1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 STMicroelectronics Limited
4  * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
5  */
6 #include <linux/kernel.h>
7 #include <linux/clk.h>
8 #include <linux/interrupt.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/reset.h>
14 #include <media/rc-core.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/pm_wakeirq.h>
17 
18 struct st_rc_device {
19 	struct device			*dev;
20 	int				irq;
21 	int				irq_wake;
22 	struct clk			*sys_clock;
23 	void __iomem			*base;	/* Register base address */
24 	void __iomem			*rx_base;/* RX Register base address */
25 	struct rc_dev			*rdev;
26 	bool				overclocking;
27 	int				sample_mult;
28 	int				sample_div;
29 	bool				rxuhfmode;
30 	struct	reset_control		*rstc;
31 };
32 
33 /* Registers */
34 #define IRB_SAMPLE_RATE_COMM	0x64	/* sample freq divisor*/
35 #define IRB_CLOCK_SEL		0x70	/* clock select       */
36 #define IRB_CLOCK_SEL_STATUS	0x74	/* clock status       */
37 /* IRB IR/UHF receiver registers */
38 #define IRB_RX_ON               0x40	/* pulse time capture */
39 #define IRB_RX_SYS              0X44	/* sym period capture */
40 #define IRB_RX_INT_EN           0x48	/* IRQ enable (R/W)   */
41 #define IRB_RX_INT_STATUS       0x4c	/* IRQ status (R/W)   */
42 #define IRB_RX_EN               0x50	/* Receive enable     */
43 #define IRB_MAX_SYM_PERIOD      0x54	/* max sym value      */
44 #define IRB_RX_INT_CLEAR        0x58	/* overrun status     */
45 #define IRB_RX_STATUS           0x6c	/* receive status     */
46 #define IRB_RX_NOISE_SUPPR      0x5c	/* noise suppression  */
47 #define IRB_RX_POLARITY_INV     0x68	/* polarity inverter  */
48 
49 /*
50  * IRQ set: Enable full FIFO                 1  -> bit  3;
51  *          Enable overrun IRQ               1  -> bit  2;
52  *          Enable last symbol IRQ           1  -> bit  1:
53  *          Enable RX interrupt              1  -> bit  0;
54  */
55 #define IRB_RX_INTS		0x0f
56 #define IRB_RX_OVERRUN_INT	0x04
57  /* maximum symbol period (microsecs),timeout to detect end of symbol train */
58 #define MAX_SYMB_TIME		0x5000
59 #define IRB_SAMPLE_FREQ		10000000
60 #define	IRB_FIFO_NOT_EMPTY	0xff00
61 #define IRB_OVERFLOW		0x4
62 #define IRB_TIMEOUT		0xffff
63 #define IR_ST_NAME "st-rc"
64 
st_rc_send_lirc_timeout(struct rc_dev * rdev)65 static void st_rc_send_lirc_timeout(struct rc_dev *rdev)
66 {
67 	struct ir_raw_event ev = { .timeout = true, .duration = rdev->timeout };
68 	ir_raw_event_store(rdev, &ev);
69 }
70 
71 /*
72  * RX graphical example to better understand the difference between ST IR block
73  * output and standard definition used by LIRC (and most of the world!)
74  *
75  *           mark                                     mark
76  *      |-IRB_RX_ON-|                            |-IRB_RX_ON-|
77  *      ___  ___  ___                            ___  ___  ___             _
78  *      | |  | |  | |                            | |  | |  | |             |
79  *      | |  | |  | |         space 0            | |  | |  | |   space 1   |
80  * _____| |__| |__| |____________________________| |__| |__| |_____________|
81  *
82  *      |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------|
83  *
84  *      |------------- encoding bit 0 -----------|---- encoding bit 1 -----|
85  *
86  * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so
87  * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark)
88  * The mark time represents the amount of time the carrier (usually 36-40kHz)
89  * is detected.The above examples shows Pulse Width Modulation encoding where
90  * bit 0 is represented by space>mark.
