1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ARM PL35X NAND flash controller driver
4 *
5 * Copyright (C) 2017 Xilinx, Inc
6 * Author:
7 * Miquel Raynal <miquel.raynal@bootlin.com>
8 * Original work (rewritten):
9 * Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10 * Naga Sureshkumar Relli <nagasure@xilinx.com>
11 */
12
13 #include <linux/amba/bus.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/ioport.h>
19 #include <linux/iopoll.h>
20 #include <linux/irq.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30
31 #define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller"
32
33 /* SMC controller status register (RO) */
34 #define PL35X_SMC_MEMC_STATUS 0x0
35 #define PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1 BIT(6)
36 /* SMC clear config register (WO) */
37 #define PL35X_SMC_MEMC_CFG_CLR 0xC
38 #define PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1 BIT(1)
39 #define PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 BIT(4)
40 #define PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 BIT(6)
41 /* SMC direct command register (WO) */
42 #define PL35X_SMC_DIRECT_CMD 0x10
43 #define PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23)
44 #define PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21)
45 /* SMC set cycles register (WO) */
46 #define PL35X_SMC_CYCLES 0x14
47 #define PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0)
48 #define PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4)
49 #define PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8)
50 #define PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11)
51 #define PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14)
52 #define PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17)
53 #define PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20)
54 /* SMC set opmode register (WO) */
55 #define PL35X_SMC_OPMODE 0x18
56 #define PL35X_SMC_OPMODE_BW_8 0
57 #define PL35X_SMC_OPMODE_BW_16 1
58 /* SMC ECC status register (RO) */
59 #define PL35X_SMC_ECC_STATUS 0x400
60 #define PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6)
61 /* SMC ECC configuration register */
62 #define PL35X_SMC_ECC_CFG 0x404
63 #define PL35X_SMC_ECC_CFG_MODE_MASK 0xC
64 #define PL35X_SMC_ECC_CFG_MODE_BYPASS 0
65 #define PL35X_SMC_ECC_CFG_MODE_APB BIT(2)
66 #define PL35X_SMC_ECC_CFG_MODE_MEM BIT(3)
67 #define PL35X_SMC_ECC_CFG_PGSIZE_MASK 0x3
68 /* SMC ECC command 1 register */
69 #define PL35X_SMC_ECC_CMD1 0x408
70 #define PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0)
71 #define PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8)
72 #define PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16)
73 #define PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24)
74 /* SMC ECC command 2 register */
75 #define PL35X_SMC_ECC_CMD2 0x40C
76 #define PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0)
77 #define PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8)
78 #define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16)
79 #define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24)
80 /* SMC ECC value registers (RO) */
81 #define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x)))
82 #define PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27))
83 #define PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28))
84 #define PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30))
85
86 /* NAND AXI interface */
87 #define PL35X_SMC_CMD_PHASE 0
88 #define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3)
89 #define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11)
90 #define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20)
91 #define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos)))
92 #define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21)
93 #define PL35X_SMC_DATA_PHASE BIT(19)
94 #define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10)
95 #define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21)
96
97 #define PL35X_NAND_MAX_CS 1
98 #define PL35X_NAND_LAST_XFER_SZ 4
99 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns))
100
101 #define PL35X_NAND_ECC_BITS_MASK 0xFFF
102 #define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF
103 #define PL35X_NAND_ECC_BIT_OFF_MASK 0x7
104
105 struct pl35x_nand_timings {
106 unsigned int t_rc:4;
107 unsigned int t_wc:4;
108 unsigned int t_rea:3;
109 unsigned int t_wp:3;
110 unsigned int t_clr:3;
111 unsigned int t_ar:3;
112 unsigned int t_rr:4;
113 unsigned int rsvd:8;
114 };
115
116 struct pl35x_nand {
117 struct list_head node;
118 struct nand_chip chip;
119 unsigned int cs;
120 unsigned int addr_cycles;
121 u32 ecc_cfg;
122 u32 timings;
123 };
124
125 /**
126 * struct pl35x_nandc - NAND flash controller driver structure
127 * @dev: Kernel device
128 * @conf_regs: SMC configuration registers for command phase
129 * @io_regs: NAND data registers for data phase
130 * @controller: Core NAND controller structure
131 * @chips: List of connected NAND chips
