1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * mlx90635.c - Melexis MLX90635 contactless IR temperature sensor
4   *
5   * Copyright (c) 2023 Melexis <cmo@melexis.com>
6   *
7   * Driver for the Melexis MLX90635 I2C 16-bit IR thermopile sensor
8   */
9  #include <linux/bitfield.h>
10  #include <linux/delay.h>
11  #include <linux/device.h>
12  #include <linux/err.h>
13  #include <linux/gpio/consumer.h>
14  #include <linux/i2c.h>
15  #include <linux/iopoll.h>
16  #include <linux/jiffies.h>
17  #include <linux/kernel.h>
18  #include <linux/limits.h>
19  #include <linux/mod_devicetable.h>
20  #include <linux/module.h>
21  #include <linux/math64.h>
22  #include <linux/pm_runtime.h>
23  #include <linux/regmap.h>
24  #include <linux/regulator/consumer.h>
25  
26  #include <linux/iio/iio.h>
27  
28  /* Memory sections addresses */
29  #define MLX90635_ADDR_RAM	0x0000 /* Start address of ram */
30  #define MLX90635_ADDR_EEPROM	0x0018 /* Start address of user eeprom */
31  
32  /* EEPROM addresses - used at startup */
33  #define MLX90635_EE_I2C_CFG	0x0018 /* I2C address register initial value */
34  #define MLX90635_EE_CTRL1	0x001A /* Control register1 initial value */
35  #define MLX90635_EE_CTRL2	0x001C /* Control register2 initial value */
36  
37  #define MLX90635_EE_Ha		0x001E /* Ha customer calib value reg 16bit */
38  #define MLX90635_EE_Hb		0x0020 /* Hb customer calib value reg 16bit */
39  #define MLX90635_EE_Fa		0x0026 /* Fa calibration register 32bit */
40  #define MLX90635_EE_FASCALE	0x002A /* Scaling coefficient for Fa register 16bit */
41  #define MLX90635_EE_Ga		0x002C /* Ga calibration register 16bit */
42  #define MLX90635_EE_Fb		0x002E /* Fb calibration register 16bit */
43  #define MLX90635_EE_Ea		0x0030 /* Ea calibration register 32bit */
44  #define MLX90635_EE_Eb		0x0034 /* Eb calibration register 32bit */
45  #define MLX90635_EE_P_G		0x0038 /* P_G calibration register 16bit */
46  #define MLX90635_EE_P_O		0x003A /* P_O calibration register 16bit */
47  #define MLX90635_EE_Aa		0x003C /* Aa calibration register 16bit */
48  #define MLX90635_EE_VERSION	0x003E /* Version bits 4:7 and 12:15 */
49  #define MLX90635_EE_Gb		0x0040 /* Gb calibration register 16bit */
50  
51  /* Device status register - volatile */
52  #define MLX90635_REG_STATUS	0x0000
53  #define   MLX90635_STAT_BUSY BIT(6) /* Device busy indicator */
54  #define   MLX90635_STAT_BRST BIT(5) /* Brown out reset indicator */
55  #define   MLX90635_STAT_CYCLE_POS GENMASK(4, 2) /* Data position */
56  #define   MLX90635_STAT_END_CONV BIT(1) /* End of conversion indicator */
57  #define   MLX90635_STAT_DATA_RDY BIT(0) /* Data ready indicator */
58  
59  /* EEPROM control register address - volatile */
60  #define MLX90635_REG_EE		0x000C
61  #define   MLX90635_EE_ACTIVE BIT(4) /* Power-on EEPROM */
62  #define   MLX90635_EE_BUSY_MASK	BIT(15)
63  
64  #define MLX90635_REG_CMD	0x0010 /* Command register address */
65  
66  /* Control register1 address - volatile */
67  #define MLX90635_REG_CTRL1	0x0014
68  #define   MLX90635_CTRL1_REFRESH_RATE_MASK GENMASK(2, 0)
69  #define   MLX90635_CTRL1_RES_CTRL_MASK GENMASK(4, 3)
70  #define   MLX90635_CTRL1_TABLE_MASK BIT(15) /* Table select */
71  
72  /* Control register2 address - volatile */
73  #define   MLX90635_REG_CTRL2	0x0016
74  #define   MLX90635_CTRL2_BURST_CNT_MASK GENMASK(10, 6) /* Burst count */
75  #define   MLX90635_CTRL2_MODE_MASK GENMASK(12, 11) /* Power mode */
76  #define   MLX90635_CTRL2_SOB_MASK BIT(15)
77  
78  /* PowerModes statuses */
79  #define MLX90635_PWR_STATUS_HALT 0
80  #define MLX90635_PWR_STATUS_SLEEP_STEP 1
81  #define MLX90635_PWR_STATUS_STEP 2
82  #define MLX90635_PWR_STATUS_CONTINUOUS 3
83  
84  /* Measurement data addresses */
85  #define MLX90635_RESULT_1   0x0002
86  #define MLX90635_RESULT_2   0x0004
87  #define MLX90635_RESULT_3   0x0006
88  #define MLX90635_RESULT_4   0x0008
89  #define MLX90635_RESULT_5   0x000A
90  
91  /* Timings (ms) */
92  #define MLX90635_TIMING_RST_MIN 200 /* Minimum time after addressed reset command */
93  #define MLX90635_TIMING_RST_MAX 250 /* Maximum time after addressed reset command */
94  #define MLX90635_TIMING_POLLING 10000 /* Time between bit polling*/
95  #define MLX90635_TIMING_EE_ACTIVE_MIN 100 /* Minimum time after activating the EEPROM for read */
96  #define MLX90635_TIMING_EE_ACTIVE_MAX 150 /* Maximum time after activating the EEPROM for read */
97  
98  /* Magic constants */
99  #define MLX90635_ID_DSPv1 0x01 /* EEPROM DSP version */
100  #define MLX90635_RESET_CMD  0x0006 /* Reset sensor (address or global) */
101  #define MLX90635_MAX_MEAS_NUM   31 /* Maximum number of measurements in list */
102  #define MLX90635_PTAT_DIV 12   /* Used to divide the PTAT value in pre-processing */
103  #define MLX90635_IR_DIV 24   /* Used to divide the IR value in pre-processing */
104  #define MLX90635_SLEEP_DELAY_MS 6000 /* Autosleep delay */