91  */
92 
st_rc_rx_interrupt(int irq,void * data)93 static irqreturn_t st_rc_rx_interrupt(int irq, void *data)
94 {
95 	unsigned long timeout;
96 	unsigned int symbol, mark = 0;
97 	struct st_rc_device *dev = data;
98 	int last_symbol = 0;
99 	u32 status, int_status;
100 	struct ir_raw_event ev = {};
101 
102 	if (dev->irq_wake)
103 		pm_wakeup_event(dev->dev, 0);
104 
105 	/* FIXME: is 10ms good enough ? */
106 	timeout = jiffies +  msecs_to_jiffies(10);
107 	do {
108 		status  = readl(dev->rx_base + IRB_RX_STATUS);
109 		if (!(status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)))
110 			break;
111 
112 		int_status = readl(dev->rx_base + IRB_RX_INT_STATUS);
113 		if (unlikely(int_status & IRB_RX_OVERRUN_INT)) {
114 			/* discard the entire collection in case of errors!  */
115 			ir_raw_event_overflow(dev->rdev);
116 			dev_info(dev->dev, "IR RX overrun\n");
117 			writel(IRB_RX_OVERRUN_INT,
118 					dev->rx_base + IRB_RX_INT_CLEAR);
119 			continue;
120 		}
121 
122 		symbol = readl(dev->rx_base + IRB_RX_SYS);
123 		mark = readl(dev->rx_base + IRB_RX_ON);
124 
125 		if (symbol == IRB_TIMEOUT)
126 			last_symbol = 1;
127 
128 		 /* Ignore any noise */
129 		if ((mark > 2) && (symbol > 1)) {
130 			symbol -= mark;
131 			if (dev->overclocking) { /* adjustments to timings */
132 				symbol *= dev->sample_mult;
133 				symbol /= dev->sample_div;
134 				mark *= dev->sample_mult;
135 				mark /= dev->sample_div;
136 			}
137 
138 			ev.duration = mark;
139 			ev.pulse = true;
140 			ir_raw_event_store(dev->rdev, &ev);
141 
142 			if (!last_symbol) {
143 				ev.duration = symbol;
144 				ev.pulse = false;
145 				ir_raw_event_store(dev->rdev, &ev);
146 			} else  {
147 				st_rc_send_lirc_timeout(dev->rdev);
148 			}
149 
150 		}
151 		last_symbol = 0;
152 	} while (time_is_after_jiffies(timeout));
153 
154 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR);
155 
156 	/* Empty software fifo */
157 	ir_raw_event_handle(dev->rdev);
158 	return IRQ_HANDLED;
159 }
160 
st_rc_hardware_init(struct st_rc_device * dev)161 static int st_rc_hardware_init(struct st_rc_device *dev)
162 {
163 	int ret;
164 	int baseclock, freqdiff;
165 	unsigned int rx_max_symbol_per = MAX_SYMB_TIME;
166 	unsigned int rx_sampling_freq_div;
167 
168 	/* Enable the IP */
169 	reset_control_deassert(dev->rstc);
170 
171 	ret = clk_prepare_enable(dev->sys_clock);
172 	if (ret) {
173 		dev_err(dev->dev, "Failed to prepare/enable system clock\n");
174 		return ret;
175 	}
176 
177 	baseclock = clk_get_rate(dev->sys_clock);
178 
179 	/* IRB input pins are inverted internally from high to low. */
180 	writel(1, dev->rx_base + IRB_RX_POLARITY_INV);
181 
182 	rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ;
183 	writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM);
184 
185 	freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ);
186 	if (freqdiff) { /* over clocking, workout the adjustment factors */
187 		dev->overclocking = true;
188 		dev->sample_mult = 1000;
189 		dev->sample_div = baseclock / (10000 * rx_sampling_freq_div);
190 		rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div;
191 	}
192 
193 	writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD);
194 
195 	return 0;
196 }
197 
st_rc_remove(struct platform_device * pdev)198 static void st_rc_remove(struct platform_device *pdev)
199 {
200 	struct st_rc_device *rc_dev = platform_get_drvdata(pdev);
201 
202 	dev_pm_clear_wake_irq(&pdev->dev);
203 	device_init_wakeup(&pdev->dev, false);
204 	clk_disable_unprepare(rc_dev->sys_clock);