132 * @selected_chip: NAND chip currently selected by the controller
133 * @assigned_cs: List of assigned CS
134 * @ecc_buf: Temporary buffer to extract ECC bytes
135 */
136 struct pl35x_nandc {
137 struct device *dev;
138 void __iomem *conf_regs;
139 void __iomem *io_regs;
140 struct nand_controller controller;
141 struct list_head chips;
142 struct nand_chip *selected_chip;
143 unsigned long assigned_cs;
144 u8 *ecc_buf;
145 };
146
to_pl35x_nandc(struct nand_controller * ctrl)147 static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl)
148 {
149 return container_of(ctrl, struct pl35x_nandc, controller);
150 }
151
to_pl35x_nand(struct nand_chip * chip)152 static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip)
153 {
154 return container_of(chip, struct pl35x_nand, chip);
155 }
156
pl35x_ecc_ooblayout16_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)157 static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
158 struct mtd_oob_region *oobregion)
159 {
160 struct nand_chip *chip = mtd_to_nand(mtd);
161
162 if (section >= chip->ecc.steps)
163 return -ERANGE;
164
165 oobregion->offset = (section * chip->ecc.bytes);
166 oobregion->length = chip->ecc.bytes;
167
168 return 0;
169 }
170
pl35x_ecc_ooblayout16_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)171 static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
172 struct mtd_oob_region *oobregion)
173 {
174 struct nand_chip *chip = mtd_to_nand(mtd);
175
176 if (section >= chip->ecc.steps)
177 return -ERANGE;
178
179 oobregion->offset = (section * chip->ecc.bytes) + 8;
180 oobregion->length = 8;
181
182 return 0;
183 }
184
185 static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = {
186 .ecc = pl35x_ecc_ooblayout16_ecc,
187 .free = pl35x_ecc_ooblayout16_free,
188 };
189
190 /* Generic flash bbt decriptors */
191 static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
192 static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
193
194 static struct nand_bbt_descr bbt_main_descr = {
195 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
196 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
197 .offs = 4,
198 .len = 4,
199 .veroffs = 20,
200 .maxblocks = 4,
201 .pattern = bbt_pattern
202 };
203
204 static struct nand_bbt_descr bbt_mirror_descr = {
205 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
206 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
207 .offs = 4,
208 .len = 4,
209 .veroffs = 20,
210 .maxblocks = 4,
211 .pattern = mirror_pattern
212 };
213
pl35x_smc_update_regs(struct pl35x_nandc * nfc)214 static void pl35x_smc_update_regs(struct pl35x_nandc *nfc)
215 {
216 writel(PL35X_SMC_DIRECT_CMD_NAND_CS |
217 PL35X_SMC_DIRECT_CMD_UPD_REGS,
218 nfc->conf_regs + PL35X_SMC_DIRECT_CMD);
219 }
220
pl35x_smc_set_buswidth(struct pl35x_nandc * nfc,unsigned int bw)221 static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw)
222 {
223 if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16)
224 return -EINVAL;
225
226 writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE);
227 pl35x_smc_update_regs(nfc);
228
229 return 0;
230 }
231
pl35x_smc_clear_irq(struct pl35x_nandc * nfc)232 static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc)
233 {
234 writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1,
235 nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
236 }
237
pl35x_smc_wait_for_irq(struct pl35x_nandc * nfc)238 static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc)
239 {
240 u32 reg;
241 int ret;
242
243 ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg,
244 reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1,
245 10, 1000000);
246 if (ret)
247 dev_err(nfc->dev,
248 "Timeout polling on NAND controller interrupt (0x%x)\n",
249 reg);
250
251 pl35x_smc_clear_irq(nfc);
252
253 return ret;
254 }
255
pl35x_smc_wait_for_ecc_done(struct pl35x_nandc * nfc)256 static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc)
257 {
258 u32 reg;
259 int ret;
260
261 ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg,
262 !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY),
263 10, 1000000);
264 if (ret)
265 dev_err(nfc->dev,
266 "Timeout polling on ECC controller interrupt\n");
267
268 return ret;
269 }
270
pl35x_smc_set_ecc_mode(struct pl35x_nandc * nfc,struct nand_chip * chip,unsigned int mode)271 static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc,
272 struct nand_chip *chip,
273 unsigned int mode)
274 {
275 struct pl35x_nand *plnand;
276 u32 ecc_cfg;
277
278 ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
279 ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK;
280 ecc_cfg |= mode;
281 writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
282
283 if (chip) {
284 plnand = to_pl35x_nand(chip);
285 plnand->ecc_cfg = ecc_cfg;
286 }
287
288 if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS)
289 return pl35x_smc_wait_for_ecc_done(nfc);
290
291 return 0;
292 }
293
