1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/pwm.h>
20 #include <linux/slab.h>
21 #include <linux/bitfield.h>
22 
23 /* Register offsets */
24 #define PWM_SIFIVE_PWMCFG		0x0
25 #define PWM_SIFIVE_PWMCOUNT		0x8
26 #define PWM_SIFIVE_PWMS			0x10
27 #define PWM_SIFIVE_PWMCMP(i)		(0x20 + 4 * (i))
28 
29 /* PWMCFG fields */
30 #define PWM_SIFIVE_PWMCFG_SCALE		GENMASK(3, 0)
31 #define PWM_SIFIVE_PWMCFG_STICKY	BIT(8)
32 #define PWM_SIFIVE_PWMCFG_ZERO_CMP	BIT(9)
33 #define PWM_SIFIVE_PWMCFG_DEGLITCH	BIT(10)
34 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS	BIT(12)
35 #define PWM_SIFIVE_PWMCFG_EN_ONCE	BIT(13)
36 #define PWM_SIFIVE_PWMCFG_CENTER	BIT(16)
37 #define PWM_SIFIVE_PWMCFG_GANG		BIT(24)
38 #define PWM_SIFIVE_PWMCFG_IP		BIT(28)
39 
40 #define PWM_SIFIVE_CMPWIDTH		16
41 #define PWM_SIFIVE_DEFAULT_PERIOD	10000000
42 
43 struct pwm_sifive_ddata {
44 	struct device *parent;
45 	struct mutex lock; /* lock to protect user_count and approx_period */
46 	struct notifier_block notifier;
47 	struct clk *clk;
48 	void __iomem *regs;
49 	unsigned int real_period;
50 	unsigned int approx_period;
51 	int user_count;
52 };
53 
54 static inline
pwm_sifive_chip_to_ddata(struct pwm_chip * chip)55 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *chip)
56 {
57 	return pwmchip_get_drvdata(chip);
58 }
59 
pwm_sifive_request(struct pwm_chip * chip,struct pwm_device * pwm)60 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
61 {
62 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
63 
64 	mutex_lock(&ddata->lock);
65 	ddata->user_count++;
66 	mutex_unlock(&ddata->lock);
67 
68 	return 0;
69 }
70 
pwm_sifive_free(struct pwm_chip * chip,struct pwm_device * pwm)71 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
72 {
73 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
74 
75 	mutex_lock(&ddata->lock);
76 	ddata->user_count--;
77 	mutex_unlock(&ddata->lock);
78 }
79 
80 /* Called holding ddata->lock */
pwm_sifive_update_clock(struct pwm_sifive_ddata * ddata,unsigned long rate)81 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
82 				    unsigned long rate)
83 {
84 	unsigned long long num;
85 	unsigned long scale_pow;
86 	int scale;
87 	u32 val;
88 	/*
89 	 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
90 	 * period length is using pwmscale which provides the number of bits the
91 	 * counter is shifted before being feed to the comparators. A period
92 	 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
93 	 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
94 	 */
95 	scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
96 	scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
97 
98 	val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
99 	      FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
100 	writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
101 
102 	/* As scale <= 15 the shift operation cannot overflow. */
103 	num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
104 	ddata->real_period = div64_ul(num, rate);
105 	dev_dbg(ddata->parent,
106 		"New real_period = %u ns\n", ddata->real_period);
107 }
108 
pwm_sifive_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)109 static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
110 				struct pwm_state *state)
111 {
112 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
113 	u32 duty, val;
114 
115 	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
116 
117 	state->enabled = duty > 0;
118 
119 	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
120 	if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
121 		state->enabled = false;
122 
123 	state->period = ddata->real_period;
124 	state->duty_cycle =
125 		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
126 	state->polarity = PWM_POLARITY_INVERSED;
127 
128 	return 0;
129 }
130 
pwm_sifive_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)131 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
132 			    const struct pwm_state *state)
133 {
134 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
135 	struct pwm_state cur_state;
136 	unsigned int duty_cycle;
137 	unsigned long long num;
138 	bool enabled;
139 	int ret = 0;
140 	u32 frac;
141 
142 	if (state->polarity != PWM_POLARITY_INVERSED)
143 		return -EINVAL;
144 
145 	cur_state = pwm->state;
146 	enabled = cur_state.enabled;
147 
148 	duty_cycle = state->duty_cycle;
149 	if (!state->enabled)
150 		duty_cycle = 0;
151 
152 	/*
153 	 * The problem of output producing mixed setting as mentioned at top,
154 	 * occurs here. To minimize the window for this problem, we are
155 	 * calculating the register values first and then writing them
156 	 * consecutively
157 	 */
158 	num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
159 	frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
160 	/* The hardware cannot generate a 100% duty cycle */
161 	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
162 
163 	mutex_lock(&ddata->lock);
164 	if (state->period != ddata->approx_period) {
165 		/*
166 		 * Don't let a 2nd user change the period underneath the 1st user.
167 		 * However if ddate->approx_period == 0 this is the first time we set
168 		 * any period, so let whoever gets here first set the period so other
169 		 * users who agree on the period won't fail.
170 		 */
171 		if (ddata->user_count != 1 && ddata->approx_period) {
172 			mutex_unlock(&ddata->lock);
173 			return -EBUSY;
174 		}
175 		ddata->approx_period = state->period;
176 		pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
177 	}
178 	mutex_unlock(&ddata->lock);
179 
180 	/*
181 	 * If the PWM is enabled the clk is already on. So only enable it
182 	 * conditionally to have it on exactly once afterwards independent of
183 	 * the PWM state.