105  #define MLX90635_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
106  #define MLX90635_READ_RETRIES 100 /* Number of read retries before quitting with timeout error */
107  #define MLX90635_VERSION_MASK (GENMASK(15, 12) | GENMASK(7, 4))
108  #define MLX90635_DSP_VERSION(reg) (((reg & GENMASK(14, 12)) >> 9) | ((reg & GENMASK(6, 4)) >> 4))
109  #define MLX90635_DSP_FIXED BIT(15)
110  
111  
112  /**
113   * struct mlx90635_data - private data for the MLX90635 device
114   * @client: I2C client of the device
115   * @lock: Internal mutex because multiple reads are needed for single triggered
116   *	  measurement to ensure data consistency
117   * @regmap: Regmap of the device registers
118   * @regmap_ee: Regmap of the device EEPROM which can be cached
119   * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1
120   * @regulator: Regulator of the device
121   * @powerstatus: Current POWER status of the device
122   * @interaction_ts: Timestamp of the last temperature read that is used
123   *		    for power management in jiffies
124   */
125  struct mlx90635_data {
126  	struct i2c_client *client;
127  	struct mutex lock;
128  	struct regmap *regmap;
129  	struct regmap *regmap_ee;
130  	u16 emissivity;
131  	struct regulator *regulator;
132  	int powerstatus;
133  	unsigned long interaction_ts;
134  };
135  
136  static const struct regmap_range mlx90635_volatile_reg_range[] = {
137  	regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
138  	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
139  	regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
140  	regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
141  	regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
142  };
143  
144  static const struct regmap_access_table mlx90635_volatile_regs_tbl = {
145  	.yes_ranges = mlx90635_volatile_reg_range,
146  	.n_yes_ranges = ARRAY_SIZE(mlx90635_volatile_reg_range),
147  };
148  
149  static const struct regmap_range mlx90635_read_reg_range[] = {
150  	regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
151  	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
152  	regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
153  	regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
154  	regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
155  };
156  
157  static const struct regmap_access_table mlx90635_readable_regs_tbl = {
158  	.yes_ranges = mlx90635_read_reg_range,
159  	.n_yes_ranges = ARRAY_SIZE(mlx90635_read_reg_range),
160  };
161  
162  static const struct regmap_range mlx90635_no_write_reg_range[] = {
163  	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
164  };
165  
166  static const struct regmap_access_table mlx90635_writeable_regs_tbl = {
167  	.no_ranges = mlx90635_no_write_reg_range,
168  	.n_no_ranges = ARRAY_SIZE(mlx90635_no_write_reg_range),
169  };
170  
171  static const struct regmap_config mlx90635_regmap = {
172  	.name = "mlx90635-registers",
173  	.reg_stride = 1,
174  	.reg_bits = 16,
175  	.val_bits = 16,
176  
177  	.volatile_table = &mlx90635_volatile_regs_tbl,
178  	.rd_table = &mlx90635_readable_regs_tbl,
179  	.wr_table = &mlx90635_writeable_regs_tbl,
180  
181  	.use_single_read = true,
182  	.use_single_write = true,
183  	.can_multi_write = false,
184  	.reg_format_endian = REGMAP_ENDIAN_BIG,
185  	.val_format_endian = REGMAP_ENDIAN_BIG,
186  	.cache_type = REGCACHE_RBTREE,
187  };
188  
189  static const struct regmap_range mlx90635_read_ee_range[] = {
190  	regmap_reg_range(MLX90635_EE_I2C_CFG, MLX90635_EE_CTRL2),
191  	regmap_reg_range(MLX90635_EE_Ha, MLX90635_EE_Gb),
192  };
193  
194  static const struct regmap_access_table mlx90635_readable_ees_tbl = {
195  	.yes_ranges = mlx90635_read_ee_range,
196  	.n_yes_ranges = ARRAY_SIZE(mlx90635_read_ee_range),
197  };
198  
199  static const struct regmap_range mlx90635_no_write_ee_range[] = {
200  	regmap_reg_range(MLX90635_ADDR_EEPROM, MLX90635_EE_Gb),
201  };
202  
203  static const struct regmap_access_table mlx90635_writeable_ees_tbl = {
204  	.no_ranges = mlx90635_no_write_ee_range,
205  	.n_no_ranges = ARRAY_SIZE(mlx90635_no_write_ee_range),
206  };
207  
208  static const struct regmap_config mlx90635_regmap_ee = {
209  	.name = "mlx90635-eeprom",
210  	.reg_stride = 1,
211  	.reg_bits = 16,
212  	.val_bits = 16,
213  
214  	.volatile_table = NULL,
215  	.rd_table = &mlx90635_readable_ees_tbl,
216  	.wr_table = &mlx90635_writeable_ees_tbl,
217  
218  	.use_single_read = true,
219  	.use_single_write = true,
220  	.can_multi_write = false,
221  	.reg_format_endian = REGMAP_ENDIAN_BIG,
222  	.val_format_endian = REGMAP_ENDIAN_BIG,
223  	.cache_type = REGCACHE_RBTREE,
224  };
225  
226  /**
227   * mlx90635_reset_delay() - Give the mlx90635 some time to reset properly
228   * If this is not done, the following I2C command(s) will not be accepted.