pl35x_smc_force_byte_access(struct nand_chip * chip,bool force_8bit)294 static void pl35x_smc_force_byte_access(struct nand_chip *chip,
295 bool force_8bit)
296 {
297 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
298 int ret;
299
300 if (!(chip->options & NAND_BUSWIDTH_16))
301 return;
302
303 if (force_8bit)
304 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
305 else
306 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16);
307
308 if (ret)
309 dev_err(nfc->dev, "Error in Buswidth\n");
310 }
311
pl35x_nand_select_target(struct nand_chip * chip,unsigned int die_nr)312 static void pl35x_nand_select_target(struct nand_chip *chip,
313 unsigned int die_nr)
314 {
315 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
316 struct pl35x_nand *plnand = to_pl35x_nand(chip);
317
318 if (chip == nfc->selected_chip)
319 return;
320
321 /* Setup the timings */
322 writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES);
323 pl35x_smc_update_regs(nfc);
324
325 /* Configure the ECC engine */
326 writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
327
328 nfc->selected_chip = chip;
329 }
330
pl35x_nand_read_data_op(struct nand_chip * chip,u8 * in,unsigned int len,bool force_8bit,unsigned int flags,unsigned int last_flags)331 static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in,
332 unsigned int len, bool force_8bit,
333 unsigned int flags, unsigned int last_flags)
334 {
335 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
336 unsigned int buf_end = len / 4;
337 unsigned int in_start = round_down(len, 4);
338 unsigned int data_phase_addr;
339 u32 *buf32 = (u32 *)in;
340 u8 *buf8 = (u8 *)in;
341 int i;
342
343 if (force_8bit)
344 pl35x_smc_force_byte_access(chip, true);
345
346 for (i = 0; i < buf_end; i++) {
347 data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
348 if (i + 1 == buf_end)
349 data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
350
351 buf32[i] = readl(nfc->io_regs + data_phase_addr);
352 }
353
354 /* No working extra flags on unaligned data accesses */
355 for (i = in_start; i < len; i++)
356 buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE);
357
358 if (force_8bit)
359 pl35x_smc_force_byte_access(chip, false);
360 }
361
pl35x_nand_write_data_op(struct nand_chip * chip,const u8 * out,int len,bool force_8bit,unsigned int flags,unsigned int last_flags)362 static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out,
363 int len, bool force_8bit,
364 unsigned int flags,
365 unsigned int last_flags)
366 {
367 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
368 unsigned int buf_end = len / 4;
369 unsigned int in_start = round_down(len, 4);
370 const u32 *buf32 = (const u32 *)out;
371 const u8 *buf8 = (const u8 *)out;
372 unsigned int data_phase_addr;
373 int i;
374
375 if (force_8bit)
376 pl35x_smc_force_byte_access(chip, true);
377
378 for (i = 0; i < buf_end; i++) {
379 data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
380 if (i + 1 == buf_end)
381 data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
382
383 writel(buf32[i], nfc->io_regs + data_phase_addr);
384 }
385
386 /* No working extra flags on unaligned data accesses */
387 for (i = in_start; i < len; i++)
388 writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE);
389
390 if (force_8bit)
391 pl35x_smc_force_byte_access(chip, false);
392 }
393
pl35x_nand_correct_data(struct pl35x_nandc * nfc,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)394 static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf,
395 unsigned char *read_ecc,
396 unsigned char *calc_ecc)
397 {
398 unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
399 unsigned short calc_ecc_lower, calc_ecc_upper;
400 unsigned short byte_addr, bit_addr;
401
402 read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
403 PL35X_NAND_ECC_BITS_MASK;
404 read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
405 PL35X_NAND_ECC_BITS_MASK;
406
407 calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
408 PL35X_NAND_ECC_BITS_MASK;
409 calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
410 PL35X_NAND_ECC_BITS_MASK;
411
412 ecc_odd = read_ecc_lower ^ calc_ecc_lower;
413 ecc_even = read_ecc_upper ^ calc_ecc_upper;
414
415 /* No error */
416 if (likely(!ecc_odd && !ecc_even))
417 return 0;
418
419 /* One error in the main data; to be corrected */
420 if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) {
421 /* Bits [11:3] of error code give the byte offset */
422 byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK;
423 /* Bits [2:0] of error code give the bit offset */
424 bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK;
425 /* Toggle the faulty bit */
426 buf[byte_addr] ^= (BIT(bit_addr));
427
428 return 1;
429 }
430
431 /* One error in the ECC data; no action needed */
432 if (hweight32(ecc_odd | ecc_even) == 1)
433 return 1;
434
435 return -EBADMSG;
436 }
437
pl35x_nand_ecc_reg_to_array(struct nand_chip * chip,u32 ecc_reg,u8 * ecc_array)438 static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg,
439 u8 *ecc_array)
440 {