184 	 */
185 	if (!enabled) {
186 		ret = clk_enable(ddata->clk);
187 		if (ret) {
188 			dev_err(pwmchip_parent(chip), "Enable clk failed\n");
189 			return ret;
190 		}
191 	}
192 
193 	writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
194 
195 	if (!state->enabled)
196 		clk_disable(ddata->clk);
197 
198 	return 0;
199 }
200 
201 static const struct pwm_ops pwm_sifive_ops = {
202 	.request = pwm_sifive_request,
203 	.free = pwm_sifive_free,
204 	.get_state = pwm_sifive_get_state,
205 	.apply = pwm_sifive_apply,
206 };
207 
pwm_sifive_clock_notifier(struct notifier_block * nb,unsigned long event,void * data)208 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
209 				     unsigned long event, void *data)
210 {
211 	struct clk_notifier_data *ndata = data;
212 	struct pwm_sifive_ddata *ddata =
213 		container_of(nb, struct pwm_sifive_ddata, notifier);
214 
215 	if (event == POST_RATE_CHANGE) {
216 		mutex_lock(&ddata->lock);
217 		pwm_sifive_update_clock(ddata, ndata->new_rate);
218 		mutex_unlock(&ddata->lock);
219 	}
220 
221 	return NOTIFY_OK;
222 }
223 
pwm_sifive_probe(struct platform_device * pdev)224 static int pwm_sifive_probe(struct platform_device *pdev)
225 {
226 	struct device *dev = &pdev->dev;
227 	struct pwm_sifive_ddata *ddata;
228 	struct pwm_chip *chip;
229 	int ret;
230 	u32 val;
231 	unsigned int enabled_pwms = 0, enabled_clks = 1;
232 
233 	chip = devm_pwmchip_alloc(dev, 4, sizeof(*ddata));
234 	if (IS_ERR(chip))
235 		return PTR_ERR(chip);
236 
237 	ddata = pwm_sifive_chip_to_ddata(chip);
238 	ddata->parent = dev;
239 	mutex_init(&ddata->lock);
240 	chip->ops = &pwm_sifive_ops;
241 
242 	ddata->regs = devm_platform_ioremap_resource(pdev, 0);
243 	if (IS_ERR(ddata->regs))
244 		return PTR_ERR(ddata->regs);
245 
246 	ddata->clk = devm_clk_get_prepared(dev, NULL);
247 	if (IS_ERR(ddata->clk))
248 		return dev_err_probe(dev, PTR_ERR(ddata->clk),
249 				     "Unable to find controller clock\n");
250 
251 	ret = clk_enable(ddata->clk);
252 	if (ret) {
253 		dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
254 		return ret;
255 	}
256 
257 	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
258 	if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) {
259 		unsigned int i;
260 
261 		for (i = 0; i < chip->npwm; ++i) {
262 			val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i));
263 			if (val > 0)
264 				++enabled_pwms;
265 		}
266 	}
267 
268 	/* The clk should be on once for each running PWM. */
269 	if (enabled_pwms) {
270 		while (enabled_clks < enabled_pwms) {
271 			/* This is not expected to fail as the clk is already on */
272 			ret = clk_enable(ddata->clk);
273 			if (unlikely(ret)) {
274 				dev_err_probe(dev, ret, "Failed to enable clk\n");
275 				goto disable_clk;
276 			}
277 			++enabled_clks;
278 		}
279 	} else {
280 		clk_disable(ddata->clk);
281 		enabled_clks = 0;
282 	}
283 
284 	/* Watch for changes to underlying clock frequency */
285 	ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
286 	ret = clk_notifier_register(ddata->clk, &ddata->notifier);
287 	if (ret) {
288 		dev_err(dev, "failed to register clock notifier: %d\n", ret);
289 		goto disable_clk;
290 	}
291 
292 	ret = pwmchip_add(chip);
293 	if (ret < 0) {
294 		dev_err(dev, "cannot register PWM: %d\n", ret);
295 		goto unregister_clk;
296 	}
297 
298 	platform_set_drvdata(pdev, chip);
299 	dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
300 
301 	return 0;
302 
303 unregister_clk:
304 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
305 disable_clk:
306 	while (enabled_clks) {
307 		clk_disable(ddata->clk);
308 		--enabled_clks;
309 	}
310 
311 	return ret;
312 }
313 
pwm_sifive_remove(struct platform_device * dev)314 static void pwm_sifive_remove(struct platform_device *dev)
315 {
316 	struct pwm_chip *chip = platform_get_drvdata(dev);
317 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
318 	struct pwm_device *pwm;
319 	int ch;
320 
321 	pwmchip_remove(chip);
322 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
323 
324 	for (ch = 0; ch < chip->npwm; ch++) {
325 		pwm = &chip->pwms[ch];
326 		if (pwm->state.enabled)
327 			clk_disable(ddata->clk);
328 	}
329 }
330 
331 static const struct of_device_id pwm_sifive_of_match[] = {
332 	{ .compatible = "sifive,pwm0" },
333 	{},
334 };
335 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
336 
337 static struct platform_driver pwm_sifive_driver = {
338 	.probe = pwm_sifive_probe,
339 	.remove = pwm_sifive_remove,
340 	.driver = {
341 		.name = "pwm-sifive",
342 		.of_match_table = pwm_sifive_of_match,
343 	},
344 };
345 module_platform_driver(pwm_sifive_driver);
346 
347 MODULE_DESCRIPTION("SiFive PWM driver");
348 MODULE_LICENSE("GPL v2");
349