229   */
mlx90635_reset_delay(void)230  static void mlx90635_reset_delay(void)
231  {
232  	usleep_range(MLX90635_TIMING_RST_MIN, MLX90635_TIMING_RST_MAX);
233  }
234  
mlx90635_pwr_sleep_step(struct mlx90635_data * data)235  static int mlx90635_pwr_sleep_step(struct mlx90635_data *data)
236  {
237  	int ret;
238  
239  	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
240  		return 0;
241  
242  	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
243  				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_SLEEP_STEP));
244  	if (ret < 0)
245  		return ret;
246  
247  	data->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
248  	return 0;
249  }
250  
mlx90635_pwr_continuous(struct mlx90635_data * data)251  static int mlx90635_pwr_continuous(struct mlx90635_data *data)
252  {
253  	int ret;
254  
255  	if (data->powerstatus == MLX90635_PWR_STATUS_CONTINUOUS)
256  		return 0;
257  
258  	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
259  				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_CONTINUOUS));
260  	if (ret < 0)
261  		return ret;
262  
263  	data->powerstatus = MLX90635_PWR_STATUS_CONTINUOUS;
264  	return 0;
265  }
266  
mlx90635_read_ee_register(struct regmap * regmap,u16 reg_lsb,s32 * reg_value)267  static int mlx90635_read_ee_register(struct regmap *regmap, u16 reg_lsb,
268  				     s32 *reg_value)
269  {
270  	unsigned int read;
271  	u32 value;
272  	int ret;
273  
274  	ret = regmap_read(regmap, reg_lsb + 2, &read);
275  	if (ret < 0)
276  		return ret;
277  
278  	value = read;
279  
280  	ret = regmap_read(regmap, reg_lsb, &read);
281  	if (ret < 0)
282  		return ret;
283  
284  	*reg_value = (read << 16) | (value & 0xffff);
285  
286  	return 0;
287  }
288  
mlx90635_read_ee_ambient(struct regmap * regmap,s16 * PG,s16 * PO,s16 * Gb)289  static int mlx90635_read_ee_ambient(struct regmap *regmap, s16 *PG, s16 *PO, s16 *Gb)
290  {
291  	unsigned int read_tmp;
292  	int ret;
293  
294  	ret = regmap_read(regmap, MLX90635_EE_P_O, &read_tmp);
295  	if (ret < 0)
296  		return ret;
297  	*PO = (s16)read_tmp;
298  
299  	ret = regmap_read(regmap, MLX90635_EE_P_G, &read_tmp);
300  	if (ret < 0)
301  		return ret;
302  	*PG = (s16)read_tmp;
303  
304  	ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
305  	if (ret < 0)
306  		return ret;
307  	*Gb = (u16)read_tmp;
308  
309  	return 0;
310  }
311  
mlx90635_read_ee_object(struct regmap * regmap,u32 * Ea,u32 * Eb,u32 * Fa,s16 * Fb,s16 * Ga,s16 * Gb,s16 * Ha,s16 * Hb,u16 * Fa_scale)312  static int mlx90635_read_ee_object(struct regmap *regmap, u32 *Ea, u32 *Eb, u32 *Fa, s16 *Fb,
313  				   s16 *Ga, s16 *Gb, s16 *Ha, s16 *Hb, u16 *Fa_scale)
314  {
315  	unsigned int read_tmp;
316  	int ret;
317  
318  	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Ea, Ea);
319  	if (ret < 0)
320  		return ret;
321  
322  	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Eb, Eb);
323  	if (ret < 0)
324  		return ret;
325  
326  	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Fa, Fa);
327  	if (ret < 0)
328  		return ret;
329  
330  	ret = regmap_read(regmap, MLX90635_EE_Ha, &read_tmp);
331  	if (ret < 0)
332  		return ret;
333  	*Ha = (s16)read_tmp;
334  
335  	ret = regmap_read(regmap, MLX90635_EE_Hb, &read_tmp);
336  	if (ret < 0)
337  		return ret;
338  	*Hb = (s16)read_tmp;
339  
340  	ret = regmap_read(regmap, MLX90635_EE_Ga, &read_tmp);
341  	if (ret < 0)
342  		return ret;
343  	*Ga = (s16)read_tmp;
344  
345  	ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
346  	if (ret < 0)
347  		return ret;
348  	*Gb = (s16)read_tmp;
349  
350  	ret = regmap_read(regmap, MLX90635_EE_Fb, &read_tmp);
351  	if (ret < 0)
352  		return ret;
353  	*Fb = (s16)read_tmp;
354  
355  	ret = regmap_read(regmap, MLX90635_EE_FASCALE, &read_tmp);
356  	if (ret < 0)
357  		return ret;
358  	*Fa_scale = (u16)read_tmp;
359  
360  	return 0;
361  }
362  
mlx90635_calculate_dataset_ready_time(struct mlx90635_data * data,int * refresh_time)363  static int mlx90635_calculate_dataset_ready_time(struct mlx90635_data *data, int *refresh_time)
364  {
365  	unsigned int reg;
366  	int ret;
367  
368  	ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
369  	if (ret < 0)
370  		return ret;
371  
372  	*refresh_time = 2 * (MLX90635_MEAS_MAX_TIME >> FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg)) + 80;
373  
374  	return 0;
375  }
376  
mlx90635_perform_measurement_burst(struct mlx90635_data * data)377  static int mlx90635_perform_measurement_burst(struct mlx90635_data *data)
378  {
379  	unsigned int reg_status;
380  	int refresh_time;
381  	int ret;
382  
383  	ret = regmap_write_bits(data->regmap, MLX90635_REG_STATUS,
384  				MLX90635_STAT_END_CONV, MLX90635_STAT_END_CONV);
385  	if (ret < 0)
386  		return ret;
387  
388  	ret = mlx90635_calculate_dataset_ready_time(data, &refresh_time);
389  	if (ret < 0)
390  		return ret;
391  
392  	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2,
