182 		if (ret)
183 			return ret;
184 	}
185 
186 	ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
187 	if (ret)
188 		return ret;
189 
190 	if (!write_duty_cycle_first) {
191 		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
192 		if (ret)
193 			return ret;
194 	}
195 
196 	return 0;
197 }
198 
199 static const struct pwm_ops sl28cpld_pwm_ops = {
200 	.apply = sl28cpld_pwm_apply,
201 	.get_state = sl28cpld_pwm_get_state,
202 };
203 
sl28cpld_pwm_probe(struct platform_device * pdev)204 static int sl28cpld_pwm_probe(struct platform_device *pdev)
205 {
206 	struct sl28cpld_pwm *priv;
207 	struct pwm_chip *chip;
208 	int ret;
209 
210 	if (!pdev->dev.parent) {
211 		dev_err(&pdev->dev, "no parent device\n");
212 		return -ENODEV;
213 	}
214 
215 	chip = devm_pwmchip_alloc(&pdev->dev, 1, sizeof(*priv));
216 	if (IS_ERR(chip))
217 		return PTR_ERR(chip);
218 	priv = sl28cpld_pwm_from_chip(chip);
219 
220 	priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
221 	if (!priv->regmap) {
222 		dev_err(&pdev->dev, "could not get parent regmap\n");
223 		return -ENODEV;
224 	}
225 
226 	ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
227 	if (ret) {
228 		dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
229 			ERR_PTR(ret));
230 		return -EINVAL;
231 	}
232 
233 	/* Initialize the pwm_chip structure */
234 	chip->ops = &sl28cpld_pwm_ops;
235 
236 	ret = devm_pwmchip_add(&pdev->dev, chip);
237 	if (ret) {
238 		dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
239 			ERR_PTR(ret));
240 		return ret;
241 	}
242 
243 	return 0;
244 }
245 
246 static const struct of_device_id sl28cpld_pwm_of_match[] = {
247 	{ .compatible = "kontron,sl28cpld-pwm" },
248 	{}
249 };
250 MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
251 
252 static struct platform_driver sl28cpld_pwm_driver = {
253 	.probe = sl28cpld_pwm_probe,
254 	.driver = {
255 		.name = "sl28cpld-pwm",
256 		.of_match_table = sl28cpld_pwm_of_match,
257 	},
258 };
259 module_platform_driver(sl28cpld_pwm_driver);
260 
261 MODULE_DESCRIPTION("sl28cpld PWM Driver");
262 MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
263 MODULE_LICENSE("GPL");
264