441 u32 ecc_value = ~ecc_reg;
442 unsigned int ecc_byte;
443
444 for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++)
445 ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte);
446 }
447
pl35x_nand_read_eccbytes(struct pl35x_nandc * nfc,struct nand_chip * chip,u8 * read_ecc)448 static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc,
449 struct nand_chip *chip, u8 *read_ecc)
450 {
451 u32 ecc_value;
452 int chunk;
453
454 for (chunk = 0; chunk < chip->ecc.steps;
455 chunk++, read_ecc += chip->ecc.bytes) {
456 ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
457 if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
458 return -EINVAL;
459
460 pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc);
461 }
462
463 return 0;
464 }
465
pl35x_nand_recover_data_hwecc(struct pl35x_nandc * nfc,struct nand_chip * chip,u8 * data,u8 * read_ecc)466 static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc,
467 struct nand_chip *chip, u8 *data,
468 u8 *read_ecc)
469 {
470 struct mtd_info *mtd = nand_to_mtd(chip);
471 unsigned int max_bitflips = 0, chunk;
472 u8 calc_ecc[3];
473 u32 ecc_value;
474 int stats;
475
476 for (chunk = 0; chunk < chip->ecc.steps;
477 chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) {
478 /* Read ECC value for each chunk */
479 ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
480
481 if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
482 return -EINVAL;
483
484 if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) {
485 mtd->ecc_stats.failed++;
486 continue;
487 }
488
489 pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc);
490 stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc);
491 if (stats < 0) {
492 mtd->ecc_stats.failed++;
493 } else {
494 mtd->ecc_stats.corrected += stats;
495 max_bitflips = max_t(unsigned int, max_bitflips, stats);
496 }
497 }
498
499 return max_bitflips;
500 }
501
pl35x_nand_write_page_hwecc(struct nand_chip * chip,const u8 * buf,int oob_required,int page)502 static int pl35x_nand_write_page_hwecc(struct nand_chip *chip,
503 const u8 *buf, int oob_required,
504 int page)
505 {
506 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
507 struct pl35x_nand *plnand = to_pl35x_nand(chip);
508 struct mtd_info *mtd = nand_to_mtd(chip);
509 unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
510 unsigned int nrows = plnand->addr_cycles;
511 u32 addr1 = 0, addr2 = 0, row;
512 u32 cmd_addr;
513 int i, ret;
514 u8 status;
515
516 ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
517 if (ret)
518 return ret;
519
520 cmd_addr = PL35X_SMC_CMD_PHASE |
521 PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
522 PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN);
523
524 for (i = 0, row = first_row; row < nrows; i++, row++) {
525 u8 addr = page >> ((i * 8) & 0xFF);
526
527 if (row < 4)
528 addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
529 else
530 addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
531 }
532
533 /* Send the command and address cycles */
534 writel(addr1, nfc->io_regs + cmd_addr);
535 if (plnand->addr_cycles > 4)
536 writel(addr2, nfc->io_regs + cmd_addr);
537
538 /* Write the data with the engine enabled */
539 pl35x_nand_write_data_op(chip, buf, mtd->writesize, false,
540 0, PL35X_SMC_DATA_PHASE_ECC_LAST);
541 ret = pl35x_smc_wait_for_ecc_done(nfc);
542 if (ret)
543 goto disable_ecc_engine;
544
545 /* Copy the HW calculated ECC bytes in the OOB buffer */
546 ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf);
547 if (ret)
548 goto disable_ecc_engine;
549
550 if (!oob_required)
551 memset(chip->oob_poi, 0xFF, mtd->oobsize);
552
553 ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi,
554 0, chip->ecc.total);
555 if (ret)
556 goto disable_ecc_engine;
557
558 /* Write the spare area with ECC bytes */
559 pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0,
560 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) |
561 PL35X_SMC_CMD_PHASE_CMD1_VALID |
562 PL35X_SMC_DATA_PHASE_CLEAR_CS);
563 ret = pl35x_smc_wait_for_irq(nfc);
564 if (ret)
565 goto disable_ecc_engine;
566
567 /* Check write status on the chip side */
568 ret = nand_status_op(chip, &status);
569 if (ret)
570 goto disable_ecc_engine;
571
572 if (status & NAND_STATUS_FAIL)
573 ret = -EIO;
574
575 disable_ecc_engine:
576 pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
577
578 return ret;
579 }
580
581 /*
582 * This functions reads data and checks the data integrity by comparing hardware
583 * generated ECC values and read ECC values from spare area.
584 *
585 * There is a limitation with SMC controller: ECC_LAST must be set on the
586 * last data access to tell the ECC engine not to expect any further data.
587 * In practice, this implies to shrink the last data transfert by eg. 4 bytes,
588 * and doing a last 4-byte transfer with the additional bit set. The last block
589 * should be aligned with the end of an ECC block. Because of this limitation,
590 * it is not possible to use the core routines.