393  				FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1),
394  				FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1));
395  	if (ret < 0)
396  		return ret;
397  
398  	msleep(refresh_time); /* Wait minimum time for dataset to be ready */
399  
400  	ret = regmap_read_poll_timeout(data->regmap, MLX90635_REG_STATUS, reg_status,
401  				       (!(reg_status & MLX90635_STAT_END_CONV)) == 0,
402  				       MLX90635_TIMING_POLLING, MLX90635_READ_RETRIES * 10000);
403  	if (ret < 0) {
404  		dev_err(&data->client->dev, "data not ready");
405  		return -ETIMEDOUT;
406  	}
407  
408  	return 0;
409  }
410  
mlx90635_read_ambient_raw(struct regmap * regmap,s16 * ambient_new_raw,s16 * ambient_old_raw)411  static int mlx90635_read_ambient_raw(struct regmap *regmap,
412  				     s16 *ambient_new_raw, s16 *ambient_old_raw)
413  {
414  	unsigned int read_tmp;
415  	int ret;
416  
417  	ret = regmap_read(regmap, MLX90635_RESULT_2, &read_tmp);
418  	if (ret < 0)
419  		return ret;
420  	*ambient_new_raw = (s16)read_tmp;
421  
422  	ret = regmap_read(regmap, MLX90635_RESULT_3, &read_tmp);
423  	if (ret < 0)
424  		return ret;
425  	*ambient_old_raw = (s16)read_tmp;
426  
427  	return 0;
428  }
429  
mlx90635_read_object_raw(struct regmap * regmap,s16 * object_raw)430  static int mlx90635_read_object_raw(struct regmap *regmap, s16 *object_raw)
431  {
432  	unsigned int read_tmp;
433  	s16 read;
434  	int ret;
435  
436  	ret = regmap_read(regmap, MLX90635_RESULT_1, &read_tmp);
437  	if (ret < 0)
438  		return ret;
439  
440  	read = (s16)read_tmp;
441  
442  	ret = regmap_read(regmap, MLX90635_RESULT_4, &read_tmp);
443  	if (ret < 0)
444  		return ret;
445  	*object_raw = (read - (s16)read_tmp) / 2;
446  
447  	return 0;
448  }
449  
mlx90635_read_all_channel(struct mlx90635_data * data,s16 * ambient_new_raw,s16 * ambient_old_raw,s16 * object_raw)450  static int mlx90635_read_all_channel(struct mlx90635_data *data,
451  				     s16 *ambient_new_raw, s16 *ambient_old_raw,
452  				     s16 *object_raw)
453  {
454  	int ret;
455  
456  	mutex_lock(&data->lock);
457  	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
458  		/* Trigger measurement in Sleep Step mode */
459  		ret = mlx90635_perform_measurement_burst(data);
460  		if (ret < 0)
461  			goto read_unlock;
462  	}
463  
464  	ret = mlx90635_read_ambient_raw(data->regmap, ambient_new_raw,
465  					ambient_old_raw);
466  	if (ret < 0)
467  		goto read_unlock;
468  
469  	ret = mlx90635_read_object_raw(data->regmap, object_raw);
470  read_unlock:
471  	mutex_unlock(&data->lock);
472  	return ret;
473  }
474  
mlx90635_preprocess_temp_amb(s16 ambient_new_raw,s16 ambient_old_raw,s16 Gb)475  static s64 mlx90635_preprocess_temp_amb(s16 ambient_new_raw,
476  					s16 ambient_old_raw, s16 Gb)
477  {
478  	s64 VR_Ta, kGb, tmp;
479  
480  	kGb = ((s64)Gb * 1000LL) >> 10ULL;
481  	VR_Ta = (s64)ambient_old_raw * 1000000LL +
482  		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
483  			(MLX90635_PTAT_DIV));
484  	tmp = div64_s64(
485  			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
486  				   (MLX90635_PTAT_DIV)), VR_Ta);
487  	return div64_s64(tmp << 19ULL, 1000LL);
488  }
489  
mlx90635_preprocess_temp_obj(s16 object_raw,s16 ambient_new_raw,s16 ambient_old_raw,s16 Gb)490  static s64 mlx90635_preprocess_temp_obj(s16 object_raw,
491  					s16 ambient_new_raw,
492  					s16 ambient_old_raw, s16 Gb)
493  {
494  	s64 VR_IR, kGb, tmp;
495  
496  	kGb = ((s64)Gb * 1000LL) >> 10ULL;
497  	VR_IR = (s64)ambient_old_raw * 1000000LL +
498  		kGb * (div64_s64((s64)ambient_new_raw * 1000LL,
499  			MLX90635_PTAT_DIV));
500  	tmp = div64_s64(
501  			div64_s64((s64)(object_raw * 1000000LL),
502  				   MLX90635_IR_DIV) * 1000000LL,
503  			VR_IR);
504  	return div64_s64((tmp << 19ULL), 1000LL);
505  }
506  
mlx90635_calc_temp_ambient(s16 ambient_new_raw,s16 ambient_old_raw,u16 P_G,u16 P_O,s16 Gb)507  static s32 mlx90635_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
508  				      u16 P_G, u16 P_O, s16 Gb)
509  {
510  	s64 kPG, kPO, AMB;
511  
512  	AMB = mlx90635_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
513  					   Gb);
514  	kPG = ((s64)P_G * 1000000LL) >> 9ULL;
515  	kPO = AMB - (((s64)P_O * 1000LL) >> 1ULL);
516  
517  	return 30 * 1000LL + div64_s64(kPO * 1000000LL, kPG);
518  }
519  
mlx90635_calc_temp_object_iteration(s32 prev_object_temp,s64 object,s64 TAdut,s64 TAdut4,s16 Ga,u32 Fa,u16 Fa_scale,s16 Fb,s16 Ha,s16 Hb,u16 emissivity)520  static s32 mlx90635_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
521  					       s64 TAdut, s64 TAdut4, s16 Ga,
522  					       u32 Fa, u16 Fa_scale, s16 Fb,
523  					       s16 Ha, s16 Hb, u16 emissivity)
524  {
525  	s64 calcedGa, calcedGb, calcedFa, Alpha_corr;
526  	s64 Ha_customer, Hb_customer;
527  
528  	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
529  	Hb_customer = ((s64)Hb * 100) >> 10ULL;