205 	rc_unregister_device(rc_dev->rdev);
206 }
207 
st_rc_open(struct rc_dev * rdev)208 static int st_rc_open(struct rc_dev *rdev)
209 {
210 	struct st_rc_device *dev = rdev->priv;
211 	unsigned long flags;
212 	local_irq_save(flags);
213 	/* enable interrupts and receiver */
214 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN);
215 	writel(0x01, dev->rx_base + IRB_RX_EN);
216 	local_irq_restore(flags);
217 
218 	return 0;
219 }
220 
st_rc_close(struct rc_dev * rdev)221 static void st_rc_close(struct rc_dev *rdev)
222 {
223 	struct st_rc_device *dev = rdev->priv;
224 	/* disable interrupts and receiver */
225 	writel(0x00, dev->rx_base + IRB_RX_EN);
226 	writel(0x00, dev->rx_base + IRB_RX_INT_EN);
227 }
228 
st_rc_probe(struct platform_device * pdev)229 static int st_rc_probe(struct platform_device *pdev)
230 {
231 	int ret = -EINVAL;
232 	struct rc_dev *rdev;
233 	struct device *dev = &pdev->dev;
234 	struct st_rc_device *rc_dev;
235 	struct device_node *np = pdev->dev.of_node;
236 	const char *rx_mode;
237 
238 	rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL);
239 
240 	if (!rc_dev)
241 		return -ENOMEM;
242 
243 	rdev = rc_allocate_device(RC_DRIVER_IR_RAW);
244 
245 	if (!rdev)
246 		return -ENOMEM;
247 
248 	if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) {
249 
250 		if (!strcmp(rx_mode, "uhf")) {
251 			rc_dev->rxuhfmode = true;
252 		} else if (!strcmp(rx_mode, "infrared")) {
253 			rc_dev->rxuhfmode = false;
254 		} else {
255 			dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode);
256 			goto err;
257 		}
258 
259 	} else {
260 		goto err;
261 	}
262 
263 	rc_dev->sys_clock = devm_clk_get(dev, NULL);
264 	if (IS_ERR(rc_dev->sys_clock)) {
265 		dev_err(dev, "System clock not found\n");
266 		ret = PTR_ERR(rc_dev->sys_clock);
267 		goto err;
268 	}
269 
270 	rc_dev->irq = platform_get_irq(pdev, 0);
271 	if (rc_dev->irq < 0) {
272 		ret = rc_dev->irq;
273 		goto err;
274 	}
275 
276 	rc_dev->base = devm_platform_ioremap_resource(pdev, 0);
277 	if (IS_ERR(rc_dev->base)) {
278 		ret = PTR_ERR(rc_dev->base);
279 		goto err;
280 	}
281 
282 	if (rc_dev->rxuhfmode)
283 		rc_dev->rx_base = rc_dev->base + 0x40;
284 	else
285 		rc_dev->rx_base = rc_dev->base;
286 
287 	rc_dev->rstc = reset_control_get_optional_exclusive(dev, NULL);
288 	if (IS_ERR(rc_dev->rstc)) {
289 		ret = PTR_ERR(rc_dev->rstc);
290 		goto err;
291 	}
292 
293 	rc_dev->dev = dev;
294 	platform_set_drvdata(pdev, rc_dev);
295 	ret = st_rc_hardware_init(rc_dev);
296 	if (ret)
297 		goto err;
298 
299 	rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
300 	/* rx sampling rate is 10Mhz */
301 	rdev->rx_resolution = 100;
302 	rdev->timeout = MAX_SYMB_TIME;
303 	rdev->priv = rc_dev;
304 	rdev->open = st_rc_open;
305 	rdev->close = st_rc_close;
306 	rdev->driver_name = IR_ST_NAME;
307 	rdev->map_name = RC_MAP_EMPTY;
308 	rdev->device_name = "ST Remote Control Receiver";
309 
310 	ret = rc_register_device(rdev);
311 	if (ret < 0)
312 		goto clkerr;
313 
314 	rc_dev->rdev = rdev;
315 	if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt,
316 			     0, IR_ST_NAME, rc_dev) < 0) {
317 		dev_err(dev, "IRQ %d register failed\n", rc_dev->irq);
318 		ret = -EINVAL;
319 		goto rcerr;
320 	}
321 
322 	/* enable wake via this device */
323 	device_init_wakeup(dev, true);
324 	dev_pm_set_wake_irq(dev, rc_dev->irq);
325 
326 	/*
327 	 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW
328 	 * lircd expects a long space first before a signal train to sync.