591 */
pl35x_nand_read_page_hwecc(struct nand_chip * chip,u8 * buf,int oob_required,int page)592 static int pl35x_nand_read_page_hwecc(struct nand_chip *chip,
593 u8 *buf, int oob_required, int page)
594 {
595 const struct nand_sdr_timings *sdr =
596 nand_get_sdr_timings(nand_get_interface_config(chip));
597 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
598 struct pl35x_nand *plnand = to_pl35x_nand(chip);
599 struct mtd_info *mtd = nand_to_mtd(chip);
600 unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
601 unsigned int nrows = plnand->addr_cycles;
602 unsigned int addr1 = 0, addr2 = 0, row;
603 u32 cmd_addr;
604 int i, ret;
605
606 ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
607 if (ret)
608 return ret;
609
610 cmd_addr = PL35X_SMC_CMD_PHASE |
611 PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
612 PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) |
613 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) |
614 PL35X_SMC_CMD_PHASE_CMD1_VALID;
615
616 for (i = 0, row = first_row; row < nrows; i++, row++) {
617 u8 addr = page >> ((i * 8) & 0xFF);
618
619 if (row < 4)
620 addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
621 else
622 addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
623 }
624
625 /* Send the command and address cycles */
626 writel(addr1, nfc->io_regs + cmd_addr);
627 if (plnand->addr_cycles > 4)
628 writel(addr2, nfc->io_regs + cmd_addr);
629
630 /* Wait the data to be available in the NAND cache */
631 ndelay(PSEC_TO_NSEC(sdr->tRR_min));
632 ret = pl35x_smc_wait_for_irq(nfc);
633 if (ret)
634 goto disable_ecc_engine;
635
636 /* Retrieve the raw data with the engine enabled */
637 pl35x_nand_read_data_op(chip, buf, mtd->writesize, false,
638 0, PL35X_SMC_DATA_PHASE_ECC_LAST);
639 ret = pl35x_smc_wait_for_ecc_done(nfc);
640 if (ret)
641 goto disable_ecc_engine;
642
643 /* Retrieve the stored ECC bytes */
644 pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
645 0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
646 ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0,
647 chip->ecc.total);
648 if (ret)
649 goto disable_ecc_engine;
650
651 pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
652
653 /* Correct the data and report failures */
654 return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf);
655
656 disable_ecc_engine:
657 pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
658
659 return ret;
660 }
661
pl35x_nand_exec_op(struct nand_chip * chip,const struct nand_subop * subop)662 static int pl35x_nand_exec_op(struct nand_chip *chip,
663 const struct nand_subop *subop)
664 {
665 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
666 const struct nand_op_instr *instr, *data_instr = NULL;
667 unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0;
668 u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0;
669 unsigned int op_id, len, offset, rdy_del_ns;
670 int last_instr_type = -1;
671 bool cmd1_valid = false;
672 const u8 *addrs;
673 int i, ret;
674
675 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
676 instr = &subop->instrs[op_id];
677
678 switch (instr->type) {
679 case NAND_OP_CMD_INSTR:
680 if (!cmds) {
681 cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode);
682 } else {
683 cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode);
684 if (last_instr_type != NAND_OP_DATA_OUT_INSTR)
685 cmd1_valid = true;
686 }
687 cmds++;
688 break;
689
690 case NAND_OP_ADDR_INSTR:
691 offset = nand_subop_get_addr_start_off(subop, op_id);
692 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
693 addrs = &instr->ctx.addr.addrs[offset];
694 cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs);
695
696 for (i = offset; i < naddrs; i++) {
697 if (i < 4)
698 addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]);
699 else
700 addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]);
701 }
702 break;
703
704 case NAND_OP_DATA_IN_INSTR:
705 case NAND_OP_DATA_OUT_INSTR:
706 data_instr = instr;
707 len = nand_subop_get_data_len(subop, op_id);
708 break;
709
710 case NAND_OP_WAITRDY_INSTR:
711 rdy_tim_ms = instr->ctx.waitrdy.timeout_ms;
712 rdy_del_ns = instr->delay_ns;
713 break;
714 }
715
716 last_instr_type = instr->type;
717 }
718
719 /* Command phase */
720 cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 |
721 (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0);
722 writel(addr1, nfc->io_regs + cmd_addr);
723 if (naddrs > 4)
724 writel(addr2, nfc->io_regs + cmd_addr);
725
726 /* Data phase */
727 if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) {
728 last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS;