530  
531  	calcedGa = ((s64)((s64)Ga * (prev_object_temp - 35 * 1000LL)
532  			     * 1000LL)) >> 24LL;
533  	calcedGb = ((s64)(Fb * (TAdut - 30 * 1000000LL))) >> 24LL;
534  
535  	Alpha_corr = ((s64)((s64)Fa * Ha_customer * 10000LL) >> Fa_scale);
536  	Alpha_corr *= ((s64)(1 * 1000000LL + calcedGa + calcedGb));
537  
538  	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
539  	Alpha_corr *= emissivity;
540  	Alpha_corr = div64_s64(Alpha_corr, 100LL);
541  	calcedFa = div64_s64((s64)object * 100000000000LL, Alpha_corr);
542  
543  	return (int_sqrt64(int_sqrt64(calcedFa * 100000000LL + TAdut4))
544  		- 27315 - Hb_customer) * 10;
545  }
546  
mlx90635_calc_ta4(s64 TAdut,s64 scale)547  static s64 mlx90635_calc_ta4(s64 TAdut, s64 scale)
548  {
549  	return (div64_s64(TAdut, scale) + 27315) *
550  		(div64_s64(TAdut, scale) + 27315) *
551  		(div64_s64(TAdut, scale) + 27315) *
552  		(div64_s64(TAdut, scale) + 27315);
553  }
554  
mlx90635_calc_temp_object(s64 object,s64 ambient,u32 Ea,u32 Eb,s16 Ga,u32 Fa,u16 Fa_scale,s16 Fb,s16 Ha,s16 Hb,u16 tmp_emi)555  static s32 mlx90635_calc_temp_object(s64 object, s64 ambient, u32 Ea, u32 Eb,
556  				     s16 Ga, u32 Fa, u16 Fa_scale, s16 Fb, s16 Ha, s16 Hb,
557  				     u16 tmp_emi)
558  {
559  	s64 kTA, kTA0, TAdut, TAdut4;
560  	s64 temp = 35000;
561  	s8 i;
562  
563  	kTA = (Ea * 1000LL) >> 16LL;
564  	kTA0 = (Eb * 1000LL) >> 8LL;
565  	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 30 * 1000000LL;
566  	TAdut4 = mlx90635_calc_ta4(TAdut, 10000LL);
567  
568  	/* Iterations of calculation as described in datasheet */
569  	for (i = 0; i < 5; ++i) {
570  		temp = mlx90635_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
571  							   Ga, Fa, Fa_scale, Fb, Ha, Hb,
572  							   tmp_emi);
573  	}
574  	return temp;
575  }
576  
mlx90635_calc_object(struct mlx90635_data * data,int * val)577  static int mlx90635_calc_object(struct mlx90635_data *data, int *val)
578  {
579  	s16 ambient_new_raw, ambient_old_raw, object_raw;
580  	s16 Fb, Ga, Gb, Ha, Hb;
581  	s64 object, ambient;
582  	u32 Ea, Eb, Fa;
583  	u16 Fa_scale;
584  	int ret;
585  
586  	ret = mlx90635_read_ee_object(data->regmap_ee, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
587  	if (ret < 0)
588  		return ret;
589  
590  	ret = mlx90635_read_all_channel(data,
591  					&ambient_new_raw, &ambient_old_raw,
592  					&object_raw);
593  	if (ret < 0)
594  		return ret;
595  
596  	ambient = mlx90635_preprocess_temp_amb(ambient_new_raw,
597  					       ambient_old_raw, Gb);
598  	object = mlx90635_preprocess_temp_obj(object_raw,
599  					      ambient_new_raw,
600  					      ambient_old_raw, Gb);
601  
602  	*val = mlx90635_calc_temp_object(object, ambient, Ea, Eb, Ga, Fa, Fa_scale, Fb,
603  					 Ha, Hb, data->emissivity);
604  	return 0;
605  }
606  
mlx90635_calc_ambient(struct mlx90635_data * data,int * val)607  static int mlx90635_calc_ambient(struct mlx90635_data *data, int *val)
608  {
609  	s16 ambient_new_raw, ambient_old_raw;
610  	s16 PG, PO, Gb;
611  	int ret;
612  
613  	ret = mlx90635_read_ee_ambient(data->regmap_ee, &PG, &PO, &Gb);
614  	if (ret < 0)
615  		return ret;
616  
617  	mutex_lock(&data->lock);
618  	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
619  		ret = mlx90635_perform_measurement_burst(data);
620  		if (ret < 0)
621  			goto read_ambient_unlock;
622  	}
623  
624  	ret = mlx90635_read_ambient_raw(data->regmap, &ambient_new_raw,
625  					&ambient_old_raw);
626  read_ambient_unlock:
627  	mutex_unlock(&data->lock);
628  	if (ret < 0)
629  		return ret;
630  
631  	*val = mlx90635_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
632  					  PG, PO, Gb);
633  	return ret;
634  }
635  
mlx90635_get_refresh_rate(struct mlx90635_data * data,unsigned int * refresh_rate)636  static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
637  				     unsigned int *refresh_rate)
638  {
639  	unsigned int reg;
640  	int ret;
641  
642  	ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
643  	if (ret < 0)
644  		return ret;
645  
646  	*refresh_rate = FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg);
647  
648  	return 0;
649  }
650  
651  static const struct {
652  	int val;
653  	int val2;
654  } mlx90635_freqs[] = {
655  	{ 0, 200000 },
656  	{ 0, 500000 },
657  	{ 0, 900000 },
658  	{ 1, 700000 },
659  	{ 3, 0 },
660  	{ 4, 800000 },
661  	{ 6, 900000 },
662  	{ 8, 900000 }
663  };
664  
665  /**
666   * mlx90635_pm_interaction_wakeup() - Measure time between user interactions to change powermode
667   * @data: pointer to mlx90635_data object containing interaction_ts information
668   *
669   * Switch to continuous mode when interaction is faster than MLX90635_MEAS_MAX_TIME. Update the
670   * interaction_ts for each function call with the jiffies to enable measurement between function
671   * calls. Initial value of the interaction_ts needs to be set before this function call.