329 	 */
330 	st_rc_send_lirc_timeout(rdev);
331 
332 	dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR");
333 
334 	return ret;
335 rcerr:
336 	rc_unregister_device(rdev);
337 	rdev = NULL;
338 clkerr:
339 	clk_disable_unprepare(rc_dev->sys_clock);
340 err:
341 	rc_free_device(rdev);
342 	dev_err(dev, "Unable to register device (%d)\n", ret);
343 	return ret;
344 }
345 
346 #ifdef CONFIG_PM_SLEEP
st_rc_suspend(struct device * dev)347 static int st_rc_suspend(struct device *dev)
348 {
349 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
350 
351 	if (device_may_wakeup(dev)) {
352 		if (!enable_irq_wake(rc_dev->irq))
353 			rc_dev->irq_wake = 1;
354 		else
355 			return -EINVAL;
356 	} else {
357 		pinctrl_pm_select_sleep_state(dev);
358 		writel(0x00, rc_dev->rx_base + IRB_RX_EN);
359 		writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN);
360 		clk_disable_unprepare(rc_dev->sys_clock);
361 		reset_control_assert(rc_dev->rstc);
362 	}
363 
364 	return 0;
365 }
366 
st_rc_resume(struct device * dev)367 static int st_rc_resume(struct device *dev)
368 {
369 	int ret;
370 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
371 	struct rc_dev	*rdev = rc_dev->rdev;
372 
373 	if (rc_dev->irq_wake) {
374 		disable_irq_wake(rc_dev->irq);
375 		rc_dev->irq_wake = 0;
376 	} else {
377 		pinctrl_pm_select_default_state(dev);
378 		ret = st_rc_hardware_init(rc_dev);
379 		if (ret)
380 			return ret;
381 
382 		if (rdev->users) {
383 			writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN);
384 			writel(0x01, rc_dev->rx_base + IRB_RX_EN);
385 		}
386 	}
387 
388 	return 0;
389 }
390 
391 #endif
392 
393 static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume);
394 
395 #ifdef CONFIG_OF
396 static const struct of_device_id st_rc_match[] = {
397 	{ .compatible = "st,comms-irb", },
398 	{},
399 };
400 
401 MODULE_DEVICE_TABLE(of, st_rc_match);
402 #endif
403 
404 static struct platform_driver st_rc_driver = {
405 	.driver = {
406 		.name = IR_ST_NAME,
407 		.of_match_table = of_match_ptr(st_rc_match),
408 		.pm     = &st_rc_pm_ops,
409 	},
410 	.probe = st_rc_probe,
411 	.remove_new = st_rc_remove,
412 };
413 
414 module_platform_driver(st_rc_driver);
415 
416 MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms");
417 MODULE_AUTHOR("STMicroelectronics (R&D) Ltd");
418 MODULE_LICENSE("GPL");
419