729 if (cmds == 2)
730 last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID;
731
732 pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out,
733 len, data_instr->ctx.data.force_8bit,
734 0, last_flags);
735 }
736
737 if (rdy_tim_ms) {
738 ndelay(rdy_del_ns);
739 ret = pl35x_smc_wait_for_irq(nfc);
740 if (ret)
741 return ret;
742 }
743
744 if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR)
745 pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in,
746 len, data_instr->ctx.data.force_8bit,
747 0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
748
749 return 0;
750 }
751
752 static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER(
753 NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
754 NAND_OP_PARSER_PAT_CMD_ELEM(true),
755 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
756 NAND_OP_PARSER_PAT_CMD_ELEM(true),
757 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
758 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
759 NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
760 NAND_OP_PARSER_PAT_CMD_ELEM(false),
761 NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
762 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
763 NAND_OP_PARSER_PAT_CMD_ELEM(false),
764 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
765 NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
766 NAND_OP_PARSER_PAT_CMD_ELEM(false),
767 NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
768 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
769 NAND_OP_PARSER_PAT_CMD_ELEM(true),
770 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
771 );
772
pl35x_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)773 static int pl35x_nfc_exec_op(struct nand_chip *chip,
774 const struct nand_operation *op,
775 bool check_only)
776 {
777 if (!check_only)
778 pl35x_nand_select_target(chip, op->cs);
779
780 return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser,
781 op, check_only);
782 }
783
pl35x_nfc_setup_interface(struct nand_chip * chip,int cs,const struct nand_interface_config * conf)784 static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs,
785 const struct nand_interface_config *conf)
786 {
787 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
788 struct pl35x_nand *plnand = to_pl35x_nand(chip);
789 struct pl35x_nand_timings tmgs = {};
790 const struct nand_sdr_timings *sdr;
791 unsigned int period_ns, val;
792 struct clk *mclk;
793
794 sdr = nand_get_sdr_timings(conf);
795 if (IS_ERR(sdr))
796 return PTR_ERR(sdr);
797
798 mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk");
799 if (IS_ERR(mclk)) {
800 dev_err(nfc->dev, "Failed to retrieve SMC memclk\n");
801 return PTR_ERR(mclk);
802 }
803
804 /*
805 * SDR timings are given in pico-seconds while NFC timings must be
806 * expressed in NAND controller clock cycles. We use the TO_CYCLE()
807 * macro to convert from one to the other.
808 */
809 period_ns = NSEC_PER_SEC / clk_get_rate(mclk);
810
811 /*
812 * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not
813 * written anywhere in the datasheet but is an empirical observation.
814 */
815 val = TO_CYCLES(sdr->tRC_min, period_ns);
816 if (sdr->tRC_min <= 20000)
817 val++;
818
819 tmgs.t_rc = val;
820 if (tmgs.t_rc != val || tmgs.t_rc < 2)
821 return -EINVAL;
822
823 val = TO_CYCLES(sdr->tWC_min, period_ns);
824 tmgs.t_wc = val;
825 if (tmgs.t_wc != val || tmgs.t_wc < 2)
826 return -EINVAL;
827
828 /*
829 * For all SDR modes, PL35X SMC needs tREA_max being 1,
830 * this is also an empirical result.
831 */
832 tmgs.t_rea = 1;
833
834 val = TO_CYCLES(sdr->tWP_min, period_ns);
835 tmgs.t_wp = val;
836 if (tmgs.t_wp != val || tmgs.t_wp < 1)
837 return -EINVAL;
838
839 val = TO_CYCLES(sdr->tCLR_min, period_ns);
840 tmgs.t_clr = val;
841 if (tmgs.t_clr != val)
842 return -EINVAL;
843
844 val = TO_CYCLES(sdr->tAR_min, period_ns);
845 tmgs.t_ar = val;
846 if (tmgs.t_ar != val)
847 return -EINVAL;
848
849 val = TO_CYCLES(sdr->tRR_min, period_ns);
850 tmgs.t_rr = val;
851 if (tmgs.t_rr != val)
852 return -EINVAL;
853
854 if (cs == NAND_DATA_IFACE_CHECK_ONLY)
855 return 0;
856
857 plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) |
858 PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) |
859 PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) |
860 PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) |
861 PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) |
862 PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) |
863 PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr);
864
865 return 0;
866 }
867