672   */
mlx90635_pm_interaction_wakeup(struct mlx90635_data * data)673  static int mlx90635_pm_interaction_wakeup(struct mlx90635_data *data)
674  {
675  	unsigned long now;
676  	int ret;
677  
678  	now = jiffies;
679  	if (time_in_range(now, data->interaction_ts,
680  			  data->interaction_ts +
681  			  msecs_to_jiffies(MLX90635_MEAS_MAX_TIME + 100))) {
682  		ret = mlx90635_pwr_continuous(data);
683  		if (ret < 0)
684  			return ret;
685  	}
686  
687  	data->interaction_ts = now;
688  
689  	return 0;
690  }
691  
mlx90635_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int * val,int * val2,long mask)692  static int mlx90635_read_raw(struct iio_dev *indio_dev,
693  			     struct iio_chan_spec const *channel, int *val,
694  			     int *val2, long mask)
695  {
696  	struct mlx90635_data *data = iio_priv(indio_dev);
697  	int ret;
698  	int cr;
699  
700  	pm_runtime_get_sync(&data->client->dev);
701  	ret = mlx90635_pm_interaction_wakeup(data);
702  	if (ret < 0)
703  		goto mlx90635_read_raw_pm;
704  
705  	switch (mask) {
706  	case IIO_CHAN_INFO_PROCESSED:
707  		switch (channel->channel2) {
708  		case IIO_MOD_TEMP_AMBIENT:
709  			ret = mlx90635_calc_ambient(data, val);
710  			if (ret < 0)
711  				goto mlx90635_read_raw_pm;
712  
713  			ret = IIO_VAL_INT;
714  			break;
715  		case IIO_MOD_TEMP_OBJECT:
716  			ret = mlx90635_calc_object(data, val);
717  			if (ret < 0)
718  				goto mlx90635_read_raw_pm;
719  
720  			ret = IIO_VAL_INT;
721  			break;
722  		default:
723  			ret = -EINVAL;
724  			break;
725  		}
726  		break;
727  	case IIO_CHAN_INFO_CALIBEMISSIVITY:
728  		if (data->emissivity == 1000) {
729  			*val = 1;
730  			*val2 = 0;
731  		} else {
732  			*val = 0;
733  			*val2 = data->emissivity * 1000;
734  		}
735  		ret = IIO_VAL_INT_PLUS_MICRO;
736  		break;
737  	case IIO_CHAN_INFO_SAMP_FREQ:
738  		ret = mlx90635_get_refresh_rate(data, &cr);
739  		if (ret < 0)
740  			goto mlx90635_read_raw_pm;
741  
742  		*val = mlx90635_freqs[cr].val;
743  		*val2 = mlx90635_freqs[cr].val2;
744  		ret = IIO_VAL_INT_PLUS_MICRO;
745  		break;
746  	default:
747  		ret = -EINVAL;
748  		break;
749  	}
750  
751  mlx90635_read_raw_pm:
752  	pm_runtime_mark_last_busy(&data->client->dev);
753  	pm_runtime_put_autosuspend(&data->client->dev);
754  	return ret;
755  }
756  
mlx90635_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int val,int val2,long mask)757  static int mlx90635_write_raw(struct iio_dev *indio_dev,
758  			      struct iio_chan_spec const *channel, int val,
759  			      int val2, long mask)
760  {
761  	struct mlx90635_data *data = iio_priv(indio_dev);
762  	int ret;
763  	int i;
764  
765  	switch (mask) {
766  	case IIO_CHAN_INFO_CALIBEMISSIVITY:
767  		/* Confirm we are within 0 and 1.0 */
768  		if (val < 0 || val2 < 0 || val > 1 ||
769  		    (val == 1 && val2 != 0))
770  			return -EINVAL;
771  		data->emissivity = val * 1000 + val2 / 1000;
772  		return 0;
773  	case IIO_CHAN_INFO_SAMP_FREQ:
774  		for (i = 0; i < ARRAY_SIZE(mlx90635_freqs); i++) {
775  			if (val == mlx90635_freqs[i].val &&
776  			    val2 == mlx90635_freqs[i].val2)
777  				break;
778  		}
779  		if (i == ARRAY_SIZE(mlx90635_freqs))
780  			return -EINVAL;
781  
782  		ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL1,
783  					MLX90635_CTRL1_REFRESH_RATE_MASK, i);
784  
785  		return ret;
786  	default:
787  		return -EINVAL;
788  	}
789  }
790  
mlx90635_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)791  static int mlx90635_read_avail(struct iio_dev *indio_dev,
792  			       struct iio_chan_spec const *chan,
793  			       const int **vals, int *type, int *length,
794  			       long mask)
795  {
796  	switch (mask) {
797  	case IIO_CHAN_INFO_SAMP_FREQ:
798  		*vals = (int *)mlx90635_freqs;
799  		*type = IIO_VAL_INT_PLUS_MICRO;
800  		*length = 2 * ARRAY_SIZE(mlx90635_freqs);
801  		return IIO_AVAIL_LIST;
802  	default:
803  		return -EINVAL;
804  	}
805  }
806  
807  static const struct iio_chan_spec mlx90635_channels[] = {
808  	{
809  		.type = IIO_TEMP,
810  		.modified = 1,
811  		.channel2 = IIO_MOD_TEMP_AMBIENT,
812  		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
813  		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
814  		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
815  	},
816  	{
817  		.type = IIO_TEMP,
818  		.modified = 1,
819  		.channel2 = IIO_MOD_TEMP_OBJECT,
820  		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
821  			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
822  		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