pl35x_smc_set_ecc_pg_size(struct pl35x_nandc * nfc,struct nand_chip * chip,unsigned int pg_sz)868 static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc,
869 struct nand_chip *chip,
870 unsigned int pg_sz)
871 {
872 struct pl35x_nand *plnand = to_pl35x_nand(chip);
873 u32 sz;
874
875 switch (pg_sz) {
876 case SZ_512:
877 sz = 1;
878 break;
879 case SZ_1K:
880 sz = 2;
881 break;
882 case SZ_2K:
883 sz = 3;
884 break;
885 default:
886 sz = 0;
887 break;
888 }
889
890 plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
891 plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK;
892 plnand->ecc_cfg |= sz;
893 writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
894 }
895
pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc * nfc,struct nand_chip * chip)896 static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc,
897 struct nand_chip *chip)
898 {
899 struct mtd_info *mtd = nand_to_mtd(chip);
900 int ret = 0;
901
902 if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) {
903 dev_err(nfc->dev,
904 "The hardware ECC engine is limited to pages up to 2kiB\n");
905 return -EOPNOTSUPP;
906 }
907
908 chip->ecc.strength = 1;
909 chip->ecc.bytes = 3;
910 chip->ecc.size = SZ_512;
911 chip->ecc.steps = mtd->writesize / chip->ecc.size;
912 chip->ecc.read_page = pl35x_nand_read_page_hwecc;
913 chip->ecc.write_page = pl35x_nand_write_page_hwecc;
914 chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
915 pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize);
916
917 nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps,
918 GFP_KERNEL);
919 if (!nfc->ecc_buf)
920 return -ENOMEM;
921
922 switch (mtd->oobsize) {
923 case 16:
924 /* Legacy Xilinx layout */
925 mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops);
926 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
927 break;
928 case 64:
929 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
930 break;
931 default:
932 dev_err(nfc->dev, "Unsupported OOB size\n");
933 return -EOPNOTSUPP;
934 }
935
936 return ret;
937 }
938
pl35x_nand_attach_chip(struct nand_chip * chip)939 static int pl35x_nand_attach_chip(struct nand_chip *chip)
940 {
941 const struct nand_ecc_props *requirements =
942 nanddev_get_ecc_requirements(&chip->base);
943 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
944 struct pl35x_nand *plnand = to_pl35x_nand(chip);
945 struct mtd_info *mtd = nand_to_mtd(chip);
946 int ret;
947
948 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
949 (!chip->ecc.size || !chip->ecc.strength)) {
950 if (requirements->step_size && requirements->strength) {
951 chip->ecc.size = requirements->step_size;
952 chip->ecc.strength = requirements->strength;
953 } else {
954 dev_info(nfc->dev,
955 "No minimum ECC strength, using 1b/512B\n");
956 chip->ecc.size = 512;
957 chip->ecc.strength = 1;
958 }
959 }
960
961 if (mtd->writesize <= SZ_512)
962 plnand->addr_cycles = 1;
963 else
964 plnand->addr_cycles = 2;
965
966 if (chip->options & NAND_ROW_ADDR_3)
967 plnand->addr_cycles += 3;
968 else
969 plnand->addr_cycles += 2;
970
971 switch (chip->ecc.engine_type) {
972 case NAND_ECC_ENGINE_TYPE_ON_DIE:
973 /* Keep these legacy BBT descriptors for ON_DIE situations */
974 chip->bbt_td = &bbt_main_descr;
975 chip->bbt_md = &bbt_mirror_descr;
976 fallthrough;
977 case NAND_ECC_ENGINE_TYPE_NONE:
978 case NAND_ECC_ENGINE_TYPE_SOFT:
979 break;
980 case NAND_ECC_ENGINE_TYPE_ON_HOST:
981 ret = pl35x_nand_init_hw_ecc_controller(nfc, chip);
982 if (ret)
983 return ret;
984 break;
985 default:
986 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
987 chip->ecc.engine_type);
988 return -EINVAL;
989 }
990
991 return 0;
992 }
993
994 static const struct nand_controller_ops pl35x_nandc_ops = {
995 .attach_chip = pl35x_nand_attach_chip,
996 .exec_op = pl35x_nfc_exec_op,
997 .setup_interface = pl35x_nfc_setup_interface,
998 };
999
pl35x_nand_reset_state(struct pl35x_nandc * nfc)1000 static int pl35x_nand_reset_state(struct pl35x_nandc *nfc)
1001 {
1002 int ret;
1003
1004 /* Disable interrupts and clear their status */
1005 writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 |
1006 PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 |
1007 PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1,
1008 nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
1009
1010 /* Set default bus width to 8-bit */
1011 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
1012 if (ret)
1013 return ret;
1014
1015 /* Ensure the ECC controller is bypassed by default */
1016 ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS);
1017 if (ret)
1018 return ret;
1019
1020 /*
1021 * Configure the commands that the ECC block uses to detect the
1022 * operations it should start/end.