823  		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
824  	},
825  };
826  
827  static const struct iio_info mlx90635_info = {
828  	.read_raw = mlx90635_read_raw,
829  	.write_raw = mlx90635_write_raw,
830  	.read_avail = mlx90635_read_avail,
831  };
832  
mlx90635_sleep(void * _data)833  static void mlx90635_sleep(void *_data)
834  {
835  	struct mlx90635_data *data = _data;
836  
837  	mlx90635_pwr_sleep_step(data);
838  }
839  
mlx90635_suspend(struct mlx90635_data * data)840  static int mlx90635_suspend(struct mlx90635_data *data)
841  {
842  	return mlx90635_pwr_sleep_step(data);
843  }
844  
mlx90635_wakeup(struct mlx90635_data * data)845  static int mlx90635_wakeup(struct mlx90635_data *data)
846  {
847  	s16 Fb, Ga, Gb, Ha, Hb, PG, PO;
848  	unsigned int dsp_version;
849  	u32 Ea, Eb, Fa;
850  	u16 Fa_scale;
851  	int ret;
852  
853  	regcache_cache_bypass(data->regmap_ee, false);
854  	regcache_cache_only(data->regmap_ee, false);
855  	regcache_cache_only(data->regmap, false);
856  
857  	ret = mlx90635_pwr_continuous(data);
858  	if (ret < 0) {
859  		dev_err(&data->client->dev, "Switch to continuous mode failed\n");
860  		return ret;
861  	}
862  	ret = regmap_write_bits(data->regmap, MLX90635_REG_EE,
863  				MLX90635_EE_ACTIVE, MLX90635_EE_ACTIVE);
864  	if (ret < 0) {
865  		dev_err(&data->client->dev, "Powering EEPROM failed\n");
866  		return ret;
867  	}
868  	usleep_range(MLX90635_TIMING_EE_ACTIVE_MIN, MLX90635_TIMING_EE_ACTIVE_MAX);
869  
870  	regcache_mark_dirty(data->regmap_ee);
871  
872  	ret = regcache_sync(data->regmap_ee);
873  	if (ret < 0) {
874  		dev_err(&data->client->dev,
875  			"Failed to sync cache: %d\n", ret);
876  		return ret;
877  	}
878  
879  	ret = mlx90635_read_ee_ambient(data->regmap_ee, &PG, &PO, &Gb);
880  	if (ret < 0) {
881  		dev_err(&data->client->dev,
882  			"Failed to read to cache Ambient coefficients EEPROM region: %d\n", ret);
883  		return ret;
884  	}
885  
886  	ret = mlx90635_read_ee_object(data->regmap_ee, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
887  	if (ret < 0) {
888  		dev_err(&data->client->dev,
889  			"Failed to read to cache Object coefficients EEPROM region: %d\n", ret);
890  		return ret;
891  	}
892  
893  	ret = regmap_read(data->regmap_ee, MLX90635_EE_VERSION, &dsp_version);
894  	if (ret < 0) {
895  		dev_err(&data->client->dev,
896  			"Failed to read to cache of EEPROM version: %d\n", ret);
897  		return ret;
898  	}
899  
900  	regcache_cache_only(data->regmap_ee, true);
901  
902  	return ret;
903  }
904  
mlx90635_disable_regulator(void * _data)905  static void mlx90635_disable_regulator(void *_data)
906  {
907  	struct mlx90635_data *data = _data;
908  	int ret;
909  
910  	ret = regulator_disable(data->regulator);
911  	if (ret < 0)
912  		dev_err(regmap_get_device(data->regmap),
913  			"Failed to disable power regulator: %d\n", ret);
914  }
915  
mlx90635_enable_regulator(struct mlx90635_data * data)916  static int mlx90635_enable_regulator(struct mlx90635_data *data)
917  {
918  	int ret;
919  
920  	ret = regulator_enable(data->regulator);
921  	if (ret < 0) {
922  		dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
923  		return ret;
924  	}
925  
926  	mlx90635_reset_delay();
927  
928  	return ret;
929  }
930  
mlx90635_probe(struct i2c_client * client)931  static int mlx90635_probe(struct i2c_client *client)
932  {
933  	struct mlx90635_data *mlx90635;
934  	struct iio_dev *indio_dev;
935  	unsigned int dsp_version;
936  	struct regmap *regmap;
937  	struct regmap *regmap_ee;
938  	int ret;
939  
940  	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90635));
941  	if (!indio_dev)
942  		return dev_err_probe(&client->dev, -ENOMEM, "failed to allocate device\n");
943  
944  	regmap = devm_regmap_init_i2c(client, &mlx90635_regmap);
945  	if (IS_ERR(regmap))
946  		return dev_err_probe(&client->dev, PTR_ERR(regmap),
947  				     "failed to allocate regmap\n");
948  
949  	regmap_ee = devm_regmap_init_i2c(client, &mlx90635_regmap_ee);
950  	if (IS_ERR(regmap_ee))
951  		return dev_err_probe(&client->dev, PTR_ERR(regmap_ee),
952  				     "failed to allocate EEPROM regmap\n");
953  
954  	mlx90635 = iio_priv(indio_dev);
955  	i2c_set_clientdata(client, indio_dev);
956  	mlx90635->client = client;
957  	mlx90635->regmap = regmap;
958  	mlx90635->regmap_ee = regmap_ee;
959  	mlx90635->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
960  
961  	mutex_init(&mlx90635->lock);
962  	indio_dev->name = "mlx90635";
963  	indio_dev->modes = INDIO_DIRECT_MODE;
964  	indio_dev->info = &mlx90635_info;
965  	indio_dev->channels = mlx90635_channels;
966  	indio_dev->num_channels = ARRAY_SIZE(mlx90635_channels);
967  
968  	mlx90635->regulator = devm_regulator_get(&client->dev, "vdd");
969  	if (IS_ERR(mlx90635->regulator))
970  		return dev_err_probe(&client->dev, PTR_ERR(mlx90635->regulator),
971  				     "failed to get vdd regulator");
972  
973  	ret = mlx90635_enable_regulator(mlx90635);
974  	if (ret < 0)
975  		return ret;
976  
977  	ret = devm_add_action_or_reset(&client->dev, mlx90635_disable_regulator,
978  				       mlx90635);
979  	if (ret < 0)
980  		return dev_err_probe(&client->dev, ret,
981  				     "failed to setup regulator cleanup action\n");
982  
983  	ret = mlx90635_wakeup(mlx90635);
984  	if (ret < 0)
985  		return dev_err_probe(&client->dev, ret, "wakeup failed\n");
986  
987  	ret = devm_add_action_or_reset(&client->dev, mlx90635_sleep, mlx90635);
988  	if (ret < 0)
989  		return dev_err_probe(&client->dev, ret,
990  				     "failed to setup low power cleanup\n");
991  
992  	ret = regmap_read(mlx90635->regmap_ee, MLX90635_EE_VERSION, &dsp_version);
993  	if (ret < 0)
994  		return dev_err_probe(&client->dev, ret, "read of version failed\n");
995  
996  	dsp_version = dsp_version & MLX90635_VERSION_MASK;
997  
998  	if (FIELD_GET(MLX90635_DSP_FIXED, dsp_version)) {
999  		if (MLX90635_DSP_VERSION(dsp_version) == MLX90635_ID_DSPv1) {
1000  			dev_dbg(&client->dev,
1001  				"Detected DSP v1 calibration %x\n", dsp_version);
1002  		} else {
1003  			dev_dbg(&client->dev,
1004  				"Detected Unknown EEPROM calibration %lx\n",
1005  				MLX90635_DSP_VERSION(dsp_version));
1006  		}
1007  	} else {
1008  		return dev_err_probe(&client->dev, -EPROTONOSUPPORT,
1009  			"Wrong fixed top bit %x (expected 0x8X0X)\n",
1010  			dsp_version);
1011  	}
1012  
1013  	mlx90635->emissivity = 1000;
1014  	mlx90635->interaction_ts = jiffies; /* Set initial value */
1015  
1016  	pm_runtime_get_noresume(&client->dev);
1017  	pm_runtime_set_active(&client->dev);
1018  
1019  	ret = devm_pm_runtime_enable(&client->dev);
1020  	if (ret)
1021  		return dev_err_probe(&client->dev, ret,
1022  				     "failed to enable powermanagement\n");
1023  
1024  	pm_runtime_set_autosuspend_delay(&client->dev, MLX90635_SLEEP_DELAY_MS);
1025  	pm_runtime_use_autosuspend(&client->dev);
1026  	pm_runtime_put_autosuspend(&client->dev);
1027  
1028  	return devm_iio_device_register(&client->dev, indio_dev);
1029  }
1030  
1031  static const struct i2c_device_id mlx90635_id[] = {
1032  	{ "mlx90635" },
1033  	{ }
1034  };
1035  MODULE_DEVICE_TABLE(i2c, mlx90635_id);
1036  
1037  static const struct of_device_id mlx90635_of_match[] = {
1038  	{ .compatible = "melexis,mlx90635" },
1039  	{ }
1040  };
1041  MODULE_DEVICE_TABLE(of, mlx90635_of_match);
1042  
mlx90635_pm_suspend(struct device * dev)1043  static int mlx90635_pm_suspend(struct device *dev)
1044  {
1045  	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
1046  	int ret;
1047  
1048  	ret = mlx90635_suspend(data);
1049  	if (ret < 0)
1050  		return ret;
1051  
1052  	ret = regulator_disable(data->regulator);
1053  	if (ret < 0)
1054  		dev_err(regmap_get_device(data->regmap),
1055  			"Failed to disable power regulator: %d\n", ret);
1056  
1057  	return ret;
1058  }
1059  
mlx90635_pm_resume(struct device * dev)1060  static int mlx90635_pm_resume(struct device *dev)
1061  {
1062  	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
1063  	int ret;
1064  
1065  	ret = mlx90635_enable_regulator(data);
1066  	if (ret < 0)
1067  		return ret;
1068  
1069  	return mlx90635_wakeup(data);
1070  }
1071  
mlx90635_pm_runtime_suspend(struct device * dev)1072  static int mlx90635_pm_runtime_suspend(struct device *dev)
1073  {
1074  	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
1075  
1076  	return mlx90635_pwr_sleep_step(data);
1077  }
1078  
1079  static const struct dev_pm_ops mlx90635_pm_ops = {
1080  	SYSTEM_SLEEP_PM_OPS(mlx90635_pm_suspend, mlx90635_pm_resume)
1081  	RUNTIME_PM_OPS(mlx90635_pm_runtime_suspend, NULL, NULL)
1082  };
1083  
1084  static struct i2c_driver mlx90635_driver = {
1085  	.driver = {
1086  		.name	= "mlx90635",
1087  		.of_match_table = mlx90635_of_match,
1088  		.pm	= pm_ptr(&mlx90635_pm_ops),
1089  	},
1090  	.probe = mlx90635_probe,
1091  	.id_table = mlx90635_id,
1092  };
1093  module_i2c_driver(mlx90635_driver);
1094  
1095  MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
1096  MODULE_DESCRIPTION("Melexis MLX90635 contactless Infra Red temperature sensor driver");
1097  MODULE_LICENSE("GPL");
1098