1023 */
1024 writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) |
1025 PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) |
1026 PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) |
1027 PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1),
1028 nfc->conf_regs + PL35X_SMC_ECC_CMD1);
1029 writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) |
1030 PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) |
1031 PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) |
1032 PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1),
1033 nfc->conf_regs + PL35X_SMC_ECC_CMD2);
1034
1035 return 0;
1036 }
1037
pl35x_nand_chip_init(struct pl35x_nandc * nfc,struct device_node * np)1038 static int pl35x_nand_chip_init(struct pl35x_nandc *nfc,
1039 struct device_node *np)
1040 {
1041 struct pl35x_nand *plnand;
1042 struct nand_chip *chip;
1043 struct mtd_info *mtd;
1044 int cs, ret;
1045
1046 plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL);
1047 if (!plnand)
1048 return -ENOMEM;
1049
1050 ret = of_property_read_u32(np, "reg", &cs);
1051 if (ret)
1052 return ret;
1053
1054 if (cs >= PL35X_NAND_MAX_CS) {
1055 dev_err(nfc->dev, "Wrong CS %d\n", cs);
1056 return -EINVAL;
1057 }
1058
1059 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1060 dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1061 return -EINVAL;
1062 }
1063
1064 plnand->cs = cs;
1065
1066 chip = &plnand->chip;
1067 chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1068 chip->bbt_options = NAND_BBT_USE_FLASH;
1069 chip->controller = &nfc->controller;
1070 mtd = nand_to_mtd(chip);
1071 mtd->dev.parent = nfc->dev;
1072 nand_set_flash_node(chip, np);
1073 if (!mtd->name) {
1074 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
1075 "%s", PL35X_NANDC_DRIVER_NAME);
1076 if (!mtd->name) {
1077 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
1078 return -ENOMEM;
1079 }
1080 }
1081
1082 ret = nand_scan(chip, 1);
1083 if (ret)
1084 return ret;
1085
1086 ret = mtd_device_register(mtd, NULL, 0);
1087 if (ret) {
1088 nand_cleanup(chip);
1089 return ret;
1090 }
1091
1092 list_add_tail(&plnand->node, &nfc->chips);
1093
1094 return ret;
1095 }
1096
pl35x_nand_chips_cleanup(struct pl35x_nandc * nfc)1097 static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc)
1098 {
1099 struct pl35x_nand *plnand, *tmp;
1100 struct nand_chip *chip;
1101 int ret;
1102
1103 list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) {
1104 chip = &plnand->chip;
1105 ret = mtd_device_unregister(nand_to_mtd(chip));
1106 WARN_ON(ret);
1107 nand_cleanup(chip);
1108 list_del(&plnand->node);
1109 }
1110 }
1111
pl35x_nand_chips_init(struct pl35x_nandc * nfc)1112 static int pl35x_nand_chips_init(struct pl35x_nandc *nfc)
1113 {
1114 struct device_node *np = nfc->dev->of_node;
1115 int nchips = of_get_child_count(np);
1116 int ret;
1117
1118 if (!nchips || nchips > PL35X_NAND_MAX_CS) {
1119 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1120 nchips);
1121 return -EINVAL;
1122 }
1123
1124 for_each_child_of_node_scoped(np, nand_np) {
1125 ret = pl35x_nand_chip_init(nfc, nand_np);
1126 if (ret) {
1127 pl35x_nand_chips_cleanup(nfc);
1128 break;
1129 }
1130 }
1131
1132 return ret;
1133 }
1134
pl35x_nand_probe(struct platform_device * pdev)1135 static int pl35x_nand_probe(struct platform_device *pdev)
1136 {
1137 struct device *smc_dev = pdev->dev.parent;
1138 struct amba_device *smc_amba = to_amba_device(smc_dev);
1139 struct pl35x_nandc *nfc;
1140 u32 ret;
1141
1142 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1143 if (!nfc)
1144 return -ENOMEM;
1145
1146 nfc->dev = &pdev->dev;
1147 nand_controller_init(&nfc->controller);
1148 nfc->controller.ops = &pl35x_nandc_ops;
1149 INIT_LIST_HEAD(&nfc->chips);
1150
1151 nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res);
1152 if (IS_ERR(nfc->conf_regs))
1153 return PTR_ERR(nfc->conf_regs);
1154
1155 nfc->io_regs = devm_platform_ioremap_resource(pdev, 0);
1156 if (IS_ERR(nfc->io_regs))
1157 return PTR_ERR(nfc->io_regs);
1158
1159 ret = pl35x_nand_reset_state(nfc);
1160 if (ret)
1161 return ret;
1162
1163 ret = pl35x_nand_chips_init(nfc);
1164 if (ret)
1165 return ret;
1166
1167 platform_set_drvdata(pdev, nfc);
1168
1169 return 0;
1170 }
1171
pl35x_nand_remove(struct platform_device * pdev)1172 static void pl35x_nand_remove(struct platform_device *pdev)
1173 {
1174 struct pl35x_nandc *nfc = platform_get_drvdata(pdev);
1175
1176 pl35x_nand_chips_cleanup(nfc);
1177 }
1178
1179 static const struct of_device_id pl35x_nand_of_match[] = {
1180 { .compatible = "arm,pl353-nand-r2p1" },
1181 {},
1182 };
1183 MODULE_DEVICE_TABLE(of, pl35x_nand_of_match);
1184
1185 static struct platform_driver pl35x_nandc_driver = {
1186 .probe = pl35x_nand_probe,
1187 .remove_new = pl35x_nand_remove,
1188 .driver = {
1189 .name = PL35X_NANDC_DRIVER_NAME,
1190 .of_match_table = pl35x_nand_of_match,
1191 },
1192 };
1193 module_platform_driver(pl35x_nandc_driver);
1194
1195 MODULE_AUTHOR("Xilinx, Inc.");
1196 MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
1197 MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
1198 MODULE_LICENSE("GPL");
1199